
6.883 Learning with Combinatorial Structure
Note for Lecture 22

Author: Sung Min (Sam) Park

Last time we introduced Determinantal Point Processes (DPP) as a probabilistic model of
diversity. Recall that a point process is a probability distribution over subsets of a ground
set. A DPP is a point process parameterized by a similarity matrixK orL.

We also saw that many inference problems on DPPs can be solved in polynomial time us-
ing basic routines in linear algebra (eigendecomposition, determinant, etc.)

In this lecture, we see a specific application of DPPs, some extensions to make it more
efficient, and other connections.

1 Application: pose estimation

We describe an application of DPPs to solve the problem of pose estimation. We are
given an image X , and our goal is to select or tag some subset of all possible locations
Y(X) that we think contain persons, also possibly along with their pose (relative position
and orientation of arms, legs).

The reason why we might want to use DPPs to model something like this is because we
know intuitively that people are spatially spread out from each other; the presence of
a person in one part of an image is negatively correlated with the presence of another
person in the same part.

1.1 Model

We outline one approach to learning a DPP for pose estimation. We decompose the model
as follows: each pose labeling is given both a quality and a diversity score. Then, the
similarity score between two poses is given by:

Lij = x>i xi = qiφ
>
i φjqj

This defines the feature matrix Φij = φ>i φj . Probability of sampling a set of poses S under
the L-ensemble DPP is proportional to

det(LS) =

(∏
i∈S

q2i

)
det(ΦS)

1

Going back to our geometric visualization of DPPs last time, quality score scales the
length of the feature vector, and diversity score captures the orthogonality between two
feature vectors. Higher scores increase the volume of the parallelepiped, thus increasing
the probability that this pose labeling is chosen.

For the diversity feature φ, one can use something simple like location. For quality q, one
can incorporate the likelihood score of an object detector (say for a body part). For the ith
patch of the image, we may write qi(X) = exp(θT fi(X)) where θ are the weights of the
detector and fi(X) are the features describing the ith patch.

This gives the parameterized likelihood:

pθ(Y |X) =
det(LY (X; θ))

det(L(X; θ) + I)

1.2 Learning

We observe some images and detections in them as {(Xt, Y t)}Nt=1. We can just find the
MLE using the log-likelihood, log

∏N
t=1 pθ(Y

t|Xt). Fortunately, this is concave in θ so we
can run gradient ascent (see [1] for more details).

An example of applying DPPs to pose estimation is shown in Figure 1. We can see from
the top right figure that though the initial feature detections are highly overlapping and
concentrated in the center, we can recover the approximate pose of each person by induc-
ing negative correlation using a DPP.

Figure 1: Pose estimation from an image [2]

There are other approaches to learning the DPPs from observations besides this quality–
diversity decomposition, such as learning a weighted combination of kernel matrices or,
going further, an entire PSD similarity matrix.

2

2 Extensions

While doing inference with DPPs only use basic linear algebra (eigendecomposition, de-
terminant, etc.), this is not super cheap once the ground set (and the corresponding ma-
trix) becomes very large. In our example above, each “item” is a configuration of parts, so
the ground set could be exponentially large in the number of parts.

We show one technique for reducing the dimensionality of our DPP matrix below.

2.1 Dual representation

Before we were looking at L = BTB where B is the n × d matrix with one item per row
(d is the number of features).

The idea of dual representation is to instead look at the matrix C = BBT , which is d × d
so will be smaller when d < n. At the end of the day, all we need is to compute the
eigenvectors and eigenvalues of L; can we learn these from C?

Yes! The eigenvectors of C and L are related by the SVD of B (they correspond to left and
right singular vectors).

Lemma 1. If C =
d∑
i=1

λiv̂iv̂
T
i , then L =

n∑
i=1

λiviv
T
i where vi = 1√

λi
BT v̂i.

Proof. The above decomposition follows from the fact that if v is an eigenvector of C =
BBT with eigenvalue λ, then BTB(BT v) = BT (BBT)v = BT (λv) = λBT v, i.e. BT v is
eigenvector of L = BTB with the same eigenvalue.

From above, we can also easily compute K =
n∑
i=1

λi
λi+1viv

T
i .1

2.1.1 Dual sampling

It remains to address how to sample from this new dual representation. We follow the
same two step procedure from last time, where we first sample an elementary DPP P T ,
then sample items using the chosen P T .

Step 1 is same as before, where we sample a component P T by sampling a subset T of
eigenvectors: eigenvector i is sampled with probability λi

λi+1 . We can do this without

1Note that if n > d, λi = 0 for i > d.

3

directly working with vi’s since we just need to know the λi’s, which we know from the
eigendecomposition of C.

In Step 2, we sample item i with probability P (i) = 1
|T |
∑
j∈T

(vTj 1i)
2) as before. Again, the

geometric intuition is that we are sampling proportional to the “height” of the ith feature
vector.

But now we can rewrite

P (i) =
1

|T |
∑
j∈T

(v̂j
T bi)

2

where bi is the ith column of B. Notice P (i) can be computed using only the eigendecom-
position of C.

Finally, we do two post-processing steps as before: i) project out the chosen element i
from V̂ (this is the space spanned by v̂j , j ∈ T); ii) orthonormalize V̂ w.r.t the dot product
〈v̂1, v̂2〉 = v̂T1 Cv̂

T
2 . Redefine T to range over the new eigenbasis of V̂ , and iterate to sample

other items.

The time complexity of this sampling procedure is O(ndk2 + d2k3). For more details, see
Algorithm 3 in [1].

2.1.2 Other techniques to reduce dimension

If d is large, we can also use random projection methods based on classical ideas such
as Johnson-Lindenstrauss projections to sketch the feature space and reduce the dimen-
sion.

A special case when our output is structured is called structured-DPPs. In that case,
the ground set may be doubly exponentially large. Fortunately, one can combine the
above dual representation idea with a factorization over the parts (e.g. graphical mod-
els) and apply message-passing algorithms to do efficient inference. See [1] for more
details.

2.2 Exact cardinality constraint

Depending on the application, we may want to sample exactly k items for some k. We
call this a k-DPP. For example, if we are running a search engine, we may want to return
a set of diverse responses of fixed size to the user.

We see how to compute the probability of sampling y conditioned on the event that we
sample a set of size k:

4

PL(Y |set of size k) =
det(LY)∑

|Y ′|=k
Y ′⊆V

det(LY ′)
1[|Y | = k]

We can simplify the normalizing constant as follows:∑
|Y ′|=k
Y ′⊆V

det(LY ′) =
∑
|Y ′|=k
Y ′⊆V

det(L+ I)PL(Y ′)

=
∑
|Y ′|=k
Y ′⊆V

∑
T⊆{1,··· ,n}

P T (Y ′)
∏
i∈T

λi using the elementary DPP decomposition

=
∑
|T |=k

∑
|Y ′|=k
Y ′⊆V

P T (Y ′)
∏
i∈T

λi noticing P T (Y ′) = 0 unless |T | = k

=
∑
|T |=k

∏
i∈T

λi since P T always returns a set of size k

= ek(λ1, ..., λn)

where the last expression is the kth elementary symmetric polynomial, and can be com-
puted efficiently using recursion or dynamic programming.

2.2.1 Sampling from a k-DPP

Now we modify Step 1 of the original sampling procedure since the weights of the ele-
mentary DPPs are now different:

P kL =
∑
|T |=k

1

enk

∏
i∈T

λiP
T

Computing the constant here naively would be exponential, but one can again take ad-
vantage of the elementary symmetric polynomials to get an efficient sampling procedure
that iterates over all n eigenvectors independently; see Algorithm 8 and Theorem 5.2 in
[1] if you are curious for more details.

Step 2 is same as before once we have sampled the subset of eigenvectors (and note that
we sample exactly k items since our subset is of size k)

5

2.3 Concentration

Lastly, we note that DPPs have good concentration properties. Intuitively, this is because
in order for a significant deviation to occur, a large fraction of the sample have to deviate
in roughly the same direction; however, this is precisely what is penalized by DPPs, so
deviations are unlikely in DPPs.

3 Connections to Spanning trees

We briefly introduce a connection of DPPs to uniformly sampling spanning trees2 from an
undirected graphG(V,E) where we denote |E| = m, |V | = n. In fact, uniformly sampling
a spanning tree is in fact a DPP for some choice of matrixM . We will see shortly what this
matrix M is, but to get a little intuition, we see that M has to depend on the connectivity
of the graph. For instance, consider two complete graphs connected by an edge. We know
that the edge connecting the two components has to be present in every tree; removing
this edge would disconnect the graph. Clearly, there is some measure of connectivity or
importance of an edge at work here.

Define a feature vector for edge e = (u, v) as

be(i) =


1 if i = u
−1 if i = v
0 if otherwise

Then, let B be the m× n matrix with be(i) as rows of the matrix.

The Laplacian of the graph is the n × n matrix L = BTB. It can also be written as D − A
whereD is the degree matrix andA is the adjacency matrix. The following theorem shows
that L captures some information about the spanning trees of G.

Theorem 1 (Matrix-Tree Theorem). 1
n det(L+ 1

n11
T) = # of spanning trees of G = |T |

(Note that L by itself is not full rank since ~1 is in its kernel).

However, L is not quite directly useful for sampling. For that, we define the transfer-
current matrix as follows. Define ye = (L

†
2)be where L

†
2 = (L†)

1
2 . Then, define a new ma-

trix B̃ = BL
†
2 , and then M = B̃B̃T = BL†B. Note Me,f = 〈ye, yf 〉.

2This can be generalized to some other matroids (regular matroids), where we are sampling a random basis
from a matroid

6

3.1 Properties

We note a few properties of the DPP generated byM . First, note that edges are negatively
correlated, as they should. It remains to show that we in fact get a uniform distribution
over all spanning trees by sampling from this DPP.

The following lemma shows thatM is an elementary DPP by itself.

Lemma 2 (Spielman-Srivastava [3]). M is a projection matrix, i.e. has eigenvalues 1 and 0
with multiplicity n− 1 and m− (n− 1), respectively.

In fact, if T is the subset of edges sampled from our DPP, E[|T |] = n− 1. In fact, T has to
be a spanning tree since if T were a cycle, the corresponding vectors would be linearly de-
pendent, and hence have zero volume and will be never sampled.

For any tree F ⊆ E,

P (F) = det(B̃F B̃
T
F) = det(L+

1

n
11

T)−1 · det(BFB
T
F) =

1

n|T |
· n =

1

|T |

so we do get a uniform distribution.3

The probability of sampling a particular edge e is

P (e ∈ T) = det(Me) = bTe L
†be

which is also known as the effective resistance of edge e.

We give two interpretations of this quantity:

• Electrical resistance: If we view the graph as an electrical network where the edges
are resistors, then effective resistance of edge e = (u, v) is the potential difference
across edge e if we send 1 unit of electrical flow from u to v.

• Random walks: The commute time C(u, v) is the expected number of steps for a
random walk starting at u to reach v at least once and then return to u. It was
shown in [4] that C(u, v) = Reff(u, v) · 2m.

We also remark that there is a remarkably simple algorithm based on random walks
that allows uniformly sampling a spanning tree.

In a rough sense, the effective resistance of an edge measures how “important” the edge
is. Unsurprisingly, this quantity also shows up in problems like graph sparsification,
where one wants to preserve connectivity properties of a graph by sampling edges.

3Note that the second to last equality is non-trivial and requires some work.

7

References

[1] A. Kulesza and B. Taskar, Determinantal point processes for machine learning, vol. 5.
Foundations and Trends in Machine Learning, 2012.

[2] A. Kulesza and B. Taskar, “Structured determinantal point processes,” in Advances in
Neural Information Processing Systems (NIPS), 2010.

[3] D. A. Spielman and N. Srivastava, “Graph sparsification by effective resistances,”
SIAM Journal on Computing, vol. 40, no. 6, pp. 1913–1926, 2011.

[4] A. Chandra, P. Raghavan, W. Ruzzo, R. Smolensky, and P. Tiwari, “The electrical re-
sistance of a graph captures its commute and cover times,” in Symposium on Theory of
Computing (STOC), 1989.

8

