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Goals!

•  Aim!
–  To provide an overview of theory and operation of modern low-

dimensional speech representations and their application to 
automatic speaker, language, emotion recognition and 
diarization!

•  Participants should gain an introduction to and 
understanding of:!
–  Subspace Representation of Speech Signals!
–  Algorithms for Joint-Factor Analysis and Total-Variability 

Modeling!
–  Application of subspace representations to automatic speaker 

and language recognition systems!
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Roadmap!
•  Introduction!

–  Terminology, tasks, and framework!

•  Low-Dimensional Representation!
–  Sequence of features: GMM!
–  Super-vectors: JFA!
–  Low-dimensional vectors: i-vectors!
–  Processing i-vectors: compensation and scoring!

•  Applications!
–  Speaker verification!
–  Speaker diarization!
–  Language recognition!
–  Emotion recognition!
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Extracting Information from Speech!

Speech 
Recognition 

Language 
Recognition 

Speaker 
Recognition 

Words 

Language Name 

Speaker Name 

“How are you?” 

English 

James Wilson 

Speech Signal 

Goal:  Automatically extract information 
transmitted in speech signal 

Emotion 
Recognition Emotion category 

Happy, angry … 
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Identification!

•  Determine whether unknown speaker (language) matches 
one of a set of known speakers (languages)!

•  One-to-many mapping!

•  Often assumed that unknown voice must come from a set of 
known speakers – referred to as closed-set identification!

? 

? 

? 

Whose voice is this? ? 

? 

? 

Which language is 
this? 
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Verification/Authentication/Detection!

•  Determine whether unknown speaker (language) matches a 
specific speaker (language)!

•  One-to-one mapping!

•  Unknown speech could come from a large set of unknown 
speakers (languages) – referred to as open-set verification!

•  Adding “none of the above” option to closed-set 
identification gives open-set identification!

? 

Is this Bob’s voice? 

? 

Is this German? 
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Diarization 
Segmentation and Clustering!

•  Determine when a speaker change has occurred in the 
speech signal (segmentation)!

•  Group together speech segments corresponding to the 
same speaker (clustering)!

•  Prior speaker information may or may not be available!

Speaker B 

Speaker A 

Which segments are from 
the same speaker? 

Where are speaker 
changes? 
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•  Recognition system knows 
text spoken by person 

•  Examples: fixed phrase, 
prompted phrase 

•  Used for applications with 
strong control over user input 

•  Knowledge of spoken text can 
improve system performance 

Application dictates different speech modalities:!

•  Recognition system does not know text 
spoken by person 

•  Examples: User selected phrase, 
conversational speech 

•  Used for applications with less control 
over user input 

•  More flexible system but also more 
difficult problem 

•  Speech recognition can provide 
knowledge of spoken text 

Text-dependent Text-independent 

Speech Modalities!
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Feature 
extraction 

Training 
algorithm 

Model for each 
speaker (language) 

Sally (Spanish) 

Bob (English) 

Decision Feature 
extraction 

Recognition 
algorithm 

Speaker/language set 

Algorithm 
parameters 

Unknown test 

Known train 

? 

Framework for Speaker/Language 
Recognition Systems!
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Information in Speech!
•  Speech is a time-varying signal conveying multiple 

layers of information!
–  Words!
–  Speaker !
–  Language!
–  Emotion!

•  Information in speech is observed in the time and 
frequency domains!
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Time (sec)!
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•  A time sequence of features is needed to capture speech 
information   !
–  Typically some spectra based features are extracted using sliding 

window  - 20 ms window, 10 ms shift!
..
.!
Fourier 

Transform Magnitude 

•  Produces time-frequency evolution of the spectrum 

Feature Extraction from Speech!
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Cepstral Features!

Fourier  
Transform Magnitude Log() Cosine  

transform 
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Modeling Sequence of Features  
Gaussian Mixture Models!

•  For most recognition tasks, we need to model the 
distribution of feature vector sequences!
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•  In practice, we often use Gaussian Mixture Models (GMMs).!

GMM!
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Feature Space!

MANY !
Training!
Utterances!

Signal Space!



Gaussian Mixture Models!

•  A GMM is a weighted sum of Gaussian distributions!
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Gaussian Mixture Models  
Log Likelihood!

•  To use a GMM, we need to do two things!
1 – Compute the likelihood of a sequence of features given a GMM!
2 – Estimate the parameters of a GMM given a set of feature 

!vectors!
•  If we assume independence between feature vectors in 

a sequence, then we can compute the likelihood as!

•  Usually written as log likelihood!
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Gaussian Mixture Models  
Parameter Estimation!

•  GMM parameters are estimated by maximizing the 
likelihood of on a set of training vectors!

•  Setting the derivatives with respect to model 
parameters to zero and solving!
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Gaussian Mixture Models  
Expectation Maximization (EM)!

Probabilistically align vectors to model!

M-Step!E-Step!
Update model parameters!

Accumulate 
sufficient 
statistics!
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Detection System  
GMM-UBM!

•  Realization of log-likelihood ratio test from signal detection theory 

Feature 
Extraction!

Target model!

Background 
model!

Σ	

 Λ	



-!

+!

•  GMMs used for both target and background model 
–  Target model trained using enrollment speech 
–  Background model trained using speech from many speakers 

(often referred to as Universal Background Model – UBM) 
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MAP Adaptation!

•  Target model is often trained by adapting from 
background model!
–  Couples models together and helps with limited target training data!

•  Maximum A-Posteriori (MAP) training (similar to EM)!
–  Align target training vectors to UBM!
–  Accumulate sufficient statistics!
–  Update target model parameters with smoothing to UBM 

parameters!
•  Adaptation only updates parameters representing 

acoustic events seen in target training data 
–  Sparse regions of feature space filled in by UBM parameters 

•  Side benefits 
–  Keeps correspondence between target and UBM mixtures 

(important later) 
–  Allows for fast scoring when using many target models (top-M 

scoring) 
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Adapted GMMs  
Mean-only adaptation!

x x 
x 
x 

x 
x 

x
x 

x 

UBM 

Target  
training  
data 

•  Probabilistically align target 
training data into UBM mixture 
states 

•  Accumulate sufficient statistics 
from probabilistic alignment 
‒  Mean-only adaptation empirically 

found to be better 

•  Update target model parameters 
using sufficient statistics and adapt 
parameter (α) 
–  Relevance factor r controls rate of 

adaptation 
–  r  0, MAP  EM 
–  r   ∞. No adaptation 

Target 
Model 
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GMM-UBM Recap!

(2) Train UBM with speech 
from many speakers using 
EM!

(3) Adapt target model from UBM!

(4) Compute likelihood 
ratio of test data !

(1) Extract feature vector 
sequence from speech 
signal!

UBM 

Target 
Model 
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Another View of log-likelihoods !

•  We can use sufficient statistics to score a GMM…!

•  Since we adapt only the UBM means!
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Supervectors!

•  By stacking vectors and matrices, we can work directly 
with vector-matrix manipulations!

Σ-1 

Σ-1!

Σ-1 

0!

0!

m 

m 

m 

μ 

μ 

μ 

-!

m 

m 

m 

μ 

μ 

μ 

-!

!̀

Σ-1 m μ -!

!̀

m μ -! Σ-1 m μ -!

!̀

m μ -! Σ-1 m μ -!

!̀

m μ -!+! +!

Super-vectors 
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MAP Reformulated!

•  New design for MAP adaptation based on Factor Analysis!
•  M = m + Dz 

–  M : speaker and channel dependent supervector 
–  m : speaker and channel independent supervector (UBM) 
–  d : diagonal matrix 
–  z : random vectors with a standard normal prior 

•  M is normally distributed with mean m and covariance D2. 
•  Matrix D can be trained via maximum likelihood.  

•  If we let   
–  then we have the equivalent of Relevance MAP adaptation.  
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Intuition!

•  The way the UBM adapts to a given speaker ought to be 
somewhat constrained!
–  There should exist some relationship in the way the mean parameters 

move relative to speaker to another!
–  The Joint Factor Analysis [Kenny 2008] explored this relationship!

* Jointly model between- and within-speaker variabilities!
–  Support Vector Machine GMM supervector  [Campbell 2006]!
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Joint Factor Analysis!

Within speaker variability!

08/27/11!Spoken Language Systems, MIT CSAIL !



•  Proposed for the GMM frameworks 
•  Assumption [Kenny2008] 

    M=s+c 

•  M : speaker and channel dependent supervector 
•  s : speaker dependent supervector 
•  c : channel dependent supervector 

– GMM supervector : concatenation of the means components 

Joint Factor Analysis!
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•  s = m + Vy + Dz  
–  m : speaker- and channel-independent supervector!
–  V : rectangular matrix of low-rank (eigenvoices- speaker space )!
–  D : diagonal matrix!
–  y, z : random vectors with a standard normal prior!

•  c = Ux  
–  U : rectangular matrix of low rank (eigenchannels- channel space)!
–  x : random vector with standard normal prior!

Joint Factor Analysis – Details!

08/27/11!Spoken Language Systems, MIT CSAIL !



•  Likelihood [Kenny2008] 

•  Log likelihood ratio 
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Joint Factor Analysis System!

MFCC !
Extraction!

Baum Welch!
Statistics!
extraction!

Log !
Likelihood!

ratio!

MFCC !
Extraction!

Baum Welch!
Statistics!
extraction!

JFA!
adaptation!

Test!

Target 

Non-target 

UBM!

MFCC !
Extraction!

EM!
(UBM training)!

JFA!
Hyper-!

parameters!

JFA!

Target!
model!

Decision!
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The story begins…!

The importance of each factors vector in the JFA 

M= m + V.y + D.z + U.x 

Johns Hopkins University 
The Center for Language 

and Speech Processing 
2008   

Channel factors!
Contain speaker !
information!
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•  Factor analysis as feature extractor 
•  Joint factor analysis 

M= m + Vy + Dz + Ux 
•  Speaker and channel dependent supervector   

 M = m + Tw  
–  T is rectangular, low rank (total variability matrix) 
– w  standard Normal random (total factors – intermediate vector 

or i-vector) 
•  Estimate the i-vector: contain both variabilities 
•  No distinction between speaker V and channel U variabilities 
•  We will apply channel compensation later in the i-vector space.  

Najim Dehak, Patrick Kenny, Pierre Dumouchel, Reda Dehak, Pierre Ouellet, «Front-end factor analysis for speaker 
verification » in IEEE Transactions on Audio, speech and Language Processing 2011.  

Najim Dehak, Réda Dehak, Patrick Kenny, Niko Brummer, Pierre Ouellet and Pierre Dumouchel, Support Vector 
Machine versus Fast Scoring in the Low-Dimensional Total Variability Space for Speaker Verification. In 
Proc INTERSPEECH  2009, Brighton, UK, September 2009. 

Total variability!
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Total variability space!
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Why call it an i-vector? !

€ 

α1,µ1 =
µ11
µ12

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,Σ1

€ 

α2,µ2 =
µ21
µ22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,Σ2

€ 

α3,µ3 =
µ31
µ32

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,Σ3

€ 

µ11
µ12
µ21
µ22
µ31
µ32

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

M
F!
C
C!

GMM components: 2048!
Feature dimension: 60!

GMM-SV : 
60*2048=122880!

Feature dimension 60!

I!
V!
E!
C!
T
O
R!

Actually between !
100 to 1000!

I- for Intermediate !
representation!

It is definitely not 
an Apple product !
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Extracting the Hyperparameters !

•  Speaker and channel dependent supervector   

 M = m + Tw 

•  The i-vector extractor is characterized by 
–  m : A supervector mean (can be the UBM) 
–  T : low rank Total variability matrix 
–       : diagonal covariance matrix  

•  Preliminaries!
–  Acoustic observations !

* Each yt has dimension F 
–  Universal Background Model θUBM !

* Number of Gaussian components C , indexed by c 
*  Supervector dimension = CF!

€ 

∑
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€ 

u =
 x 1,...,

 x L{ }



Baum-Welch (Sufficient) Statistics!

•  Zeroth Order!

•  First Order!

•  Second Order!

  

€ 

Nc (u) = P(c |  x t ,θUBM)
t =1

L

∑ = γ t (c)
t
∑

  

€ 

Fc (u) = P(c |  x t ,θUBM)⋅
 x t

t =1

L

∑ = γ t (c)⋅
 x t

t
∑

  

€ 

Sc (u) = diag γ t (c)⋅
 x t
 x t

t

t
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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Simplified Notation I!

•  Recall!

•  Centralized First- / Second-Order Statistics!

    

€ 

γ t (c) = P(c |  x t ,θUBM) =
π cPc(

 x t | µc,Σc )
π iPi(

 x t | µi,Σi)i=1

C
∑

  

€ 

˜ F c (u) = γ t (c)⋅ ( x t −mc )
t
∑

  

€ 

˜ S c (u) = diag γ t (c)⋅ ( x t −mc )( x t −mc )t

t
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  

€ 

m = m1 m2  mC[ ]t
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Simplified Notation II!

08/27/11!Spoken Language Systems, MIT CSAIL !



The EM Algorithm!
•  Initialize m and       as defined by our UBM covariance 

matrices!
•  Pick a desired rank R for the Total Variability Matrix T and 

initialize this CF x R matrix randomly.!

•  E-step:!
–  For each utterance u, calculate the parameters of the posterior 

distribution of w(u) using the current estimates of m, T, !

•  M-step:!
–  Update T and  by      solving a set of linear equations in which the w

(u)ʼs play the role of explanatory variables!

•  Iterate until parameters / data likelihood converges…!
 Kenny, P., Boulianne, G. and P. Dumouchel. Eigenvoice Modeling with Sparse Training Data. IEEE Transactions on Speech 

and Audio Processing, 13 May (3) 2005 : 345-359. !

€ 

∑

€ 

∑

€ 

∑
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E-step: The Posterior Distribution of w(u)!

•  For each utterance u, let l(u) be the matrix defined by!

•  Then the posterior distribution of w(u) conditioned on the 
acoustic observations of an utterance u is Gaussian with 
mean!

    and covariance matrix!

   Kenny, P., Boulianne, G. and P. Dumouchel. Eigenvoice Modeling with Sparse 
Training Data. IEEE Transactions on Speech and Audio Processing, 13 May (3) 
2005 : 345-359. !

€ 

l(u) = I +T tΣ−1N(u)T

€ 

E[w(u)] = l−1(u)T tΣ−1 ˜ F (u)

€ 

cov(w(u),w(u)) = l−1(u)
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Proof Sketch!

•  To show this, let!

•  Then it suffices to show that!

•  First, just apply Bayesʼ Rule !

€ 

E(u) = l−1(u)T tΣ−1 ˜ F (u)

€ 

PT ,Σ (w | u)∝ exp −
1
2
(w − E(u))t l(u)(w − E(u))

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  

€ 

PT ,Σ (w | u)∝ PT ,Σ (u | w)⋅ N(w | 0,I)
                 = PT ,Σ ({ x 1,...,

 x L} | w)⋅ N(w | 0,I)
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M-step: Maximum Likelihood Re-
estimation 1/2!

€ 

Nc = Nc
u
∑ (u)

Ac = Nc (u)E[w(u)wt (u)
u
∑ ]

C = ˜ F (u)E[wt (u)]
u
∑

N = N(u)
u
∑

€ 

u =1,...,  number of utterances
c =1,...,  number of GMM components

€ 

E[w(u)wt (u)] = Cov(w(u),w(u))+ E[w(u)].E[w(u)]t
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M-step: Maximum Likelihood Re-
estimation 2/2!

•  Update matrix T!

•  Update the diagonal covariance matrix!

€ 

f =1,...,  D_F
D_F = dimensionality of features vector
c =1,...,  number of GMM components

€ 

T(i,:)Ac = Ci

where i = (c −1) *D_F + f

€ 

∑ = N −1( ˜ S (u) − diag(CT t

u
∑ )
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Scoring and channel Compensation!

•  Cosine scoring!

•  Channel Compensation techniques !

–  Linear Discriminant Analysis!
–  Within Class Covariance Normalization!
–  Nuisance Attribute projection!

€ 

score =
< wt arg et ,wtest >

wt arg et . wtest
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Scoring and channel Compensation!
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€ 

score =
< wt arg et ,wtest >

wt arg et . wtest
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Discussion !

•  Low dimensional representation simplify life!
–  Mixture of Gaussians!
–  Supervector of Gaussian mean components!
–  Low-dimensional i-vector!

•  Easy way to compare between sequences of features with 
different duration!
–  Less frames produce high uncertainty in the estimation of the i-vector!

•  Classical pattern recognition approaches like LDA can be 
easily applied to maximize the discrimination between the 
different classes!
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Speaker Verification!



Speaker Verifiation  
outline!

•  Speaker Recognition problem!
•  NIST Speaker Recognition evaluation!

–  Performance evaluation metrics!
•  Feature extraction.!
•  I-vector for speaker verification!
•  Intersession compensation!
•  Experiments and results!
•  Data mismatch !
•  Data visualization!
•  Conclusion!
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Speaker Verification Problem!
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Speaker verification  
system 

yes ? 
no ? 



NIST  
Speaker Recognition evaluation!

Test!

10sec! 1conv! 1conv sum! 1conv aux 
mic!

Training!

10sec! Opt!
1conv! Opt! Core! Opt! Opt!
3conv! Opt! Opt! Opt! Opt!
8conv! Opt! Opt! Opt!
3conv 
sum! Opt! Opt!

•  Several training and testing conditions (dependent on speech duration: 
10sec, 1conv , 3conv,…)  
•   Telephone conversation and microphone data 
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Speaker verification system performances!

•  False acceptance and rejection Rates 

•     EER! •     MinDCF!

yes ? 
no ? 

Speaker verification  
system 

Target speaker!

scores!

•     Detcurve!
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Total Variability – I-vector [Dehak 09,11] !

•  Factor analysis as feature extractor 

•  M = m + Tw  
–  T is rectangular, low rank (total variability matrix) 
– w  variable with standard Normal prior (i-vectors) 

•  Cosine scoring 

€ 

score =
< wt arg et ,wtest >

wt arg et . wtest
€ 

w(u) = E[w(u)] = l−1(u)T∗Σ−1 ˜ F (u)
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I-vector Extraction!

M
F!
C
C!

M
F!
C
C!

M
F!
C
C!

M
F!
C
C!

M
F!
C
C! I-vector extractor!

I!
V!
E!
C!
T!
O!
R!
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Intersession compensation!

•  LDA  [Dehak 2009,2011] !

•  LDA+ WCCN [Hatch2006] , [Dehak 2009,2011] !
€ 

A is matrix of eigenvectors from Sb .v = λ .Sw .v

Sb = (w j − w )(w j − w )t

j =1

S

∑

Sw =
1
ns

(wi
s − ws)(wi

s − ws)
t

i=1

ns

∑
s=1

S

∑

€ 

w 

      mean of utterances of each speaker 

      number of speakers 
      number of utterances for each speaker ( s ) 
      the mean of the entire population !€ 

ws =
1
ns

Atwi
s

i=1

ns

∑
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Modified Cosine Scoring!

•  LDA and WCCN combination [Dehak 09,11] !

€ 

score(wt arg et ,wtest ) =
(Atwt arg et )

tW −1(Atwtest )
(Atwt arg et )

tW −1(Atwt arg et ) . (Atwtest )
tW −1(Atwtest )

≥
< θ

€ 

A  :  Linear Discriminant Analysis
W :  Within Class Covariance Normalization 
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Telephone System!

MFCC !
Extraction!

Baum Welch!
Statistics!
extraction!

Factor!
extraction!

MFCC !
Extraction!

Baum Welch!
Statistics!
extraction!

Factor!
extraction!

Test!

Channel !
Normalize!

Channel !
Normalize!

Target 

Cosine!
distance!

Non-target 

UBM!

MFCC !
Extraction!

EM!
(UBM training)!

TV!
Analysis!
training!

TV!
parameters!

LDA +!
WCCN!

Channel!
Effets!

estimation !

Decision!
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JFA/TV Comparison experiments!
•  Gender dependent UBM 

–  2048 Gaussians  
–  60 dimensional features : 19 Gaussianized MFCC’s + energy + delta + double 

delta  

•  JFA  
–  300 speaker factors, 100 channel factors, common factors. 
–  1000 z-norm utterances and around 200 t-norm impostor models 

•  Cosine distance scoring  
–  i-vector dim=400 
–  LDA (dim=200) +WCCN 
–  1000 z-norm utterances and around 200 t-norm impostor models!
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•  NIST 2008 SRE : female trials 

•  NIST 2008 SRE : male trials 

English trials All trials 

EER MinDCF EER MinDCF 

JFA scoring 3.17% 0.015 6.15% 0.032 

Cosine distance scoring 2.90% 0.012 5.76% 0.032 

English trials All trials 

EER MinDCF EER MinDCF 

JFA scoring 2.64% 0.011 5.15% 0.027 

Cosine distance scoring 1.12% 0.009 4.48% 0.024 

9.5% relative 
improvement!

57% relative 
improvement!
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•  NIST 2008 SRE : female trials 

•  NIST 2008 SRE : male trials 

English trials All trials 

EER MinDCF EER MinDCF 

JFA scoring 16.01% 0.064 17.99% 0.075 

Cosine distance scoring 12.19% 0.057 16.59% 0.072 

English trials All trials 

EER MinDCF EER MinDCF 

JFA scoring 15.20% 0.057 15.45% 0.068 

Cosine distance scoring 11.09% 0.047 14.44% 0.063 

25% relative 
improvement!

26% relative 
improvement!

08/27/11!Spoken Language Systems, MIT CSAIL !



Telephone and Microphone mismatch!

•  NIST 2010 Speaker Recognition Evaluation core condition 
–  Telephone data 
–  Interview data (microphone) 

•  All proposed systems are channel dependent (conditioned system)!
•  Contributions 

–  Single system for all conditions (independent to Data Type) 
–  Applying a cascade of channel compensation techniques to remove the 

mismatches between Telephone and interview data 
–  The score calibration is still an issue 
–  Data visualization for speaker recognition 

*  Channel effects  
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Channel-Blind System!
•  Single system applied for all different sub-condition - no conditioning!
•  Total variability space in composed of 800 dimensions [Senoussaoui 10]

from !
–  600 telephone i-vector!
–  200 interview and microphone i-vector!

! ! !M = m + Sw         S=[Ttel, Tmic]!

•  Probabilistic LDA [Prince 07] is similar to JFA but in the i-vector space!
–  Extension of the total variability framework for the interview data!

•  Using Probabilistic LDA to project interview and telephone i-vectors in the 
same speaker space!
! ! ! !w = µ+Vy+Ux+ε  !
! !!
! !µ    means of the entire ivectors (telephone data, (800,1))!
! !V   speaker space (telephone data, (800,600)) !
! !U   channel space  (trained on microphone and interview data, 
(800,200))!
! !ε    noise modeled by full covariance matrix trained in telephone data 
of dimension (800,800)!
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Channel-Blind System  
Cosine Scoring!

•  LDA and WCCN combination !

•  LDA matrix trained in the speaker space of the PLDA!
–  Trained on both microphone and telephone data (Switchboard 

and MIXER)!
–  Dimension reduction from 600 to 250!

•  Within Class Covariance !
–  Trained on both microphone and telephone data (NIST 

2005,2006,2008 SRE)!
–  In the interview data every speaker session is considered as new 

class!
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MFCC !
Extraction!

Baum Welch!
Statistics!
extraction!

MFCC !
Extraction!

Baum Welch!
Statistics!
extraction!

Test!

Target 

 Telephone  
Non-target  

UBM!

MFCC !
Extraction!

EM!
(UBM training)!

Factor!
extraction!

Factor!
extraction!

TV!
Analysis!
training!

TV!
parameters!

Channel !
Normalize!

Channel !
Normalize!

Cosine!
distance!

LDA +!
WCCN!

Channel!
Effets!

estimation !

Decision!PLDA!
projection!

PLDA!
projection!

PLDA!
training!

PLDA!

Microphone  
Non-target 

MFCC !
Extraction!

Baum Welch!
Statistics!
Extraction!

Factor!
Analysis!
training!

Channel-Blind System!
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System Details!

•  General!
–  Gender dependent UBMs!
–  2048 Gaussians !
–  60 dimensional features : 19 MFCCʼs + energy + delta + double delta !
–  Feature warping!
–  SAD !

*  Thanks to BUT for providing us the telephone SAD!
*  Thanks to CRIM for providing us the interview and microphone SAD!

•  Telephone system!
–  I-vectors dim=600!
–  LDA (dim=250) +WCCN!
–  zt-norm : 1000 z-norm utterances and 300 t-norm impostor models!

•  Blind system!
–  I-vectors dim=800!
–  PLDA is used to project in 600 speaker factors!
–  LDA (dim=250) +WCCN!
–  s-norm : 1000 s-norm!
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Telephone vs Blind Systems  
Common Condition 5 (tel-tel)!Extended!
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Telephone vs Blind Systems  
Common Condition 5 (tel-tel)!

Female! Male!

Extended!
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Interview Microphone  
Common Condition 2 (diff mic)! Extended!
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Graph Visualization!

•  Work at exploring behavior of speaker matching for large data set 
mining (Zahi Karam)!
–  Visualization using the Graph Exploration System (GUESS) [Eytan 06]!

•  Represent segment as a node with connections (edges) to nearest 
neighbors (3 NN used)!
–  NN computed using blind TV system (with and without channel normalization)!

•  Applied to 5438 utterances from the NIST SRE10 core!
–  Multiple telephone and microphone channels!

•  Absolute locations of nodes not important!
•  Relative locations of nodes to one another is important:!

–  The visualization clusters nodes that are highly connected together!
•  Meta data (speaker ID, channel info) not used in layout!
•  Colors and shapes of nodes used to highlight interesting phenomena!

08/27/11!Spoken Language Systems, MIT CSAIL !



Females with full blind TV system!

Colors represent speakers!
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Females with blind TV System No LDA/WCCN!

Colors represent speakers!
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Females with blind TV System No LDA/WCCN!

Cell phone!
Landline!
215573qqn!
215573now!
Mic_CH08!
Mic_CH04!
Mic_CH12!
Mic_CH13!
Mic_CH02!
Mic_CH07!
Mic_CH05!
▲= high VE!
= low VE!
= normal VE!
=room LDC %
* =room HIVE!
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Cell phone!
Landline!
215573qqn!
215573now!
Mic_CH08!
Mic_CH04!
Mic_CH12!
Mic_CH13!
Mic_CH02!
Mic_CH07!
Mic_CH05!
▲= high VE!
= low VE!
= normal VE!
=room LDC %
* =room HIVE!

TEL!

Females with blind TV System No LDA/WCCN!
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MIC!

Cell phone!
Landline!
215573qqn!
215573now!
Mic_CH08!
Mic_CH04!
Mic_CH12!
Mic_CH13!
Mic_CH02!
Mic_CH07!
Mic_CH05!
▲= high VE!
= low VE!
= normal VE!
=room LDC %
* =room HIVE!

Females with blind TV System No LDA/WCCN!

* =room HIVE!

=room LDC %
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Females with full blind TV system!

Cell phone!
Landline!
215573qqn!
215573now!
Mic_CH08!
Mic_CH04!
Mic_CH12!
Mic_CH13!
Mic_CH02!
Mic_CH07!
Mic_CH05!
▲= high VE!
= low VE!
= normal VE!
=room LDC %
* =room HIVE!
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Males with full blind TV system!

Colors represent speakers!
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Males with blind TV System No LDA/WCCN!

Colors represent speakers!
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Cell phone!
Landline!
215573qqn!
215573now!
Mic_CH08!
Mic_CH04!
Mic_CH12!
Mic_CH13!
Mic_CH02!
Mic_CH07!
Mic_CH05!
▲= high VE!
= low VE!
= normal VE!
=room LDC %
* =room HIVE!

Males with blind TV System No LDA/WCCN!
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Cell phone!
Landline!
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Males with full blind TV system!

Cell phone!
Landline!
215573qqn!
215573now!
Mic_CH08!
Mic_CH04!
Mic_CH12!
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Mic_CH07!
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= normal VE!
=room LDC %
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Conclusions!

•  New powerful speaker representation: 
–  Low dimensional features space (i-vectors) 
–  Factor analysis as features extractor 

•  The i-vector Blind system demonstrated robustness over 
conditions!
–  Graph analysis provides new data exploration techniques!

•  PLDA can be applied for verification task as well!
–  P. Kenny, Bayesian Speaker Verification with Heavy-Tailed Priors. Odyssey Speaker and Language 

Recognition Workshop, Brno, Czech Republic, June 2010.!
–  Senoussaoui, M., Kenny, P., Dumouchel, P., and Castaldo, F., Well Calibrated Heavy Tailed Bayesian 

Speaker Verification for Microphone Speech, Proc ICASSP, Prague, Czech Republic, May 2011!

•  We proposed a cascade of LDA versions to deal with data 
mismatch and channel effects  
–  Is there any non-linearity affect? 
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Outline!

•  Problem Statement of this talk!
•  History and theory (as a speaker verification problem)!

–  Gaussian Mixture Models w/ Universal Background Model.!
–  Joint Factor Analysis!
–  Ivector framework!

•  Application!
–  Speaker recognition!
–  Speaker diarization!
–  Language identification!
–  Emotion recognition!

08/27/11!Spoken Language Systems, MIT CSAIL !



Roadmap!
•  Introduction!

–  Terminology, tasks, and framework!

•  Low-Dimensional Representation!
–  Sequence of features: GMM!
–  Super-vectors: JFA!
–  Low-dimensional vectors: i-vectors!
–  Processing i-vectors: compensation and scoring!

•  Applications!
–  Speaker verification!
–  Speaker diarization!
–  Language recognition!
–  Emotion recognition!
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Unsupervised Methods for  
Speaker Diarization!



Audio Diarization!

The task of marking and categorizing the different audio 
sources within an unmarked audio sequence!
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Speaker Diarization!

•  “Who is speaking when?”!

•  Segmentation!
–  Determine when speaker change has occurred in the speech signal !

•  Clustering!
–  Group together speech segments from the same speaker!

Speaker B 

Speaker A 

Which segments are from 
the same speaker?!

Where are speaker 
changes?!
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Applications!

•  As a pre-processing step for other downstream applications!

–  Annotate transcripts with speaker changes and labels!

–  Provide an overview of speaker activity!

–  Adapt a speech recognition system!

–  Do speaker detection on multi-speaker speech!

1sp 
detector 

1sp 
detector 

M
A
X

Speaker 
Diarization!

Utterance 
score!
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Diarization Error Measures!

•  Diarization Error Rate (DER)!
–  Miss (speaker in reference but not in hypothesis)!
–  False Alarm (speaker in hypothesis but not in reference)!
–  Speaker Confusion (confusing one speakerʼs speech as from another)!

•  Indirect Measures!
–  Effect on the results of a speaker detection system / speech recognizer!
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Experiment Data!

•  Summed-channel telephone speech!

–  2008 NIST Speaker Recognition Evaluation Test Data!

–  2215 two-speaker telephone conversations (~5min each)!

–  Can obtain a reference diarization by applying ASR or Voice Activity 
Detection on each channel separately!
* Scoring ignores overlapped speech!
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Roadmap!

•  Introduction!

•  A BIC-based Baseline System!

•  A Total Variability-based Approach!
–  Factor Analysis Re-visited!
–  Exploiting Intra-Conversation Variability!

•  Towards Less Supervision!

•  Summary and Outlook!
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Roadmap!

•  Introduction!

•  A BIC-based Baseline System!

•  A Total Variability-based Approach!
–  Factor Analysis Re-visited!
–  Exploiting Intra-Conversation Variability!

•  Towards Less Supervision!

•  Summary and Outlook!
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BIC-based Baseline System!

•  Bayesian Information Criterion (BIC)!
–  BIC-based speaker change detection!
–  Agglomerative hierarchical clustering with BIC-based stopping criterion!
–  Iterative re-segmentation with GMM-Viterbi decoding!

Speaker Change 
Detection!

Refined speaker data!

Final Diarization!

Initial 
speaker 
data!

Viterbi Decode! Train GMMs!

Agglomerative 
Clustering!
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Towards Factor Analysis!

•  At the heart of the speaker diarization problem is the 
problem of speaker modeling!
–  We have seen how well factor analysis-based methods perform in 

speaker recognition.!

•  Previous work in FA-based diarization!
–  Stream-based, on-line system (Castaldo, 2008)!
–  Variational Bayesian system (Kenny, 2010)!
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Towards Factor Analysis!

•  Advantages!
–  We have seen how well factor analysis-based methods perform in 

speaker recognition.!

•  Difficulties!
–  Decisions made on very short (~1 second) speech segments!
–  Poor speaker change detection can corrupt speaker models!
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i-vector Extraction!

M
F!
C
C!

M
F!
C
C!

M
F!
C
C!

M
F!
C
C!

t2!

t1!

m

Factor Analysis!

i!
-!
V!
e!
c!
t!
o!
r!
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Inter-session Compensation and 
Cosine Scoring!

IF we were to follow, by rote, the standard recipe, we have …!
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Inter-session Compensation!

However, we ran into 
some issues…!
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Inter-session Compensation 
Intra-session Exploitation!

•  Compensating for inter-session variability is wholly 
unnecessary in the problem of diarization.!

–  Because we are working on a summed-channel telephone 
conversation, there is no inter-session.!

–  What we really care about are the intra-session variabilities!
* And hopefully, the most prominent variabilities correspond to 

distinctly different speakers.!

•  Interspeech 2011 Paper and Presentation!
–  Stephen Shum, Najim Dehak, Ekapol Chuangsuwanich, Douglas 

Reynolds, and Jim Glass. “Exploiting Intra-Conversation Variability for 
Speaker Diarization.”!
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i-vector Visualization!
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i-vector Visualization!
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System Diagram!

First-Pass Clustering!

Re-segmentation!

Second Pass Refinements!
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Roadmap!

•  Introduction!

•  A BIC-based Baseline System!

•  A Total Variability-based Approach!
–  Factor Analysis Re-visited!
–  Exploiting Intra-Conversation Variability!

•  Towards Less Supervision!

•  Summary and Outlook!
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Lingering Issues!

•  Diarization of speech containing more than two speakers!
–  How can we estimate the number of speakers?!

•  Overlapped speech segments!
–  Though not scored, we still have to deal with them during diarization!
–  Not much previous work on this (Boakye, 2008)!

08/27/11!Spoken Language Systems, MIT CSAIL !



The Problem With Overlap!

08/27/11!Spoken Language Systems, MIT CSAIL !



The Problem With Overlap!
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Estimating Speaker Number!

•  Proposed solution: Variational Bayes (VB)!
–  Fabio Valente (2005), Patrick Kenny (2010)!

•  Advantages to being Bayesian!
–  In theory, Bayesian methods are not subject to the over-fitting that 

plagues maximum likelihood methods!
* Quantitative version of Occamʼs razor!
* Should not need to resort to approximations such as BIC!

•  Variational Approximation!

•  Other approaches!
–  Sticky HDP-HMM (Fox, 2008) and -HSMM (Johnson, 2010)!

* Hierarchical Dirichlet Process (HDP) !
* Hidden Semi-Markov Model (HSMM)!
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A Quick Visualization!
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A Quick Visualization!
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Another Visualization!
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Current Issues!

•  All the data lies on the unit hypersphere!
–  Poorly modeled by a GMM!
–  One possible direction!

* Clustering on the Unit Hypersphere using von Mises-Fisher 
Distributions (Banerjee, 2005)!

•  Data sparsity!
–  A speaker may speak very infrequently!
–  All i-vectors are weighted equally, but some are more equal than 

others!
* How to incorporate information about the duration of speech used 

to extract a given i-vector?!
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A Sampling Approach!

•  So far, we have been using the i-vector w as a point estimate!
–  Recall w = E[w(u)], the expectation of the posterior distribution of w 

conditioned on the observed acoustic features u.!
–  Furthermore, associated with this posterior distribution is a covariance!

–  “Size” of covariance is inversely proportional to number of frames N(u)!
* More frames used to extract i-vector  smaller covariance!

•  Consider sampling this distribution for each i-vector!
–  Let the number of samples drawn be proportional to the number of 

frames used to extract the i-vector!
* Shorter segments  larger covariance and fewer samples!
* Longer segments  smaller covariance and more samples!
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Summary and Outlook!

•  Factor analysis-based approach to speaker diarization!
–  Inspired by Total Variability and i-vectors!
–  Key Insight!

* Exploiting Intra-Conversation Variability!
–  Attained state of the art results on a test set of 2-speaker 

conversations!

•  Further Work!
–  Detecting and removing overlapped speech segments!
–  Extending to an unknown number of speakers!

* Variational Bayes!
–  Addressing problems of data sparsity!
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Roadmap!
•  Introduction!

–  Terminology, tasks, and framework!

•  Low-Dimensional Representation!
–  Sequence of features: GMM!
–  Super-vectors: JFA!
–  Low-dimensional vectors: i-vectors!
–  Processing i-vectors: compensation and scoring!

•  Applications!
–  Speaker verification!
–  Speaker diarization!
–  Language recognition!
–  Emotion recognition!
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Language Identification !



Language Identification  
Outline !

•  Motivation!
•  Features extraction!
•  Intersession compensation and scoring!
•  NIST Language Recognition Evaluation!
•  Experiments and Results!
•  Interesting data visualization!
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Motivation!

•  Low dimensional speech representation based on the Factor 
analysis 
–  Each speech recording is mapped on low dimensional vector (400) 

•  Factor analysis as feature extractor 
–  Modeling the inter-language variability between different language classes 

•  Score decision based on the cosine distance 
–  Simplicity of the system 

•  Graph visualization to model connection between different 
languages 
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Feature extraction for language 
Identification!

•  Shifted Delta Cepstral!
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Intersession compensation!
•  Linear Discriminant Analysis to maximize the variability 

between the different language classes [Dehak 2009,2011] !

•  Within Class Covariance Normalization is used to scale the 
component [Hatch2006] , [Dehak 2009,2011] !
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w :  the mean of the entire population
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Language Identification Scoring !
•  The scoring is based on a dot product!

–  Normalizing the length of the i-vectors!
•  Training!

–  Project the i-vectors with LDA      and WCCN!

–  For each class i compute the mean !
and than normalize the length!

•  Test!
–  Project the test i-vector with LDA and WCCN!

–  Compute the dot product of the test i-vector with the normalized mean 
of each class!

€ 

w'= BtAtw
BtAtw

€ 

BBt =W −1

€ 

A

€ 

mi =

1
N

w'
j=1

N

∑
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N

w'
j=1

N

∑

€ 

w'test =
BtAtwtest

BtAtwtest

€ 

scorei = w'test *mi
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NIST 2009 Language Recognition 
Evaluation!

languages! languages!
1! amharic! 13! hindi!
2! bosnian! 14! korean!
3! cantonese! 15! mandarin!
4! creole! 16! pashto!
5! croatian! 17! portuguese!
6! dari! 18! russian!
7! english_american! 19! spanish!
8! english_indian! 20! turkish!
9! farsi! 21! ukrainian!
10! french! 22! urdu!
11! georgian! 23! vietnamese!
12! hausa!

•  Current work  
•  23 languages 
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Experimental setup!

•  Features !
–  7-1-3-7 SDC + static ceptral vector!
–  Feature normalization to N(0,1)!
–  SAD using GMMSAD!

•  UBM 2048 Gaussian Components!
•  Ivector of dimension 400 (the best performances)!
•  Development set consists of both CTS + VOA Data!
•  GMM – MMI !(2048 mixtures + feature-based FA)!
•  SVM-GSV (1024 GMM + feature-based NAP)!

08/27/11!Spoken Language Systems, MIT CSAIL !



Results!

•  BB : Before Backend!
•  AB : After Backend!
•  Results on Equal Error Rate!

30s! 10s! 3s!
BB! AB! BB! AB! BB! AB!

I-vector! 2.2%! -! 4.8%! -! 13.8%! -!
GMM-MMI! 7.9%! 2.3%! 10.8%! 4.4%! 17.9%! 12.9%!
SVM-GSV! 7.5%! 2.3%! 11.2%! 5.0%! 20.4%! 15.4%!
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Graph Visualization!

•  Work at Exploring the variability between different languages. !
–  Visualization using the Graph Exploration System (GUESS) [Eytan 06]!

•  Represent segment as a node with connections (edges) to nearest 
neighbors (3 NN used)!
–  Euclidean distance after i-vectors length normalization. !
–  NN computed using TV system (with and without intersession 

compensation normalization)!
–  Intersession compensation :!

*  Linear Discriminant Analysis + Within Class Covariance Normalization!
•  Applied to 4600 utterances from 30s condition of the NIST LRE09!

–  200 utterances for Language class !
•  Absolute locations of nodes not important!
•  Relative locations of nodes to one another is important:!

–  The visualization clusters nodes that are highly connected together!
•  Colors represent Language Classes!
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No intersession Compensation!

hindi!
french!
croatian!
urdu!
amharic!
portuguese!
mandarin!
korean!
eng_Indian!
bosian!
hausa!
russian!

georgian!

pashto!
cantonese!
ukrainian!

turkish!
spanish!

dari!
creole!

vietnamese!
eng_Am!

farsi!
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With intersession compensation!

hindi!
french!
croatian!
urdu!
amharic!
portuguese!
mandarin!
korean!
eng_Indian!
bosian!
hausa!
russian!

georgian!

pashto!
cantonese!
ukrainian!

turkish!
spanish!

dari!
creole!

vietnamese!
eng_Am!

farsi!

Eng_indian + Englsih_am!

English_indian+hindi+urdu!

Cantanese+vietanamese!
Mandarin+korean!

Russian+ukrainian+bosi an!
Croatian+georgian!

French+creole!
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Discussion!

•  Introduce the use of the i-vector framework!

•  Dot product (cosine) obtained very comparable results!

•  We show very interesting Data visualization!
–  Show the connections between different languages!

•  We have an INTERSPEECH 2011 paper in other 
Dimensionality reduction techniques for Language 
Identification using the i-vector space.!
–  Najim Dehak, Pedro A. Torres-Carrasquillo, Douglas Reynolds, Reda 

Dehak “ Language Recognition via Ivectors and Dimensionality 
Reduction” !
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Roadmap!
•  Introduction!

–  Terminology, tasks, and framework!

•  Low-Dimensional Representation!
–  Sequence of features: GMM!
–  Super-vectors: JFA!
–  Low-dimensional vectors: i-vectors!
–  Processing i-vectors: compensation and scoring!

•  Applications!
–  Speaker verification!
–  Speaker diarization!
–  Language recognition!
–  Emotion recognition !
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Emotion recognition!



Motivation!

•  Using the ivector framework in two classes emotion 
recognition problem!
–  Ideal vs Negative !

•  INTERSPEECH 2009 Emotion recognition Challenge!
–  FAU, AIBO Emotion corpus!
–  Children voice recordings!
–  It contains :!

* 9959 train files!
* 8257 test files !
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Fisher Discriminant Analysis!

•  The mean of each class!

•  Within class covariance!

•  Direction !

€ 

Sw = (wi − w 1)(wi − w 1)
t

i∈C1

∑ + (wi − w 2)(wi − w 2)
t

i∈C2

∑

€ 

w 1 =
1
n1

wi
i∈C1

∑

€ 

w 2 =
1
n2

wi
i∈C2

∑

€ 

v ∝ Sw
−1(w 2 − w 1)
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Experimental Set up!

GMM-MFCC 
system!

• MFCC feature (12 MFCC+E+delta+double delta)!
• 512 Gaussian Components!

Ivector system! • MFCC feature (12 MFCC+E+delta+double delta)!
• UBM with 512 Gaussian Components!
• Ivector dimension of 150!
• Fisher Discriminant Analysis!

GMM-Prosodic!
system!

• Legendre polynomials coefficients for the pitch and energy contours in 
the pseudo syllables level.!
• (6 for pitch+6 for energy + duration of the pseudo-syllables).!
• UBM with 256 components!
• MAP adaptation!

Dumouchel, P., Dehak, N., Attabi, Y., Dehak, R. and Boufaden, N. "Cepstral 
and Long-Term Features for Emotion Recognition" In Interspeech 2009, pp. 
344-347. Brighton, UK, September 6-10, 2009.!
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138!

Score Fusion 

GMM!MFCC! Scores!

I-vector!MFCC! Scores!

GMM!
Prosodic!
features! Scores!

Final 
Score!



Results: 2 class problem!

System! Unweighted !
recall!

S1 : GMM w/ MFCC! 69.72%!

S2 : Ivector w/ MFCC! 69.81%!

S3 : GMM-UBM w/ long-term feature! 66.61%!

S1+S2+S3! 70.54%!
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Discussion !

•  We introduce the use of the i-vector framework for emotion 
recognition!

•  A simple Fisher Discriminant Analysis achieved the state of 
the art results for two emotion classification problem!

•  Future works!
–  Try the i-vector for multiple classes emotion problem!
–  Try the i-vector with other classifiers!
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Final Words!

•  Aim!
–  To provide an overview of theory and operation of modern low-

dimensional speech representations and their application to 
automatic speaker, language, emotion recognition and 
diarization!

•  Participants should have gained an introduction to and 
understanding of:!
–  Subspace Representation of Speech Signals!
–  Algorithms for Joint-Factor Analysis and Total-Variability 

Modeling!
–  Application of subspace representations to automatic speaker, 

language, emotion recognition and diarization systems!
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Proof (II)!

•  Let !

•  Then, recalling M = m+Tw,!

€ 

PT ,Σ (w | u)∝ PT ,Σ ({y1,...,yL} | w)⋅ N(w | 0,I)
                 =Πt =1

L PT ,Σ (yt | w)⋅ N(w | 0,I)

           ∝ exp −
1
2

γ t (Y t − (m + Tw))tΣ−1(Y t − (m + Tw))
t
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

                                              ⋅ exp −
1
2

wtw
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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Proof (III)!

€ 

Pm,T ,Σ (w | u)∝ exp −
1
2

γ t (Y t − (m + Tw))tΣ−1(Y t − (m + Tw))
t
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ exp −

1
2

wtw
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

                = exp −
1
2

γ t ((Y t −m)tΣ−1(Y t −m)
t
∑

⎛ 

⎝ 
⎜ 

                                          −2wtT tΣ−1(Y t −m) + wtT tΣ−1Tw) − 1
2

wtw
⎞ 

⎠ 
⎟ 

                ∝ exp wtT tΣ−1 γ t (Y t −m)
t
∑ −

1
2

wtT tΣ−1Tw γ t
t
∑ −

1
2

wtw
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

                = exp wtT tΣ−1 ˜ F (u) − 1
2

wtT tΣ−1N(u)Tw −
1
2

wtw
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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€ 

Pm,T ,Σ (w | u)∝ exp wtT tΣ−1 ˜ F (u) − 1
2

wtT tΣ−1N(u)Tw −
1
2

wtw
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

                 = exp wtT tΣ−1 ˜ F (u) − 1
2

wt (T tΣ−1N(u)T + I)w
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

                 = exp −
1
2

(wtl(u)w − 2wt (l(u)⋅ l−1(u))T tΣ−1 ˜ F (u))
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

                 ∝ exp −
1
2

(w − l−1(u)T tΣ−1 ˜ F (u))t l(u)(w − l−1(u)T tΣ−1 ˜ F (u))
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

                 = exp −
1
2

(w − E(u))t l(u)(w − E(u))
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Proof (IV)!

€ 

E[w(u)]

€ 

cov(w(u),w(u)) = l−1(u)
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