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Abstract

Identifying objects that are common to a set of images is an important step in
unsupervised image analysis. While existing approaches to object extraction and
co-segmentation commonly focus merely on joint per-class appearance models, we
propose a model that incorporates additional label and boundary co-occurrence
information with little additional communication across images. This model
admits efficient inference and can improve the accurate extraction of difficult,
fine-structured objects.

1 Introduction

Understanding the content of collections of weakly-labeled, partially-labeled, or unlabeled images
remains an important problem in computer vision. A substantial part of this challenge is to identify
and extract objects that are simultaneously present in many images. When supervision becomes
weak or unreliable, an invaluable (or perhaps the only) source of information are joint patterns and
underlying structure that are shared across images. Indeed, common approaches to co-segmentation
and object discovery identify joint, cross-image appearance models for each object category, but do
not model boundary characteristics. While these shared models capture the coarse essentials of each
object class, they necessarily leave uncertainty about detailed variations within a single image. As
a result, the assignment of fine-grained structures to object or background remains challenging. In
addition, many approaches trade off scalability with spatial accuracy, and tolerate coarser results.
Objects such as bikes or trees appear to be particularly affected by these drawbacks [6, 7, 13].

In this work, we aim to decrease this uncertainty about fine structures by incorporating higher-order
information about typical label co-occurrences, or characteristics of object boundaries. Specifically,
we use submodular functions to formulate a model that shares such co-occurrence information with
surprisingly little communication across images. We show an efficient, parallelizable inference
algorithm and preliminary experimental results. Moreover, our model is compatible with a number of
different approaches to learning joint category-wise appearance models.

Related work. Early approaches to co-segmentation process two images at a time [12, 3, 16].
Subsequent work used user interaction [1, 11, 13] or focused on efficiently finding commonalities
in sets of images without supervision [8, 14], a problem similar to that of weakly supervised object
detection. The approaches range from graph cuts [3, 16, 1, 11] to submodularity [8] to spectral
clustering [7]. All of these approaches focus on obtaining better foreground models.

Notation and setup. Formally, we observe a collection I of m images, where each image I ∈ I is a
collection of nI pixels zIi. We aim to infer a discrete label (category) xIi ∈ L for each zIi. Each
label ` ∈ L defines an object class and indexes a distinct foreground (or background) model with
parameters θ`. For example, the likelihood p(zi|xi = `; Θ) may be given by a Gaussian mixture
model with parameters θ`. We aim to find a MAP estimate of x, i.e., a labeling of all images that
(approximately) maximizes p(x|z,Θ). For ease of exposition, we will here focus on the case of
binary labels, but point out that the approach easily generalizes to multiple labels.
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Figure 1: Edge type histograms for the
segmentations of the two spiders (16 edge
types), and for all edges in the two images.
The correct cut consists of only a small
set of shared edge types while many other
edge types exist in the images. This infor-
mation can be used as cue to infer correct
boundaries.

A frequently used approach to label a single image I is by formulating a Markov or Conditional
Random Field. In this case, the posterior probability p(xI |zI ; Θ) ∝ exp(−EI(xI ; zI ,Θ)) factorizes:

EI(xI ; zI ,Θ) =
∑

i∈I
ψi(xi; zi,Θ) +

∑
(i,j)∈E

ψij(xi, xj), (1)

where p(zi|xi; Θ) ∝ exp(−ψi(xi; zi,Θ)). The pairwise terms ψij are defined via a (grid-structured)
neighborhood graph G = (V, E) and may depend on z. To simplify notation, we mostly drop the
arguments Θ, z from E. The standard model (1) easily generalizes to a collection of images:

EI(x; z,Θ) =
∑

I∈I
EI(xI ; zI ,Θ). (2)

In this collective model, we assume the foreground models Θ to be shared across images. The
pairwise terms ψij are restricted to pixel pairs from the same image. Hence, conditioned on the
parameters Θ, the observed images are independent, the function E decomposes into image-wise
terms and we can find the MAP estimate x̂I ∈ argmaxx pI(x|z; Θ) for each image independently.

The pairwise potentials ψij are fully-compatible with globally shared foreground models and induce
an often necessary spatial smoothness in the labeling, but they have well-known drawbacks. Modeling
the prior belief that object boundaries are short – a characteristic that holds for compact objects but
fails for fine-structured objects such as bikes or trees – they can lead to coarse segmentations and to
short-cutting object boundaries. This effect is even more pronounced when no foreground model fits
the observation well, i.e., p(zi|xi = `,Θ) is low for all ` ∈ L, as it may be the case when labeling
collections of images with weak supervision and shared compact appearance models.

To better understand the mechanisms behind this “shrinking bias”, a mathematically equivalent
formulation of EI(x) as a graph cut is instructive. Let GI be the local neighborhood graph of image
I , with one node vi for each xi. Then it is possible to find weights w : E → R such that

EI(x; z) =
∑

i∈I
ψi(xi) +

∑
e∈Cut(x)

w(e) + const. (3)

This is because any labeling x ∈ {0, 1}n of the nodes induces a partition of V and a cut Cut(x) =
{(vi, vj) | xi = 1, xj = 0} ⊆ E in G. If the pairwise potentials ψij satisfy ψij(0, 0) + ψij(1, 1) ≤
ψij(0, 1) + ψij(1, 0), then w(e) ≥ 0 for all edges e and the MAP labeling that minimizes E(x; z)
defines a minimum cut. The equivalence (3) shows that EI penalizes the cut weight, i.e., the length
of the object boundary, weighted by the contrast across the boundary. Fine-structured objects do not
have a short boundary and will therefore have low probability under this model. Different approaches
have addressed this shrinking bias [15, 10, 4], mostly via higher-order potentials.

Co-occurring label transitions. We build our model on the observation that in many images
the foreground is not the only form of joint structure. The transition between labels, i.e., the co-
occurrence of two different labels at the object boundary, is not arbitrary. It is often very homogeneous
in appearance, and this homogeneity can serve as a valuable cue. Figure 1 illustrates this observation.
We clustered the edges in both images jointly into types of similar edges. Similarity between two
edges was defined by the distance of their feature vectors (e.g., the RGB gradient zi − zj for edge
e = (vi, vj)). The histogram shows that (1) the true cuts in the two images use only few and very
similar types of edges – they are sparse in the types; (2) the cuts make up a large fraction of the edges
of their type; (3) the statistics of the cut edges (blue bars) are very different from the statistics of all
edges in the two images (red and yellow bars).

Jegelka and Bilmes [4] showed that this homogeneity cue can greatly benefit the segmentation of
single images. Building on their model, we exploit commonalities of label co-occurrences across
images. While we address the segmentation of foreground objects here, our joint model may have
wider applicability for modeling coherent label co-occurrences across data instances.
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2 Communal Cuts

Figure 1 suggests a model that prefers label transitions (object or segmentation boundaries) to occur
at edges (pixel pairs) of the same type. Like [4], we encourage this by introducing a dependence
between edges and penalizing the number of types in the cut. The edge dependence arises from a
submodular function over sets of edges in the same neighborhood graph G =

⋃
I GI as above. A

function F : 2E is submodular if it satisfies that for all sets A ⊆ B ⊂ E and e /∈ B, it holds that
F (B ∪ e)−F (B) ≤ F (A∪ e)−F (A). If this diminishing marginal costs property is restricted to a
given edge type, then the penalty is reduced if the cut consists of many edges of this type. Since the
cost sharing of types occurs across images, we name this model Communal Cuts.

Formally, let E =
⋃

g Eg be partitioned into k edge types Eg that are shared across images. We
replace the sum of pairwise potentials in Eqn. (2) (or, equivalently, the graph cut in Eqn. (3)) by
submodular functions Fg over pairwise potentials, one for each type g:

Ec(x) =
(∑

I∈I,i∈I
ψIi(xIi)

)
+
∑k

g=1
Fg

(
Cut(xI1) ∪ Cut(xI2) ∪ . . . ∪ Cut(xIm)

)
, (4)

where Fg is a submodular function restricted to Eg . We use functions of the form

Fg(A) = hg
(∑

e∈A∩Eg

w(e)
)
, (5)

where hg is a nonnegative, increasing concave function. The graph cut version corresponds to using
the identity function hg(y) = y. Hence, we could equivalently write

Ec(x) =
( ∑

I∈I,i∈I
ψIi(xIi)

)
+

k∑
g=1

hg

(∑
I∈I

∑
(i,j)∈EI

ψij(xIi, xIj)
)
. (6)

The potential (4) introduces dependencies between edges (pairs of variables) across images. As
opposed to EI , conditioned on Θ, this function does not decompose across images. We handle this
dependence via a variational coordinate descent approach and exploit that the information that needs
to be communicated between different images is restricted to a small set of statistics.

2.1 Conditioning preserves model type

We begin by inspecting the conditional distribution p(xI |xI\I , z,Θ) for the labels of any single
image I . Let F (A|B) = F (A ∪B)− F (B) denote the marginal cost of a set A with respect to B
and a submodular function F . We have by Bayes’ rule that

p(xI |xI\I , z,Θ) =
p(xI |z,Θ)

p(xI\I |z,Θ)
=

p(xI |z,Θ)∑
xI∈{0,1}nI p(xI\I , xI |z,Θ)

(7)

=
exp

{
Ψu(xI) +

∑
g Fg

(⋃
J∈I Cut(xJ)

)}
exp

{
Ψu(xI\I) + Fg(

⋃
J∈I\I Cut(xJ))

}∑
xI

exp
{

Ψu(xI) +
∑

g Fg

(
Cut(xI)|Cut(xI\I)

)}
=

exp{Ψu(xI) +
∑

g Fg

(
Cut(xI)|Cut(xI\I)

)
}∑

xI
exp

{
Ψu(xI) +

∑
g Fg

(
Cut(xI)|Cut(xI\I)

)} . (8)

In this derivation, we used the shorthand xI\I for the set of all variables xi with i ∈ I \ I , the
joint cut Cut(xI\I) =

⋃
J∈I\I Cut(xJ), and Ψu(xI) =

∑
i∈I ψIi(xIi). Since the marginal cost

F (A|B) is a submodular function in A, the conditional distribution is a cooperative cut model as
defined in [4], and of the same type as the full posterior.

Moreover, we observe that the marginal cost

Fg

(
Cut(xI)|Cut(xI\I)

)
= hg

( ∑
e∈Cut(xI)

w(e) +
∑

e′∈Cut(xI\I)

w(e′)
)
− hg

( ∑
e′∈Cut(xI\I)

w(e′)
)

only depends on the scalar statistic sg,I =
∑

e′∈Cut(xI\I)
w(e′). Knowing the weights of the given

image I , sg,I can easily be computed from sg =
∑

e∈Cut(xI)
w(e). This means that to compute

the conditional distribution p(xI |xI\I , z,Θ) we only need to exchange Θ and the k statistics sg,I
between images. Figure 2 illustrates this observation.

3



image 2image 1 image 3

s1 s2 s3 s4

Figure 2: Sharing of the statistics sg across im-
ages is the only required communication across
images, apart from the foreground models Θ.
Edge types Eg are indicated by different colors
(blue, green, red, black).

Appearance models. We learn joint models of the foreground classes and a separate background
model for each image. The appearance models are learned via linear support vector machine (SVM)
classifiers on color and kernel descriptors [2] on neighborhood patches. For a completely unsupervised
approach, we initialize with CoSand [8]; but other unsupervised methods are also suitable.

Defining edge types. Partitioning the edges in all images jointly into edge types Eg is a large
clustering problem. For efficiency at scale and robustness to local differences, the clustering is carried
out hierarchically: edges in each image are first over-clustered, then the local edge types are unified
by a global joint clustering of the per-image centroids, and finally the joint types are propagated back
to the local edges through the global clusters. This scalable approach allows for differing distributions
of edge types in which some types may not be present in every image.

3 Inference

For inference, we iteratively update x via MAP inference and then update Θ given the updated
x. MAP inference for x is hard in general [5]. If k is small and hg is piecewise linear with few
breakpoints, one may use the exact method in [9]. Here, we describe a more general approximation.

The assignments xI can be updated in parallel or sequentially. In both cases, we approximate
p(x|z; Θ) by approximating the functions Fg that induce dependencies across images. Once x has
been updated, the approximations F̂g are adjusted to be tight at the current assignment. Replacing Fg

by F̂g in E(x) results in an upper bound Ê(x) ≥ E(x) that satisfies Ê(xt) = E(xt) at the current
labeling xt. Hence, minimizing Ê(x) must lead to progress or convergence. The approximations rely
on the following approximation of a submodular function.

Lemma 3.1 ([4]). Let F be monotone submodular and F ≥ 0. Then

F̂ (A|B) , F (B) +
∑

e∈A\B
F (e|B)−

∑
e∈B\A

F (e|E \ e) ≥ F (A)

for all A ⊆ E , and F̂ (B|B) = F (B).

Given any current labeling y, we use Lemma 3.1 to define upper bounds

Ê(x;y) = Ψu(x) +
∑k

g=1
F̂g

(
Cut(x)|Cut(y)

)
≥ E(x). (9)

Parallel (Jacobi) updates. At closer inspection, we see that F̂ in Lemma 3.1 is a sum of weights:

Lemma 3.2. Using the approximation in Lemma 3.1, it holds that F̂g(C; Cut(y)) =∑
e∈C νg(e;y) + const, where

νg(e;y) =

{
F (e|Cut(y)) if e /∈ Cut(y)

F (e|E \ e) otherwise.

The weights νg(e;y) can be computed from the summary statistic sg of y instead of y.

4



The last statement follows from the observations in Section 2.1 and implies that all we need to share
across images are the sg . We may hence write

Ê(x; {sg}) , Ê(x;y) = Ψu(x) +
∑

e∈Cut(x)

k∑
g=1

νg(e; sg) + const. (10)

The function Ê(x; {sg}) is a pairwise potential like the CRF model (3) and decomposes across
images. Hence, we can compute xt+1 = argmaxx Ê(x;xt) by updating each xI separately in
parallel via a minimum cut in the image graph GI with weights νg restricted to GI . To compute Ê in
the next step, we only need to update the statistics sg .

Sequential (Gauss-Seidel) updates. Instead of updating the image-wise labels xI in parallel, we
can update them sequentially. After updating each xI , we already update the approximation of the
energy too. In this case, we may slightly tighten the edge weights to

νg(e;y) =

{
F (e|Cut(y)) if e /∈ Cut(y)

F (e|EI \ e) otherwise.
In fact, this slightly changed approximation corresponds to approximating the posterior
p(xI |xI\I , z,Θ) given in Equation (8). Algorithm 1 shows the sequential updates; this algorithm is
a block coordinate descent. We alternate Algorithm 1 with updating Θ.

Algorithm 1 CommunalBCD(G, F )

Input: G, F
Output labelings {xI}I∈I
set xt = 0, s0g = 0 and compute w(Eg) for all g and t = 0
for I ∈ I do

compute x1
I ∈ argminx∈{0,1}nI Ê(xI ; {s0g})

end for
repeat
t = t+ 1
for j = 1 to |I| do

compute stg =
∑

i<j w(Cut(xt
Ii

)) +
∑

i≥j w(Cut(xt−1
Ii

)) ∀1 ≤ g ≤ k
compute xt

Ij
∈ argminxIj

Ê(xIj ; {stg})
end for

until E(xt) ≥ E(xt−1)

4 Experiments

We evaluate Communal Cuts on a variation of the MSRC data set, which we augment with finer, more
accurate ground truth labels and call MSRC-fine1. We show preliminary results for an unsupervised
figure-ground segmentation task on image pairs from the same class. Twenty random pairs are
drawn from each class and the initial unsupervised segmentation is established by CoSand [8]. If a
degenerate initialization produces whole-image segments the pairs are discarded from evaluation. The
model parameters (coefficient for ψij and a thresholding parameter of hg as in [4]) were chosen by
cross-validation. Our results differ from those on MSRC in the literature due to the new fine-structured
annotations.

Table 3 shows results for (i) CoSand (shared foregrounds, no iteration, superpixels), (ii) learning a
joint foreground model and using Cooperative Cuts [4] on each image separately (joint foreground,
iterations, no interaction of the cut terms across images), and (iii) Communal Cuts. The table includes
two numbers: the intersection-over-union metric, and the same metric only evaluated at a thin band
around the correct boundary. We observe that including edge interactions (per image (ii) or across
images (iii)) does improve the accuracy of the segmentations compared to the initial CoSand results.
In particular for fine-structured objects such as trees and bikes it helps to share cut statistics across
images. Only in some cases, if the images are fairly different, edge sharing may be less appropriate.

1For Communal Cuts code and MSRC-fine data, see http://coopcut.berkeleyvision.org.
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Class CommCut CommCut CoSand
sharing across sharing within

Aeroplane 17.36 / 38.77 18.14 / 38.85 14.85 / 30.10
Bike 26.31 / 34.29 23.55 / 29.17 16.91 / 21.70
Bird 26.01 / 32.95 26.21 / 32.28 13.64 / 22.65
Boat 10.92 / 33.79 10.48 / 29.78 4.63 / 26.35
Car 26.60 / 37.97 26.44 / 34.83 18.79 / 26.88
Cat 18.18 / 29.60 17.20 / 25.79 17.66 / 20.35

Chair 17.82 / 28.58 18.30 / 29.50 14.88 / 23.63
Cow 28.71 / 33.93 33.39 / 35.47 22.34 / 20.90
Dog 24.39 / 28.47 26.09 / 30.06 19.41 / 17.72
Face 12.44 / 27.57 13.05 / 24.62 15.84 / 24.38

Flowers 60.35 / 50.36 65.19 / 51.68 43.48 / 52.33
Sheep 26.06 / 25.87 32.02 / 26.24 23.11 / 13.14
Sign 17.15 / 27.25 18.14 / 27.51 28.02 / 29.69
Tree 15.01 / 35.18 14.91 / 32.90 3.60 / 22.29

CoSand CommCut

Figure 3: Average per-class accuracies of figure-ground segmentations on MSRC-fine: intersection-over-union
metric percentage on the full image (left) and on a band around the ground truth border (right). Communal Cuts
help capture the details of the difficult bicycle, tree, and chair classes. Figure: example visual results. CoSand
misses parts of the cow’s ear or the entire object. It also excludes the (uncommon) black parts of the flowers.
Boundary interactions remedy these effects.
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