
Submodularity and	
Machine	Learning

MLSS Tübingen, June 2017

Stefanie Jegelka
MIT

slides: people.csail.mit.edu/stefje/mlss/tuebingen2017.pdf
papers etc: people.csail.mit.edu/stefje/mlss/literature.pdf

Set	functions

cost of buying items
together, or

utility, or

probability, …

V =

() =F

F : 2V ! R

ground set

Machine	Learning

training examples

f(x,w) f(, ŵ) = train

learn model prediction

likely
awakening
effect

f(, ŵ) =

Machine	Learning

training examples

f(x,w) f(, ŵ) = train

learn model prediction

Informative	Subsets

• Compression
• Summarization

• Placing	sensors
• Designing	experiments

F (S) = “information”

Machine	Learning

training examples

f(x,w) f(, ŵ) = train

learn model prediction

Variable	(Coordinate)	Selection

f(x,w)Only use few coordinates of x in

f(x,w) =
dX

i=1

wixi

F (S) = “coherence”

Machine	Learning

training examples

f(x,w) f(, ŵ) = train

learn model prediction

Summarization	&	Recommendation

F (S) = relevance + diversity or coverage

Machine	Learning

training examples

f(x,w) f(, ŵ) = train

learn model prediction

Machine	Learning	and	Set	functions

• difficult:		2100 possible	subsets	for	just	100	items	L
• This	is	large!
fold	a	sheet	of	paper	100x.	Height	of	the	final	pile:
2100x	0.1mm	= 13.4	billion	light	years!

Common formalization: Find a set S that
maximizes / minimizes a set function F(S)

Machine	Learning	and	Set	functions

• difficult:		2100 possible	subsets	for	just	100	items	L

• Special	properties	help!		(“10cm”) J
Submodularity

Common formalization: Find a set S that
maximizes / minimizes a set function F(S)

Roadmap

•What	is	submodularity and	where	does	it	come	up?

• Optimization	with	submodular	functions

• Further	connections	&	directions

Sensing

14

=	all	possible	locations
F(S)	=	information	gained	from	locations	in	S
V

• Given set function

• Marginal gain:

F : 2V ! R

new sensor s

F (s|A) = F (A [{s})� F (A)

Marginal	gain

15

1 2

s

Diminishing	gains

B

1

placement	A	=	{1,2}

A

2

small	gain

F (A [s)� F (A) � F (B [s)� F (B)

placement	B	=	{1,2,3,4}

1 2

3 4
s s

A ✓ Bfor	all
and	s	not	in	B

Big	gain

Diminishing	marginal	costs

extra	cost:	
one	drink

|{z}

extra	cost:	
free	refill	J

.| {z }

F (A [s)� F (A) � F (B [s)� F (B)

BA

A ✓ B

Submodular set	functions

• Diminishing	gains:		for	all

• Union-Intersection:		for	all	

A B+ e + e

A ✓ B

F (A [e)� F (A) � F (B [e)� F (B)

S, T ✓ V

F (S) + F (T) � F (S [T) + F (S \ T)

Example:	cover

F (S) =

�����
[

v2S

area(v)

�����

F (A [v)� F (A) F (B [v)� F (B)�

Example:	sensing

• =	random	variables	we	can	possibly	observe
• Utility	to	have	sensors	in	locations	A:

X1

F (A) = H(Y) � H(Y | XA)

uncertainty about
temperature
before sensing

uncertainty about
temperature
after sensing

= I(Y;XA)

Mutual
information

Example:	entropy

F (S) = H(XS) = joint entropy of variables indexed by S

discrete	random	variablesX1, . . . , Xn

H(XA[e)�H(XA) = H(Xe|XA)

 H(Xe|XB)

= H(XB[e)�H(XB)

“information	never	hurts”

A ⇢ B

discrete	entropy	is	submodular!

Exercise:	meaning	of	diminishing	returns	here?

Example:	entropy

F (S) = H(XS) = joint entropy of variables indexed by S

discrete	random	variablesX1, . . . , Xn

H(XA[e)�H(XA) = H(Xe|XA)

 H(Xe|XB)

= H(XB[e)�H(XB)

“information	never	hurts”

A ⇢ B

discrete	entropy	is	submodular!

Recommendation	&	Summarization

If you bought this,
you may want
to add …

??

We want:
relevance & coverage
diversity
personalization

What	could	F(S)	be?

sa,b
P1

P3

P2

S

a
b

F (S) =
X

a2V
max

b2S
sa,b F (S) =

X

j

q
|S \ Pj |

Example:	graph	cuts

cut	for	one	edge: vu

F ({u, v}) + F (;)

vuvu vu vu

�

0 0

• cut	of	one	edge	is	submodular!
• large	graph:		sum	of	edges

sum	of	submodular	functions	is	submodular

F (S) =
X

u2S,v/2S

wuv
F ({u}) + F ({v})

wuv
wuv

Examples	of	submodular	functions

• Discrete	entropy
•Mutual	information

•Matrix	rank	(as	a	function	of	columns)

• Coverage
• Spread	in	social	networks

• Graph	cuts
• … many	others!

Submodular Functions, Matroids, and Certain
Polyhedra⋆

Jack Edmonds

National Bureau of Standards, Washington, D.C., U.S.A.

I

The viewpoint of the subject of matroids, and related areas of lattice theory,
has always been, in one way or another, abstraction of algebraic dependence or,
equivalently, abstraction of the incidence relations in geometric representations
of algebra. Often one of the main derived facts is that all bases have the same
cardinality. (See Van der Waerden, Section 33.)

From the viewpoint of mathematical programming, the equal cardinality
of all bases has special meaning — namely, that every basis is an optimum-
cardinality basis. We are thus prompted to study this simple property in the
context of linear programming.

It turns out to be useful to regard “pure matroid theory”, which is only
incidentally related to the aspects of algebra which it abstracts, as the study of
certain classes of convex polyhedra.

(1) A matroid M = (E, F) can be defined as a finite set E and a nonempty
family F of so-called independent subsets of E such that

(a) Every subset of an independent set is independent, and
(b) For every A ⊆ E, every maximal independent subset of A, i.e., every basis

of A, has the same cardinality, called the rank, r(A), of A (with respect
to M).

(This definition is not standard. It is prompted by the present interest).

(2) Let RE denote the space of real-valued vectors x = [xj], j ∈ E.
Let R+

E = {x : 0 ≤ x ∈ RE}.

(3) A polymatroid P in the space RE is a compact non-empty subset of R+
E

such that

(a) 0 ≤ x0 ≤ x1 ∈ P =⇒ x0 ∈ P .
(b) For every a ∈ R+

E , every maximal x ∈ P such that x ≤ a, i.e., every basis
x of a, has the same sum

∑
j∈E xj , called the rank, r(a), of a (with respect

to P).
⋆ Synopsis for the Instructional Series of Lectures, “Polyhedral Combinatorics”.

M. Jünger et al. (Eds.): Combinatorial Optimization (Edmonds Festschrift), LNCS 2570, pp. 11–26, 2003.
c⃝ Springer-Verlag Berlin Heidelberg 2003

Submodular functions and convexity

L. Lovasz
Eotvos Lonind University, Department of Analysis I, Muzeum krt. 6-8, H-I088
Budapest, Hungary

O. Introduction

In "continuous" optimization convex functions playa central role. Besides ele-
mentary tools like differentiation, various methods for finding the minimum of
a convex function constitute the main body of nonlinear optimization. But
even linear programming may be viewed as the optimization of very special (li-
near) objective functions over very special convex domains (polyhedra). There
are several reasons for this popularity of convex functions:

- Convex functions occur in many mathematical models in economy, engi-
neering, and other sciencies. Convexity is a very natural property of various
functions and domains occuring in such models; quite often the only non-triv-
ial property which can be stated in general.

- Convexity is preserved under many natural operations and transforma-
tions, and thereby the effective range of results can be extended, elegant proof
techniques can be developed as well as unforeseen applications of certain re-
sults can be given.

- Convex functions and domains exhibit sufficient structure so that a
mathematically beautiful and practically useful theory can be developed.

- There are theoretically and practically (reasonably) efficient methods to
find the minimum of a convex function.

It is less apperant, but we claim and hope to prove to a certain extent, that a
similar role is played in discrete optimization by submodular set-functions.
These functions do not enjoy the nice geometric image of convex functions,
and accordingly their significance has been discovered only gradually. The first
class of submodular functions which was studied thoroughly was the class of
matroid rank functions. Generalizing certain basic properties of matroid poly-
hedra, Edmonds (1970) began the systematical study of submodularity. Let us
remark, however, that approaching from quite a different angle, Choquet
(1955) also introduced these set-functions. He proved that the newtonian "ca-
pacity" of a subset of IR3 defines a submodular set-function. Quite a few proof
techniques in graph theory, but also in probability, geometry and lattice theory
have made implicit use of submodularity of certain set-functions, thus forecast-
ing the importance of this property.

In this paper we survey some of the most important aspects of submodular-
ity. In particular, we shall see that submodularity shares the above-listed four
A. Bachem et al. (eds.), Mathematical Programming The State of the Art
© Springer-Verlag Berlin Heidelberg 1983

C o r e s o f C o n v e x G a m e s 1)

By LLOYD S. SHAPLEy2)

Abstract: The core of an n-person game is the set of feasible outcomes that cannot be improved upon
by any coalition of players. A convex game is defined as one that is based on a convex set function.
In this paper it is shown that the core of a convex game is not empty and that it has an especially
regular structure. It is further shown that certain other cooperative solution concepts are related in a
simple way to the core: The value of a convex game is the center of gravity of the extreme points of the
core, and the yon Neumann-Morgens te rn stable set solution of a convex game is unique and coincides
with the core.

1. Introduction

The core of an n-person game is the set of feasible outcomes that cannot be
improved upon by any coalition of players 3). A convex game is one that is based
on a convex set function (see below); intuitively this means that the incentives for
joining a coalition increase as the coalition grows, so that one might expect a
"snowballing" or "band-wagon" effect when the game is played cooperatively.

In this paper we show that the core of a convex game is not empty - in fact,
it is quite large - and that it has an especially regular structure. We further show
that certain other cooperative solution concepts are related in a simple way to
the core. Specifically (1) the value of a convex game is the center of gravity of the
extreme points of the core, and (2) the VON NEUMANN-MORGENSTERN stable
set solution of a convex game is unique and coincides with the core. In a subse-
quent paper [MAsCIaLER, PELEC, and SnAPLEY] rather similar results will be
presented for two other cooperative solutions: the kernel and the bargaining set.

1) Presented at the Fifth Informal Conference on Game Theory, held at Princeton University in
April 1965. This paper is based on a Rand Corporation research m e m o r a n d u m [SnAPLEY, 1965],
written under the sponsorship of Air Force Project Rand. The author wishes to acknowledge the
stimulus of a query from Jack Edmonds concerning the properties of convex set functions.

2) The Rand Corporation, Santa Monica, California.
3) The core is sometimes incorrectly described as the set of outcomes "that cannot be blocked by

any coalition". This unfortunately misleading description has arisen as a result of the counterintuitive
use of the word "block" in the technical terminology of several early papers. (The present author
must bear part of the blame!) In fact, the core is concerned with what coalitions can do, not what
they can prevent. The distinction is especially striking in economic game models, where the bar-
gaining power that certain groups may acquire through their ability to obstruct trade or production
is completely ignored in the essentially constructive conditions that define the core.

Submodular	functions	(almost)	everywhere!

submodular
functions

electrical	
networks
(Narayanan	

1997)

graph	
theory

(Frank	1993)

game	
theory

(Shapley	1970)

matroid
theory

(Whitney,	1935)
stochastic	
processes
(Macchi 1975,	
Borodin	2003)

information
theory

(Fujishige 1978)

machine	
learning

L.	Lovász

Submodular	functions	(almost)	everywhere!

Why	are	convex	functions	so	important?	(Lovász,	1983)

• “occur	in	many	models in	economy,	engineering	and	other	
sciences”,	“often	the	only	nontrivial	property	that	can	be	stated	
in	general”
• preserved under	many	operations	and	transformations:	larger	
effective	range	of	results
• sufficient	structure	for	a	“mathematically	beautiful	and	
practically	useful	theory”
• efficient	minimization

“It	is	less	apparent,	but	we	claim	and	hope	to	prove	to	a	certain	
extent,	that	a	similar	role	is	played	in	discrete	optimization	by	
submodular	set-functions“	[…]	
they	share	the	above	four	properties.

Submodularity …

30

discrete	convexity	….

…	or	concavity?

convex	relaxation,
duality

diminishing	“derivative”

Roadmap

üWhat	is	submodularity and	where	does	it	comes	up?

• Optimization	with	submodular	functions

• Further	connections	&	directions

Monotonicity

if S ✓ T then F (S)  F (T)

3 5 1

Maximizing	a	submodular	function?

max

S
F (S) s.t. |S|  k

NP-hard	L

Maximizing	a	submodular	function?

max

S
F (S) s.t. |S|  k

greedy algorithm:

for i = 0, …, k-1

S0 = ;

e⇤ = arg max

e2V\Si

F (Si [{e})

Si+1 = Si [{e⇤}

How “good” is ?Sk

Algorithm 1 Algorithm for pruning poor human-generated summaries.
Require: Confidence level p, human summaries S , number of random summaries N

Sample N uniformly at random size-10 image sets, to be used as summaries R = (R1, . . . , RN)

Instantiate V-ROUGE-score rS(·) instantiated with summaries S
o 1

|R|
P

R2R 1{rS(R)>minS2S rS(S)} // fraction of random summaries better than worst human
while o > p do
S S \ (argminS2S rS(S))
Re-instantiate V-ROUGE score rS(·) using updated pruned human summaries S .
Recompute overlap o as above, but with updated V-ROUGE score.

end while
return Pruned human summaries S

Figure 1: Three example 10⇥10 image collections from our new data set.

Section 4 using features described in Section 5. For weight optimization, we used AdaGrad [6], an
adaptive subgradient method allowing for informative gradient-based learning. We do 20 passes
through the samples in the collection.

We considered two types of experiments: 1) cheating experiments to verify that our proposed mixture
components can effectively learn good scoring functions; and 2) a 14-fold cross-validation experiment
to test our approach in real- world scenarios. In the cheating experiments, training and testing is
performed on the same image collection, and this is repeated 14 times. By contrast, for our 14-fold
cross-validation experiments, training is performed on 13 out of 14 image collections and testing is
performed on the held out summary, again repeating this 14 times. In both experiment types, since
our learnt functions are always monotone submodular, we compute summaries S⇤ of size 10 that
approximately maximize the scoring functions using the greedy algorithm. For these summaries,
we compute the V-ROUGE score r(S⇤

). For easy score interpretation, we normalize it according to
sc(S⇤

) = (r(S⇤
) � R)/(H � R), where R is the average V-ROUGE score of random summaries

(computed from 1000 summaries) and where H is the average V-ROUGE score of the collected final
pruned human summaries. The result sc(S⇤

) is smaller than zero if S⇤ scores worse than the average
random summary and larger than one if it scores better than the average human summary.

The best cheating results are shown as Cheat in Table 1, learnt using 1-V-ROUGE as a loss. The
results in column Min are computed by constrainedly minimizing V-ROUGE via the methods of [11],
and the results in column Max are computed by maximizing V-ROUGE using the greedy algorithm.
Therefore, the Max column is an approximate upper bound on our achievable performance. Clearly,
we are able to learn good scoring functions, as on average we significantly exceed average human
performance, i.e., we achieve an average score of 1.42 while the average human score is 1.00.

Results for cross-validation experiments are presented in Table 1. In the columns Our Methods
we present the performance of our mixtures learnt using the proposed loss functions described in
Section 3. We also present a set of baseline comparisons, using similarity scores computed via a
histogram intersection [32] method over the visual words used in the construction of V-ROUGE. We
present baseline results for the following schemes:

FL the facility location objective ffac.loc.(S) alone;
FLpen the facility location objective mixed with a �-weighted penalty, i.e. ffac.loc.(S)+�fdissim.(S);
MMR Maximal marginal relevance [3], using � to tradeoff between relevance and diversity;
GCpen Graphcut mixed with a �-weighted penalty, similar to FLpen but where graphcut is used in

place of facility location;
kM K-Medoids clustering [9, Algorithm 14.2]. Initial cluster centers were selected uniformly at

random. As a dissimilarity score between images i and j, we used 1� si,j . Clustering was
run 20 times, and we used the cluster centers of the best clustering as the summary.

7

S

How	good	is	greedy?	

SE RVE R

LAB

KI TCHEN

COPYELEC

PH ONEQUIET

ST ORAGE

CONFERENC E

OFFICEOFFICE50

51

52 53

54

46

48

49

47

43

45

44

42 41

3739

38 36

33

3

6

10

11

12

13 14

15
16

17

19

20
21

22

2425
26283032

31

2729

23

18

9

5

8

7

4

34

1

2

35
40

in
fo
rm

at
io
n	
ga
in

optimal
greedy

empirically:

Why is this amazing?
Does it always work?

Theorem (Nemhauser, Wolsey, Fisher 1978):
If F is monotone submodular, then
Greedy is guaranteed to achieve at least
63% of optimum:

F (Sk) �
✓
1� 1

e

◆
F (S⇤)

Greedy	can	fail	… without	submodularity

F (S) = 0
If S = then .

Otherwise,
F (S) = 100

But: this never
happens with
diminishing
returns! J

Recap:	why	does	plain	greedy	work?

1. Submodularity:	global	information	from	local	information
Marginal	gain	of	single	item	gives	information	about	global	
value

2. Monotonicity:	items	can	never	harm	(=	reduce	F)

Beyond	greedy?		

• Other	constraints?

• Non-monotone	functions?

• Large-scale	greedy?

Greedy++

More	complex	constraints:			budget

1. run	greedy:
2. run	a	modified	greedy:

3. pick	better	of								,													

è approximation	factor:

max F (S) s.t.

X

e2S

c(e)  B

Sgr

S
mod

Sgr S
mod

(Leskovec-Krause-Guestrin-Faloutsos-VanBriesen-Glance	’07)

even	better	but	less	fast:
partial	enumeration
(Sviridenko,	’04) or
filtering (Badanidiyuru &
Vondrák ‘14)

1� 1p
e

e⇤ = argmax

F (Si [{e})� F (Si)

c(e)e

Relax:	Discrete	to	continuous

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

max

S2I
F (S) max

x2conv(I)
f

M

(x)

(Vondrák ’08;	Calinescu-Chekuri-Pal-Vondrák ‘11;	Kulik-Shachnai-Tamir’11)

Algorithm:	“continuous	greedy”
1. approximately	maximize	fM over	
2. round	to	discrete	set

P = conv(I)

P

Beyond	greedy?		Greedy++

• Other	constraints	for	monotone	submodular	functions?
Variants	of	greedy	still	work	in	many	cases	(“downward	
closed”	constraints)

• Non-monotone	functions?

• Large-scale	greedy?

F (A) = 95

optimal	solution
F (A) = 40

greedy	solution:

Greedy	can	fail	…

F (A) =

�����
[

a2A

area(a)

�����
�

X

a2A

c(a)

sensor	1 sensor	2 sensor	3 sensor	4

coverage:	100
cost:										-60
gain												40

coverage:			30
cost:										- 1
gain												29

coverage:			30
cost:										- 1
gain												29

coverage:			40
cost:										- 3
gain												37

Non-monotone	maximization

• Generally	inapproximable unless	F	is	nonnegative
• Unconstrained	maximization:
• Local	search	(Feige-Mirrokni-Vondrák’07)
• Double	greedy:	Optimal	½	approximation	

(Buchbinder-Feldman-Naor-Schwartz’12)

• Constrained	maximization:	
• Cardinality	constraints:	randomized	greedy	
(Buchbinder-Feldman-Naor-Schwartz’14)
• Filtering	based	algorithms	(Mirzasoleiman-Badanidiyuru-Karbasi’16)
• More	general	constraints:	Continuous	local	search	via	multilinear	extension	
(Chekuri—Vondrák-Zenklusen’11)

• Distributed	algorithms?	yes!
• divide-and-conquer	(de	Ponte	Barbosa-Ene-Nguyen-Ward	’15)

• concurrency	control	/	Hogwild (Pan-Jegelka-Gonzalez-Bradley-Jordan	’14)

Beyond	greedy?		Greedy++

• Other	constraints	for	monotone	submodular	functions?
Variants	of	greedy	still	work	in	many	cases	(“downward	
closed”	constraints)

• Non-monotone	functions?
Monotone	greedy	can	fail,	but	other	types	of	greedy	(‘double	
greedy’)	&	local	search	work

• Large-scale	greedy?

Distributed	greedy	algorithms

greedy	is	sequential.
pick	in	parallel??

pick	k	elements	
on	each	machine.

combine	and	run
greedy	again.

Is	this	useful?

pick	in	parallel
from	mmachines

Is	this	useful?

Random	partition:

Even	better	with	
geometric	structure

1
2 (1�

1
e)

For	any	partition:

1
min{

p
k,m}

Pick	the	best	of	m+1	solutions

(Mirzasoleiman-Karbasi-Sarkar-Krause’13,	da	Ponte	Barbosa-Ene-Nguyen-Ward’15)

Distributed	greedy	algorithms

Beyond	greedy?		Greedy++

• Other	constraints	for	monotone	submodular	functions?
Variants	of	greedy	still	work	in	many	cases	(“downward	
closed”	constraints)

• Non-monotone	functions?
Monotone	greedy	can	fail,	but	other	types	of	greedy	(‘double	
greedy’)	&	local	search	work

• Large-scale	greedy?
Distributed,	parallel,	streaming	versions	for	many	cases

Roadmap

üWhat	is	submodularity and	where	does	it	comes	up?

• Optimization	with	submodular	functions
üMaximization:	greedy	algorithms	(diminishing	returns)
•Minimization?

• Further	connections	&	directions

Submodular	minimization

“maximize	coherence”

Idea:	relaxation

min
S✓V

F (S)

min
x2{0,1}n

F (x) min
x2[0,1]n

f(x)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

F ({a})F ({b})

F ({a, b})

Lovasz extension

• expectation:

• sample	threshold																			uniformly
•

0.5

1.0

0.2

0.2

0.5

✓ e.g. ✓ = 0.4

Each	coordinate
corresponds	to	an	item

Lovász extension:	example

510

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xa
xb

f(x
)

A F(A)
{} 0
{a} 1
{b} .8
{a,b} .2

F({a})
F({b})

F({a,b})

F({})

Submodularity and	convexity

Theorem (Edmonds 1971, Lovász 1983)
Lovász extension	is	convex F is	submodular.,

f(x) = max

y2BF

y

>
x

if	F is	submodular,	this	is	equivalent	to:

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

f(x) = E
✓⇠x

[F (S
✓

)]

Examples	of	Lovasz extensions

1.

2. Cut	function:	2	items	(nodes)

F (S) = min{|S|, 1} 0.5

1.0

0.2

0.2

0.5

✓

F (S) =

(
1 if |S| = 1

0 otherwise.

vu

f(x) = max

i
xi

f(x) = |xu � xv|

Base	polytopes

f(x) = max

y2BF

y

>
x

if	F is	submodular,	this	is	equivalent	to:

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

f(x) = E
✓⇠x

[F (S
✓

)]

BF = {y 2 Rn | 8S ✓ V
X

i2S

yi  F (S) and
nX

i=1

yi = F (V)}

Base	polytope:	all	vectors	dominated	by	F(S)

3s

s2

s1

P(F)

B(F)

Examples	of	base	polytopes

1. Probability	simplex

2. Permutahedron
32 II. SUBMODULAR SYSTEMS AND BASE POLYHEDRA

A permutahedron

[(5) Permutahedra: Let E = {1,2, Consider a nondecreasing
concave function g : R —> R with g(0) = 0 and define a function p : 2E —> R
by

p(X)=g(\X\) (XQE).

Then (E, p) is a polymatroid whose rank function value p(X) depends only
on the size of X. In particular, when p is given by

where p(0) = 0, the base polyhedron B(/o) is called a 'permutahedron (or
permutohedron). Every permutation or linear ordering (CTI,(T2, ,o~n) of
integers 1, 2, , n can be identified with the vector (cri, 02, , an) in R B .
We can show that the set of such vectors for all permutations of 1, 2, , n
is exactly the set of all extreme points of the permutahedron (we can see
this fact through the discussions in Section 3.2). Note that for the per-
mutahedron the slope g(k) — g(k — 1) decreases by one for k = 1, 2, , n.
From a general nondecreasing concave function g with g(0) = 0 we have

1*1
p(X) = '£(n-i + l) (XQE),

%=\

F (S) =

|S|X

i=1

(n� i+ 1)

F (S) = min{|S|, 1}

Putting	things	together

1. relaxation:	convex	optimization	
computable	subgradients

2. relaxation	is	exact!
pick	elements	with	positive	coordinates

è submodular	minimization	in	polynomial	time!
(Grötschel,	Lovász,	Schrijver 1981)

0.5

1.0

0.2

0.2

0.5

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(x)

min
S✓V

F (S) min
x2{0,1}n

F (x) min
x2[0,1]n

f(x)==

S

⇤ = {e | x⇤
e > 0}

many	ways	to	do	Step	1

Submodular minimization

convex	optimization
• ellipsoid	method
(Grötschel-Lovasz-Schrijver 81)

• subgradient method	…
(…,	Chakrabarty-Lee-Sidford-Wong	16)

• minimum-norm	point	/	Fujishige-
Wolfe	algorithm (different	
relaxation)
(Fujishige-Isotani 11)

• …

combinatorial	methods
• first	polynomial-time:
(Schrijver 00,	Iwata-Fleischer-Fujishige-01)
…

• (Iwata	03)

(Orlin 09)

O(n4T + n5
logM)

O(n6 + n5T)

Latest: O(n2T log nM + n3
log

c nM)

O(n3T log

2 n+ n4
log

c n) (Lee-Sidford-Wong	15)

Submodularity and	convexity

• convex	Lovasz extension
• easy	to	compute:	greedy	algorithm	(special	polyhedra!)

• submodular	minimization	via	convex	optimization:	exact
• duality	results

• structured	sparsity	(Bach	10)
• decomposition	&	parallel	algorithms	
(Komodakis-Paragios-Tziritas 11,	Stobbe-Krause	10,	Jegelka-Bach-Sra 13,	
Nishihara-Jegelka-Jordan	14,	Ene-Nguyen	15)

• variational inference	(Djolonga-Krause	14)
• …

Roadmap

üWhat	is	submodularity and	where	does	it	comes	up?

üOptimization	with	submodular	functions
•Maximization:	greedy	algorithms	(discrete	concavity)
constraints	manageable
•Minimization:	convex	relaxation	(discrete	convexity)
constraints	are	hard

• Further	connections	&	directions
• Learning
• Probability	distributions	&	set	functions
• Integer	&	continuous	functions

Log-supermodular distributions

Benefits:
• finding	the	mode	=	minimizing	a	submodular	function
• approximating	partition	function	&	marginals …

(Fortuin-Kasteleyn-Ginibre 71,	Kolmogorov-Zabih 04,	Djolonga-Krause	14,	…)

“multivariate	totally	positive	of	order	2”,	“affiliated”

sky

house

grass

Example:	ferromagnetic	Ising model	/	Conditional	Random	Field

1 1

1 1

1 1

0 0 0 0

0 0

0 0

0 0

Log-submodular	distributions

S L

S

Example:	Determinantal Point	Processes	/	Volume	sampling

Benefits:	sampling	
(if	negative	association)

(Macchi 75,	Feder-Mihail 82,	Borodin	02,	Deshpande-Rademacher-Vempala-Wang	06,	Borcea-Bränden 09,	
Borcea-Bränden-Liggett	09,	Kulesza-Taskar 12,	Anari-Oveis Gharan-Rezaei 16,	Li-Jegelka-Sra 16,	…)

Sub-family:	“Strongly	Rayleigh”	distributions

P (S) / exp(F (S))

• Integer	and	continuous	functions

•Many	optimization	results	generalize	J

Submodularity more	generally

(Milgrom-Shannon	94;	Topkis 98;	Murota 03;	Kapralov-Post-Vondrak 10;	Soma	et	al	2014-16;	Bach	2015;	
Ene &	Nguyen	2016;	Bian-Mirzasoleiman-Buhmann-Krause	16)	

• Integer	and	continuous	functions

• Equivalent	condition	for	differentiable	functions:

• subclass: diminishing	returns

Submodularity more	generally

@

2

@xi@xj
f(x)  0 8i 6= j

@

2

@xi@xj
f(x)  0 8i, j

 0

 0

 0

Application:	robust	optimization

infer from data.
robust optimization?

y
nonconvex in L✓

But: submodular in ! J✓

(Staib &	Jegelka,	ICML	2017)

submodular	set	functions
convexity:	 dim.	returns	(concavity):	
minimization maximization
maximize	coherence maximize	diversity

nonconvex	optimization
lattice	/	continuous	submodularity
many	optimization	results	
generalize

probability	measures
log-supermodular (positive	assoc.)
log-submodular			(negative	assoc.)
sampling,	mode,	
approx.	partition	function

many	examples:

• linear/modular	functions													
• entropy
• mutual	information
• rank	functions

• coverage
• diffusion	in	networks	
• volume			
• graph	cut	…

