
Submodularity Beyond Submodular Energies: Coupling Edges in Graph Cuts

Stefanie Jegelka
Max Planck Institutes Tübingen
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Abstract

We propose a new family of non-submodular global en-
ergy functions that still use submodularity internally to cou-
ple edges in a graph cut. We show it is possible to develop an
efficient approximation algorithm that, thanks to the internal
submodularity, can use standard graph cuts as a subroutine.
We demonstrate the advantages of edge coupling in a natural
setting, namely image segmentation. In particular, for fine-
structured objects and objects with shading variation, our
structured edge coupling leads to significant improvements
over standard approaches.

1. Introduction
For many years, Markov random fields (MRF) have been

seen as a natural fit to solve various problems in computer
vision [12]. In such models, finding a maximizing assign-
ment of random variable values corresponds to minimizing
a Gibbs energy. This minimization is in general not only
NP-hard, but some models do not even admit any nontrivial
approximation guarantees [5]. Consequently, for image pro-
cessing, some early researchers considered MRFs destined
for no more than a theoretical curiosity.

Recently, subclasses of MRFs were shown to be not only
easy to exactly optimize (without a tree-width restriction)
but also quite naturally applicable to many computer vision
problems [4, 12, 23]. Specifically, finding the minimum
energy configuration is very efficient for those Gibbs energy
functions whose variable assignment costs correspond
exactly to cut costs in an appropriate graph [8, 23]. Graph
cuts are now successfully used in segmentation, stereo
matching, and texture synthesis, among others.

Inspired by these results, a principal goal has become
identifying the most general classes of energies that can
be exactly optimized either directly or indirectly via graph
cuts. For example, while some binary pairwise potential
functions can be solved exactly using graph cuts, in many
cases higher order (e.g., k-ary) potential functions [8, 23, 33]
and potentials functions over non-binary variables [4] can
also be solved efficiently. In all cases, a critical property

known as “regularity” [23] (more generally, submodularity
[9]) is used.

Unfortunately, there are critical deficiencies when
graph cuts are used in practice, partly stemming from
their inability to represent more than only a limited class
of energies [8, 10, 23, 33]. The core issue is that graph
cuts model an energy that decomposes into pairwise
terms with nonnegative weights. The direct use of such
energies can cause insurmountable over-smoothing in
image segmentation. While some higher order energies are
graph-representable, this representation might regrettably
require additional variables which also might not remain
computationally feasible [33]. Recent research, therefore,
has aimed to identify practically manageable higher
order energies [15, 18, 19, 24], and to develop efficient
optimization methods for non-submodular potentials [22].

In this work, we define a new powerful class of arbitrarily
high order non-submodular energy functions that abandons
neither the existence of an underlying graph, nor the use of
submodularity, nor practical efficiency. This class is struc-
turally and conceptually very different from the recently
considered potentials in [15, 18, 24]. To wit, we make the
following critical observation: graph cut based energy func-
tions can be significantly enhanced if the cost of the edges
that constitute a cut is measured not merely based on the
sum of the edge weights. Rather, in our work, any or all the
edges in a graph may interplay in complex ways. Formally,
let G = (V, E) be a graph where each (s, t)-cut induces an
assignment of pixel labels. We replace the usual cut cost
(the sum of edge weights) by a submodular cut cost, and we
therefore say that the edges themselves may cooperate [30].
Doing so introduces the following problem:

Definition 1 (Minimum Cooperative Cut). Given a graph
G = (V, E) and a nondecreasing submodular function f :
2E → R+ defined on subsets of edges E , find an (s, t)-cut
Γ ⊆ E having minimum cost f(Γ).

As shown below, the equivalent energy functions are not
in general submodular and cooperative cut is NP-hard, even
though submodularity is, in a sense, “internal” to our prob-
lem as will be seen. The graph structure is key to obtain an
efficient approximation algorithm.
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original user labels Canny edge detector unary terms Rand. Walker [11] curvature reg. [7] Graph Cut [2] CoopCut

Figure 1. Segmentation results for an image with shading. The task is difficult despite many labels. All algorithms used the same unary
terms, except for the Random Walker, which got enhanced seeds (green). Column 4 is the segmentation obtained from unary terms alone.

Edge cooperation naturally captures information that is
missed by many existing approaches, such as global features
of object boundaries in a segmentation. For example,
consider the vacuum cleaner in Figure 1 (left): low contrast
makes the tube difficult to identify, so that either background
is included in the foreground, or parts of the tube are cut off.
Such incorrect boundaries (chosen due to shortcutting) are
qualitatively different from the correct boundary between
the patterned carpet and the vacuum cleaner. We maintain
that the boundary is “congruous”: along it lies a repetitive
pattern made up from the few adjoining texture types that,
if properly represented, can help boundary identification. By
globally coupling boundary sub-segments across lighted and
shaded regions, such congruity can be exploited, and this
is easily expressible by cooperative cuts as we show below.

More specifically, we show: 1) a new class of powerful
energy functions having arbitrarily high order, where the
potential functions and maximum order may automatically
and efficiently adapt to each image; 2) an optimization
method that is remarkably efficient and practical, and that
uses standard graph cuts as a subroutine; 3) theoretical
approximation guarantees for our optimization method; 4)
a specific edge-cooperative potential for segmenting consid-
erably difficult images that, compared to graph cuts, reduces
the segmentation error by up to 70%. In particular, we show
significant improvements on images having the potential for
a severe shrinking bias problem, on images that possess light
intensity gradients and shadows, and on images with both
these difficulties simultaneously. Finally, we relate edge
cooperation to other recent approaches in computer vision.

2. Background: Graph Cuts & Gibbs Energies

Before describing cooperative cuts, we recall the relation-
ship between graph cuts and energies and in doing so define
our notation. Labeling image pixels is often formulated as in-
ference in an MRF. For each pixel i in an image I , a random
variable takes values from a set L of labels. For simplicity,
we consider only binary labels (|L| = 2). A Gibbs energy
E(x; z̄) over labelings x = {x1, . . . , x|I|} ∈ L|I| defines
the probability p(x|z̄) ∝ exp(−E(x; z̄)) of a labeling given
observed pixel values z̄. The energy decomposes into a sum

of unary potential functions, making a connection to the im-
age z̄, and a sum of clique potentials {ψC : C ∈ C}, where
C is the set of maximal cliques in the MRF. That is,

E(x; z̄) =
∑

i
ψi(xi, z̄i) +

∑
C∈C

ψC(xC). (1)

As z̄ is constant, using E(x) = E(x; z̄) simplifies notation.
A pixel labeling is produced by finding a maximum a

posteriori (MAP) (equivalently, energy minimizing) variable
assignment, i.e., x∗ ∈ argmaxx p(x|z̄) = argminxE(x).
For a sub-family of energies, energy minimization is equiv-
alent to a minimum (s, t)-cut in a corresponding graph
[12]. A key graph-cut-enabling ingredient is “regularity,”
defined as follows in the pairwise case (|C| = 2,∀C): for
all {i, j} = C ∈ C, we have

ψi,j(0, 1) + ψi,j(1, 0) ≥ ψi,j(0, 0) + ψi,j(1, 1). (2)

Graph cuts arise naturally via the relationship between
energy functions and set functions on nodes of a graph
G = (V, E). Given a set V = {v1, v2, . . . , v|I|}, one element
per pixel, define the mapping X(x) = {vi ∈ V : xi = 1}
from labelings to sets. Then, the energy E(x) = Ψ(X(x))
has a corresponding set function Ψ, and regularity of E
is equivalent to submodularity of Ψ(X). A function Ψ :
2V → R is submodular if for all X,Y ⊆ V , we have
Ψ(X) + Ψ(Y ) ≥ Ψ(X ∩ Y ) + Ψ(X ∪ Y ) [9]. If this
condition holds everywhere with equality, then Ψ is called
modular (i.e., Ψ(X) =

∑
x∈X ax for some a ∈ R|I|).

To represent a pairwise submodular energy E(x) as a
graph cut, define a weighted directed graph G = (V ∪
{s, t}, E , w) having a node vi ∈ V for each image pixel,
and two terminal nodes s, t. The edges E consist of inter-
pixel edges En and terminal edges Et. Each potential
ψij(xi, xj) corresponds to two edges (vi, vj), (vj , vi) ∈ En,
and each unary potential ψi(xi) corresponds to the edges
(s, vi), (vi, t) ∈ Et (although this is often done using undi-
rected graphs, directed graphs better suit our needs). A
minimal (s, t)-cut Γ ⊆ E defines a labeling by assigning 1 to
xi if vi is uncut from s, and 0 otherwise. Equally, an assign-
ment x defines an (s, t)-cut in G. Let X1 = X(x)∪{s} and
X0 = (V \X(x)) ∪ {t}, then Γ(X(x)) = E ∩ (X1 ×X0)
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is a set of edges defining a cut. Given edge weights
w : 2E → R+, the cost of a cut Γ is usually the sum of
weights w(Γ) =

∑
e∈Γ w(e), which is a modular function

of edge sets. This cut cost, if seen as a function of sets of
nodes, is Ψw(X) , w(Γ(X)), a function well known to
be submodular on 2V . Moreover, for the pairwise regular
energies E(x) there exists a w such that [23]

E(x) + const = w(Γ(X(x))) =
∑

e∈Γ(X(x))

w(e). (3)

3. Cooperative Graph Cuts

The modularity of the edge weights w in the cut cost (3)
is a critical structural limitation: cutting one edge has no
effect on the cost of cutting a different edge. Modular edge
weights allow efficient graph cut algorithms but can also
have deleterious effects on computer vision results.

In our approach, by contrast, cutting an edge may in-
fluence the cost of cutting other edges. We express this
influence by measuring the cost of a cut using a nondecreas-
ing nonnegative submodular function f : 2E → R+ defined
on subsets of edges E (in stark contradistinction to Section 2,
where submodular functions are defined on subsets of nodes
V). Because f is submodular and nonnegative, it is also
subadditive: f(A ∪B) ≤ f(A) + f(B). If the inequality is
strict, we will say that edges in A and B cooperate [30].

The weight of a cooperative cut between nodes X and
V \ X can be expressed as the node function Ψf (X) =
f(Γ(X)). Thus, cooperative cut leads to a family of en-
ergies of the form Ef (x) , f(Γ(X(x))). This has three
consequences. First, MAP inference for Ef reduces to Mini-
mum Cooperative Cut. Second, depending on f , there can be
cooperation between arbitrarily large edge sets anywhere in
the graph. Since this couples all nodes adjacent to the coop-
erating edges, Ef has arbitrarily high order. Third, Ef is not
necessarily regular (equivalently, Ψf is not necessarily sub-
modular). Figure 2(a) shows a cooperative energy Ef that
violates regularity. A higher order energy E is regular [23]
if all of its projections on any pair of variables i, j are regular.
Let J = I \ {i, j}. A projection EJ of E : {0, 1}I → R+

on i, j is obtained by fixing the values of xJ to some x̄J ,
and setting EJ(xi, xj) = E(xi, xj , x̄J).

Submodular functions can reward the co-occurrence of
certain elements (here, edges of a graph cut). Useful sub-
modular functions include (i) f(A) = g(

∑
e∈A w(e)) for

nonnegative weights w and any concave, nondecreasing
function g : R+ → R+ [30]; (ii) cover-type functions
f(A) = |⋃e∈A Se|, where each e has an associated set
or area Se; (iii) entropy; and (iv) neighborhood functions in
bipartite graphs. Moreover, the sum of submodular functions
is submodular. Additional flexibility is gained by the graph
structure, as will be seen in Sections 5 and 6.
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Figure 2. (a) Example of a non-regular energy Ef with f(A) =`P
e∈A w(e)

´1/2. Edge weights are as indicated. An edge is
cut if its tail has label 1 and its head label 0. Consider the
projection EJ(x2, x3) for J = (1, 4) and x̄J = (1, 0). Then
EJ(1, 0)+EJ(0, 1) =

√
9.9 + 0.1 + 9.9+

√
0.1 + 0.1 + 0.1 <

5.01 < 6.32 <
√

0.1 + 9.9+
√

0.1 + 9.9 = EJ(0, 0)+EJ(1, 1),
violating regularity. (b) Effect of different gs in Eqn. (13).

4. Optimization
To minimize Ef , we must solve a Minimum Cooperative

Cut. While coupling edges allows Ef to be non-regular, this
also makes the problem NP-hard:

Theorem 1. Minimum Cooperative Cut is NP-hard.

The proof is a reduction from Graph Bisection [17]. On
the other hand, the graph structure provides a definitive
advantage over general higher order potentials — for some
global energies, no algorithm can provide quality guarantees
on the solutions it finds [5, 16]. In contrast, we now derive
a practical and efficacious approximation algorithm for
cooperative cuts that does have an approximation guarantee.
It iteratively minimizes an upper bound on Ef (Γ).

The simplest upper bound on a submodular function f(A)
is its modular counterpart f̂(A) =

∑
e∈A f(e), but this

ignores all coupling inherent in f . We instead develop an
adjusting bound that largely retains cooperation. Define, for
B ⊆ E and an edge e ∈ E , the marginal cost of e with
respect to B as ρe(B) = f(B ∪ e)− f(B). Submodularity
implies diminishing marginal costs: ρe(B) ≤ ρe(A) for all
A ⊆ B ⊆ E \ {e}.

Lemma 1. For a submodular f : 2E → R+, and an arbi-
trary B ⊆ E , define hB,f : 2E → R+ as

hB,f (A) , f(B)+
∑

e∈A\B

ρe(B)−
∑

e∈B\A

ρe(E\{e}). (4)

The function hB,f is a modular upper bound on f .

Proof. For any sets A,B ⊆ E , it holds that [26]

f(A) ≤ f(B) +
∑

e∈A\B

ρe(B)−
∑

e∈B\A

ρe((A∪B) \ {e}).

(5)
Bound (4) follows by diminishing marginal costs: ρe(E \
{e}) ≤ ρe((A ∪B) \ {e}). Modularity is immediate.
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This bound adds an upper bound on the cost of A \B and
subtracts a lower bound on the cost of B \ A. The bound,
moreover, is tight at A = B, i.e., hB,f (B) = f(B).

Importantly, the cut cost hB,f is efficient to minimize
using standard minimum cut, thanks to its modularity. For
G = (V, E , f), define GB = (V, E , wB) with edge weights

wB(e) =

{
ρe(E \ {e}) if e ∈ B
ρe(B) otherwise.

(6)

For a nondecreasing f , the weights wB are nonnegative.

Lemma 2. The minimum (s, t)-cut in GB is a minimizing
cut for the bound hB,f .

Proof. With weights wB , the cost of a cut Γ ⊆ E is∑
e∈Γ

wB(e) =
∑

e∈B∩Γ

ρe(E \ {e}) +
∑

e∈Γ\B

ρe(B) (7)

= hB,f (Γ)− f(B) +
∑
e∈B

ρe(E \ {e}). (8)

Since f(B) and the sum are constant for a fixedB,wB(Γ) =
hB,f (Γ) + const for any edge set Γ ⊆ E .

Using hB,f , we derive an iterative minimization proce-
dure (Algorithm 1). Given an initial reference set B, we find
the minimum cut Γ with respect to hB,f . Then we adjust
the bound to be tight at Γ and repeat. Thus, hB,f is always
tight at the currently best solution. The algorithm starts with
an initial reference set Ij ∈ I, the simplest case of which
is I = {∅}. For further improvements, other options in-
clude setting I to the elements of a cut basis, e.g., the cuts
induced by cutting edges of a spanning tree. For our exper-
iments in Section 8, however, I = {∅} was sufficient, and
the algorithm converged in less than 10 iterations.

Algorithm 1: Iterative bound minimization

Input: G = (V, E); submodular cost f : 2E → R+
0 ;

reference initialization set I = {I1, . . . , Ik},
Ij ⊆ E ; source /sink s, t ∈ V

Output: cut B ⊆ E
for j = 1 to k do

find (s, t)-mincut Γ for edge weights wIj
;

repeat
Bj = Γ;
find (s, t)-mincut Γ for edge weights wBj ;

until f(Γ) ≥ f(Bj);
return B = argminB1,...,Bk

f(Bj);

As a result of Lemma 2, the algorithm alternates between
adjusting weights and computing a minimum cut. Implemen-
tation efficiency can be improved by noting that the marginal

cost of an edge e depends only on edges that cooperate with
e. The weights wB show how hB captures the cost-reducing
effect of f : ρe(B) < f(e) if e cooperates with B. For a
modular function f = fm, ρe(B) = fm(e) and Algorithm 1
becomes the standard minimum cut.

Lemma 3 gives an approximation bound for the initial so-
lution Γ∅ for h∅,f , which improves in subsequent iterations.

Lemma 3. Let Γ∅ ∈ argmin{h∅,f (Γ) | Γ ⊆ E an (s, t)-
cut } be a minimum cut for h∅,f , and Γ∗ ∈
argmin{f(Γ) | Γ ⊆ E an (s, t)-cut } an optimal solution.
Let ν(Γ∗) = mine∈Γ∗ ρe(Γ∗ \ {e})/maxe∈Γ∗ f(e). Then

f(Γ∅) ≤
|Γ∗|

1 + (|Γ∗| − 1)ν(Γ∗)
f(Γ∗) ≤ |Γ∗|f(Γ∗).

The proof is deferred to [16]. For the functions we use in
Section 5, the term ν(Γ∗) is always nonzero and the second
inequality is strict. Lemma 3 is a worst case bound and
holds for any nondecreasing submodular f . In practice, the
algorithm usually performs much better [17].

5. Structured cooperation for segmentation
We now apply edge cooperation to interactive figure-

ground segmentation, where, given initial user input, the
remaining pixels are to be labeled as object or background.
In particular, we address the problems shown in Figure 1:
while graph cuts have been used successfully for this task,
they are known to shortcut elongated boundaries, especially
in low contrast, shaded regions (see also Figs. 3, 4, 5). These
failures are caused by the commonly used pairwise energy
inherent to standard grid-structured MRFs:

E(x) =
∑
i∈I

ψi(xi) + λ
∑

(i,j)∈En

ψij(xi, xj) (9)

= w(Γ(X(x)) ∩ Et) + λw(Γ(X(x)) ∩ En) + const.

The associated graph G = (V, E) has terminal edges Et,
and a grid of inter-pixel edges En expressing the pairwise
potentials. While the former integrate user interaction, the
latter enforce smoothness and coherency. The edge weights
on En are a function of the intensity gradient; their sum
may be seen as the weighted length of the boundary. This
penalty favors short boundaries, and thus results in the afore-
mentioned shortcutting. Lowering the coefficient λ is not a
solution since boundaries become noisy and true background
is included into the hypothesized foreground (Fig. 5).

Instead, we utilize edge cooperation to selectively reward
global features of true boundaries. Specifically, we retain
G and replace only the over-smoothing inter-pixel cut by a
cooperative cut:

Ef (x) = w(Γ(X(x)) ∩ Et) + λf(Γ(X(x)) ∩ En) (10)

=
∑

i∈I
ψi(xi) + λf(Γ(X(x)) ∩ En). (11)
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Since an object boundary consists of cut edges in G, we
desire a submodular edge cost f that captures desirable
boundary features. We observe that, along true object
boundaries, many images possess a certain congruence, and
this may be true globally throughout the image. Boundary
congruity materializes in a number of contexts. For example,
of the many inter-pixel color gradients in Figures 3, 5, only
few occur along the true boundary in difficult regions; and
shortcutting introduces new, incongruous, boundary types.
Moreover, the repetitiveness of patterned backgrounds
retains congruity to a large extent. Similarly, there is
congruity between lighted and shaded regions in Figure 1,
if shade is neutralized. In this latter case, we thus need a
shade-invariant congruity criterion.

Consequently, f should (i) decrease the penalty for glob-
ally congruous boundaries, (ii) retain the common smoothing
effect of pairwise potentials for incongruous boundaries, and
(iii) allow automatic and efficient adaptation of the congru-
ence criterion to each image.

We define congruity in terms of classes of similar edges,
S(z̄) = {S1, S2, . . . , S`}, Si ⊆ En and En =

⋃
i Si. Con-

gruous boundaries use few classes. Submodularity may
selectively reward congruity since it possesses diminishing
marginal costs. We make f submodular, however, only
within classes, and modular across classes:

f(Γ) =
∑

S∈S(z̄)
fS(Γ ∩ S). (12)

As a result, (i) the marginal cost of an edge decreases only
when enough edges from the same class are cut. The discount
increases with the number of edges included from that class.
On the other hand, (ii) there is no discount for cuts that use
edges from many classes, i.e., incongruous cuts. The class
costs fS are thresholded discount functions,

fS(Γ) =

{
w(Γ ∩ S) if w(Γ ∩ S) ≤ θS

θS + g(w(Γ ∩ S)− θS) if w(Γ ∩ S) > θS

,

(13)
for any nondecreasing, nonnegative concave function g :
R→ R. For our experiments, we chose g(x) =

√
x. Alter-

natives include g(x) = log(1+x) or roots g(x) = x1/p (Fig-
ure 2(b)). The modular case (9) corresponds to g(x) = x.

To adapt f , we infer the classes by clustering edges En
for each image. Furthermore, the discount only sets in after a
threshold θS is reached, and we adapt θS to the total weight
of the class, i.e., θS = ϑw(S) for ϑ ∈ [0, 1], which improves
scale-invariance. For large objects or images, more edges
are in a class, requiring more cutting to observe a discount.
The factor ϑ trades off between completely modular cuts
(ϑ = 1) and completely cooperative cuts (ϑ = 0).

The quantitative gauge of “congruence” depends on the
distance measure used to cluster the edges. For an edge
e = (vi, vj) with observed pixel values zi, zj , we define two
possible feature vectors φ(e): (i) for uniformly lit images,

potential cooperating edges f(Γ)

Graph Cut E w(Γ)
congruence (Sec. 5) groups of En

P
S gθ(w(Γ ∩ S))

(binary) Pn [19] E in G′ g(|Γ|)
rand. walker [11] E

p
w2(Γ)

`∞ [31] En maxe∈Γ∩En w(e)
class labels [25] Et fL(

S
e∈Γ l(e))

Table 1. Examples of cooperative cuts; l(e) is the label of edge e
[16], and w(Γ) (w2(Γ)) the sum of (squared) weights.

we use linear color gradients, φl(e) = zj − zi, and squared
Euclidean distance for clustering; and (ii) for shading, we use
log intensity ratios φr(e) = log(zj/zi) (channel-wise for
color images) which are approximately invariant to shading,
and `1 distance for clustering. In each case, we use the
features (φl(e), or φr(e)) for clustering edges, and use the
standard weights w(e) inside of f .

6. The expressive power of cooperative cuts

Cooperative cuts cover (and strictly generalize) a number
of recent approaches in computer vision (summarized in
Table 1). Note, however, that cooperative cut is not a special
case of any these methods (e.g., some are not NP-hard).

Kohli et al. [19] consider P |C| potentials of the form
ψC(xC) = g(

∑
i,j∈C ψ̃C,i,j(xi, xj)) for a concave, nonde-

creasing function g and clique C. Because of the structure of
their ψC , in the binary case, the sum of pairwise potentials
ψ̃C,i,j is representable as cuts in a graph. These potentials
are special cases of cooperative cut potentials that remain
regular [19], unlike the example in Figure 2. Similarly, the
αβ swap for a multi-label ψC is a cooperative cut, as is the
α expansion if ψ̃ is a metric [16]. The Pn Potts model [19]
and robust Pn potentials [20] are regular special cases of
cooperative cut as well [16].

In class-based image segmentation, each pixel must be
labeled by an object class. Ladický et al. [25] suggest a
global potential fL(L(x)) on the set of class labels L(x)
used in x. If fL : 2L → R+ is nondecreasing and submodu-
lar, then the α expansion can be formulated as a cooperative
cut on Et [16]. The co-occurrence function fL(L) in [25] is
not submodular with respect to class labels. An alternative,
submodular fL could count the number of training images
whose labels do not contain the entire set L(x). The label-
cost function in [6] is submodular and thus a cooperative
cut on Et, as it corresponds to a neighborhood function in a
bipartite graph [16].

Lastly, Sinop and Grady [31] express an objective for
variants of the Random Walker algorithm [11] as E(x) =
(
∑

(i,j)∈E w
q
ij |xi − xj |q)1/q. In a discrete version, |xi −

xj | = 1 if and only if the edge (vi, vj) is cut. Since
the qth root is concave for q ≥ 1, f(Γ) = (wq(Γ))1/q

is submodular. The same holds for the q → ∞ version
E(x) = max(i,j)∈E wij |xi − xj |. Therefore, the discrete
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case of [31] is a cooperative cut as well.

7. Other related work
Starting with [12], graph cuts have become standard in

computer vision, with many applications [2, 3, 4, 14, 13].
In the standard case, the cut represents a pairwise, regular
energy, but graph cuts can also be used for non-submodular
pairwise potentials [22] and ratio problems [21].

Beyond pairwise energies, efficiently optimizable higher
order potentials have been the subject of many recent studies
([15, 18, 24] and references therein), but the structure of
those potentials is very different from edge cooperation.
Examples of higher order constraints include single global
constraints such as connectivity [27], statistical constraints
[25], or clique potentials enforcing homogeneity for groups
of nodes [19]. While user-interactive connectivity has been
used to tackle shrinking bias [32], it may become tedious
for trees (Fig. 5), and does not address holes (Fig. 4).

8. Experiments
For the task of interactive figure-ground segmentation,

our experiments address three main questions: (i) What
is the effect of coupling edges, and does this strengthen
correct boundaries? We compare Ef (CoopCut) from
Section 5 to the standard graph cut (GC) [2] for pairwise
potentials. (ii) What is the effect of the structure of coupling,
i.e., the classes Si? (iii) Does edge cooperation harm the
segmentation of objects requiring standard smoothing?

We use color and grayscale images of complicated ob-
jects, with and without shading. Since, to our knowledge,
no public database exists for such images, we created our
own hand-labeled collection. Images and code are available
at ssli.ee.washington.edu/˜jegelka/cc. For
(iii), we use the Grabcut data [1, 28].

Both methods use the same 8-neighbor graph structure,
the same unary potentials and inter-pixel edge weights
w(e) = 2.5 + 47.5 exp(−0.5‖zi − zj‖2/σ) for edges
e = (vi, vj) and variance σ of color gradients (parameters
as in [32]). The unary potentials are either based on color
histograms [2] or on Gaussian mixture models (GMMs)
with 5 components [28, 32]. Edge classes are inferred by
k-means clustering, and edges between identically colored
pixels form an extra class S′ with no discount (ϑS′ = 1).
Errors are the percentage of wrongly assigned unlabeled
pixels. To quantify the recovery of fine object parts that
only make up a small fraction of the pixels, we compute
the “twig error” on these delicate parts only. We chose good
parameters for each method. In Tables 2, 3, parameters are
the same on all images. All algorithms were implemented
in C++, using the graph cut code [3], OpenCV, and some
Matlab pre-processing. For details and more results, see
[16].

The results show that (i) cooperation helps to track bound-
aries into shaded regions, and preserves fine segments; (ii)
what matters is the structure of cooperation; and (iii) the
improvements on complicated boundaries do not harm the
results for “standard” boundaries.

Experiment 1: Shading gradient. Table 2 shows
segmentation errors on shaded objects in (a) 8 grayscale
and (b) 7 color images. On such images, the unary terms
are very noisy (Figs. 1,3). Coupling edges using φr reduces
the error, compared to GC, by up to two thirds. Figures 3
and 4 show that CoopCut recovers the object shape much
better. To ensure that not the mere ratio information but
cooperation makes the difference, we ran GC with (“log”)
edge weights derived from φr: the errors improve only
slightly. To probe the effect of the classes Si, we compare
against a cooperative cut with only one class (plus the class
S′). Such uniform, unstructured coupling is much less
effective, i.e., the structure implied by the Si is crucial.

CoopCut does not model shading explicitly, but cancels
shading effects via φr. Thus, it also improves results if the
shade varies locally with higher frequency. We artificially
shaded images from Expt. 2, by multiplying the pixel at loca-
tion (x, y) by 0.4(1 + sin(2πy/γ)) (γ ∈ [10, 120]). Unary
terms were computed from the modified image. Figure 4
shows an example, and Table 2 lists average errors over 18
such images. Indeed, CoopCut halves the total error of GC,
and preserves delicate structures much better than GC.

Experiment 2: Thin, elongated parts and holes. To
examine the effect of coupling in uniformly lit images, we
compute the total and twig error for 17 images with delicate
objects. Table 2(d) and Figure 5 show results for two param-
eter settings: (1) low overall error, and (2) low twig error.
Graph cut roughly recovers fine structures if the smoothness
term is reduced, but at the price of a high overall segmenta-
tion error. CoopCut preserves fine parts without including
pieces of background. Total and twig error are minimized
simultaneously. In comparison, curvature regularization (as
in [7], with our unary terms) is more sensitive to noise in the
unary terms (which are less noisy in [7, 29]).

Experiment 3: Grabcut data. As a “sanity check”, we
address the effect of cooperation with objects that are rounder
and need regularization. Table 3 displays the errors for GC
and CoopCut on the 50 images of the Grabcut data set [1, 28]
with the “Lasso” labeling. Even here, CoopCut slightly
improves the results on both color models. Figure 3 shows
segmentations for two objects where GC faces the shrinking
bias and CoopCut recovers the shape.

The optimal parameter choice varies slightly with the
setting, like with standard graph cuts, but the errors show
that one choice is reasonable for a wide range of images.
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labels unary terms GC CoopCut, 15 cl.
6.44% 0.49%

0.18% 0.04%

GC CoopCut
5.97% 5.80%

6.56% 4.79%

Figure 3. Example results and errors for Expt. 1 (left) and the Grabcut data (right). GC has minimum-error parameters λ = 1.2, 1.0;
CoopCut (λ, 104ϑ) = (8, 5) on both images. Grabcut data: GC λ = 1.3, 0.05, CoopCut (15 & 10 classes): (λ, 104ϑ) = (12, 3), (0.4, 7).

GC, low error GC, low twig err curvature reg. CoopCut, 15cl.
0.64% 4.12% 15.44% 0.31%

0.95% 1.35% 1.40% 0.45%

Figure 5. Example results for Experiment 2. Cooperation preserves legs and fine twigs without including pieces of background (arrows).
Parameters: GC low err λ = 1.5, 0.05, GC low errtwig λ = 1.0, 0.001; curv. λ = 0.03, 0.002, CoopCut: (λ, 104ϑ) = (1.5, 9), (1.8, 10).

GC CoopCut
7.65% 3.50%

1.24% 0.76%

5.08% 0.64%

Figure 4. Results on shaded color images for 15, 20 and 25
classes (top to bottom). Parameters chosen for low total and
twig error; GC: λ = 0.1, 0.05, 0.1; CoopCut: (λ, 104ϑ) =
(4.5, 6), (7.0, 3), (1.5, 50). The zoom-in shows a part of the grid.

GMM hist.
GC 5.33± 3.7 6.88± 5.0
CoopCut φl, 20 cl. 4.95± 3.2 6.25± 4.3
CoopCut φr, 20 cl. 4.79± 3.1 6.12± 4.0

Table 3. Errors on the Grabcut data with both feature types.

9. Discussion

We introduced a general model, cooperative cuts, that
can express a family of global potentials and reward
co-occurrences, while still being approximable efficiently.
We demonstrated its effectiveness for image segmentation,
where we reward the co-occurrence of local boundary
features. Key to this is a new class-structured cooperation
that drives to globally cut similar edges, instead of merely
few edges. Our approach can thus be viewed as a discrete
structured sparsity. Furthermore, it can be extended to
multiple labels. Swap or expansion moves then become
cooperative cuts. Finally, the relations to other recent models
imply that segmentation is only one possible application of
the rich modeling capabilities of cooperative cuts.
Acknowledgments. We thank Sebastian Nowozin, Peter
Gehler and Christoph Lampert for comments, and Richard
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(a) shading graysc. (b) shading color (c) high-frequ. shading (GMM) (d) Expt. 2 (GMM)
GMM hist GMM hist (1) tot twig (2) tot twig (1) tot twig (2) tot twig

unary terms 15.66 17.42 4.42 8.18 5.50 14.55 5.50 14.55 5.73 15.47 5.73 15.47
GC 14.03 14.71 3.41 6.49 2.56 20.96 3.43 13.54 2.10 34.40 3.78 18.08
GC,log weights 13.67 14.13 3.63 6.54 2.58 23.21 4.11 13.52 n/a n/a n/a n/a
CoopCut,1 11.58 10.61 2.95 5.31 1.49 33.03 3.10 12.53 1.25 34.35 4.73 15.60
CoopCut,10 4.39 5.02 1.67 3.05 1.26 14.79 1.65 12.47 1.01 18.27 1.17 16.43
CoopCut,15 3.63 4.27 1.69 2.94 1.27 14.69 1.73 12.39 1.01 26.32 1.02 16.36
CoopCut,20 4.33 4.48 1.62 3.00 1.29 18.10 1.62 12.01 0.98 17.78 1.16 15.91
curvature reg. 17.40 19.48 3.93 7.37 3.38 34.50 4.70 14.08 3.82 56.09 5.73 16.00

Table 2. Average error (percent mispredicted pixels) for Expt. 1 and 2. GC: Graph Cut, Coopcut: Cooperative Cut with 1-20 classes. (a), (b)
total error across 8 and 7 images; (c), (d) total and twig error across 18 and 17 images, respectively; (c), (d) results for parameters with (1)
minimum total error, and (2) minimum joint error (2errtotal + errtwig). CoopCut achieves low total and twig error, whereas GC can only
minimize one of those. Twig error is overall higher since it counts fewer pixels. Results with histogram unary terms are similar [16].

Karp for the name “cooperative cut.”
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