Lightweight Query Authentication on Streams

STAVROS PAPADOPOULQOS, Hong Kong University of Science and Technology
GRAHAM CORMODE, University of Warwick
ANTONIOS DELIGIANNAKIS and MINOS GAROFALAKIS, Technical University of Crete

We consider a stream outsourcing setting, where a data owner delegates the management of a set of dis-
joint data streams to an untrusted server. The owner authenticates his streams via signatures. The server
processes continuous queries on the union of the streams for clients trusted by the owner. Along with the
results, the server sends proofs of result correctness derived from the owner’s signatures, which are veri-
fiable by the clients. We design novel constructions for a collection of fundamental problems over streams
represented as linear algebraic queries. In particular, our basic schemes authenticate dynamic vector sums,
matrix products, and dot products. These techniques can be adapted for authenticating a wide range of im-
portant operations in streaming environments, including group-by queries, joins, in-network aggregation,
similarity matching, and event processing. We also present extensions to address the case of sliding window
queries, and when multiple clients are interested in different subsets of the data. These methods take ad-
vantage of a novel nonce chaining technique that we introduce, which is used to reduce the verification cost
without affecting any other costs. All our schemes are lightweight and offer strong cryptographic guarantees
derived from formal definitions and proofs. We experimentally confirm the practicality of our schemes in the
performance-sensitive streaming setting.

Categories and Subject Descriptors: D.4.6 [Security and Protection]: Authentication

General Terms: Algorithms, Security

Additional Key Words and Phrases: Data integrity, data streams, query authentication

ACM Reference Format:

Stavros Papadopoulos, Graham Cormode, Antonios Deligiannakis, and Minos Garofalakis. 2014. Lightweight

query authentication on streams. ACM Trans. Datab. Syst. 39, 4, Article 30 (December 2014), 45 pages.
DOI: http://dx.doi.org/10.1145/2656336

1. INTRODUCTION

Tremendous amounts of data are being generated in a streaming fashion in a variety
of applications, such as Web and telephony networks, wireless sensor networks, social
networks, and more. The continuous nature of such data has motivated the need for
sophisticated Data Stream Management Systems (DSMSs) that offer efficient stor-
age and reliable querying services to clients. Following research prototypes such as
Stream [Arasu et al. 2003] and Aurora [Abadi et al. 2003], robust DSMSs have been
deployed for many applications, including IBM’s InfoSphere Streams [Nasgaard et al.
2009], Microsoft’s StreamInsight [Microsoft 2010], and AT&T’s Gigascope [Cranor et al.
2003]. Due to the overwhelming volume of streaming data, companies may neither pos-
sess nor wish to acquire the resources for deploying a DSMS. A practical alternative

A. Deligiannakis and M. Garofalakis were supported by the European Commission under ICT-FP7-LEADS-
318809 (Large-Scale Elastic Architecture for Data-as-a-Service).

Authors’ addresses: S. Papadopoulos (corresponding author, current address), Intel Labs and CSAIL, MIT, 32
Vassar Street, Cambridge, MA 02139; email: stavrosp@csail.mit.edu; G. Cormode, Department of Computer
Science, University of Warwick, Coventry CV4 7AL, UK; A. Deligiannakis and M. Garofalakis, School of
Electronic and Computer Engineering, Technical University of Crete, Chania 731 00, Greece.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

© 2014 ACM 0362-5915/2014/12-ART30 $15.00

DOI: http://dx.doi.org/10.1145/2656336

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:2 S. Papadopoulos et al.

is to outsource the stream storage and processing to a specialized third party with
strong DSMS infrastructure. Outsourcing offers significant cost savings to companies,
especially start-ups.

Despite its merits, outsourcing naturally raises the issue of #rust. Specifically, the
third party may act maliciously to increase profit, for example, it may collude with
rival companies and present fraudulent results to bias the competition, or it may shed
some of the workload and only compute on a sample of the input to save effort. Even
when the server is honest, problems can arise, as it may run buggy software, or (given
the scale of the problems considered) suffer equipment failure or read/write errors. It
is therefore particularly important to adopt methods for stream authentication. These
enable the clients to verify the correctness of the streaming results they receive from
the server, that is, that they are untampered with (integrity), include all tuples from the
data owner (completeness) and are up-to-date (freshness). The goal is to make stream
authentication a lightweight operation for all parties involved, and to establish it as a
standard tool for error checking in a similar way to the ubiquitous use of checksums
for reliable file transfer.

Targeted problem and motivation. We consider that an owner possesses a set of
machines M, Ms, ..., M,,, each generating or observing a data stream X;. A client (who
is trusted by the owner) issues a continuous (i.e., long-running) query @ on the union of
the streams and wishes to receive the result of @ at regular time intervals, demarcated
into epochs 7. In this work, we focus on three linear algebraic queries: vector sums,
matrix products, and dot products. In vector sums, each machine dynamically updates
(through its stream) an n-element vector, and the query asks for the sum of all the m
machine vectors. In matrix product, there are two machines (m = 2), where the first
dynamically updates an n, x n matrix, and the second an n x n, matrix. The query
asks for the n, x n; product of the two matrices. Finally, in dot product, there are two
machines, each dynamically updating an n-element vector. The result is the dot product
between the two vectors.

Instead of having the machines transmit their raw streams directly to the client
and the client process manually the query on the union of the streams, we involve a
third-party server that acts as an intermediary between the client and the machines.
Specifically, the server gathers the data streams from the machines, processes the query
every epoch, and returns the result to the client. The advantages of outsourcing the
maintenance of the streams and query processing to the server are manyfold: (i) The
server may provide a strong network infrastructure to connect to all the machines,
especially if the machines are geographically remote sensors with limited wireless
range. (ii) The server may be a highly scalable cloud service that can offer storage
to handle the huge volume of streams. (iii) The queries in our setting are performed
on a per-epoch basis, where each epoch may receive numerous updates. Instead of
bombarding the client with every single update (in some verifiable manner, e.g., by
authenticating them via MACs), the server can gather all updates per epoch, and
produce and transmit a single result to the client in this epoch. In other words, the
server can alleviate a considerable communication overhead from the client, which is
an important cost especially if the client is a mobile device with battery constraints.
(iv) Most importantly, the server may possess highly specialized and sophisticated tools
for executing the queries very efficiently. For instance, matrix products are frequent
queries in the emerging scientific databases, such as SciDB [Brown 2010]. These are
highly scalable systems that deploy a cloud architecture and integrate state-of-the-art
math libraries (e.g., ScaLAPACK') that can efficiently process matrix products in a

Ihttp://www.netlib.org/scalapack/.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:3

Owner

hine 1] il —
Machine)M,

Sk’,Sl - 01,7

[Server "5 Client
Q, pub T > sk

Machine), /U/m'

sk,Sm ~ 4

Fig. 1. System setting.

distributed manner across numerous nodes. These systems may be too expensive for
the client to acquire. Moreover, note that we target settings where the client can be as
simple as a smartphone device, rather than a cloud service.

Nevertheless, the main downside of outsourcing (as mentioned earlier) is that the
server is untrustworthy. Towards this end, we propose the system architecture illus-
trated in Figure 1. Each machine M; maintains a small summary S; on its stream,
which is updated with every new tuple arrival. At the end of every epoch 7, M; com-
putes a signature o;; on S;, and sends it to the server. This signature authenticates
M;’s stream at that particular epoch and is created with a secret key sk installed by
the owner at the machine. The server then processes query @ and transmits result res,
along with a small proof 7,. The proof is produced in a query-specific fashion by com-
bining all the signatures with some public information pub (registered at the server by
the owner at an offline setup stage). We assume the client is trusted by the owner and
thus possesses sk. Using this key and r;, the client can verify the correctness of the
result received for epoch .

Our aim is to provide the aforesaid functionality, offering cryptographic security
and satisfying certain performance desiderata. In particular, our goals are to minimize
the memory, communication, and computational costs for the owner and clients. This
is particularly crucial in applications such as wireless sensor networks, where the
owner’s machines are motes with scarce resources and limited battery. The lifetime of
these systems is diminished by intense operations and communication. Secondarily,
we further aim to ensure that the server’s costs are low.

Our contributions. The existing literature on stream authentication is limited in its
applicability for a variety of reasons. First, the range of supported queries is some-
what narrow; prior work has been primarily concerned with authenticating particular
computations such as group-by, sum queries that, while fundamental, do not cover all
stream outsourcing scenarios. Second, the authentication cost at the owner is nontriv-
ial; it typically entails expensive cryptographic operations (e.g., modular exponentia-
tions) for each epoch at the owner. While the cost of one such operation is minor, the
overhead imposed for high-speed data streams and short epochs can become intolera-
bly high, especially when each machine M; might be a low-powered embedded device.
This fact also limits the data rates that the owner can process.

In contrast to current literature, we seek more general solutions that impose a
minimal, essentially negligible, cost to the data owner. We first devise constructions
for fundamental problems represented as linear algebraic queries. We then use these
schemes as building blocks in the design of authentication techniques for a wide range
of important queries in streaming environments. In more detail, our contributions are
summarized as follows.

—We introduce constructions for authenticating: (i) sums of dynamic vectors produced
by one or multiple streams, (ii) dot products of dynamic vectors produced by different

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:4 S. Papadopoulos et al.

streams, and (iii) products between dynamic matrices generated by different streams.
Our schemes are lightweight for the owner, as they mainly involve inexpensive hash
operations and modular additions/multiplications in a very small finite field. They are
also inexpensive for the client, who verifies the result without adding substantially
to the cost of reading the output. Moreover, they impose only a small extra overhead
to the computation cost of the server.

—We introduce a novel nonce chaining technique, that is used to optimize the verifica-
tion cost of our algorithms.

—We extend our basic constructions to the case of sliding window queries and present
solutions for a variety of sliding window query types. We also design further exten-
sions for handling multiple clients that register different subset queries.

—We provide strong cryptographic guarantees for all our constructions, derived from
formal definitions and proofs.

—We show how to adapt the basic schemes in order to solve a wide range of database
queries in stream authentication, including group-by queries, joins, in-network ag-
gregation, similarity matching, and event processing. To our knowledge, we are the
first to address result authentication for such a large set of complex queries.

Roadmap. Section 2 includes necessary preliminary information and surveys the re-
lated work. Section 3 formulates the framework within which our stream authentica-
tion protocols will operate. Section 4 presents the basic constructions for authenticating
the three fundamental linear algebraic queries. Section 5 first introduces a novel nonce
chaining technique and then introduces optimized versions of our constructions that
seek to minimize the verification cost. Section 6 extends our basic constructions to the
scenario of sliding window queries. Section 7 describes extensions of our techniques to
the case of multiple subset queries. Section 8 adapts our main schemes to a variety of
important database applications in the stream authentication setting. Section 9 con-
tains our experimental evaluation, and Section 10 concludes our article with future
research directions.

2. BACKGROUND

Section 2.1 contains preliminary information and Section 2.2 surveys the related work
on the topic.

2.1. Preliminaries

Stream model and notation. The time domain is decomposed into intervals, called
epochs. An epoch can be perceived as a discrete timestamp denoted by r. We assume
that the clocks of the owner’s machines, the server, and the client are (at least loosely)
synchronized. This requirement is inherent in most streaming applications (e.g., sensor
networks) and is orthogonal to our work. Table I summarizes the most important
notation used in this article.

Adversary. Henceforth, any reference to an adversary implies a probabilistic adver-
sary that runs in time polynomial in some security parameter s.

Negligible functions. We call a function v : N — N negligible in s if v(s) < 1/poly(s)
for every positive polynomial poly(-) and sufficiently large, and denote it by negl(s).

Pseudorandom functions. Let F : K x S; — Sy be an efficient, keyed function where
K, S1, and Sy are indexed by a security parameter s. We say that F is a pseudorandom
function (PRF) if, for all adversaries A4, it holds that

|Pr[A%0(1%) = 1] — PrlAfY(1°) = 11| = negl(s),

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:5

Table I. Notation

‘ Symbol ‘ Definition ‘
m Number of owner machines
M; Owner machine i
X; The stream of tuples generated at M;
X; (1) The tuple sequence of M; at or before epoch ©
Q The continuous query of the client
QU (X (D Result of @ on streams A7, ..., X, at epoch
res; Result sent by the server to the client at epoch
Oix Signature created by machine M; at epoch
T, Proof transmitted by the server to the client at ¢
Ta.ts Pax Key values (nonces) computed for machine a at ©
S; The summary maintained at M; at all times
pub Public information output by the owner during setup
a, b Symbols (in lowercase bold letters) of vectors
A B Symbols (in uppercase bold letters) of matrices
ali : iyl Subvector of a comprised of elements with indices 77, 7; + 1, ..., lu
Al : iy, Ji : Jul Submatrix of A with rows i7,i; +1,..., i, and columns ji, j; +1,..., Ju
x <$; S An element x being sampled uniformly from set S
x <A The output x of a probabilistic algorithm A
x:=B The output x of a deterministic algorithm B
a1 Symbol denoting string concatenation
r Symbol denoting logical OR
s The security parameter
poly(s) / negl(s) A positive polynomial in s / A negligible function in s
[n] The set {1,2,...,n}
Fi(x) def F(k,x) | Pseudorandom function F' of key £ and message x
sk The secret key of the owner
p A prime number with bit size © (s)
Zp! G The finite field / cyclic group our algorithms operate on
def

where Fp(x) = F(k,x), k 3.2 K and f & (S1 — S2). Simply stated, an adversary
distinguishes a PRF from a truly random function only with negligible probability in s.

Cyclic groups, generators and multiplicative cyclic groups [Menezes et al. 1996]. Let
G be a group, let p = |G| denote the order of G, and let 1 represent the identity element
of G. For any element g € G, the order of g is the smallest positive integer n such that
g"=1Let (g) =1{g" :i € Z,) = {g°%g!,...,g" !} denote the set of group elements
generated by g. The group G is called cyclic if there exists an element g € G such that
(g) = G. In such a case, g is called a generator of G. A cyclic group G with the binary
operator of multiplication is called a multiplicative cyclic group.

The Diffie-Hellman Exponent (n-DHE) Assumption [Camenisch et al. 2009]. Our se-
curity relies on a variant of the well-known discrete logarithm problem. Let G be a

multiplicative cyclic group of order p, g € G a generator of G, and s the bit size of p.
n kn+2

The n-DHE problem is defined as follows: given set V = {g, g%, gkz, - L AR ng"}

where £ & Z,, compute gk"“. The n-DHE assumption states that, for any adversary A,
it holds that

Pr[A(g, gk’gkz’ o ’gkn’gsz’ . ’ngn) _ gkn+1] _ negl(s).

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:6 S. Papadopoulos et al.

Simply stated, even given the information in V, the (polynomially bounded) adversary
is unable to solve the problem with any nonnegligible probability.

One-time pad and nonces. One-time pad is a method of encrypting data that exhibits
perfect secrecy [Katz and Lindell 2007] if implemented correctly. In one-time pad en-
cryption, a message M is encrypted using a random key K that: (i) has (at least) the
same size as M, and (ii) is used exactly once. The encryption is performed via a XOR
operation as M @ K. In our work, we use an alternative form of one-time pad that uses
modular arithmetic. In particular, we encrypt a number M € Z, by a random (used
once) key K € Z3 as (M+K) mod p. While slightly less efficient than a XOR operation,
this alternative mode of one-time pad offers the same security as the original, and will
be particularly helpful in our proposed techniques. Finally, we refer to any key that is
used just once as a nonce.

2.2. Related Work

The closest schemes to ours are PIRS [Yi et al. 2009] and DiSH [Nath and Venkatesan
2013], which both focus on authenticating results for group-by, sum queries. In these
works, the stream consists of unaggregated tuples. The server’s task is to perform a
group-by operation to collate the tuples into predefined groups, and then to compute
an aggregate such as sum on each group. In both PIRS and DiSH the owner maintains
a small summary on the observed stream, which facilitates verifying the result cor-
rectness. PIRS is a probabilistic protocol where the client is the owner itself. Due to its
simplified model and relaxed security guarantees, PIRS is lightweight. On the other
hand, DiSH is a cryptographic technique which assumes that the clients are parties
untrusted by the owner. The clients can directly communicate, though, with the owner
to receive the summary. In order to address the challenge that clients cannot possess
any secret material from the owner, DiSH employs expensive cryptographic primitives
such as modular exponentiations during authentication and verification.

Note that PIRS and DiSH do not directly capture our general architecture (described
in Section 1), where the owner and the clients are different physical entities that
communicate with each other via the untrusted server. In order to adapt PIRS and
DiSH to our scenario, the owner must rely on some other message authentication tech-
nique for securely forwarding the summary to the clients via the server, for instance,
using HMACs and public-key digital signatures [Menezes et al. 1996], respectively.
This inflicts extra overhead on both the owner (for authentication) and the client (for
verification).

Also related to our work is the use of message authentication codes (MACs) that
are homomorphic, since they allow the linear combination of messages from different
sources, along with the corresponding combination of the MACs of these messages.
In our schemes, we also need to utilize the signatures of multiple sources (i.e., owner
machines), but these signatures must be properly computed and combined in order to
authenticate the result of different operators. Homomorphic MACs were first proposed
in Agrawal and Boneh [2009] for network coding applications and have since been
widely used, such as in Boneh and Freeman [2011] for evaluating multivariate polyno-
mials on signed data, or in Papadopoulos et al. [2011] for computing simple statistics
in sensor networks. We emphasize that homomorphism is a property that message
authentication techniques may exhibit, but not a tool for automatically authenticating
general operators/functions (such as the ones examined in this article) over distributed
data. In particular, we are not aware of any prior work that has addressed the general
linear queries such as matrix multiplication and dot products that we study here.

Authentication results have also been shown for other problems and models. In the
context of outsourced databases, there are techniques that address snapshot relational

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:7

queries, such as ranges and joins [Devanbu et al. 2003; Pang and Tan 2004; Pang
et al. 2005; Li et al. 2006; Yang et al. 2009], as well as continuous range queries [Li
et al. 2007; Papadopoulos et al. 2007]. All these methods rely on authenticated data
structures (such as Merkle trees) that are maintained by the owner and signed with
public-key cryptosystems. These data structures are large: linear in the size of the input
data. There has also been a line of work on verifying simple aggregate computations
in distributed networks, such as sum, min/max, and count [Garofalakis et al. 2007,
Papadopoulos et al. 2011; Nath et al. 2009]. In this setting, the machines are organized
into a tree hierarchy. The internal (potentially untrusted) nodes perform in-network
aggregation as they route information from the leaves to the root (sink).

Our work differs from all these prior efforts in several important respects. First, we
consider fundamental problems that can be adapted to solve a wide range of important
queries in stream outsourcing. Second, our constructions impose a very low overhead
to all parties. In particular, they do not entail the costly exponentiation operations
involved in DiSH, and do not require the owner to maintain sophisticated structures, as
in the database outsourcing solutions. Lastly, unlike PIRS, our work comes with strong
cryptographic guarantees that formally demonstrate the security and robustness of
our schemes against malicious activity and errors.

Some related studies have been conducted within the theory community. The model of
annotated streams allows the server to insert some “advice” into a stream to help a client
compute a function of interest. This model was applied to problems such as recovering
information about particular items from the stream, functions of the item frequencies
(such as the frequency moments), and some graph computations [Chakrabarti et al.
2009]. The costs of these protocols are typically sublinear but polynomial in the size
of the stream. These costs were subsequently reduced to logarithmic for some key
problems, but only when there are multiple rounds of communication between the data
owner and server [Cormode et al. 2011]. General computations can be authenticated
with a pass over the data, but this can require thousands of rounds of interaction
between the parties [Goldwasser et al. 2008].

The topic has also attracted interest in the study of cryptography, with similar mo-
tivations to those we present here. Gennaro et al. [2010] outline a general scheme
for verification of computation modeled as a Boolean circuit. The technique involves
evaluating Yao’s garbled circuit construction within fully homomorphic encryption—
an approach that has not yet reached close to an efficient implementation. The related
problem of memory delegation [Chung et al. 2011] is to allow one to delegate the storage
of a stream of data to a third party, and then retrieve pieces of the data or computations
thereon. Results in this area also require the use of fully homomorphic encryption. Of
more practical relevance is the work of Papamanthou et al. [2011] that considers the
verification of set operations such as intersection, union, and set difference. The imple-
mentation is based on evaluations of encryptions of polynomials encoding the members
of the set; the set operations considered are complementary to the linear algebraic com-
putations we focus on here. Also related to our work is that of Cormode et al. [2012].
The central result in this work is an implementation of Goldwasser et al. [2008], engi-
neered for practicality. A limitation is that it still requires many rounds of interaction.
Moreover, this interaction reveals secrets held by the data owner, limiting the use of
the protocol for multiple iterations. In contrast, our results do not reveal anything
about their secret keys and so can be iterated over many timestamps. Noninteractive
results are shown that do not reveal key material, but these involve exponentially more
communication costs to the data owner.

In the conference version of this article [Papadopoulos et al. 2013], we presented the
initial framework for authenticating linear algebraic queries on data streams. In this
manuscript we extend the work of Papadopoulos et al. [2013] in a number of directions.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:8 S. Papadopoulos et al.

First, we improve the verification cost of our basic constructions using a novel nonce
chaining technique (Section 5). We then extend our basic methods to the case of sliding
window queries (Section 6). Next, we present new extensions of our techniques for
handling concurrent subset queries by multiple clients (Section 7). An important final
addition is the detailed presentation in this article of how join queries can be handled
and proven secure in our framework. The case of join queries was only briefly sketched
in Papadopoulos et al. [2013].

3. FORMULATION

Section 3.1 defines the system setting outlined in Section 1 as a formal protocol executed
by the involved parties. Section 3.2 presents the security model.

3.1. Stream Authentication Protocol

The definition that follows formulates a stream authentication scheme, assuming a
security parameter s.

Definition 3.1. A stream authentication scheme is a set of five algorithms (KeyGen,
Update, Sign, Combine, Verify) running in time polynomial in s and described as follows.

(sk, pub) < KeyGen(1?%) is a probabilistic algorithm that takes as input a security pa-
rameter s, and outputs secret key sk and public information pub.

S; < Update(i, sk, S;, t) is a (potentially) probabilistic algorithm that takes as input id
i, secret key sk, summary S;, and incoming tuple ¢. It produces updated summary
S;.

oir < Sign(i, sk, S;, T) is a (potentially) probabilistic algorithm that takes as input id
i, secret key sk, summary S;, and epoch t. It produces signature o; ..

7, := Combine(U,, Uy, pub) is a deterministic algorithm that takes as input a set U,
of signatures and a set Uy of streams, along with public info pub. It produces proof
e

Yes|No := Verify(sk, ;, res;,) is a deterministic algorithm that takes as input secret
key sk, proof ., result res., and epoch t. It outputs a string that is either Yes or No.

The protocol is executed in the following stages.

—Setup. The protocol commences with an offline setup phase. The owner runs KeyGen
and produces a secret key sk and public info pub. It installs a unique identifier i, key
sk, and an initial summary S; in every machine M;, and sends pub to the server. It
also securely provides the client with sk, for example, via an SSL channel. Next, it
concludes the setup phase and sets the system into motion.

—Update and signing at M;. Whenever a new tuple ¢ is generated by M;, the machine
runs Update before forwarding ¢ to the server. This algorithm uses key sk and ¢ on
current summary S; and outputs a new summary that substitutes for the old one.
At the end of epoch 7, M; runs Sign on i, sk, t, and current summary S; to produce a
signature o; ;, that is sent to the server.

—Result and proof generation at the server. At the end of epoch t the server receives
new signatures from the machines. It computes and sends result res; to the client in
response to continuous query . Moreover, it transmits a proof 7, that is produced
by algorithm Combine on U,, Uy, and pub.

—Verification at the client. At the end of epoch t the client receives from the server
a new result res;, accompanied by a new proof 7. It verifies result correctness via
Verify, which combines res, with 7, and the owner’s secret key sk. The output is Yes
if verification succeeds, and No otherwise. Note that the client is stateless, that is,
it verifies with respect to the entire history of the data streams, not since the last
successful verification.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:9

The next definition formulates scheme correctness.

Definition 3.2. A stream authentication scheme is correct if the following condition
holds. For any security parameter s, let (sk, pub) be any output of algorithm KeyGen(19).
Let X;(7) be any stream observed by M; up until 7, and QJ;";{X;(¢)}) the result of
query @ at 7. Let S; be the summary computed by executing Update on sk and on every
t € Xi(r). Let o; ., be the signature produced by M; via Sign(i, sk, S;, t). Finally, let n,
be the proof that is output by Combine(U,, Uy, pub) for some query-specific U,, Uy.
Then, Verify(sk, n., res., t) returns Yes when

res: = Q@ (U{Xi(r)}) :
i=1

This correctness definition also entails that the result is complete, that is, all the
tuples seen by the data owner must be processed to produce the desired result. Note that
scheme correctness does not specify the output of Verify in case res, # Q- {Xi(z)}).
This is captured by the definition of security, included in the next section.

3.2. Security Definition

The adversary A may be the server, or any other entity other than the owner’s machines
and the client. A is allowed to access the raw data streams, that is, data privacy is out
of the scope of our work. Nevertheless, .4 may tamper with the outputs at any epoch.
Our security goal against A is result correctness that jointly guarantees: (i) integrity
(i.e., that the result is not falsified) and (ii) freshness (i.e., that the result is up-to-date).

We rigorously model security via the following experiment, a variation of the stan-
dard existential unforgeability under an adaptive chosen message attack [Katz and
Lindell 2007].

Experiment Exp 4(1°)

(1) Pair (sk, pub) is output by KeyGen, and pub is given to A.

(2) Ais given oracle access to Sign as follows: A presents a triplet (T, i, t/), where T'
is a set of tuples. The oracle keeps record of all submitted queries, and rejects a
query that requests a signature for a certain (i, r) more than once. If it does not
reject, the oracle initializes S; = 0 and runs Update(i, sk, S;, ¢) for every ¢t € T,
producing summary S;. It then runs Sign(, sk, S;, /), and returns the result to
A.

(3) A outputs a pair (rest, =), with the restriction that:

—rest # QU (X(2));
—Sign was not queried for any triplet (7', 7, '), such that (z' = ©) A (T # X;(1)).

(4) If Verify(sk, }, rest, t) returns Yes, then output 1; otherwise output 0.

We say that a stream authentication scheme is secure if no adversary A can succeed
in the preceding experiment with nonnegligible probability, that is, if it holds that

Pr[Exp 4(1°) = 1] = negl(s),

where the probability is taken over the random choice of sk and the random coin tosses
of A.

Simply stated, during the attack .4 is allowed to obtain (through the oracle) any
number of signatures for any machine and stream of its choice, at any epoch other
than the epoch t for which it launches the attack. At 7, A is only allowed access to the

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:10 S. Papadopoulos et al.

valid signatures produced by the machines. A then launches the attack by presenting
a pair (rest, n) such that res? is different from the actual result. Our aim is to provide
protocols that are secure against such attacks and will not accept any such incorrect
results.

4. BASIC CONSTRUCTIONS

In this section we present constructions that can be used as building blocks for design-
ing authentication schemes for a wide range of query types. In particular, we design
techniques for authenticating dynamic vector sums (Section 4.1), dynamic matrix prod-
ucts (Section 4.2), and dynamic dot products (Section 4.3). Throughout, we consider a
security parameter s, a prime p whose bit size is ® (s), and a PRF F' : Z, x {0, 1}* — Z,,
which are all known as globals to all parties. We assume that all the stream values and
aggregate results belong to Z,. This is without loss of generality, since: (i) for practical
values of s, Z, is large enough for any application, and (ii) application domains that
involve negative integers work directly for p large enough, while those that involve
real numbers can be converted to Z, via scaling and rounding.

4.1. Dynamic Vector Sum Authentication

We focus on m machines M;, and consider a vector a; with n entries that is dynamically
updated as new tuples ¢ are generated by M;. Each tuple ¢ € A; is of the form (j, v), and
updates a; by adding v to a;[j]. The client’s query @ requests the sum of the vectors
produced by all machines at every epoch 7, that is,

Q (U{Xi(r)}) =Y a= [Zai[l], . Zai[n]:| .
i=1 i=1

i=1 i=1

We term such a query a dynamic vector sum query and present next a scheme called
DVS for authenticating it.

Figure 2 presents the DVS construction that instantiates the general stream au-
thentication protocol outlined in Section 3.1. The intuition behind this construction is
straightforward: the summary S; captures the current state of vector a;, in such a way
that the adversary, lacking knowledge of the secret sk, has no way of finding another
vector a’ that would have the same summary, even given access to other signatures.
The signature o;, includes additional information (the nonce r;.) that prevents the
server from reusing the same signature at different epochs or for different machines.
All operations are performed modulo p (i.e., in Zp).

Every summary is initialized to 0 during the setup phase. Algorithm Update works in
a way such that S; is equal to the dot product k - a;, where k = [%1, ..., k,]. Sign injects
a machine- and time-dependent key r; ; used once. Observe that every k; and r; ; value
is produced with sk via PRF F, where “element”, “machine”, and “epoch” are string
labels. Combine simply adds all the signatures retrieved from the machines. Combine
does not need any public information from the owner and thus pub is set to a null
value in KeyGen. The client assumes all m machines are involved in the protocol when
executing Verify. In general, the client must know exactly which machines participate
in the protocol in order to properly calculate the r; ; values. As an additional remark,
observe that DVS can be used even when only a single machine is involved. In this
case, DVS essentially supports dynamic vector authentication.

Correctness and security. The following theorem proves the correctness of DVS.

TureoreMm 4.1. DVS is correct.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:11

KeyGen(1°%)
L k&
2. Output sk =k and pub = L

Update(i, sk, S;, t)

1. Parset as (j,v), and sk as k
2. k; = Fy(“element”||5)

3. S§i=Si+kj-v

4. Output S;

Sign(i, sk, S, T)

1. r;r = Fr(“machine” ||i|| “epoch”||T)
2. i =8i+rir

3. Output o+

Combine(|J!~,{ci,+},0, pub)

1. Output 7 = > 7", 0ir

Verify(sk, 7r, res., T)
Parse sk = k and res, as a n-element vector
For ¢ =1 to m, r;,» = Fi(“machine” |z|| “epoch” ||T)
Initialize m = 37", 7~
Forj=1ton
k; = Fi(“element”||j)
=7+ kj - res;[j]
If 7 = 7w, output Yes, otherwise No

NS Ut Lo e

Fig. 2. The DVS construction.

Proor. Let the actual result of @ at © be QU;~,{X;(x)}) = Y, a;, where a;[j] =
> texi(ont j=j v Observe that, after executing Update for all ¢ € Aj(r) at any M,
Si = Y_}_1k; - a;[j]. Then, Combine calculates 7, = (3_7_; &; - (Q_/L; a;[jD) + 27 7.
Now notice that, if res, passed in Verify is equal to @, {X;(7)}), then the algorithm
computes a 7 that is equal to the 7, calculated earlier, hence the output is Yes. O

We next state the security of DVS (the proofis in online Appendix A.1 accessible in the
ACM Digital Library).

THEOREM 4.2. If F is a PRF, then DVS is secure.

Performance. Every machine M; needs to store only the key sk, and its id i. There-
fore, the memory consumption is O(s + log m), where s is the security parameter that
dictates the size of sk, and logm is the size of the machine id (where m is the number
of machines). Since the size of p is ©(s), the communication cost between any two
parties is O(s). For any practical application, s and log m can be regarded as constants
that do not exceed 20 bytes. Note that we implement F as an HMAC [Menezes et al.
1996], which involves two hash operations. Both Update and Sign entail a constant
number of modular multiplications/additions and hashes. The overhead for the server
is O(m) modular additions. Finally, the burden at the client is O(m + n) modular addi-
tions/multiplications and hashes.

4.2. Dynamic Matrix Product Authentication

We focus on two machines, M, and M. We consider an n, x n matrix A and an n x
np matrix B. Matrix A (respectively, B) is dynamically updated as new tuples are
generated by M, (M,). Each tuple ¢ € X, (respectively, ¢ € X}) is of the form (i, j, v) and
updates A (B) by adding v to A[i]1[j] (B[z][j]). The client’s query @ requests the matrix

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:12 S. Papadopoulos et al.

KeyGen(1°)
1. k&7
2. Output sk = k and pub = L

Update(a, sk, Sa, t)
1. Parset as (i,7,v), and sk as k
2. ko, = Fr(“machine”||a|| “element” ||7)

3. Sulj] = Salj] + kayi - v

4. Output S,

Sign(a, sk, Sa, T)

1. Forj=1ton

2 Ta,7[j] = Fr(“machine” ||a|| “epoch” ||| “r”||7)

5. purlj] = Fu(*machine’ a] “epoch” | ")

4 b, [J] = Fr(“machine” ||b|| “epoch” || 7| “r”||7)

5 a,r 1] = [(Sali] + 7a,r [1]); (Sali] - 7,7 5] + par [5])]
6. Output o4,

Combine({oa,r,05,+ }, 0, pub)
Lo omr =320 (00 [d][1] - 00, [5][1] = 0a.r[4][2] — o, [5][2])
2. Output 7,

Initialize = 3%, (ra,r[j] - 7.7 [7] = pa,r 4] = .- [4])
For i =1 to na, ka,i = Fi(“machine”||a|| “element” ||7)
For j =1 to ny, kb] = Fy(“machine” ||b]| “element” || 5)
10. 7 =7+ 3 icinalicing) Kavi Ko - resz[d][]]

11. If # = w, output Yes, otherwise No

Verify(sk, -, res-, T)

1. Parse sk as k and res, as a ng, X np matrix

2. Forj=1ton

3. Ta,r[j] = Frx(“machine”||a|| “epoch”||7|| “r”||7)
1. parlj] = Fu(*machine” || “epoch” ||)
5. ro.7[j] = Fk(“machine”||b]| “epoch” || || “r”||)
6. P~ [j] = Fi(“machine”|[b]| “epoch”||7 || “p”[|)
7.

8.

9.

Fig. 3. The DMP construction.

product, denoted by AB, between A and B at every epoch 7. We term such a query as
a dynamic matrix product query. We next present a scheme, called DMP, for dynamic
matrix product query authentication.

Figure 3 presents the DMP construction. The technique takes advantage of the fol-
lowing property of matrix multiplication. Let A = [a;az...a,], where a; denotes the
J column of A. Also let B = [b1bs...b,]T, where b; is the j** row of B. Then it holds
that

n
QX(DUXp(1)=AB =) a;®b;.
Jj=1
where a; ® b; is the outer product of vectors a;, b;, such that

aj[l]bj[l] aj[l]bj[Z] . aj[llbj[nb]
aj®bj: aj[2]bj[1] aj[2]bj[2] aj[2]bj[nb]
alnIb; (1] a;ln,Ib;(2] .. a;ln,lb;ln]
M, (respectively, M) can create a summary S,[j] (Sp[j]) for vector a; (b;) in a similar
manner to DVS. We can then compute a summary of a;®b; from the product S,[]-Sp[/]:

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:13

for each entry of this outer product, there is a corresponding term in S,[;]-Sy[j]1, scaled
by a secret value (i.e., the product of the two corresponding keys). In other words, we
obtain a summary of the outer product result matrix with similar properties to the DVS
summary for a single vector. Since matrix multiplication can be expressed as a sum of
outer products, we can use n different summary products S,[j] - Splj] (i.e., one for each
outer product a;®b;) and build a summary for matrix product AB by summing them up.

We assume M, knows that M, participates in the query and vice versa (this informa-
tion is part of the query description). The summaries S,, Sp are both initialized to zero
n-element vectors during the setup phase. Algorithms Update and Sign are presented
in the context of M,. Now S, contains n entries, one for each column. The case of M,
is symmetric; S, also includes n entries, but one for each row. This can be achieved by
instead parsing ¢ as (j, i, v) in line 1 of Update, and proceeding accordingly.

To provide security for these summaries, the Sign function produces composite sig-
natures o, . [j], 0p - [j], each consisting of two elements/signatures. In particular, their
first elements (o, [jI[1] and o3 .[j]1[1]) integrate machine-, time-, and column-/row-
dependent values r to mask the summaries as in DVS. In order to produce a proof for
summaries of the form S,[j]-Sp[j]1, the server needs to multiply o, . [j1[1] with o3 . [j]1[1
However, observe that terms r, . [j] - Sp[j] and rp . [j] - Sa[j] will appear in the resultlng
proof, which are hard to verify by the client Without S.[j1 and Splj]. Hence, the ma-
chines provide extra information (namely signatures o, . [j1[2], 05 . [j1[2]) that enable
the server to remove these values from the proof. To ensure security, these signatures
incorporate new one-time keys (denoted as p).

Based on the preceding, Combine now takes a combination of 2n elements together
to build a compact proof that includes the summary of the whole product matrix. Note
that 7, is just a single value modulo p. Similar to DVS, Combine does not need any
public information from the owner and thus pub is set to a null value in KeyGen. Finally,
algorithm Verify needs to include the various masking values created by M, and M, for
each of their n parallel summaries and outputs Yes only if the proof computed for the
claimed result matches the provided proof ..

Correctness and security. The following two theorems state the correctness and se-
curity of DMP.

TureoreM 4.3. DMP is correct.

Proor. Let the actual result of Q@ at T be Q({AX, (1) U Xp(1)}) = AB, where Ali][j] =
Y texontizinij—p t-v and BEIGT = 3,y o acicionej=j t-v- Observe that, after exe-
cuting Update for all ¢ € A,(7) and t € Xp(r) at M, and M,, respectively, S,[j] =
Zf‘il ke, - a;li] and Splj] Zl 1 kv.i - bjli]. Moreover, notice that

Z(S [J] Sb +rarL]] rbrL]] Pa,t J] Pb,z[j])-
j=1
However, it holds that

Z(s L1+ SeljD) =

Bl
RS
ngh

kei - a;li] - Zkb,i ‘bj[i])

j=1 Jj=1 \i=1 i=1
n
= > kuiky-y alil-b
ieln,l, jelnsl z=1
= kai - ke, j - ABL]Lj].
i€lngl, jelm)

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:14 S. Papadopoulos et al.

If res, is equal to AB, then it is easy to see that the 7 computed in Verify is equal to
7. and thus the algorithm outputs Yes. This concludes our proof. O

THEOREM 4.4. If F is a PRF, then DMP is secure.
For the proof, see Appendix A.2.

Performance. The memory consumption and computational cost of Update at each
machine is the same as in DVS. Due to the n masked summaries, algorithm Sign involves
O(n) modular additions/multiplications and hashes, whereas the communication cost
between a machine and the server becomes O(n). The server computes O(n) modular
additions/multiplications in Combine. Finally, the client receives a constant-sized proof,
but Verify entails O(n, + ny + n) hashes and O(n,np) modular additions/multiplications,
proportional to the cost of reading the result. This is reduced if the result matrix is
sparse: then, the time taken is proportional to the number of nonzero entries, which
can be much lower.

Note that this protocol substantially reduces the burden on the data owner compared
to the cost it would pay to perform the matrix multiplication itself. Without outsourcing,
the data owner would have to store the O(n?) entries of the matrices and perform a
superquadratic amount of work to carry out the multiplication. Here, the data owner’s
requirements are reduced to O(n) storage per machine and constant work per update.

4.3. Dynamic Dot Product Authentication

We focus on two machines, M, and M,, and consider n-element vectors a, b. Vector a
(respectively, b) is dynamically updated as new tuples are generated by M, (M,). Each
tuple ¢ € X, (respectively, t € A3) is of the form (j, v) and updates a (b) by adding v
to al[j] (b[j]). The client’s query @ requests the dot product between a and b at every
epoch 7, that is,

QX (1)U Xp(z) =a-b =) _alil-blil.

i=1

We refer to such a query as a dynamic dot product query and present a scheme called
DDP for authenticating it.

Figure 4 presents the DDP construction. Similar to DMP, we assume M, knows that
M, participates in the query and vice versa. Algorithms Update and Sign are described
in the context of M,. The case of M, is symmetric, with the vital difference that the
summary is updated as S, = Sy +%"7/*1.v in line 2 of Update. The summaries S,, Sy are
initialized to 0 during the setup phase. We make use of a (multiplicative) cyclic group
G of order p with generator g, whose specifications are public and where the n-DHE
problem is hard (see Section 2.1).

Note that the dot product of two vectors is the trace of their outer product. We use
this fact to construct the protocol. We derive a signature of the outer product a ® b in
a similar manner to DMP, where each element of the resulting matrix is scaled with a
secret key. Furthermore, certain machine- and time-dependent masking is performed
via the r and p values. The server is then responsible for removing certain elements
ali] - b[j], which are scaled by £+®/+D_ from the signature in Combine. Specifically,
the server does this for every i # j (i.e., all elements but those in the diagonal).

In order to facilitate this task, the owner provides some public information pub to
the server concerning the scalar values k+"~/+D with the exception of #*t1. These
keys are given as exponents of generator g € G. This is necessary because, otherwise,
the server could trivially retrieve "1 as k"*+1. (k))~! mod p for some i, where (%/)~!
is the multiplicative inverse of £ modulo p. This cannot happen if the keys are in the

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:15

KeyGen(1°)
1L k&

2. pub = {g" }icpnp (nr1)
3. Output sk = k and pub

Update(a, sk, Sa, t)

1. Parse t as (j,v), and sk as k
2. Sa=8,+k v

3. Output S,

Sign(a, sk, Sa, T)

1. 74, = Fr(“machine” ||al| “epoch” ||| “r”)
2. pa,r = Fr(“machine” ||a|| “epoch” ||| “p”)
3. 7, = Fi(“machine”||b|| “epoch”|| 7| “r”)
4 Oa, 7 = [(Sa + T(l,T)7 (Sa *Tb,r + ,Ua,r)]

5. Output oq, -

Combine({gu~77 Ub.T}v {Xa (T)7 Xb(T)}v pub)

Parse pub as {g" }iciznl\ (nr1}

Compute a and b from X,(7) and X,(7), respectively
Computec=a®b

ftr = g(@a,r[11b,r [1]=0a - (21=0y - (2])

g —1
pit(n—i+1) c[i][4]
Tr = Tr - |:Hi.j€[n]/\1i;éj <g)

Output 7,

I o

Verify(sk, -, res., T)

1. Parse sk as k and res, as a value in Z,

2. 74,r = Fi(“machine” ||al| “epoch” ||| “r")
3. pa,r = Fir(“machine” ||a|| “epoch” ||| “p”)
4. ry,r = Fi(“machine” ||b]| “epoch” ||7]| “r”)
5. p.r = Fi(“machine’ [[b] “cpoch”|7]p")
6. Initialize 7 = g\"am "br TPa T =Pb,

(k" res,)

7. m=m-g
8. If m = 7, output Yes, otherwise No

Fig. 4. The DDP construction.

exponent of g due to the n-DHE assumption (we will use this fact later in our rigorous
proof). All computations in Verify are performed in the exponent of g. Following this,
the output 7, should contain solely the contribution from elements on the diagonal of
the outer product, all scaled by £**1, plus the masking values.

Correctness and security. The following theorems state the correctness and security
of DDP, respectively.

TureorReEM 4.5. DDP is correct.

Proor. Let the actual result of @ at T be Q{X, () UX(1)) =a-b =) ali]-bl],
wherealj] = >,y ()n =) t-v, @and blj] = 37,y)0 j=j t-v- Observe that, after executing

Update for all ¢ € X,(t) and ¢t € Xp(t) at M, and My, respectively, S, = 2?21 k/ -alj] and
Sy = Z?:l E"—7+1 . b[j]. Moreover, the proof output by Combine is

T, = g(Z;Ll kR al 1 bl D40 7o e —par—pbr

= gkn+1'(a'b)+ra,r'rb.r_pa,r_pb.r

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:16 S. Papadopoulos et al.

If res, is equal to a - b, then the n computed in Verify is equal to 7, and thus Verify
outputs Yes. This concludes our proof. O

TuEOREM 4.6. If F is a PRF, then DDP is secure under the n-DHE assumption.
For the formal proof, see Appendix A.3.

Performance. In this scheme, the owner has to invest in some one-time preprocessing
effort to create pub. This accounts for O(n) exponentiations in Z, (for /') and another

O(n) exponentiations in G (for g*). Nevertheless, this cost is amortized over the entire
lifetime of the system. The memory consumption and the computational cost of Sign at
each machine are (asymptotically) the same as in DVS, while the cost in Update now
involves a modular exponentiation. Note, though, that the latter is performed in the
small finite field Z, and hence is lightweight.

To analyze the server’s computation cost in Combine, first observe that, by setting
i +(n— j+ 1) =z, the server can calculate

1—[(gkmnfm))"[l]m _ l—[(gkz)2i+(n—j+1)=zc[i][j],

i,jelnlni#£j z€[2n]\{n+1}

assuming it has access to the set of outer product values ¢. However, the server
does not need to explicitly generate e, but rather only needs the vector of n differ-
ent >, ;1) clil[j] values, for 2 < z < 2n. We can compute these values from the
(discrete) convolution of the vectors a, b, in time O(nlogn) via the fast Fourier trans-
form (FFT). Assuming we have these, then the cost at the server is dominated by O(n)
exponentiations in G. For storage, the server has to store the O(n) values in pub, which
is comparable to the cost of storing X, and X.

Finally, Verify at the client simply involves a constant number of evaluations of F
and a (single) exponentiation in G.

5. NONCE CHAINING TO REDUCE VERIFICATION COST

In this section we present a novel technique, called nonce chaining, that can be used
to reduce the verification cost at the client in several constructions. Specifically, it is
a method employed by the machines upon signing their summaries, which effectively
decreases the number of nonces integrated in the final proof'to constant when the server
combines the signatures together. As a result, the client always needs to reconstruct
a constant number of nonces, which minimizes the verification cost. In Section 5.1 we
present our nonce chaining technique in detail and rigorously prove its security. In
Sections 5.2 and 5.3 we show how this technique is adapted in DVS and DMP, creating
optimized schemes DVS* and DMP*, respectively. As a final remark, it is important to
stress that nonce chaining is a general technique that does not limit its applicability to
the aforesaid schemes. In fact, we materialize this concept with several other specific
uses in subsequent sections as well.

5.1. The Nonce Chaining Technique

At a high level, this method views the produced signatures as an ordered list (i.e.,
a sequence) of values. It then modifies the Sign algorithm (performed by the data
owner) such that each signature o in the sequence incorporates: (i) a nonce that does
not appear in any signature preceding o in the sequence, and (ii) the negation of a
constant number of terms that depend on nonces that do not appear in o, or any other
signature succeeding o in the sequence. The effect is that, when all the signatures in
the sequence are aggregated together (to produce the final proof), the nonces from the
intermediate signatures are eliminated, leaving only those injected by the first and

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:17

last signatures in the sequence. Since each signature integrates a constant number
of nonces, the number of nonces incorporated in the final proof is constant (instead of
linear in the number of aggregated signatures), effectively reducing the verification
time for the client. Furthermore, we ensure that, if any intermediate signature is
removed from the sequence, the previous property ceases to hold. In this sense, the
nonces of the intermediate signatures chain the first and last signatures.?

The security of the nonce chaining technique stems from the fact that each signature
incorporates a nonce that does not appear in any signature on its left side in the
chain. Informally, this means that, if all the signatures of such a chain are aggregated
in any way to produce a proof, then it is guaranteed that at least one nonce from
the last signature can never be eliminated, which ensures that the adversary cannot
manufacture a proof for a false result. More formally, the security of our schemes
modified to use nonce chaining (described next) relies on the following lemma (all
operations and elements are in Z,, where p is a prime whose size is determined by
security parameter s).

Lemma 5.1. Let (01,09,...,00) be a sequence of signatures, where £ is a positive
integer. Moreover, for every i € [¢], let 6; = k- v; + P(R) +r;, K is a random unknown
key vector of size n, v; is a known n-element vector, P is some multivariate polynomial
on a set R of random unknown nonces that do not appear in {o;,...,0,}, and r; is
an unknown random nonce that does not appear in {o1, ...,0;_1}. Then, an adversary
possessing {01, 09, ...,0,} and {V1,Va,...,V,} can compute dot product k - X, for some
known n-element vector x, with probability negl(s).

Proor. The adversary can guess k from any element in {07, 09, ..., o,} with probabil-
ity negl(s) due to Shoup [1997, Lemma 1]. Therefore, the adversary can produce k - x,
with nonnegligible probability only by performing a set of linear operations (addition,

subtraction, scalar multiplication) on elements from {0y, 09, ..., 04, V1, Vg, ..., Ve}. We
will prove that this cannot happen by contradiction.
Suppose the adversary can find a set S C {01, 09, ..., 0¢} such that it can produce

k - x by computing }_ q0i - % +) ;[¥i - Vi +d, where each u; is a nonzero known
scalar, y; is a known vector, and d is a known value in Z,. Let o; € S be the signature
such that j is the largest index in S, that is, o; is the rightmost signature in sequence
(01,09, ..., 00) among those in S. By the definition of ¢}, nonce r; does not appear as a
term in any of the signatures in S\ {0} and, consequently, >, g0i - w; +} ;c, ¥i- Vi +d
must contain term u; - r;. Hence, in order for) _g0i - +) ;g ¥i-Vi+d =k -xto
hold, u; should be equal to zero. However, we hypothesized that u; is nonzero, which
reaches our contradiction. O

In order to understand the practical importance of this lemma, observe that the
signatures in all the schemes we presented so far are of the form o; = k- v; + ¥ (R) +r;.
Therefore, if the adversary could compute k - x with nonnegligible probability, then
he could inject it to any valid signature, inflating or deflating the result value by any
factor of x at will.

In the next two sections, we devise two optimized constructions, called DVS* and
DMP?*, by augmenting DVS and DMP, respectively, with our nonce chaining technique.

2Note that our nonce chaining technique is different from the signature chaining concept proposed in
Narasimha and Tsudik [2006]. The latter work binds adjacent record hashes by signing them with an exist-
ing public-key digital signature scheme, in order to authenticate a range query result in static outsourced
databases under the untrusted client model.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:18 S. Papadopoulos et al.

// Algorithms KeyGen, Update and Combine are the same as in the DVS construction (Figure 2)

Sign(i, sk, S, T)

1. 7ri—1,» = Fr(“machine” ||t — 1| “epoch”||T)
2. rir = Fi(“machine”||i]| “epoch”||T)

3. 0ir =8 —Tic1,r + i

4. Output oy, -

Verify(sk, 7, res+, T)
Parse sk as k, and res, as a n-element vector
ro,r = F(“machine”||0]| “epoch” ||T)
Tm,r = F(“machine”||m|| “epoch”||T)
Initialize 7 = —70,7 + Tm,+
Forj=1ton
k; = Fy(“element”||5)
T =m+kjres:[j]
If 7 = 7, output Yes, otherwise No

PN O W=

Fig. 5. The DVS* construction.

Tr = 01,7 + 02,7 + - 4+ Om,r

= (Si—ros +%) + (S %T +%) + ot (Sm 7%1,7 + Tm,r)
m

T = Z res;[i] - ki —ror + rmr
i=1

Fig. 6. Illustration of the effect of nonce chaining in DVS*: all but a constant number of nonce terms cancel
out in the summation.

5.2. The DVS* Construction

This scheme differs from DVS only in the Sign and Verify algorithms, whose pseudocode
is presented in Figure 5. At machine M;, as well as adding nonce r; ; as in DVS, procedure
Sign now subtracts nonce r;_1 . that is correspondingly added to the signature produced
by machine M;_; in order to create a nonce chain. Then, the proof produced in Combine
(by simply summing up the machines’ signatures) now incorporates only two nonces
(instead of m), namely ro . and ry, ., as illustrated in Figure 6. These two nonces are
reconstructed by Verify at the client and combined with the result and the element keys
in order to match the server’s proof.

Correctness and security. We next explain the correctness and security of DVS*.
THEOREM 5.2. DVS* is correct.

Proor. It results from Figure 6 that the way Sign incorporates the nonces in the
signatures causes the proof sent by the servertobe 7, = Y 1" 1 k-3 a;[jD)—ro c +7m.
Therefore, due to the appropriate modification in Verify to add (—rg ; + 7 ;) to 7, it is
clear that the algorithm outputs Yes if res. (sent by the server) is equal to (!~ ; Xi(z))
(the actual query result). DO

TurorEM 5.3. If F is a PRF, then DVS* is secure.
The proof is provided in Appendix A.4.

Performance. Compared to DVS, the signing cost in DVS* is negligibly affected by
an extra hash operation and modular subtraction. On the other hand, nonce chaining
eliminates the need for O(m) hashes for computing the nonces in the Verify algorithm
of DVS* (now only two are necessary), reducing the verification cost to O(n) hash
operations and modular additions/multiplications.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:19

// Algorithms KeyGen, Update and Combine are the same as in the DMP construction (Figure 3)

Sign(a, sk, Sa, T)
1. Forj=1ton

Ta,r[j] = Fr(“machine”||a|| “epoch”||7||“r”||j)
Pa,r 7] = Fr(“machine”||al| “epoch”||7||“p” |7
Pa,r[J — 1] = Fr(“machine”||a|| “epoch” HTH“ "Il - 1)

rb,[]] = Fi(“machine”||b|| “epoch”||T|| “r”||7)

a,r 7] = (Sali] + ra,7[4]), (Salj] - 76,7 [1] + pa,r 4] — par[i — 1])]

0a,7|7][2] = 0a,-[7][2] + 7a,~[4] - 7,-[j] // This line is executed only by machine M,
Output o, -

ISR R o ol

Verify(sk, 7, res., T)

1. Parse sk as k, and res; as a ng X np matrix

2. pa,-[0] = Fk(machlnc”||a||“ep0ch”||7'||“ ”||0)

3. pa,r[n] = Fr(“machine”||a|| “epoch”||7]|“p”||In)

4. pv,r[0] = Fi(“machine”||b| *epoch”||7]| “p”| 0)

5. pb,r[n] = Fr(“machine”||b|| “epoch” ||T]| “p” ||n)

6. Initialize 7 = pa,7[0] + pp,~[0] — pa,r[n] — pb,- (1]

7. For i =1 to na, ka;; = Fr(“machine”||a|| “element”||7)
8. For j =1 to ny, kp,; = Fi(“machine”||b|| “element”||5)
9. =T+ cinalicing Kai ko - resz[i][J]

10. f 7 =7, output Yes, otherwise No

Fig. 7. The DMP* construction.

5.3. The DMP* Construction

Similar to the case of DVS*, DMP* differs from its counterpart DMP in the Sign and
Verify operations, which are presented in Figure 7. Note that the routines in pseudocode
correspond only to machine M,. The case for M, is symmetric, with the only difference
being in line 7 of Sign, which is executed only by M,. Whereas DVS* applied the nonce
chaining technique on the nonces created by different machines, DMP* uses it on those
generated for different signature components. Recall that, in DMP, every machine
signature is an n-element vector, where each element is comprised of two components.
The nonce negations are injected to the second component of every one of the n elements
of each signature. The effect of nonce chaining in DMP* is demonstrated in Figure 8.
After applying the cancellations, there are only a constant number of nonces in the
proof sent by the server to the client. The latter reconstructs these nonces in Verify
and combines them with the result vector and the element keys in order to match the
server’s proof.

Correctness and security. The following two theorems state the correctness and se-
curity of DMP*, respectively.

THEOREM 5.4. DMP* is correct.

Proor. From Figure 8, the way Sign incorporates the nonces in the signatures causes
the proof sent by the server to be 7 = ;.1 jeiny) Ra.i - ko.j - res< [t]1j] 4 pa.[0] + po.- [0] —

Pa.z [0l — pp - [n]. Therefore, due to the appropriate modification in Verify to add p, . [0] +
0b.2[0] — pg.c[n]l — pp . [n] to 7, it is clear that the algorithm outputs Yes if res, (sent by
the server) is equal to (X, (1) U Xp(r)) = AB (the actual query result). O

THEOREM 5.5. If F is a PRF, then DMP* is secure.
The proof is similar to previous security proofs and is given in Appendix A.5.

Performance. Compared to DMP, the signing cost in DMP* is negligibly affected by
an extra hash operation and modular subtraction (and, in the case of M,, an additional

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:20 S. Papadopoulos et al.

7= ar (1] 00 1] = 00 [1][2] - ou - [1][2]+
ar2[1] - 00,7 [2][1] = 00,7 [2][2] — 00,7 [2][2]+

Oar[M)[1] - b, [N)[1] = 007 [n][2] — 00,7 [1][2]

mo= O ek res [+
i€[na],j€[ns]

7@{y4@4u—ﬁ%ﬁy+%ﬁm—@yﬁu+pwwy—mﬂm/£4u+
rur Y rurt2 = 12+ o = 24 0 = s 2] 24
ralgh o] = o+ =1 =l + o = 1] = il

Ty = Z kai - ke,j - resz[i][3] + pa,r[0] + pb,7[0] = pa,r[n] — po.r[n]

i€[nal,j€[ns]
Fig. 8. Ilustration of the effect of nonce chaining in DMP*.

Updates at 7 at machine M; sliding window of size

Vi1, Vi 2y .-
1 2 1 epochs o= |al[l]|al[2]|“‘ |al[7*“’+l]| | alH'
| ! p g7 =1y ooy OPOC
> v] il] L | T I KXl
a; = | a[l] [af2]| - |afr—1] d i,

5 - a, = |am[1]|am[2]| |am[7' —w+ 1]| | an, [T]|

a; atepoch 7 — -
a; atepoch 7 res; = iaﬂTfu'ﬁ»lJ iadﬂ

i=1 i=1
(a) updates (b) result

Fig. 9. The model for dynamic vector sum over a sliding window.

modular multiplication and subtraction). On the other hand, nonce chaining eliminates
the need for O(n) hashes for computing the nonces in the Verify algorithm of DMP* (now
only four are necessary), reducing the verification cost to O(n, + n;) hash operations
and O(nynp) modular multiplications and additions. Note that this can have significant
impact on the costs when n is large compared to n, and n,, as may commonly be the
case in practice (when n, and n; correspond to a small number of entities that are each
associated with high-dimensional rows/columns of feature values).

6. SLIDING WINDOW QUERIES

Sections 6.1-6.3 extend our DVS*, DMP*, and DDP constructions, respectively, to the
sliding window setting. Section 6.4 explains how to handle multiple concurrent sliding
window queries with variable parameters.

6.1. Dynamic Vector Sum Authentication over a Sliding Window

We consider m machines M;. At every epoch 7, each machine generates updates of
the form (z, v) that are sent to the server. Conceptually, the stream X; of M; produces
a dynamic vector a; that is expanded at every epoch t by one element as shown in
Figure 9(a). Let a; = [a;[1], a;[2], ..., a;[t — 1]] be the (conceptual) vector of M; at the
end of epoch 7 — 1. Then, this vector becomes a; = [a;[1], a;[2], ..., a;[t — 1], > i, il at
the end of epoch r, where v; ; corresponds to the updates generated at z by M;.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:21

Given a long-running sliding window query @ with window size w from the client,
the server computes and sends to the client at every epoch t the value

Q(LmJXi(t)) Zalr—w—i—l 7] [Zalr—w—f—l] Xm:ai[r]:|,
i=1 i=1

that is, the sum of the vectors comprised of the last w elements of the machines’
(conceptual) vectors. This is visualized in Figure 9(b).

The first step towards reaching our main result begins by adopting a general method-
ology briefly mentioned in Nath and Venkatesan [2013] for the untrusted client model,
which, however is applicable to our setting as well. This method simply applies an exist-
ing authentication scheme independently at every epoch as a black box, but aggregates
the w signatures that correspond to the current sliding window, allowing for a single
proof verification. For efficiency of verification, we also adopt nonce chaining: in our
setting, the machines run DVS* independently at every epoch, that is, they collectively
authenticate [} " ; a;[t]] at every r with DVS*, as if it is the vector sum of singleton
vectors [ai[z]], ..., [an[t]]l. To do so, every machine M; sends to the server signature
Oir =k - Zj v j — I'i—1,r + iz, where v; ; refers to the updates occurring at v at M;, &,
is an epoch-dependent key, and r; ., 7;_1,; are epoch- and machine-dependent random
nonces. Values k,,r; ;, and r;_1 ; are all produced with the master secret key sk. At every
epoch 7, the server sends to the client a proof that is the summation of the signatures
o; j,wherei € [mland j € {r—w+1,..., t}, thatis, of the signatures of all the machines
corresponding to the elements lying within the current sliding window of size w. Ob-
serve this proofis equal to 7, =k, 41 -res [1] +-- -+ k; -res; [w] + Z;:r_wﬂ(’”m,j —70.;),
where res, = Q(;~; Xi(1)). Since the client possesses sk, it can produce all the keys
and nonces and eventually verify the result.

We further optimize the verification process of the preceding scheme by applying
nonce chaining across subsequent epochs as well as across machines. Specifically, we
eliminate the summation Y , ,(m ; — 10), which involves O(w) nonces, resulting
in a proof that contains only a constant number of nonces. This is achieved by forcing
the m® machine at 7 to add (ro.c—1 — m.c—1) to its signature (shown in line 7 of Sign
in Figure 10). Although, asymptotically, the total verification overhead remains O(w),
this optimization saves O(w) PRF evaluations and modular additions. We provide the
details of our complete scheme, called W-DVS (after sliding Window DVS), in Figure 10.

Correctness and security. In the following two theorems, we prove the correctness
and security of W-DVS, respectively.

THEOREM 6.1. W-DVS is correct.

Proor. Let the actual result of @ at = be

Q(Ué&(r)) = [Zai[r —w+1], ...,Zai[r]},
i=1 i=1 i=1

where a;[j] = >, y.)n.—;t-v. After executing Update for all ¢ € X;(r) generated at
epoch t at any M;, the summary becomes S; = k&, - a;[t]. Therefore, running Sign
at t, M; produces signature o;, = k, - a;[t] —ri_1. + ri. for i € [m — 1], whereas
M,, generates op . = k; - aplt]l — rm-1.: + Im: +ro.c—1 — r'm:—1. Moreover, observe that

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:22 S. Papadopoulos et al.

KeyGen(1°)
1. k&7
2. Output sk = k and pub = L

Update(7 sk, Si,t)

If ¢ is the first update in this epoch, S; =0
Parse t as (7,v), and sk as k

k- = Fj(“element”||T)

Si=8S+krv

Output S;

Al

Sign(i, sk, S, T)

1. ri—1, = Fr(“machine” ||7 — 1||“epoch” ||T)

2. 7rir = Fi(“machine” ||i|| “epoch”||T)

3. Oir =8 —rici,r+Tir

4. Ifi=m

5 ro,r—1 = Fi(“machine” ||0|| “epoch” ||7 — 1)
6 Tm,r—1 = F(“machine”||m|| “epoch” ||7 — 1)
7 Oijr = 04y +T0,7—1 — I'm,7—1

8

Output o; -
Combine(U, ¢ ,; Jielr -t ioist 0, 1)
1. Output mr =3 70, > 41 Tiy

Verify(sk, -, res-, T)
Parse sk as k, and res, as a w-element vector
r0,r—w = Fi(“machine”||0]| “epoch” |7 — w)
Tm,r—w = Fi(“machine” ||m/|| “epoch”||7 — w)
ro,r = F(“machine”||0]| “epoch” ||T)
Tm,r = Fp(“machine”||m|| “epoch”||T)
Initiahze ™= TO,T*’(U - Tm,ﬂ'fw + Tm,r — TO,T)
Forj=(r—w+1)tor

kj = Fi(“element”||7)
10. m=7+k; res:[j]
11. If # = 7, output Yes, otherwise No

PN N =

Fig. 10. The W-DVS construction.

Yoo =k -y alt]) — 1o + Fme +70c-1 — I'm:—1. Hence, Combine outputs proof

m T T m
”TZZ Z Oij = Z kJZal[J] +7roc—w — Tmr—w +Tmz —T0,c-

i=1 j=t—w+1 Jj=t—w+1 i=1

Now notice that, if res; passed in Verify is equal to Q(;~; X;(7)), then the algorithm
computes a 7 that is equal to 7; and thus the output is Yes. O

THEOREM 6.2. If F is a PRF, then W-DVS is secure.
Proof of security is shown in Appendix A.6.

Performance. Similar to DVS, the storage, computational time of Update and Sign,
and communication cost at each machine are all constant. At the client, the storage
cost is constant, the verification cost entails O(w) PRF evaluations and modular addi-
tions/multiplications, whereas the communication cost is constant due to the constant-
sized proof generated by the server. Regarding the server’s computational cost, note
that in Figure 10 we present a simplified version of Combine for the sake of clarity.
This naive algorithm runs in O(m- w) time. However, we can improve upon this cost by

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:23

Matrix generated at M,

epochs inepochs 1,2,..., T

I 1 I 2 I _— I -1 I T T > : Matrix generated at M, :

R | inepochs 1,2,...,(7 —1) I

Matrix generated at M, | mmmmmmmmmm—m oo .

e imepochs 1.2 T ___ ‘ bl b2l]]

| ‘Matrix generated at M, Column generated : 2 : : b2 [1] b2 [2] e b, [nb] : :

| mepochs 12, (oD byupdatesatr | e S R R

lall] all] ... oa,[U1a(l] 1 T I {;—,[1% L. 9,;"[1%]21'*' Tbﬂf,[;[ﬂ,f, :

a2l a2 . a2 a2 i L Rl R o

I [I |

Vg iy e i | L AL B ‘

: :al [na] as [na] ar_1 [na] ar [na] | 8< L -~ !
Il === m s s s s = e | (<)

(a) updates

Sliding windows of size w

- b 1] b2 ... by

al[l] 32[1] . : aT_LL+1[1] 37[1] : bz[l] b2 [2] N bg[nb]

ai [2] ag [2] . : Ar w41 [2} ar [2] L U et
s cee : : bT w+1[1} br w+1[2] bT u+1[nb]

ai[ng as[ng 17 —wt1[Na) a, [nu] ..

,,,,,,,,,,,,,,,,,

resr =Alling, T—w+1:7] B[t —w+1:7,1:mn)
(b) result

Fig. 11. The model for dynamic matrix product over a sliding window.

having the server maintain a simple structure that requires O(w) space. Specifically,
at the end of every epoch 7 — 1, the server maintains an ordered list of the sequence
of values (3" Gir—w, ..., 2 1oq10ir—1), Where Y ", 0j ., is at the tail and Y 1 0i .1
at the head of the list. Moreover, it stores proof 7,1 = >7/"; > -/ 0; ;. At the next

epoch t, the server: (i) receives o; . for all i € [m] and computes > ;" ; 0; ., (i) removes
> 0ir—w from the tail of the list, (iii) adds) /", 0; . at the head of the list, and finally
(iv) computes the proof for epoch r as 7, = 7,1 — Zl 10ir—w + > ivq 0ir. With the pre-
vious modification the total computational cost of Combine decreases to O(m) modular
additions.

6.2. Dynamic Matrix Product Authentication over a Sliding Window

We assume two machines M, and M,. At epoch 7, M, generates a new n,-element
column vector a,. Conceptually, the stream X, of M, generates a dynamic matrix A
that expands its number of columns by one at each new epoch as follows: let a; be an n,-
element vector, and A = [a;ag ... a,_1] the n, x(r — 1) (conceptual) matrix of M, at epoch
7 — 1. At epoch 7, M, creates a new n, x T matrix A = [a;ay...a,_1a.] by appending
an ny-element vector a, as the rightmost column of the matrix, where a, is generated
by the updates occurring at r. Similarly, at epoch t, M}, produces a new ny-element
row vector b,. Conceptually, the stream A}, of M, generates a dynamic matrix B that
expands its number of rows by one at each new epoch as follows: let b; be an n-element
vector, and B = [biby...b,_1]T be the (r — 1) x ny (conceptual) matrix of M, at epoch
7 — 1. At epoch 7, M, creates a new t x np matrix B = [b1by...b,_1b.]T by appending
the newly arrived b, at the bottom of the matrix. This window model matches many
natural motivating scenarios that demand matrix product; see Section 8.5 for examples.
The update process is illustrated in Figure 11(a).

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:24 S. Papadopoulos et al.

KeyGen(1°)
1. k&7
2. Output sk = k and pub = L

Update(a sk, Sa,t)
Parse t as (i,7,v), and sk as k

2. If ¢ is the first update in this epoch, So =0
3. ka,i = F(“machine” ||a|| “element” ||7)

4. Sa:Sa-i-kaﬂWU

5. Output S,

Sign(a, sk, Sa,T)

1. rer= Fk(‘machine” ||a|| “epoch” HTH“ ”)

2. 71, = Fi(“machine”||b|| “epoch” ||| “r”)

3. pa,r = Fr(“machine”||a|| “epoch”||T||“p”)

4. pa,r—1 = Frp(“machine”||a|| “epoch”||T — 1| “p”)

5 Oa, 7 = [(+ Ta,7)7 (Sa *To,r + Pa,m — pa,‘rfl)}

6. 0a,-[2] = U,,,,T[Q} + 7a,r - To,r // This line is executed only by machine M,
7. Output oq,-

Combine(U,cr; i1, 7310, 00,5},0,1)
e — otz
2. Output m,

Verify(sk, 7, r€s+, T)

Parse sk as k, and res, as a n, X n, matrix
Pa,r—w = Fi(“machine” ||a|| “epoch” |7 — w]| “p”)

pa,r = Fi(“machine”||a|| “epoch”|| 7| “p”

Pb,r—w = Fr(“machine” ||b]| “epoch” |7 — w||“p”)
b, = Fi(“machine”||b|| “epoch” || 7] “ ”)

Initialize m = pa,r—w + Pb,r—w — Pa,r —

For i =1 to ng, ka,i = Fk(“machlne”||a|| element”Hi)
For j =1 to ny, ky; = Fr(“machine” ||b|| “element”||)
m™=m7+ Zze[na 1,i€[np] ka i+ ko, ¥ 7€ST[][J]

10 If 7 = 7, output Yes, otherwise No

©XOND O LN

Fig. 12. The W-DMP construction.

Given a long-running sliding window query @ with window size w from the client,
the server computes and sends to the client at each epoch 7 the n, x n; matrix

res, =All:ng,,t—w+1:7] Blt—w+1:7,1:n]
= [a‘[—w-l—l’-"vaf] : [bt—w+15"-7bt]Ta

that is, the product between the n, x w matrix produced by the last w columns of A,
and the w x n; matrix derived from the last w rows of B. Figure 11(b) demonstrates
this result.

We next present a scheme, called W-DMP, that enables the authentication of the
sliding window matrix products defined before. Figure 12 provides the pseudocode of
the construction. The main idea is similar to DMP*, namely we apply nonce chaining
on the signature components. The difference here is that M, (M;) need not maintain
O(w) summaries, that is, one for every column (respectively, row) lying in the sliding
window. In contrast, they need to maintain only a summary for the current epoch, which
is then signed and forwarded to the server at the end of the epoch. The nonce chaining
technique helps eliminate the O(w) factor from the verification cost that stems from
the computation of the nonces (similar to DMP*, here the server’s proof incorporates
exactly four nonces).

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:25

Correctness and security. Observe that, at any epoch 7, the server in W-DMP pos-
sesses O(w) signatures, one for each column (row) of the submatrix of M, (respectively,
M) lying in the current window. The keys and nonces for these signatures are con-
structed in a similar manner to that in DMP*. Therefore, both correctness and security
of W-DMP are proven in an identical manner to that in DMP*. We omit the detailed
proofs to avoid repetition.

Performance. All costs at the machines are constant. At the server, we employ a
similar optimization as in W-DVS to reduce the straightforward O(w) cost to constant,
sacrificing O(w) memory space. In particular, to ensure that the cost of Combine is
constant, at t — 1, the server maintains signatures o4 ;—y, Ob.r—w, - - - » Ou.r—1, Opc—1 IN @
linked list having o, ., at the tail and o5 .1 at the head. Moreover, it stores m,_1. At
epoch 7, the server receives o, ;, 0y r, TEMOVES 0p 1, Op 1 from the tail of the list, adds
Oq.1, 0p.¢ to the head of the list, and computes 7, = 7,1 — (04 r—w[1]-0p r—y [1] — 04— [2] —
0b,r—wl2]) + (04.:[1] - 0. [1] — 04 < [2] — 0. [2]). Finally, the verification cost at the client
entails O(n, + ny) PRF evaluations and O(n,n;) modular multiplications/additions.

6.3. Dynamic Dot Product Authentication over a Sliding Window

Suppose there are two machines M, and M,. At every epoch t, each machine gener-
ates tuples of the form (z, v) that are sent to the server. Conceptually, the stream X,
(respectively, A3) of M, (respectively, M;) produces a dynamic vector a (respectively, b)
which is expanded at every epoch t by one element exactly as described in W-DVS (see
Figure 9(a) in Section 6.1).

Given a long-running sliding window query @ with window size w from the client,
the server computes and sends to the client at each epoch t the value

res;=alt—w+1:7]-bltr—w+1:1t]= Z ali] - blz],

i=t—w+1

that is, the dot product of the vectors comprised of the last w elements of the two
machine vectors. We next describe W-DDP that authenticates such results.

Before attempting to devise a new scheme, we make two important observations.
First, we notice that we can perceive a[t — w + 1 : 7] as a 1 x w matrix, where each
column is comprised of a single element. Moreover, we can regard b[t —w+1:7]T as a
w x 1 matrix, where every row is comprised of a single element. Then, the matrix product
a[t—w+1:7]-blr —w+1:7]Tis a 1x 1 matrix consisting of a single element that is the
result res; of our dot product query. This is illustrated in Figure 13. Second, we observe
that, similar to W-DVS, each machine can produce a signature on the summation of all
its update values at every epoch 7. More specifically, at every t, machine M, (M) can
produce a signature on the single-element column (respectively, row) corresponding
to 7. The prior two observations suggest that we can authenticate dot products over
sliding windows by simply invoking W-DMP on 1 x w matrixalt —w+1:7]and w x 1
matrix b[t — w + 1]T.

Observe that the sliding window setting obviates the need of our basic DDP construc-
tion to provide the server with public information to remove “unnecessary” components
from the final proof. Specifically, contrary to DDP where the machines produce each
signature on all the elements of their vectors, here they sign every vector element in-
dividually. This is because every vector element corresponds to a unique epoch, which
in turn is associated with a unique signature. Therefore, when the server multiplies
pairs of signatures corresponding to the same epoch following W-DMP, no “unneces-
sary” elements are introduced in the proof, that is, the proof incorporates only products
of the form al[i] - b[j], where it always holds that i = j. In this sense, dot product

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:26 S. Papadopoulos et al.

Sliding windows of size w

b[1]
b[2)
[all] af2] ... :j{[t f}li—f}]ii s Al > :’b’[; :Aujjrilﬂ — {ZJA ali] - b[i]:| = [res]
1 x w matrix : : i=T—w
: b(7] | 1 x 1 matrix

w X 1 matrix

Fig. 13. Reducing dynamic dot product over a sliding window to W-DMP.

authentication over sliding windows can be performed considerably faster than in the
case of DDP.

Correctness and security. The correctness and security of W-DDP follow directly from
the correctness and security of W-DMP.

Performance. Similar to W-DMP, all the costs at the machines in W-DDP are constant.
Moreover, applying the optimizations discussed for W-DMP, the server requires O(w)
space and constant processing time to produce the proof. Finally, the verification cost
at the client becomes O(1), since n, = n; = 1 in the case of dot product.

6.4. Concurrent Queries with Variable Parameters

So far, we have assumed a single query with window size w. Moreover, we have focused
on the case where the server must send a result to the client at every epoch. In other
words, we fixed the tumbling factor, which determines how many epochs the window
should slide over the time domain before the server reports a new result, to unity. In
this section, we explain how our schemes can be modified to handle multiple concurrent
queries with variable window sizes and tumbling factors.

Variable window sizes. Observe that we use the window size w in the Combine and
Verify algorithms of all our constructions as a fixed global variable. However, the cor-
rectness and security of the schemes hold for an arbitrary w. Consequently, in order to
support multiple queries with variable w, we can simply modify Combine and Verify to
take w as a user-defined input parameter. Interestingly, it is not necessary to modify
the machine’s algorithms Update and Sign, as these are independent of w. As such, no
extra overhead is imposed at the machines for handling multiple queries in the sliding
window case.

Recall that the server can construct the proof of a single sliding window query in O(1)
time requiring O(w) space, after having computed in O(m) time the new head of the list
from the newly arrived signatures. In the case of N queries with sizes wy, we, ..., wy,
where wy is the largest size, the server can produce all proofs independently in O(N)
time and O(w; + wg + - -- + wy) size. We can improve this space cost to O(wy + N)
with the structure shown in Figure 14. The server maintains a doubly linked list over
the aggregated signatures corresponding to the last wy epochs, as we described earlier
for W-DVS and W-DMP. Moreover, it maintains pointers to indicate the end of the
windows with sizes w1, ..., wy_1. It also stores proofs n;_11, 7,12, ..., 7,—1.n, Where
7.1, corresponds to the proof constructed in epoch v — 1 for query with size w;. In the
next epoch 7, the server removes the element at the tail (corresponding to epoch t —wy)
and appends the new signature(s) at the head (corresponding to epoch 7). Subsequently,
it updates every m,_1; to yield n, ;, making use of the window end pointers. Finally, it
shifts all pointers by one place to the right in order to indicate the new end of the query

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:27

sliding window of size wy

sliding window of size wx_1

sliding window of size w,

epochs T—wN T — WN_1 T —w -1
signatures | | | | | | | |
pointers tail end of window end of window head
with size wy -1 with size w
pI'OOfS Tr—1,N Tr—1,N—1 Tr—1,1

Fig. 14. Structure maintained at the server at epoch v — 1.

windows. Evidently, the total space consumption is O(wy) for storing the signatures
for wy epochs, plus O(N) for maintaining the proofs and pointers. The total processing
cost for the construction of the N proofs is O(N), excluding the O(m) cost for calculating
the new head of the list.

Variable tumbling factors. Consider the case where a client sets an arbitrary tum-
bling factor ¢f, which can be any positive integer. The client then expects to receive a
new result and proof from the server every tf epochs. Since the client is loosely syn-
chronized with the machines and the server within every epoch, it can easily detect
whether the server maliciously omits sending a new result. Let ¢ be an epoch when the
server sends a new result and proof to the client respecting ¢f, and let w be the window
size. Observe that both t and w are parameters that do not affect the correctness and
security of our schemes. Therefore, our constructions enable the client to verify the
result corresponding to the window of size w at t, without requiring any modifications.

For the case where there are multiple concurrent queries with variable window
sizes and tumbling factors, we can adopt the structure described in Figure 14, slightly
modifying it to accommodate information about the tumbling factors. Specifically, for
each query, in addition to its end pointer and proof, the server also sets a counter equal
to tf before the system commences. Then, at every epoch, it operates as we discussed
previously for the variable window sizes (i.e., it properly updates the signature list,
pointers, and proofs), but also reduces all the counters by 1. The server sends a new
result and proof for a query whenever the respective counter becomes 0. The server
reinitializes the counters that become 0 to their original #f value, and the system
continues in the aforesaid fashion.

7. SUBSET QUERIES

So far, in our DVS/DVS*, DMP/DMP*, and DDP schemes, the query involved a linear
algebraic computation over the entire vectors and matrices dynamically generated by
the machines. In this section we target at an arbitrary number of queries, capturing the
case where there are multiple clients (all trusted with the secret key by the data owner).
Each client can pose a different query that may require an algebraic computation
over any subvectors (in the case of DVS/DVS* and DDP) or submatrices (in the case
of DMP/DMP*) of the machines. We call such queries collectively as subset queries.
Similar to Nath and Venkatesan [2013], we focus only on static subset queries, that
is, in scenarios where the queries are known to the machines a priori (Nath and
Venkatesan [2013] provide a detailed discussion on the hardness of dynamic subset
queries that also applies to our scenario). Section 7.1 describes how to authenticate
dynamic subvector sum queries, Section 7.2 discusses the case of submatrix products,
and Section 7.3 covers the setting of subvector dot products.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:28 S. Papadopoulos et al.

7.1. Dynamic Subvector Sum Authentication

Let Q be the set of the clients’ queries and |Q| the cardinality of Q. The result of a
subvector sum query @;,;, € Q at 7 is defined as

Qiz,iu <U Xz(f)) = Zaz[il : Lu]a
z=1

z=1

that is, it is computed similar to DVS*, but focusing only on those elements with indices
i, +1,...,1, in the machines’ vectors (indicated by the notation (a,[i; : 7,]).

A naive way to authenticate all queries in Q is to run |Q| different instantiations
of DVS*, one for each query in Q. However, this would increase all costs at all parties
involved by a factor of |Q|. In the following, we first describe a methodology presented
in Nath and Venkatesan [2013] for the case of untrusted clients, which can be applied
to our setting in combination with DVS*. This method reduces the update cost at the
machines from O(]|Q|) to constant. Subsequently, we provide two optimizations of this
technique, the first regarding the verification cost and the second concerning the proof
generation cost at the server.

At a preprocessing stage, the technique in Nath and Venkatesan [2013] first cre-
ates a new set Q' from Q as follows. It retrieves the set I = UQiZ.quQ{(il’ Q;.i,-qid),

@Iy, @;.i,-qid)}, which contains two tuples for every @,.;, € Q, where the first (respec-
tively, second) includes the lower (respectively, upper) bound of the subvector range
[i1, 3] of @;.i,, along with the unique identifier @, ;,.qid of @, ;,. Subsequently, it sorts
the tuples (i, gid) € I in ascending order of i, producing an ordered list L. Finally, in a
single scan of L and by checking adjacent elements, it produces a set of disjoint queries
Q' that collectively cover the same elements as the queries in Q. The algorithm is con-
ceptually simple and so we do not further detail it. Instead, we illustrate an example in
Figure 15(a), where three overlapping client queries @26, @s.9, @s.12 over a 16-element
result vector are decomposed into disjoint queries @5, Qs.6, @7.7, @s.9, @10,12. The cost
for producing Q' is O(]Q|log |Q|), where the size of Q' is |Q'| <2-|9|.

The system is set in motion and runs |Q’| different instantiations of DVS*, one for
each query in Q'. In order to create the proof for a query @ € Q, the server identifies the
disjoint queries in Q' that compose @, and sums up the corresponding proofs from the
separate instantiations. This is demonstrated in Figure 15(b) focusing on query Qg9 €
Q, which is comprised of Qs 6, @77 and Qg 9 whose proofs are n;, 7, and 7/, respectively.
Note that, since each proof is constructed by a different DVS* instantiation, the keys
that scale the result elements, as well as the nonces, are different for each query G.e.,
they are query dependent). The client can then verify the result res.[6 : 9] using the
aggregate proof and the secret key. The benefit of the preceding approach is that, due
to the fact that the queries in Q' are disjoint, an update always changes an element
covered by a single query @ € Q' and hence, only a single summary must be updated
by the machine (that is, the one that corresponds to the DVS* instantiation for @).
Nevertheless, the drawback is that, since every proof for a query in Q' is produced from
an independent DVS* instantiation, the aggregate proof for a query @ € Q contains:
(i) as many nonces as the number of queries from Q' that comprise @ (this is evident
in Figure 15(b)), and (ii) keys £ that depend on the DVS* instantiations involved in
the composition of @. This suggests that the server must notify the client about which
queries from Q' compose his query. Let n; be the elements covered by query @; € Q,
and N; the number of queries from Q' that comprise @;. Then, the communication cost
for @; is O(NV;), whereas the verification cost is O(n; + N;).

We can eliminate the N; term from both the communication and verification cost
of the prior approach as follows. First, we mandate that every DVS* instantiation

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:29

Q = {Q25,Q0,9,Qs12} after Q' ={Q25,Qs.6, Q7.7 Qs.9, Qro,12}

decomposition

—— Qo6 Qspo

Q26 L Qs.12 Q25 Ql7 Q10,12

vese (LT T T T T TTTTITTITTT] s LI I T T TTTTTTTTTIT]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) query decomposition: the queries are decomposed into a set of disjoint ranges such that each query can
be formed as the union of a set of contiguous ranges

Q6,0 Qs € Q
%6 & Qo.6,Q77,Qs0 € Q'
Qr7
ress [TTTTTTTTTTTTTT]
1 23 4 5 6 78 910 11 1213 14 15 16
Prooffor Qg,6: Tr = kg - res7[6] + (rm,r — T0.7)

Prooffor Q7,7: T = kb - res[7) + (rh, . — 70.+)
prooffor Qg.0: 77 = kY - res, (8] + ki - res (9] + (1 . —74.)
Final proof:

e+ 7w = ke res,[6] + kY - res,[T] + kY - res-[8] + kg - res,[9]+

’ "

+(rm,r —71o,r) + (r/n).r - TéJ’) + (Tz,n.? - TD,T)
nonces from nonces from nonces from
6.6 Q77 Qs
(b) proof generation: the proof is formed as a summation of proofs for each range that constitutes the

query

Fig. 15. Query and proof with the Nath and Venkatesan [2013] adaptation.

produces the keys & that scale the result elements in a query-independent way. Second,
we adapt nonce chaining on the nonces of the different instantiations in the following
manner. The machines first sort the queries in Q' in ascending order of their index
ranges. Let the produced ordered list be L = (@1, @s, ..., @;). Next, they run a different
instantiation of DVS* on each @; in L, with a slight modification: when executing Sign
for @; 1, the nonces incorporated in the produced signature negate those added in the
signature of @;. Due to the similarity with the nonce chaining adaptations already dis-
cussed for our previous schemes, we do not include the detailed algorithm. Instead, we
illustrate the approach with a comprehensive example in Figure 16(a), which contin-
ues that of Figure 15(b). Observe that, when n., 7/, 7] are added together, a constant
number of nonces remain in the yielded proof: two related to query Q.5 € Q that
precedes the leftmost query @6 € Q' contained in Q9 € Q, and two for the rightmost
query Qg9 € Q' contained in Qg 9. Moreover, the & keys are now query independent.
Therefore, the client only needs to know the id of @ 5 and Qg9 (that are used to pro-
duce the query-dependent nonces remaining in the final proof) in order to successfully
verify the result. These are sent by the server without adding any extra asymptotic cost
to the proof size. Consequently, the communication cost at the client for a query @; € Q
covering n; elements becomes constant, whereas the verification cost becomes O(n;).

We next analyze the proof generation cost at the server in this approach. The server
can produce the proofs for all queries in Q as follows. It first calculates the proofs for
every query in Q' by summing the m signatures corresponding to each of these queries
received by the machines. Next, for every query @; € 9, it identifies those queries from
Q' that comprise it and sums up their proofs. Let N; be the number of queries from Q
covering a query @; € Q. Then, the total cost is O(m - |Q| + ZQL_EQ N;).

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:30 S. Papadopoulos et al.

Q6,9 Qe € Q

Qos Qoo Q25,Qe,6,Q7.7,Qs0 € Q
Q25 Q7

vese [LTI T T T T TTTTTTTT]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Prooffor Q6,61 Tr = ki - 7€57[6] + (rm,r — T0,r) — (nonces from Q2 5)
brottor Qr.7: 7 = hr - res, 1)+ (Vo = 12) = (P = 7o.7)

Prooffor Qg 9: T = kg - res.[8] 4+ ko - res- 9] + (ryy, . — 70) = (T - — 70.1)

Final proof:

Tr 4+ 7 4 7] = ke - res,[6] + k7 - res,[T] + ks - res-[8] + ko - res,[9] + (1, . — () — (nonces from Q2 5)

query-independent constant number
keys of nonces

(a) applying nonce chaining: the cost to build the proof now depends solely on the number of partitions of
the query range, plus a constant

Q6,9 Qe € Q

~
] U
v
U
Qa5 Q7 ' Q1012 Q2,5 Q6,6, Q7,7,Qs,9, Q0,12 € Q'
s [LTI TITTITTTTT]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Prooffor Qg,6: Ty = kg - 7€57[6] + (rm,» — r0,-) — (nonces from Q2 5)

prooffor Q7,7: 7 = kr - res- [T+ (. —0..) — (Fmr — To,r)

Prooffor Qg 9: 7y = kg - res;[8] + kg - res[9] + (r, - —70) = (P —70.)
FKinal proof:

v vy =T T+ T = kg Tesy[6] + kr - resc[T) + ks - res [8]+

"
m,T

+kg - res (9] + (rir, . — 7) — (nonces from Q2 5)

(b) tree structure and final proof generation: partial combination of results within the tree reduces the
cost to proportional to the tree height

Fig. 16. Our optimizations for subvector sum authentication.

Our second optimization regards improving this cost to O(m- |Q| + ZQi colog N;). The
server achieves this by constructing a binary tree over the proofs of the queries in Q/,
similar to that shown in Figure 16(b). In particular, the server first sorts the proofs of the
queries in @ in ascending order of the vector indices to which the queries correspond.
Then, it associates the proof of every query in Q' with a leaf node. Subsequently, it
constructs the tree in a bottom-up manner storing in each internal node the sum of
the values contained in its children. In our figure, v1 = 7, corresponds to Qs ¢, Whereas
vy = 7, + 7, is the sum of the proofs of @7 7, Qs 9. Observe that every node is associated
with an index range in the result vector, for instance, v4 corresponds to range [7, 9].

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:31

The tree can be built in O(|Q’|) time. Given a query @; € Q, the server identifies the
values stored in the roots of those maximal subtrees that exactly cover the index range
of @;. For instance, values v; and vy (highlighted in grey) are the values in the roots of
the maximal subtrees covering the range [6, 9] of Qs 9 € Q. Eventually, it sums these
values to produce the final proof. In our running example, observe that v + v4 is equal
to n; + 7, + 7/, which constitutes the final proof for € 9. Since the number of maximal
subtrees is logarithmic in the number of the leaves covering the index range of @;, the
cost for computing the proof of @; is log N;. As a result, the total proof generation cost
at the server for all the queries in Q becomes O(m- |Q| +)¢, .o log NV;). This expression
is O(|Q|(m + log n)), since the height of the binary tree is logn, which bounds the cost
of log ;.

The correctness of our nonce chaining and tree structure modification is easily ver-
ifiable from Figure 16. Moreover, the security of the nonce chaining adaptation can
be proven in a similar vein to our previous constructions, whereas the introduction of
the tree structure does not affect security at all (since it does not alter the view of the
adversary). Consequently, we omit the formal proofs of correctness and security.

7.2. Dynamic Submatrix Product Authentication

Let Q be the set of the clients’ queries and |Q| the cardinality of Q. The result of a
submatrix product query @, ;.. € @ at t is defined as

Qiz,iu,jz,ju(Xa(T) U Xp(1)) = ABIli; iy, Ji @ Jul,

that is, it is computed similar to DMP*, but focusing only on those elements of the
matrix product with indices [i;, jil, [i; + 1, jil . .., [iy, Jul.

In order to authenticate this query, we could extend the methodology from Nath
and Venkatesan [2013] in a similar manner to that explained in Section 7.1. More
specifically, we could view the queries in Q as two-dimensional ranges in the domain
[n4] x [np], and decompose them into a set Q' of disjoint rectangular queries that exactly
cover Q. Nevertheless, observe that, in the worst case where all queries from Q overlap
with each other, it holds that |Q'| = O(|Q|?). Executing a different DMP* instantiation
for every query in Q@ would lead to a prohibitive cost at the machines for producing
and sending the individual signatures. Note that our two optimizations in the case of
subvector sums did not target at the machine’s overheads and hence their adaptation
here cannot alleviate these costs. Consequently, in the case of submatrix products, we
advocate the use of different instantiations of DMP* for every query in Q (and not for
every query in Q’), which may only impact the update cost at the machines in case
numerous queries overlap at the same elements.

7.3. Dynamic Subvector Dot Product Authentication

Let Q be the set of the clients’ queries and |Q| the cardinality of Q. The result of a
subvector dot product query @;,;, € Q at t is defined as

Qi (X (D) U Xp(2)) = aliy : 4,1 - bliy 2 4,1,

that is, it is computed similar to DDP, but focusing only on those elements of the
machines’ vectors with indices i;,7; + 1, ..., i,.

We follow a similar approach to that described in Section 7.1 for subvector sum. We
decompose Q into a set Q' of disjoint queries that exactly cover Q. The machines run a
different instantiation of DDP for each query in Q. However, it is vital to note that the
keys which scale the elements in the summaries are constructed in the same manner
as in DDP, that is, in M, (M) element a[i] (respectively, b[i]) is always scaled with key
K (respectively, £"7i*1), regardless of which query in Q' covers this element.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:32 S. Papadopoulos et al.

We make two observations focusing on ¢ queries @, ..., @, € Q that exactly cover a
client’s query @ € Q: (i) If the server creates proof =, ; for query @; € Q' in the same
manner as in DDP (after collecting the appropriate signatures from the machines), then

the product]_[f:1 m.; will give a proof of the form gkm‘zlju:iz rescljl+(nonces) £ the subvector
result res.[i; : i,] = ali; : i,] - bli; : i,] at T corresponding to query @. Consequently, we
can create a tree structure on the proofs of the queries in @’ as in Figure 16(b), with
the difference that an internal node now stores the product of the values stored in its
children. (ii) If the nonces are produced using nonce chaining in the same vein as for
the subvector sum, then the number of nonces in the proof of @ described before will
be constant. Therefore, subvector dot product can make use of our two optimizations
described in Section 7.1, enjoying their benefits, namely: (i) the constant update cost at
the machines, (ii) the reduced verification time at the client, and (iii) the faster proof
generation overhead at the server.

8. APPLICATIONS

In this section, we discuss some common queries in stream outsourcing and explain
how the constructions we have provided can address them. We stress, though, that the
applicability of our schemes is not limited to these cases; we are confident that our
fundamental tools can capture a much wider set of applications.

8.1. Group-by Queries

The class of group-by,sum aggregation queries are at the heart of many outsourced
computation scenarios and have been the sole motivation for much of the prior work on
stream authentication. The setting is that a large number of tuples are observed as a
stream. These tuples may correspond, for example, to activity on a network, updates to
a large database table, or events in an event processing system. The requirement is for
the server to collate the stream tuples into groups and report the sum for each group.
We typically consider cases where the number of active groups (those with a nonzero
sum) is substantially large, so that the data owner benefits from enlisting the server
to perform the aggregation.

This problem is solved directly by the dynamic vector sum authentication protocol,
DVS (and its optimized version DVS*), applied to a single vector. Each stream tuple is
translated into an update to the vector. The entries of the vector give the aggregate
associated with each corresponding group. The approach naturally holds for the dis-
tributed setting, where updates might be spread across multiple streams. In this case,
the object of the authentication is the vector given by the sum of the vectors derived
from each of the streams. DVS and DVS* capture this scenario due to their homomor-
phic property that allows the client to verify a sum of vectors by checking a single proof
(produced by the server) that combines all individual vector signatures together.

Furthermore, sometimes a client may require statistics over a period of time. For
example, in a stock market application, the client may wish to learn the aggregate
of a stock (or a group of stocks) for the last w timestamps (where a timestamp may
correspond to a minute, a day, etc.), for instance, for computing moving averages or
other statistics over time. Our W-DVS scheme can be used to authenticate such sliding
window queries.

Finally, in several applications a client may be interested in only a subset of groups.
For instance, in an electronic bookstore application, customer transactions form the
streams and the client may wish to learn statistics only about certain purchases, such
as those concerning only math books, novels, etc. To handle such cases, we can sort
the book ids by category and directly apply our adaptation of DVS/DVS* to the subset
queries scenario.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:33

8.2. Join Queries

Beyond simple grouping and aggregation, many important outsourced queries involve
the computation of a join query on relations. In traditional data stream management
systems, join queries are regarded as particularly challenging, with prior work focusing
on approximate results [Das et al. 2003; Viglas et al. 2003]. Hence, join queries are
a prime candidate for outsourcing. We explain how to authenticate join results in our
setting, focusing on the common case of equi-join.

We consider two machines M, and M. At every epoch, machine M, (M;) generates
data that dynamically update a relation R (respectively, S) which is maintained at the
server. An update ¢t at M, has the form (sign, tgr), where ¢z corresponds to a relation
record and sign is either “+” or “—”; the former indicates that ¢z is added to R, whereas
the latter signifies that ¢z is deleted from R. The case for machine M, is similar.

Given a long-running equi-join query

SELECT * FROM R, S
WHERE R.x = S.x

the server returns to the client the result at every epoch, which is a multiset of tuples
(tg, tr.x, ts) where tg is a tuple from (the current version of) R, tg is a tuple from (the
current version of) S, and fz.x = tg.x is their common value on the join attribute x.
We assume that the domain of x is [n], where n is an integer. We next explain that we
can adapt our DDP construction with slight modifications in order to authenticate the
aforesaid equi-join query. We call the resulting construction as DEJ.

We first explain the main idea behind the scheme. Sending their data streams to
the server, machines M, and M, dynamically update two n-element vectors a and b,
respectively. At the beginning of the system, these vectors are initialized with zeros.
When a new tuple (+, tg) arrives at M,, then H(¢g) is added to the current value of
altgp.x], where H is a cryptographic hash function (e.g., SHA-1 [Menezes et al. 1996]).
On the other hand, if (—, ¢g) arrives at M,, then H(¢g) is subtracted from the current
value of a[tg.x]. In other words, at the end of any epoch, element a[i] contains the sum
of the hashes of the records in the current version of R, whose join attribute value is i.
The case for M and b is similar. Then, the dot product a-b encompasses cryptographic
information only about those tuples that participate in the join result at the current
epoch. This is because, if there are no tuples joining on attribute value j, then at
least one of a[], b[j] must be equal to zero. Therefore, authenticating this dot product
result (through our DDP functionality) allows us to authenticate the desired equi-join
result.

Figure 17 contains the pseudocode of DEJ (focusing on the case of machine M,). We
properly modify procedure Sign, such that M, maintains summary S, on the vector a
described earlier. Note that, for machine M;, the summary is updated as S, = Sp +
Etsx+1 . H(tg). Contrary to the case of DDP where the client receives just a single
value as the dot product result, here it receives those tuples that participate in the
join result. As such, Verify first needs to use these tuples to compute the elements
of a and b that participate in a - b. In other words, for every distinct join attribute
value x, the user computes a[x] (b[x]) as the summation of the hashes of the records
from R (respectively, S) included in res,. Finally, it computes the sum of all a[x] - b[x]
scaled with key £"*!, injects the appropriate nonces, and verifies the yielded value
against ;.

Correctness and security. We prove the correctness and security of DEJ in the two
theorems that follow.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:34 S. Papadopoulos et al.

// Algorithms KeyGen, Sign, and Combine are the same as in the DDP construction (Figure 4)

Update(a, sk, Sa, t)

1. Parse t as (sign,tr)

If sign = ‘+', then Sq = So + k'®" - H(tg)
Else Sq = So — k'®" - H(tg)

Output S,

LN

Verlfy(5k7 Tr, T€ST, T)

1. Parse sk as k, and res; as a multiset of tuples of the form (tg,tr.z,ts)

2. 7q,r = Fr(“machine”||a|| “epoch” ||| “r")

3. pur = Fi(“machine” al “epoch”||] “o")

4. 1y, = Fi(“machine” [|b]| “epoch” ||7| “r”)

5. pv,r = Fr(“machine” ||b]| “epoch” ||| “p”)

6. Initialize 7 = g("a-f‘T'b,ffpajfpb,T

7. Compute 7 =7 - gk"ﬂ_zr((E(zR.tR‘m,thw, HtR)) (Se gty ot) creny H(E)))
8. If m = m; output Yes, otherwise No

Fig. 17. The DEJ construction.

TureoreM 8.1. DEJ is correct.

Proor. The correctness of DEJ stems from that of the underlying DDP scheme. Recall
that, in DEJ, at the end of every epoch 7 it holds that alil = >,—; H(r) and
blil = 3, csrsx—i H(ts), where R and S correspond to the instances of the two queried
relations at t. Since Sign and Combine in DEJ are identical to those in DDP, the server

sends to the client proof 7, = gknﬂ'(a'b)*‘ra-f'r”-f_p“-’_'ob’f. Observe that Verify outputs Yes,
if Y (X iptnwssreres, HAR)) - (X tp.tpx.tereres. H(ts)) = a - b, which holds when res; is the

equi-join result. O

THEOREM 8.2. If F is a PRE, then DEJ is secure under the n-DHE assumption in the
random oracle model.

The proof is in Appendix A.7.

Performance. Algorithms KeyGen, Sign, and Combine in DEJ are identical to those
in DDP and hence retain their costs. The slight modification in the Update procedure
negligibly affects its cost as compared to DDP (it requires one extra hash operation).
Finally, let N = |{tg|3(tr, tr.x,ts) € res.}| and Ng = |{ts|3(tr, tr.x,ts) € res;}|, that
is, Nr (Ng) is the number of tuples from R (respectively, S) participating in the join
result. Then, the cost of Verify in DEJ is dominated by O(Ng + Ng) hash operations and
a constant number of modular exponentiations.

Other Join Variations. In the aforementioned problem, the goal was to authenticate
the tuples produced by an equi-join query on relations R, S on attribute x. Assume
that R.y and S.z are attributes of relations R and S, respectively. If, instead of the
actual tuples, we are interested in authenticating the joint frequency distribution of
each (R.y, S.z) pair in the join result, then this authentication can be achieved by a
direct application of our DMP protocol. In this case, the machine containing relation R
(S) builds a two-dimensional matrix where each element of the matrix corresponds to
the joint frequency of occurrences of each (R.y, R.x) ((S.x, S.z)) pair of values in R (S).
It is easy to see that the product of these two matrices provides the desired result in
this application.

Another interesting query is computing the size of the equi-join result. This is given
by a direct application of DDP: if we treat every tuple ¢ with join value ¢.x as an update

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:35

of the form (sign, ¢.x, 1), then vectors a, b will hold the frequencies of the relations on
each join value. Therefore the equi-join size is exactly a - b.

Finally, observe that we can handle join queries with a range selection on the join
attribute, using our DDP implementation for subset queries. This is because a range
selection on the join attribute essentially constrains the query to a subvector of a and
b, which is directly supported by the solution we presented in Section 7.3.

8.3. In-Network Aggregation

In-network aggregation is a popular paradigm employed typically in sensor networks,
which reduces the energy expenditure in routing raw data from the motes to a remote
client [Madden et al. 2002]. Consider a set of sensors organized (without loss of gen-
erality) into a tree-structured network. Also assume that a client communicates only
with the root sensor (sink) and wishes to perform some aggregation task (e.g., sum or
count) on the readings of the sensors. Transmitting the raw data to the client inflicts
considerable burden on the nodes positioned close to the sink, as they have to forward
a considerable number of messages from nodes lower in the tree. In-network aggrega-
tion mandates that internal nodes perform the aggregation task on the data received
from their children and forward only a small result, thus achieving significant battery
savings.

In our setting, only the leaf sensors belong to the owner, whereas the internal
tree infrastructure is outsourced to an untrusted third party [Garofalakis et al. 2007;
Papadopoulos et al. 2011; Nath et al. 2009]. The goal is to allow the client to authen-
ticate the aggregation result on the union of the leaf readings received from the sink.
Our DVS (or DVS*) construction applies to this scenario as well. Its KeyGen, Update,
Sign, and Verify routines remain the same in this case; the main changes occur in the
Combine algorithm executed by the server. Here, each server in the network executes
Combine on the inputs received from its children, and forwards the output to its parent
in the routing tree. Notice that the client eventually receives a proof from the sink that
is equal to the summation of the leaf sensor signatures. This is exactly what Combine
would output in case a single server collected all the sensor signatures. Our scheme is
lightweight for all parties involved and hence is ideal for resource-constrained sensor
networks.

Subset and sliding window queries naturally arise in the aforesaid setting as well.
For instance, in case the sensors transmit multiple sensor readings, a client may wish
aggregate information only about a subset of these readings. Moreover, the client may
request statistics (e.g., about temperature) over the last w epochs. Therefore, the subset
and sliding window adaptations of our DVS/DVS* schemes have immediate application
in these scenarios.

8.4. Similarity Measures

It is increasingly common to deal with objects represented by a (potentially) very
large number of features in a high-dimensional vector space. In machine learning and
other modeling applications, a single object (such as a user of a Web search engine)
may be represented by a vector that has millions or billions of components. Similarity
measures are vital in such settings. For instance, clustering of objects often entails
distance (i.e., dissimilarity) computation between feature vectors. Another example
involves determining the correlation of items (i.e., market stocks, retail products, etc.)
whose information (i.e., shares values, sales volume) is dispersed across different server
machines. Correlation is also based on similarity.

Similarity between vectors is typically measured by an appropriate similarity
or dissimilarity measure, such as the cosine similarity and Euclidean distance,

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:36 S. Papadopoulos et al.

respectively. The cosine similarity between vectors a, b is computed as %, where

la]l = +/a - a is the Ls norm of a. The Euclidean distance between a and b is equal to
la—b| =/al?+ [b]? —2a-b.

We can authenticate such measures by engaging the DDP construction, since both
cosine similarity and Euclidean distance depend on inner product computation. The
case of a - b is carried out by direct application of DDP. For a-a and b - b, M, and M,
must apply two separate instances (i.e., with different keys) of DDP on the same vector
a and b, respectively. The modifications in Combine and Verify are straightforward and
thus omitted. In addition, similarity may be defined over a subset of features, or over
a period of time (e.g., stock similarity). Hence, the subset query DDP adaptation and
W-DDP scheme are applicable in these cases.

8.5. Event Co-Occurrence

Event monitoring applications operate on massive streams in order to find patterns
or correlations between certain events [Demers et al. 2007]. These include supply
chain management of RFID tagged products, stock trading, monitoring of machines
for malfunctions, environmental sensing for surveillance of establishments, and more.
An important class of queries in this scenario is finding co-occurrence of events. We
provide a simple example. Let A (respectively, B) be an n x 1 (1 x n) matrix representing
a set of n events occurring at machine M, (M,). A cell value is 1 if the event occurs
during the latest (or at a specific) epoch, and 0 otherwise. Then, AB is an n x n matrix
where cell AB[i]1[j] is 1 if event i co-occurs with event j at the latest (or at a specific)
epoch. The result matrix can help in determining event correlations. The preceding
can be generalized to matrices with arbitrary dimensions. It is apparent that our DMP
construction is directly applicable for authenticating such queries.

Moreover, event co-occurrence is meaningful when observed under a sliding window.
For instance, suppose the rows in matrix A correspond to events that occur at machine
M,. A new column appended at r to A indicates which events occurred at t at M,.
Similarly, consider that the columns in matrix B refer to events that occur at machine
M. A new row appended at t to B indicates which events happened at t at M;. Then,
the matrix product AB over a sliding window of size w will contain in cell [z, j] the
number of times event i co-occurred with event j in the last w epochs. Clearly, such
queries can be authenticated by our W-DMP scheme.

9. EXPERIMENTS

In this section we experimentally evaluate our protocols, namely DVS, DMP, DDP, DVS*,
DMP*, W-DVS, W-DMP, and W-DDP. We also compare DVS with PIRS (specifically,
PIRS-1 [Yi et al. 2009]), which is the only scheme that addresses our trusted client
setting in the context of group-by, sum queries. However, we stress that PIRS is not a
direct competitor, as it assumes the client is the owner itself and has a weaker security
model. We slightly adapt PIRS so that the machines send to the client their summaries
via the server, after authenticating them using another authentication scheme. On the
other hand, as we are the first to address authentication of dot and matrix products as
well as of sliding window queries in the trusted client setting, the rest of our schemes
have no competitors.

The remainder of this section is outlined as follows. Section 9.1 includes information
about the implementation of our constructions, along with an evaluation of the primi-
tive costs. Section 9.2 assesses the performance of our basic constructions. Section 9.3
evaluates our optimized constructions DVS* and DMP*, while Section 9.4 focuses on
sliding window queries. Finally, Section 9.5 summarizes our experimental results.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:37

Table Il. Primitive Costs

Description ‘ Cost
Modular addition in Z, (|p| = 10/ 20 bytes) 0.15 us/0.18 us
Modular multiplication in Z, (|p| = 10 / 20 bytes) 0.19 us/0.28 us
Modular exponentiation in Z, (|p| = 10/ 20 bytes) 4.8 us/ 7.4 us

Time to derive the generator of Z, (|q| = 64 bytes) 2.7 sec
Modular multiplication in Z, (|g| = 64 bytes) 0.56 us
Modular exponentiation in Z, (|g| = 64 bytes) 55.6 us
HMAC computation (with SHA-1) 3.53 us

9.1. Implementation

We implemented all protocols in C on a 2.66 GHz Intel Core i7 with 4GB of RAM,
running MAC OS X. We used the GMP? and OpenSSL* libraries for implementing
the cryptographic operations involved. We utilized HMAC with SHA-1 [Menezes et al.
1996] for the F function, which produces 20-byte outputs. We employed HMAC with
SHA-15 also as the message authentication scheme in PIRS for authenticating the
summaries to the clients.

An important discussion concerns the selection of the size of the prime p that defines
the Z, domain (i.e., the value for security parameter s). This can be as small as 10 bytes
for safeguarding against guessing attacks on the keys. However, in DDP this must be
at least 20 bytes. The reason is that DDP relies on the discrete logarithm problem. The
well-known Pollard rho algorithm takes O(,/p) steps to find a logarithm in Z, [Menezes
et al. 1996], suggesting the size of p should be twice as long as the one that protects
against simple guessing.

Furthermore, we computed the generator of the group used in DDP employing the
implementation techniques included in Menezes et al. [1996]. Specifically, the element
of order p that generates our group of concern G is selected from Z,, where q is a
64-byte prime of the form g = 2¢p + 1 [Menezes et al. 1996]. All computations in G
are modulo g. Table II includes the average cost (over 10,000 runs) of each primitive
operation entailed in the implemented protocols.

9.2. Basic Constructions

Evaluation of DVS vs. PIRS. We compared DVS with PIRS using the World Cup
Dataset.® The latter contains Web server logs from the 1998 Soccer World Cup. Each
log entry consists of a client id, the id of the requested URL, the size of the response,
etc. We used the first 2 million tuples from the log of day 50. From each tuple in this
set, we produced a tuple (j, v), where j is a client id and v is the size of the response.
We then focused on a group-by,sum query that returns a vector where the j** element
corresponds to a unique client j and the value of the j* element is the sum of response
sizes of all requests issued by client j.

Table ITI illustrates the various costs we evaluated during our experiment, assuming
a single stream generated by a single machine. We decomposed PIRS into algorithms
of the form Update, Sign, and Verify (Combine has no cost in the single-machine setting
in both schemes and thus is omitted). The average number of nonzero elements in

Shttp://gmplib.org/.

4http://’www.openssl.com/.

5Note that, although it is well known that SHA-1 is prone to collision attacks, these attacks do not have any
effect when SHA-1 is used in HMAC [Bellare 2006], that is, HMAC does not suffer the same weaknesses that
have been found in the underlying hash functions. The security of HMAC depends on the key size, which is
sufficient in our implementation (10 bytes) to withstand brute-force attacks.
Shttp://ita.ee.lbl.gov/html/contrib/WorldCup.html.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:38 S. Papadopoulos et al.

Table Ill. Comparison of DVS with PIRS (single machine)

Evaluated Cost DVS PIRS
CPU time for Update 5.3 us 2.3 us
CPU time for Sign 4.8 us 4.7 us
CPU time for Verify 48.9 ms 19.1 ms
Summary size 10 bytes 10 bytes
Proof size 10 bytes 30 bytes

Table IV. Comparison of DVS with PIRS (m = 100 machines)

Evaluated Cost DVS PIRS
CPU time for Combine 10.1 us -
CPU time for Verify 50.16 ms 19.69 ms
Proof size 10 bytes 3000 bytes

the result vector (that affects the CPU time in Verify) was around 12,000. PIRS and
DVS have comparable CPU overheads for Sign. However, PIRS outperforms DVS for
Update and Verify because, contrary to DVS, it does not involve HMAC invocations.
Recall, though, that this performance advantage of PIRS comes at the expense of a
weaker security model. Moreover, observe that the CPU times for DVS are on the order
of a few microseconds at the owner (5.3us for Update and 4.8us for Sign), and a few
milliseconds at the client (48.9ms for Verify). The summary and proof size is negligible
in DVS (10 bytes), while summary size in PIRS is the same, but its proof size is 20 bytes
longer due to the additional HMAC that authenticates the summary.

Table IV depicts the costs in the scenario where we repeat the previous experiment,
but now the tuples are generated by m = 100 machines. The Update and Sign costs are
unaffected by m and hence omitted. In PIRS, there is no Combine cost, since the server
simply forwards m summaries and HMACs to the client. This considerably increases
the total proof size to 3,000 bytes. On the other hand, in DVS, the server combines the
signatures of all the machines into a single one, always maintaining the communication
cost of 10 bytes. This comes with a very small overhead for the server due to Combine
(10.1us). The cost of Verify increases by the m extra hash computations in both DVS
and PIRS. However, note that the overall cost is rather dominated by the operations
imposed by the n vector elements and therefore the overhead is very similar to the case
of a single machine in both DVS and PIRS.

Evaluation of DMP. We consider the costs for matrix multiplication between twonxn
matrices. Here, we generate synthetic data by randomly filling entries—note that the
data itself does not affect the performance of the DMP construction, as the steps taken
are largely data independent. Table V shows the time costs of each of the operations
as n varies. The Update step is similar in all cases (~6us), as it does not depend on n.
The Sign operation scales linearly with n (proportionally to the square root of the input
size), exactly as predicted by our analysis. Even for large matrices with hundreds of
thousands of entries, this cost is on the order of a few milliseconds; extrapolating to
billion-entry matrices, the cost will remain below a second. Combine scales similarly,
proportional to the size of the summary. Only Verify is more expensive due to the cost
of reading the full n x n result, performing modular multiplications for each entry, and
invoking O(n) HMAC calls. Yet this too is way below a second even for our largest
example.

Evaluation of DDP. We give our results for DDP in Table VI. Here, we also gen-
erate synthetic vectors of differing sizes. Observe there is a nontrivial setup cost for
this protocol, which stems from determining a generator for G and computing the

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:39

Table V. Scalability of DMP with n (n, = np = n)

Evaluated Cost n=>5 n=>50 n =500
CPU time for Update 5.5 us 5.4 us 6.0 us
CPU time for Sign 58.4 us 567 us 5.7 ms
CPU time for Combine 3.0 us 24.3 us 263 us
CPU time for Verify 0.13 ms 2.13ms 783 ms

Table VI. Scalability of DDP with n

Evaluated Cost n =100 n=1000 n=10000
CPU time for KeyGen 2.8 sec 2.9 sec 3.9 sec
CPU time for Update 2.58 us 3.38 us 4.3 us
CPU time for Sign 14.5 us 13.95 us 14.6 us
CPU time for Combine 2.43ms 30.75ms 538 ms
CPU time for Verify 129 us 143 pus 160 us

exponentiated values in pub. However, most of the work is in finding a suitable genera-
tor, although this truly is a one-time operation. The cost varies little with the vector size
n. As before, Update does not depend on n, and in this case neither does Sign. Therefore,
the two overheads are relatively unaffected by n. Our cost for Combine grows linearly
with n, as predicted by our performance analysis, and remains below one second even in
our worst-case experiment (n = 10,000). The cost for Verify is quite low since it requires
only a constant amount of light work for checking the proof.

9.3. Optimized Constructions

We compare DVS* against DVS, and assess DMP* versus DMP, in order to show the
effectiveness of our nonce chaining technique. We experimented with synthetic data
since, as we mentioned before, our methods are not significantly affected by the data
distribution.

Evaluation of DVS* vs. DVS. Recall that the two methods differ only in algorithms
Sign and Verify. As such, in Figure 18 we plot only the running times of these two
processes while varying the number of machines m and setting the vector size n to 100.
Figure 18(a) demonstrates the running time of Sign (in ms) as a function of m. This cost
is independent of w, since Sign involves a constant number of nonce generations and
additions. The cost in DVS* is twice that of DVS, as it entails one extra nonce generation
and addition as compared to its counterpart for enforcing the nonce chaining technique.
Observe, though, that the overhead in DVS* (~6us) is lightweight and comparable to
that in DVS (~3us).

The main gain of DVS* versus DVS is in the verification cost that is realized through
the nonce chaining technique. Figure 18(b) illustrates the CPU time for Verify when
varying m. Although this cost in DVS increases linearly with m (since the client must
reconstruct the m nonces contributed by the machines in the final proof), the time
remains constant in DVS*. This is because nonce chaining eliminates the nonces incor-
porated by the machines, leaving exactly two nonces to be reconstructed by the client.
The verification time in DVS* always remains ~0.28ms, whereas in DVS it ranges from
0.29ms to 27ms, rendering our optimization faster by up to two orders of magnitude. As
an additional remark, observe that the benefit of nonce chaining is more pronounced
when the number of machines m becomes larger than the vector size n, since the client
must also evaluate the PRF function and perform modular multiplications/additions
for every element in the result vector.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:40 S. Papadopoulos et al.

0.01

DVS —— DVS —— |
DVS* 3 DVS* /=
0.008 10
0.006 —
1) (2]
€ IS
0.004 1
il THHT
0 0.1 T 7
10 100 1000 10000 10 100 1000 10000
m m
(a) CPU time for Sign (b) CPU time for Verify
Fig. 18. DVS* vs. DVS when varying m (n = 100).
6 DVS C——1 10 DVS ——
5 DVS* =3 | DVS* 3 -
8 .
4] | .
6
gs g

Z 1 3 E{DBJWW |

100 200 300 400 500 300 400 500
n n

(a) CPU time for Sign (b) CPU time for Verify

Fig. 19. DMP* vs. DMP when varying n (n, = np = 100).

For completeness, we also include a brief discussion on the common costs of the
two methods. The overhead of Update is independent of m and thus always remains
~3.5us. On the other hand, the time of Combine increases linearly with m, since the
server must sum all the signatures from all the machines. Nevertheless, this cost
ranges from 0.6us (m = 10) to 663us (m = 10,000), which is lightweight even for a
large number of machines. Finally, the time for KeyGen is negligible.

Evaluation of DMP* vs. DMP. Similar to DVS*/DVS, the two matrix product schemes
differ only in Sign and Verify. Figure 19 illustrates the costs of these algorithms when
authenticating the product between an n, x n matrix and an n x n; matrix. In particular,
Figure 19(a) assesses the cost (in ms) of Sign in DMP* and DMP when varying n and
setting n, = np = 100. This overhead increases linearly with n, since machine M,
(respectively, M) must produce one signature for every column (respectively, row). The
time ranges between 0.79ms and 4ms in DMP, and between 1.06ms and 5.4ms in DMP*,
Observe that the cost is slightly higher (by 20-35%) in DMP* than in DMP, due to the
extra nonce generations mandated by nonce chaining. However, the overhead of DMP*
is still lightweight.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:41

Table VII. Performance of W-DVS when Varying w (m = 100)

Evaluated Cost w =10 w=100 w=1000 w = 10000
CPU time for Update 3.57 us 3.54 us 3.60 us 3.44 us
CPU time for Sign 5.43 us 5.41 us 5.47 us 5.36 us
CPU time for Combine 7.05 us 6.98 us 7.23 us 7.05 us
CPU time for Verify 0.04 ms 0.28 ms 2.12 ms 2.75 ms

Figure 19(b) depicts the CPU time for Verify. This cost increases linearly with n in
DMP because the final proof integrates n signatures from every machine, each con-
tributing several nonces. On the other hand, DMP* eliminates the extra O(n) nonces
from the final proof. As such, the verification cost becomes independent of n and always
equal to ~2.9ms. The overhead in DMP ranges between 5.2ms and 8.6ms, that is, it
is up to about three times larger than that of DMP*. Once again, the gains of nonce
chaining are more clear when n is large compared to n,, ny, since then the savings from
reconstructing the O(n) nonces become more pronounced.

The rest of the algorithms are common in both DMP* and DMP, and remain unaffected
by n. Specifically, Update takes ~4us, Combine consumes ~0.15ms, whereas the time
for KeyGen is negligible. Evidently, all our algorithms are lightweight.

9.4. Sliding Window Queries

Our final set of experiments focuses on the evaluation of our sliding window tech-
niques, namely W-DVS, W-DMP, and W-DDP. Similar to the cases of DVS*/DVS and
DMP*/DMP, we used synthetic datasets. Note that, since we are the first to propose
schemes for sliding window query authentication in the trusted client model, we have
no competitors.

Evaluation of W-DVS. Table VI illustrates the costs involved in W-DVS when varying
the sliding window size w and fixing the number of machines m to 100. The CPU times
for Update and Sign are independent of w and hence remain constant and equal to
~3.5us and ~5.4us, respectively. Interestingly, even the cost for Combine is unaffected
by w. This is because we implemented the optimization described in Section 6.1, which
spends O(w) space in order to eliminate the O(w) factor from the processing cost at the
server. For w = 10,000, this translates to cost reductions by four orders of magnitude,
at the expense of about 100KB of main memory. Finally, the overhead of Verify increases
linearly with w, since the latter determines the size of the result vector given to the
client, which requires PRF evaluations and modular multiplications/additions for every
vector element. However, even for the worst case where w = 10,000, the verification
time is below 3ms. Moreover, although nonce chaining does not reduce the asymptotic
cost, it halves the actual cost since the technique eliminates the need for O(w) PRF
evaluations for reconstructing the nonces (now only a constant number of nonces are
present in the final proof). The cost of KeyGen is negligible and, thus, omitted.

Evaluation of W-DMP. We assess the performance of W-DMP assuming that, at every
timestamp, it authenticates a product between an n, x w matrix and w x n, matrix.
Table VIII displays the related costs when varying w and setting n, = n, = 100. The
overheads of Update and Sign (~3.6us and ~11.7us, respectively) are lightweight and
independent of w. Furthermore, the cost of Combine remains constant (and equal to
~0.52us) due to the help of a similar storage technique to that of W-DVS, which renders
the proof generation independent of w, consuming about 10KB. Of great interest is
the cost of Verify (equal to ~18us) that is also independent of w due to our chaining
technique. Finally, the cost of KeyGen is negligible and thus omitted.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:42 S. Papadopoulos et al.

Table VIII. Performance of W-DMP when Varying w (n, = np = 100)

Evaluated Cost w = 100 w = 200 w = 300 w = 400 w = 500
CPU time for Update 3.61 us 3.55 us 3.66 us 3.60 us 3.61 us
CPU time for Sign 11.65 us 11.456 us 11.86 us 11.63 us 11.69 us
CPU time for Combine 0.95 us 1.05 us 1.59 us 1.64 us 1.48 us
CPU time for Verify 3.20 ms 3.15 ms 3.27 ms 3.18 ms 3.22 ms

Table IX. Performance of W-DDP when Varying w

Evaluated Cost w =10 w = 100 w=1000 w = 10000
CPU time for Update 3.56 us 3.61 us 3.54 us 3.96 us
CPU time for Sign 11.61 us 11.61 us 11.44 us 12.28 us
CPU time for Combine 0.52 us 0.52 us 0.52 us 0.62 us
CPU time for Verify 18.39 us 18.32 us 18.28 us 22.01 us

Evaluation of W-DDP. Table IX shows the costs of the algorithms in W-DDP as a
function of vector size w. Similar to the cases of W-DVS and W-DMP, Sign and Verify in
W-DDP entail constant operations, leading to times ~3.6us and ~11.6us, respectively,
regardless of the value of w. In addition, Combine exploits a similar data structure
to that used in W-DVS and W-DMP (of size about 10KB), rendering the CPU time
unaffected by w. It is noteworthy that, different from our basic DDP construction, W-
DDP does not mandate the server to use any public information in order to remove
“unnecessary” components from the final proof. This has three effects: (i) KeyGen is
now the same as in W-DVS and W-DMP, which inflicts negligible cost; (ii) the signature
and proof sizes are smaller (equal to 10 bytes instead of 64 bytes); and (iii) the cost
of Combine is now lightweight (equal to ~0.5us). Finally, the overhead of Verify is
unaffected by w and equal to ~20us.

9.5. Summary

Our experimental study confirms our claims that the constructions presented are
lightweight and practical. The overheads of all basic protocols have very low stream-
ing cost: the central Update operation is always measured in single-digit microsecond
costs, corresponding to very high stream rates. The cost for Sign operations is compa-
rable, except in the case of DMP that scales proportionally to the square root of the
input size. The computation in Verify scales linearly with the size of the input. The
server’s overhead (Combine) is also small, and remains smaller than a second even in
the computationally intensive case of DDP. Moreover, our DVS scheme is superior to
PIRS in terms of client communication cost in the case of multiple machines, whereas
DMP and DDP are the first secure, efficient, and scalable protocols for dynamic matrix
multiplication and dynamic dot product, respectively.

In addition, we demonstrated the efficiency and practicality of our extensions. Specif-
ically, we showed that DVS* and DMP* can lead to up to several orders of magnitude
lower verification times than DVS and DMP, respectively. This comes with a small extra
processing overhead in the Sign algorithm. Finally, our sliding window authentication
schemes, namely W-DVS, W-DMP, and W-DDP, exhibit lightweight overheads and scale
well with the sliding window size, taking advantage of our nonce chaining technique
and data structure optimizations at the server.

10. CONCLUSIONS AND FUTURE WORK

In this article we addressed the problem of result authentication in stream outsourc-
ing settings. While prior work has focused on simple group-by, sum queries in such

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:43

scenarios, our protocols allow the authentication of several linear algebraic operators,
such as sums or dot products over dynamic vectors and dynamic matrix multiplication,
that are used in numerous applications over distributed data. Our experiments demon-
strated that our protocols are extremely lightweight, especially for the owner in terms
of running time, storage requirements, and bandwidth consumption. Moreover, our
schemes offer strong cryptographic guarantees for their security. In our future work,
we plan to extend our lightweight techniques to the challenging setting where clients
may collude with the server to attack other clients. In this case, the owner only grants
a public key to the clients, hiding his secret key.

ELECTRONIC APPENDIX
The electronic appendix to this article can be accessed in the ACM Digital Library.

REFERENCES

Daniel J. Abadi, Donald Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Michael
Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. 2003. Aurora: A new model and architecture for
data stream management. VLDB J. 12, 2, 120-139.

Shweta Agrawal and Dan Boneh. 2009. Homomorphic MACs: MAC-based integrity for network coding.
In Proceedings of the 7" International Conference on Applied Cryptography and Network Security
(ACNS’09). 292-305.

Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru Nishizawa, Justin Rosenstein,
and Jennfier Widom. 2003. STREAM: The stanford stream data manager (demonstration description).
In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’03).
665.

Mihir Bellare. 2006. New proofs for NMAC and HMAC: Security without collision-resistance. In Proceedings
of the 26" Annual International Conference on Advances in Cryptology (CRYPTO’06). 602—619.

Dan Boneh and David Mandell Freeman. 2011. Homomorphic signatures for polynomial functions. In Pro-
ceedings of the 30" Annual International Conference on Theory and Applications of Cryptographic
Techniques: Advances in Cryptology (EUROCRYPT’11). 149-168.

Paul G. Brown. 2010. Overview of SciDB: Large scale array storage, processing and analysis. In Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIGMOD’10). 963-968.

Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. 2009. An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In Proceedings of the 12" International Conference
on Practice and Theory in Public Key Cryptography (PKC’09). 481-500.

Amit Chakrabarti, Graham Cormode, and Andrew McGregor. 2009. Annotations in data streams. In Pro-
ceedings of the 36 International Colloquium on Automata, Languages and Programming (ICALP’09).
222-234.

Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. 2011. Memory delegation. In Proceedings
of the 318 Annual Conference on Advances in Cryptology (CRYPTO’11). 151-168.

Graham Cormode, Michael Mitzenmacher, and Justin Thaler. 2012. Practical verified computation with
streaming interactive proofs. In Proceedings of the 3" Innovations in Theoretical Computer Science
Conference (ITCS’12). 90-112.

Graham Cormode, Justin Thaler, and Ke Yi. 2011. Verifying computations with streaming interactive proofs.
Proc. VLDB Endow. 5, 1, 25-36.

Chuck Cranor, Theodore Johnson, Oliver Spatscheck, and Vladislav Shkapenyuk. 2003. Gigascope: A stream
database for network applications. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’03). 647—651.

Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. 2003. Approximate join processing over data
streams. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’03). 40-51.

Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun Sharma, and Walker M.
White. 2007. Cayuga: A general purpose event monitoring system. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR’07). 412—-422.

Premkumar Devanbu, Michael Gertz, Charles Martel, and Stuart G. Stubblebine. 2003. Authentic data
publication over the internet. J. Comput. Secur. 11, 3, 291-314.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

30:44 S. Papadopoulos et al.

Minos N. Garofalakis, Joseph M. Hellerstein, and Petros Maniatis. 2007. Proof sketches: Verifiable in-network
aggregation. In Proceedings of the IEEE International Conference on Data Engineering (ICDE’07). 996—
1005.

Rosario Gennaro, Craig Gentry, and Bryan Parno. 2010. Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers. In Proceedings of the 30" Annual Conference on Advances in
Cryptology (CRYPTO’10). 465-482.

Oded Goldreich. 2001. The Foundations of Cryptography - Volume 1 (Basic Techniques). Cambridge Univer-
sity Press.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. Delegating computation: Interactive
proofs for muggles. In Proceedings of the 40" Annual ACM Symposium on Theory of Computing
(STOC08). 113-122.

Jonathan Katz and Yehuda Lindell. 2007. Introduction to Modern Cryptography. Chapman and Hall/CRC
Press.

Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. 2006. Dynamic authenticated index
structures for outsourced databases. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’06). 121-132.

Feifei Li, Ke Yi, Marios Hadjieleftheriou, and George Kollios. 2007. Proof-infused streams: Enabling authen-
tication of sliding window queries on streams. In Proceedings of the 33'® International Conference on
Very Large Data Bases (VLDB’07). 147-158.

Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. 2002. TAG: A tiny aggregation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36, SI, 131-146.

Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. 1996. Handbook of Applied Cryptography.
CRC Press, Boca Raton, FL.

Microsoft. 2010. StreamInsight. http:/msdn.microsoft.com/en-us/library/ee362541.aspx.

Maithili Narasimha and Gene Tsudik. 2006. Authentication of outsourced databases using signature ag-
gregation and chaining. In Proceedings of the 11!" International Conference on Database Systems for
Advanced Applications (DASFAA06). 420-436.

Howard Nasgaard, Bugra Gedik, Mary Komor, and Mark P. Mendell. 2009. IBM infosphere streams: Event
processing for a smarter planet. In Proceedings of the Conference of the Center for Advanced Studies on
Collaborative Research (CASCON’09). 311-313.

Suman Nath and Ramarathnam Venkatesan. 2013. Publicly verifiable grouped aggregation queries on
outsourced data streams. In Proceedings of the IEEE International Conference on Data Engineering
(ICDE’13). 517-528.

Suman Nath, Haifeng Yu, and Haowen Chan. 2009. Secure outsourced aggregation via one-way chains.
In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’09).
31-44.

HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. 2005. Verifying completeness of
relational query results in data publishing. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD’05). 407-418.

HweeHwa Pang and Kian-Lee Tan. 2004. Authenticating query results in edge computing. In Proceedings of
the 20" International Conference on Data Engineering (ICDE’04). 560-571.

Stavros Papadopoulos, Graham Cormode, Antonios Deligiannakis, and Minos Garofalakis. 2013. Lightweight
authentication of linear algebraic queries on data streams. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD’13). 881-892.

Stavros Papadopoulos, Aggelos Kiayias, and Dimitris Papadias. 2011. Secure and efficient in-network pro-
cessing of exact sum queries. In Proceedings of the IEEE International Conference on Data Engineering
(ICDE’11). 517-528.

Stavros Papadopoulos, Yin Yang, and Dimitris Papadias. 2007. CADS: Continuous authentication on data
streams. In Proceedings of the 33" International Conference on Very Large Data Bases (VLDB07).
135-146.

Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. 2011. Optimal verification of
operations on dynamic sets. In Proceedings of the 31° Annual Conference on Advances in Cryptology
(CRYPTO’11). 91-110.

Victor Shoup. 1997. Lower bounds for discrete logarithms and related problems. In Proceedings of
the 16" Annual International Conference on Theory and Application of Cryptographic Techniques
(EUROCRYPT97). 256-266.

Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. 2003. Maximizing the output rate of multi-way join
queries over streaming information sources. In Proceedings of the 29" International Conference on Very
Large Data Bases (VLDB’03). Vol. 29. 285-296.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

Lightweight Query Authentication on Streams 30:45

Yin Yang, Dimitris Papadias, Stavros Papadopoulos, and Panos Kalnis. 2009. Authenticated join processing
in outsourced databases. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD’09). 5-18.

Ke Yi, Feifei Li, Graham Cormode, Marios Hadjieleftheriou, George Kollios, and Divesh Srivastava. 2009.
Small synopses for group-by query verification on outsourced data streams. ACM Trans. Database Syst.
34, 3, 15:1-15:42.

Received October 2013; revised May 2014; accepted July 2014

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 30, Publication date: December 2014.

