
Stella Lau

Theory and implementation of a general framework
for big operators in Agda

Computer Science Tripos – Part II

Trinity College

18 May 2017

Proforma

Name Stella Lau
College Trinity College
Project Title Theory and implementation of a general framework for

big operators in Agda
Examination Computer Science Tripos, Part II (June 2017)
Word Count 119871
Project Originator Timothy Griffin
Project Supervisors Marcelo Fiore and Timothy Griffin

Original aims of the project

The project aims to formalize the notion of big operators, develop a general frame-
work to derive equationsmanipulating big operator expressions, and provide a for-
mal implementation in the dependently typed language and proof assistant Agda.
The project aims to generalise previous work on big operators and develop a the-
oretical framework to derive more classes of equations in a more general way,
providing a big operator library in Agda for formal verification of correctness as
well as to demonstrate the usability of the approach.

Work completed

I have met all my proposed success criteria and have implemented two extensions.
More importantly, I have developed the theory for a general framework for big
operators based on the idea of monads and their algebras from the mathematical
theory of categories. I have shown how different big operator equations can be
derived in a general way using this framework, and provided an associated imple-
mentation of a big operator library in Agda that formalizes the theory. Further-
more, I have provided examples of proofs written using the library to demonstrate
the usability of the approach.

1Number of words in the main body of the report as computed by TEXcount, http://app.
uio.no/ifi/texcount/. This word count includes footnotes, but omits code listings and
appendices.

1

http://app.uio.no/ifi/texcount/
http://app.uio.no/ifi/texcount/

Special difficulties

None.

Declaration of Originality

I, Stella Lau of Trinity College, being a candidate for Part II of the Computer
Science Tripos, hereby declare that this dissertation and thework described in it are
my own work, unaided except as may be specified below, and that the dissertation
does not contain material that has already been used to any substantial extent for
a comparable purpose.

Signed: Stella Lau
Date: 18 May 2017

2

Contents

1 Introduction 5
1.1 Motivation and related work . 7
1.2 Contributions . 9

2 Preparation 11
2.1 Requirements analysis . 12
2.2 Category theory background . 14

2.2.1 Category . 15
2.2.2 Functor . 15
2.2.3 Natural transformation 16
2.2.4 Monad . 17
2.2.5 T-algebra . 18

2.3 Agda . 19
2.3.1 Basic data types and pattern matching 19
2.3.2 Dependent types . 20
2.3.3 Curry-Howard correspondence 21
2.3.4 Equality . 24
2.3.5 Proof example . 25

2.4 Summary . 26

3 Implementation 28
3.1 Big operators . 29

3.1.1 Mathematical definition of big operators 29
3.1.2 Implementation of big operators in Agda 31
3.1.3 Generic big operator equations 32

3.2 Monads . 34
3.2.1 Free monads . 35
3.2.2 Lists . 35
3.2.3 A permutation library 38
3.2.4 Finite multisets . 41

3

3.2.5 Strength . 43
3.2.6 Commutative monads 44

3.3 Monad algebras . 47
3.3.1 List algebras from monoids 47
3.3.2 Multiset algebras from commutative monoids 49
3.3.3 𝑇 -algebra homomorphisms 50

3.4 Usability . 53
3.4.1 From the language of algebra to category theory 53
3.4.2 Types with propositional equality 54
3.4.3 List comprehensions . 55

3.5 Summary of equations . 57

4 Evaluation 59
4.1 A demonstrative proof in Agda 59

4.1.1 Defining the proposition in Agda 60
4.1.2 Proving the proposition 62

4.2 Practicality and usability of the library 64
4.3 A discussion of equations . 65
4.4 Correctness of the theory and implementation 66
4.5 Success criteria . 66
4.6 Summary . 67

5 Conclusion 68
5.1 Results . 68
5.2 Overview . 69
5.3 Lessons learned . 70

Bibliography 71

A Category theory supplementals 75

4

Chapter 1

Introduction

Contents
1.1 Motivation and related work 7
1.2 Contributions . 9

In mathematics, it is often convenient to notationally express the iteration of a bi-
nary operator over a collection of values using a “big operator”. As an example,
∑ is a big operator denoting the iteration of the binary operator + over a collec-
tion of expressions, bracketed in some prescribed way (that does not matter as the
operator is associative). Used in an expression such as

∑
𝑘∈{0,…,𝑁}

𝑥𝑘

𝑘!

the big operator concisely and declaratively expresses the sum of the numbers
𝑥𝑘/𝑘! for all values of 𝑘 from 0 to 𝑁 . This notation reveals hidden symmetries
andmethods of manipulating and reasoning about the expression using a rich set of
partitioning, reindexing, and commutation equations commonplace in the mathe-
matical vernacular; see, for example, Table 1.1. These tools are ubiquitous in
informal mathematics, but are not fully supported as formal constructs in their
full generality in many proof assistants [6]. This dissertation contributes in this
direction.
One can think of big operators as lifting a binary operator from acting on two
values to acting on a finite collection of values. We generate a collection of values
(for example numbers from 0 to𝑁), apply some function to these values, and then
operate on them with the big operator. We can formalize this idea to show that big
operators share a common structure, and thus we should be able to derive equations

5

Equation

Unit identity ⋁
𝑥∈{0}

𝑓(𝑥) = 𝑓(0)

Composition ∑
𝑥∈𝑆

𝑓(𝑔(𝑥)) = ∑
𝑦∈{𝑔(𝑥)|𝑥∈𝑆}

𝑓(𝑦)

𝜇-identity min
𝑥∈(𝑙1++⋯++𝑙𝑛)

𝑓(𝑥) = min
𝑙∈[𝑙1,…,𝑙𝑛]

min
𝑥∈𝑙

𝑓(𝑥)

Distributive law 𝑐 ⋅∑
𝑥∈𝑡

𝑓(𝑥) = ∑
𝑥∈𝑡

(𝑐 ⋅ 𝑓(𝑥))

Homomorphism 𝑐∑𝑘∈𝐾 𝑓(𝑘) = ∏
𝑘∈𝐾

𝑐𝑓(𝑘)

Commutative law ∏
𝑥

∏
𝑦

𝑓(𝑥, 𝑦) = ∏
𝑦

∏
𝑥

𝑓(𝑥, 𝑦)

Partition law
𝑛

∑
𝑖=1

𝑓(𝑖) = ∑
1≤𝑖≤𝑛
𝑖 odd

𝑓(𝑖) + ∑
1≤𝑖≤𝑛
𝑖 even

𝑓(𝑖)

Product law
5𝑛
∑
𝑖=1

𝑓(𝑖) =
𝑛−1
∑
𝑖=0

5
∑
𝑗=1

𝑓(5 ⋅ 𝑖 + 𝑗)

Commutativity ∑
1≤𝑘≤𝑛

𝑓(𝑘) = ∑
𝑛≥𝑘≥1

𝑓(𝑘)

Distributive product ∑
𝑗∈𝐽,𝑘∈𝐾

𝑓(𝑗)𝑔(𝑘) = (∑
𝑗∈𝐽

𝑓(𝑗))(∑
𝑘∈𝐾

𝑔(𝑘))

Filtering lemma ∑
1≤𝑘≤𝑛
𝑘 even

⌊𝑘/2⌋ = ∑
1≤𝑘≤𝑛
𝑘 even

𝑘/2

Table 1.1: Examples of big operator equations

6

to reason about them with minimal assumptions in a unified fashion. Furthermore,
we can lift the particular properties (such as associativity or commutativity) of the
binary operator to the big operator to obtain a rich set of equations to reason about
the lifted operator.
This dissertation presents the theory and formalization of a new, general frame-
work for big operators. From a theoretical point of view, it is based on the idea
of monads and their algebras from the mathematical theory of categories. From
a practical point of view, we formalize the theory through implementing it in
Agda [28], a dependently typed programming language and proof assistant, and
present a working big operator library.

1.1 Motivation and related work

This project is motivated and guided by the following.

Problem I. Formalization of big operators We aim to formally define the no-
tion of a big operator and develop an associated framework for them, exploiting
a common construction shared by big operators in order to derive equations to
reason about big operators in a general form.
This goal was inspired by work from Bertot et al. [6], which presented an approach
to big operators in terms of folding over sequences. Marcelo Fiore and Timothy
Griffin [10] observed that this idea could be generalised to arbitrary containers and
proposed a definition and thus approach for big operators in terms of monads and
their algebras from category theory.
The challenge for this dissertation was to develop a mathematical theory for big
operators based on the proposed definition from category theory, and attempt to
derive equations such as those in Table 1.1 in the general framework.
Intuitively, big operator expressions encompass four aspects:
– A collection of values.
– A mapping from values in the collection to some other values.
– The type of the values we are computing.
– The big operator itself, which denotes how to combine the collection of values
into a single value.

7

For example, in the expression
𝑁
∑
𝑥=1

𝑥2

we can think of the collection of values as the list [1, 2,… ,𝑁] and the mapping
as the function 𝑓 ∶ ℕ → ℕ given by 𝑓(𝑥) = 𝑥2. The type of the values we are
computing is the natural numbersℕ and the big operator corresponds to summation
over a list.
We will show that the collection of values and the action of mapping over a col-
lection can be represented using the monad structure from category theory (also
used in functional programming), and the big operator action of ranging over a
collection (or monad) by an algebra for the monad.

Problem II. Manipulation of big operator expressions Big operators give rise
to operations that let us manipulate expressions succinctly. We can rearrange,
partition, reindex, and distribute over expressions in a way that reveals hidden
symmetries [6]. For example, exp(𝑥 + 𝑦) ≡ exp(𝑥) × exp(𝑦) expresses that ex-
ponentiation forms a homomorphism1 between addition and multiplication. We
can extend this to an associated big operator equation

𝑐∑𝑎∈𝐴 𝑓(𝑎) ≡ ∏
𝑎∈𝐴

𝑐𝑓(𝑎)

This is similar to the equation

¬(⋁
𝑎∈𝐴

𝑓(𝑎)) ≡ ⋀
𝑎∈𝐴

¬𝑓(𝑎)

in which¬ is the homomorphism between∨ and∧ given by DeMorgan’s law [14].
From these observations, one can synthesize a general big operator equation that
states that if 𝑔 is a homomorphism from ⊕ to ⊗, then

𝑔(⨁
𝑥∈𝐴

𝑓(𝑥)) ≡ ⨂
𝑥∈𝐴

𝑔 (𝑓(𝑥)) (1.1)

We will derive such equations using minimal assumptions in a general form, find-
ing it convenient to use the language of category theory. The abstract represen-
tation of big operators in terms of monads and their algebras gives rise to many
equations just by the algebraic properties of the structures. By progressively in-
stantiating the structures, we can derive more specific equations in a unified way.

1Recall that a map 𝑔 ∶ 𝐴 ↦ 𝐵 is a homomorphism for ⊕ on 𝐴 and ⊗ on 𝐵 if
∀𝑥, 𝑦 ∈ 𝐴. 𝑔(𝑥 ⊕ 𝑦) ≡ 𝑔(𝑥) ⊗ 𝑔(𝑦).

8

Problem III. Formal implementation We aim to provide a computer imple-
mentation of our theoretical framework for big operators in a proof assistant as a
proof of concept and as a way of formalizing the theory.
We will structure a modular implementation of big operators based on our frame-
work in Agda. Agda’s type theory is used to enforce correctness and ensure the
careful handling of issues that are often ignored in informal mathematics but are
crucial for formal verification.
Proof assistants such as Isabelle [27], HOL [16], Coq [39], and Agda [28] simplify
the development of formal proofs. Providing support for big operators in proof as-
sistants increases the classes of proofs that can be naturally expressed. Implemen-
tations of big operators in Isabelle and HOL are based on classical logic, which
does not allow for direct program execution in the way that constructive logic does.
Our implementation is more similar to those in Coq and Agda, which are in the
type-theory family of proof assistants and feature dependent types that can be used
with the Curry-Howard correspondence (recalled in § 2.3.3) to create mechani-
cally verified mathematical proofs. Our implementation was inspired by work by
Bertot et al. [6] in Coq based on folding over sequences, a Part III dissertation by
Leonhard Mackert [23] in Agda based on folding over lists, and Gustafsson and
Pouillard [14, 15] in Agda based on “exploration functions.”

Problem IV. Usability We would like our implementation to be practically us-
able and for proof-writing to resemble pen-and-paper mathematics. We provide
an interface that abstracts away from the categorical foundations of the library and
exploits Agda’s equational reasoning (see § 2.3.5) to ensure that proof-writing is
similar to pen-and-paper mathematics.

1.2 Contributions

This project addressed each of the problems presented in § 1.1 and contributed the
following.

Problem I. Formalization of big operators
We developed and formalized a general framework for big operators
based on monads and their algebras [10]. This has not been done at
the abstract level of category theory.
Problem II. Manipulation of big operator expressions
We developed a theory for operator properties such as associativity,

9

distributivity, and commutativity in our categorical framework, and
used it to derive general equations to manipulate big operator expres-
sions.
Problem III. Formal implementation
We designed and implemented a modular, generic framework for big
operators in Agda. We implemented and instantiated a variety of mon-
ads (tree, list, multiset, powerset) and operator properties. We present
a big operator library with lemmas and big operator equations for com-
mon algebraic structures.
Problem IV. Usability
We developed a library that is based on the abstract categorical def-
initions while also providing an interface for users that requires no
familiarity with category theory. The library exploits Agda’s equa-
tional reasoning to enhance applicability, ensuring that proof writing
is similar to pen-and-paper mathematics. We demonstrated the use of
the library bywriting proofs usingmonadswith a variety of properties.

Table 3.3 on page 58 is a general version of Table 1.1, presenting examples of big
operator equations that we derive generically in our categorical framework and
implement in Agda.

10

Chapter 2

Preparation

Contents
2.1 Requirements analysis . 12
2.2 Category theory background 14

2.2.1 Category . 15
2.2.2 Functor . 15
2.2.3 Natural transformation 16
2.2.4 Monad . 17
2.2.5 T-algebra . 18

2.3 Agda . 19
2.3.1 Basic data types and pattern matching 19
2.3.2 Dependent types . 20
2.3.3 Curry-Howard correspondence 21
2.3.4 Equality . 24
2.3.5 Proof example . 25

2.4 Summary . 26

This chapter begins with an informal analysis of big operators to motivate the re-
maining sections, followed by an introduction to the category theory, dependent
type theory, and Agda fundamentals needed to understand the rest of the report.

11

2.1 Requirements analysis

Problem I. Formalization of big operators

Consider the following formula:

∑
0≤𝑘≤𝑛

(𝑎 + 𝑏𝑘) (2.1)

From the above formula and equations in Table 1.1, we observe that big operator
expressions have a container of values (0, 1,… , 𝑛 in the example) and a function 𝑓
that transforms the values in the container. In the example, 𝑓(𝑘) = 𝑎 + 𝑏𝑘. Thus,
the above can be expressed in a more general form:

∑
𝑘 in 𝑆

𝑓(𝑘)

In order to formalize the notion of big operators, we need to formalize such con-
tainers and functions acting upon them. In type theory, we can represent a collec-
tion of values of type 𝐴 as a new type 𝑇 (𝐴), where 𝑇 is a type constructor. For
instance, we might regard the collection of values to be of type List ℕ1. List acts
as a type constructor that takes a type 𝐴 and forms a type List 𝐴, the type of lists
containing values of type 𝐴. Now given a mapping 𝑓 from 𝐴 to some type 𝐵, we
need a way of lifting 𝑓 to operate on a list of type 𝐴 to compute a list of type 𝐵,
that is to take a list [0, 1,… , 𝑛] and compute [𝑓(0), 𝑓(1),… , 𝑓(𝑛)].
Amonad from category theory contains a type constructor 𝑇 and a way of “lifting”
maps 𝑓 ∶ 𝐴 → 𝐵 to maps from 𝑇 (𝐴) to 𝑇 (𝐵) (along with some desirable proper-
ties), which is precisely what we need. Thus, we represent the collection of values
as relating to a monad (in our example, the list monad). Finally, we need a way
of ranging over the container to transform our list of type List ℕ (after applying
𝑓) to a single value of type ℕ; we need a map List ℕ → ℕ. This corresponds to
an algebra for the list monad, which consists of a type 𝐵 and a map List 𝐵 → 𝐵
along with some desirable properties.
We find it convenient to use the language of category theory, which provides a
general theory of functions as well as a rich conceptual background for reason-
ing about structures and their “admissible transformations”. § 2.2 provides the
necessary category theory background to understand the report.

1We will show that a more appropriate representation is a multiset.

12

Problem II. Manipulation of big operator expressions

We want equations and lemmas to reason about big operator expressions. For
example, the following equation holds by commutativity of addition, which
implies that summing over the list [0, 1,… , 𝑛] is equivalent to summing over
[𝑛, 𝑛 − 1,… , 0].

∑
0≤𝑘≤𝑛

(𝑎 + 𝑏𝑘) ≡ ∑
𝑛≥𝑘≥0

(𝑎 + 𝑏𝑘) (2.2)

By representing the container with the List monad, we “lose” the commutativity
property of addition as [0, 1,… , 𝑛] and [𝑛, 𝑛 − 1,… , 0] are not equivalent lists.
However, the multisets2 {[0, 1,… , 𝑛]} and {[𝑛, 𝑛 − 1,… , 0]} are equivalent, and
thus the multiset is the desired monad. In category theory, we say that the multiset
monad is a commutative monad, and we can derive equations for big operators
acting on any commutative monad. We will show that container types that big
operators act upon (e.g. trees, lists, multisets, and sets) correspond to properties of
the underlying algebraic structure associated with the binary operator (i.e. lists to
monoids and multisets to commutative monoids).
Equation (2.2) can be represented more generally as follows:

𝑆 ≡𝑇𝑋 𝑆′ ⇒ ∑
𝑘 in 𝑆

𝑓(𝑘) ≡ ∑
𝑘 in 𝑆′

𝑓(𝑘) (2.3)

Equality is informally defined for now, but this essentially states that if a container
𝑆 is equivalent (in this case, multiset equivalent) to a container 𝑆′, then operating
over 𝑆 is equivalent to operating over 𝑆′.
Another common operation is index renaming:

∑
𝑛≥𝑘≥0

(𝑎 + 𝑏𝑘) ≡ ∑
0≤𝑘≤𝑛

(𝑎 + 𝑏(𝑛 − 𝑘)) (2.4)

We can write {[𝑛, 𝑛 − 1,… , 0]} as {[𝑔(0), 𝑔(1),… , 𝑔(𝑛)]}, where 𝑔(𝑘) = 𝑛 − 𝑘,
and represent the above equation more generally (see § 3.1.3)):

∑
𝑘 in 𝑇(𝑔)𝑆

𝑓(𝑘) ≡ ∑
𝑘′ in 𝑆

𝑓(𝑔(𝑘′)) (2.5)

This equation states that operating over the container 𝑆 after transformation with
a lifted function 𝑔 is equivalent to composing 𝑓 with 𝑔 and operating over 𝑆. Note
that eqs. (2.3) and (2.5) are general equations that do not make any assumptions
about the container (monad) or operator (algebra); in other words, they do not
assume associativity, commutativity, or any other property.

2A multiset is a set-like object in which ordering is irrelevant but multiplicity is explicitly sig-
nificant. For example, {𝑎, 𝑎, 𝑏} and {𝑎, 𝑏} are equal sets but are not equal multisets.

13

Problem III. Formal implementation

We will implement our big operator framework in Agda’s type theory (introduced
in §§ 2.3.1 and 2.3.2), which will be used for formal verification of the theory. We
will formalize the notion of equality (§ 2.3.4). By the Curry-Howard correspon-
dence (recalled in § 2.3.3), Agda can be used as a proof assistant. We will produce
a working big operator library.

Problem IV. Usability

Agda’s equational reasoning will be used to enhance applicability and ensure that
proof writing is similar to pen-and-paper mathematics. § 2.3.5 provides an exam-
ple of a proof written using equational reasoning in Agda.

2.2 Category theory background

Category theory was invented as a way of studying and characterizing different
kinds ofmathematical structures in terms of their “admissible transformations” [2].
The basic structure of category theory is a category, which consists of objects
𝐴,𝐵,… and arrows between objects 𝑓 ∶ 𝐴 → 𝐵 along with two function-like
properties: the ability to compose arrows associatively and the existence of an
identity arrow for each object.
This notation is familiar from set theory and type theory, in which the objects
𝐴,𝐵,… correspond to types and arrows 𝑓 ∶ 𝐴 → 𝐵 to functions between types.
Category theory is built upon objects and arrows and generalizes the idea of sets
and functions by saying that there are many kinds of structures other than sets and
many kinds of mappings between structures other than functions. For example,
sets are characterized by membership whereas an object in a category does not
necessarily have an associated notion of membership.
Although the initial motivation for category theory was not directly related to type
theory, a number of correspondences have been found between particular kinds
of categories and type theories. For example, Lambek showed that a particular
type of category, called a Cartesian-closed category, corresponds to the typed
𝜆-calculus [22] and Seely showed that locally Cartesian-closed categories corre-
spond to Martin-Löf type theory [37], upon which Agda was based. This interplay
between category theory and type theory, known as categorical logic, provides a

14

rich mathematical background and categorical framework for type-theoretic con-
structions.

2.2.1 Category

Definition (Category). A category 𝒞 consists of objects 𝐴,𝐵,𝐶,… and arrows
𝑓, 𝑔, ℎ,… such that
– For each arrow 𝑓 there are given objects dom(𝑓), cod(𝑓) called the domain
and codomain of 𝑓 . We write 𝑓 ∶ 𝐴 → 𝐵 to indicate that 𝐴 = dom(𝑓) and
𝐵 = cod(𝑓).

– Given arrows 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶, there is an arrow 𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶
called the composite of 𝑓 and 𝑔.

– For each object𝐴 there is given an arrow 1𝐴 ∶ 𝐴 → 𝐴 called the identity arrow
of 𝐴.

– For all arrows 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶, ℎ ∶ 𝐶 → 𝐷, the following holds:

ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓 (associativity law) (2.6)

– For all 𝑓 ∶ 𝐴 → 𝐵, the following holds:

𝑓 ∘ 1𝐴 = 𝑓 = 1𝐵 ∘ 𝑓 (unit laws) (2.7)

In type theory, we can think of the objects 𝐴,𝐵,𝐶 … as types and the arrows as
functions between types. A familiar example of a category is the category 𝒮𝑒𝑡, in
which the objects are sets and the arrows are functions. Note that category theory
itself does not insist that objects have elements.

2.2.2 Functor

Type constructors in functional programming and type theory like ×,→, and List
correspond to functors in category theory. Functors are maps between categories.
A functor 𝐹 ∶ 𝒞 → 𝒟 from category 𝒞 to 𝒟 maps objects of 𝒞 to objects of 𝒟
and arrows of 𝒞 to arrows of 𝒟 such that the source and target of the arrow are
respected. That is, if 𝐹 maps objects 𝐴 and 𝐵 in 𝒞 to objects 𝐹𝐴 and 𝐹𝐵 in 𝒟,
then it should map arrow 𝑓 ∶ 𝐴 → 𝐵 in 𝒞 to an arrow 𝐹𝑓 ∶ 𝐹𝐴 → 𝐹𝐵 in 𝒟. 𝐹
preserves identity and composition.

15

Definition (Functor). A functor 𝐹 ∶ 𝒞 → 𝒟 between categories 𝒞 and 𝒟 is a
mapping of objects to objects and arrows to arrows such that

𝐹(𝑓) ∶ 𝐹 (𝐴) → 𝐹(𝐵) for 𝑓 ∶ 𝐴 → 𝐵 (2.8)
𝐹(𝑔 ∘ 𝑓) = 𝐹(𝑔) ∘ 𝐹(𝑓) for 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 (2.9)

𝐹(1𝐴) = 1𝐹(𝐴) (2.10)

In the context of 𝒮𝑒𝑡 and type theory, a functor is both a type constructor (mapping
types to types) and amap from functions between types to functions between types.
Note that a functor consists of two maps, one on objects and one on morphisms.
We overload the symbol 𝐹 .
An example of a functor is List ∶ 𝒮𝑒𝑡 → 𝒮𝑒𝑡. The object map of the functor maps
a set (or type) 𝐴 to the set (or type) of lists over 𝐴 (finite sequences of the form
[𝑎1,… , 𝑎𝑛] where each 𝑎𝑖 is an element of 𝐴). The morphism map of the functor
maps a function 𝑓 ∶ 𝐴 → 𝐵 to the function commonly known as map 𝑓 , mapping
list [𝑎1,… , 𝑎𝑛] to [𝑓(𝑎1),… , 𝑓(𝑎𝑛)]. This is written List 𝑓 ∶ List 𝐴 → List 𝐵

2.2.3 Natural transformation

Natural transformations are maps between functors and can be used to represent
polymorphic functions. Polymorphic functions like reverse𝐴 ∶ List 𝐴 → List 𝐴
and map𝐴,𝐵 ∶ (𝐴 → 𝐵) → (List 𝐴 → List 𝐵) represent families of functions
generic in the type parameters. If List is a functor from 𝒞 → 𝒞, then reverse is
a map from List → List. We want polymorphic functions to “act the same way”
on different types. This is “naturality” in category theory, which is intuitively a
condition expressing that natural transformations are structure-preserving maps.
Reverse is natural if for every arrow 𝑓 ∶ 𝐴 → 𝐴′ in 𝒞, the following diagram
commutes:

List 𝐴 List 𝐴′

List 𝐴 List 𝐴′

List 𝑓

reverse𝐴 reverse𝐴′

List 𝑓

That is, one may reverse a list before or after mapping a function over it without
affecting the result.

Definition (Natural transformation). Let𝒜 and ℬ be categories and let𝒜
𝐹−→−→
𝐺

ℬ

be two functors. A natural transformation 𝛼 ∶ 𝐹 → 𝐺 is a family

16

(𝐹(𝐴)
𝛼𝐴−→ 𝐺(𝐴))

𝐴∈𝒜
of maps in ℬ such that for every map 𝐴

𝑓
−→ 𝐴′ in 𝒜,

the square
𝐹𝐴 𝐹𝐴′

𝐺𝐴 𝐺𝐴′

𝐹(𝑓)

𝛼𝐴 𝛼𝐴′

𝐺(𝑓)

(2.11)

commutes in ℬ.

2.2.4 Monad

The theory of monads was initially developed to express certain aspects of alge-
braic geometry. Monads are used in functional programming to express types of
computational effects. For example in Haskell [29], the IO system is constructed
using a monad. In Haskell, the Monad class defines two basic operations: »=
(bind) and return.
class Monad m where

(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
fail :: String -> m a

Subject to a set of laws, the return operation injects a value into a monadic type and
the bind operation composes operations on monadic values. The bind operation
takes as arguments a monadic value of type m a and a function (a → m b) and,
intuitively, “unwraps” the value of type a embedded in the input monadic value
and passes it as input to the function, which creates a new monadic value of type
m b.
This definition of monad is equivalent to the category theoretic definition below
(proved in Appendix A).

Definition (Monad). A monad on a category 𝒞 consists of an endofunctor3
𝑇 ∶ 𝒞 → 𝒞 and two natural transformations 𝜂 ∶ 1𝒞 → 𝑇 and 𝜇 ∶ 𝑇 2 → 𝑇 sat-

3An endofunctor is a functor that maps a category to itself.

17

isfying the following two commutative diagrams.

𝑇 𝑇 2 𝑇

𝑇

𝜂𝑇

1𝑇
𝜇

𝑇𝜂

1𝑇
(2.12)

𝑇 3 𝑇 2

𝑇 2 𝑇

𝜇𝑇

𝑇𝜇 𝜇

𝜇

(2.13)

That is,

𝜇 ∘ 𝜂𝑇 = 1 = 𝜇 ∘ 𝑇𝜇 (2.14)
𝜇 ∘ 𝜇𝑇 = 𝜇 ∘ 𝑇𝜇 (2.15)

2.2.5 T-algebra

Definition (𝑇 -algebra). Assume that (𝑇 , 𝜂, 𝜇) is a monad on a category 𝒞. A
𝑇 -algebra (𝐴, 𝛼) is an object 𝐴 of 𝒞 together with an arrow 𝛼 ∶ 𝑇𝐴 → 𝐴 of 𝒞
such that

1𝐴 = 𝛼 ∘ 𝜂𝐴 (2.16)
𝛼 ∘ 𝜇𝐴 = 𝛼 ∘ 𝑇𝛼. (2.17)

Example (𝜇-algebra). For every monad (𝑇 , 𝜂, 𝜇) on a category 𝒞 and every ob-
ject 𝑋 of 𝒞, we can define a 𝑇 -algebra (𝑇𝑋, 𝜇𝑋 ∶ 𝑇𝑇𝑋 → 𝑇𝑋). For this to
be a 𝑇 -algebra, the following diagrams corresponding to eqs. (2.16) and (2.17)
(replacing 𝐴 with 𝑇𝑋 and 𝛼 with 𝜇𝑋) must commute.

𝑇𝑋 𝑇𝑇𝑋

𝑇𝑋

𝜂𝑇𝑋

1𝑇𝑋
𝜇𝑋

𝑇 3𝑋 𝑇 2𝑋

𝑇 2𝑋 𝑇𝑋

𝜇𝑇𝑋

𝑇𝜇𝑋 𝜇𝑋

𝜇𝑋

These diagrams correspond to eqs. (2.12) and (2.13) in the definition of a monad.
So (𝑇𝑋, 𝜇𝑋) is a 𝑇 -algebra, which we refer to as the 𝜇-algebra.

18

2.3 Agda

The relationship between Cartesian-closed categories and typed lambda calculus
can be extended via the Curry-Howard-Lambek correspondence to a three-way
correspondence including intuitionistic logic [22, 38]. Intuitionistic type theory
was introduced by Martin-Löf based on intuitionistic logic as an alternative foun-
dation of mathematics. Martin-Löf showed [24] that the additional richness of
type theory, as compared with first-order logic, makes it usable as a programming
language. This is the basis of Agda, a dependently-typed functional language and
proof assistant that uses intuitionistic type theory as the mathematical foundation
for formal proofs.
Unlike in Hindley-Milner style languages like ML where there is a separation
between types and values, in dependently-typed languages like Agda, types can
depend on values and can appear as arguments and results of functions [28].
Curry and Howard discovered a correspondence between logic and type theory
and showed that, with the introduction of dependent types, every proof in predi-
cate logic can be represented as a term of a suitable typed lambda calculus [42].
As a result of this Curry-Howard correspondence, which, informally, says that for
each logical proposition there is a type and for each proof of a given proposition
there is a program of the corresponding type [38], dependent type systems have
been used as the basis of proof assistants.
This section introduces Agda, dependent type theory, and the Curry-Howard cor-
respondence.

2.3.1 Basic data types and pattern matching

Like in ML, pattern matching over algebraic data types (ADTs) is an important
construct in Agda. Data types are declared with the data declaration, which gives
the name and type of the data type along with the constructors and their types. For
example, the type Bool contains two constructors, true and false.

data Bool ∶ Set where
true ∶ Bool
false ∶ Bool

The type of Bool is Set, the type of small types. Roughly, this is like the “class of

19

sets”4.
We can define functions over Bool by pattern matching:

not ∶ Bool → Bool
not true = false
not false = true

The type checker checks that the function covers all possible cases, as Agda func-
tions are total (and are not allowed to crash).
Like in ML, data types can be parametrised by other types. The type of lists of
elements of an arbitrary type is defined by

infixr 5 _∷_
data List {ℓ} (A ∶ Set ℓ) ∶ Set ℓ where

[] ∶ List A
∷ ∶ A → List A → List A

Agda supports mixfix operators, with the underscores around ‘∷’ indicating the
location of the arguments. The cons operator ‘∷’ takes an element of type 𝐴 and
an element of type List A and constructs an element of type List A. Here ℓ is a
universe level, with the curly braces indicating that it is implicit and does not have
to be specified by the user if it can be inferred (note that type inference in Agda is
undecidable).

2.3.2 Dependent types

A dependent type is a type whose definition depends on a value. Informally, de-
pendent types are similar to indexed families of sets5. Dependent types can be
used to represent dependent functions such as polymorphic functions, which are
a family of functions indexed by type. Indexing on parametrisation can be repre-
sented via dependent pairs, in which the second value may depend on the first (for
instance, in existential quantification).
More formally, given a set 𝐴 and a family of sets 𝐵𝑎 indexed by elements 𝑎 of 𝐴,

4There is a hierarchy of increasingly large types. The type of Set is Set1, whose type is Set2,
etc. These universe levels will be present in the code for generality, but can be safely ignored by
the reader.

5We write {𝐵𝑎 | 𝑎 ∈ 𝐴} to denote a family of sets 𝐵𝑎 indexed by elements 𝑎 ∈ 𝐴, where 𝐴
is a set.

20

we get a set

∏
𝑎∈𝐴

𝐵𝑎
def= {𝐹 ∈ (𝐴 → ⋃

𝑎∈𝐴
𝐵𝑎) | ∀(𝑎, 𝑏) ∈ 𝐹 . 𝑏 ∈ 𝐵𝑎}

of dependent functions. Each 𝐹 ∈ ∏𝑎∈𝐴 𝐵𝑎 is a function that associates to each
𝑎 ∈ 𝐴 an element in 𝐵𝑎 (written 𝐹 𝑎) [32]. In Agda, we write (a ∶ A) → B for
the dependent function that takes an element of type𝐴 and returns an element of a
type𝐵 instantiated at 𝑎. For example, we can define the append and map functions
for arbitrary types as follows:

++ ∶ ∀ {ℓ} {A ∶ Set ℓ} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)

map ∶ ∀ {ℓ k} {A ∶ Set ℓ} {B ∶ Set k} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs

Dependent types can be used to define the type of lists of a given length:
data Vec {ℓ} (A ∶ Set ℓ) ∶ ℕ → Set a where

[] ∶ Vec A zero
∷ ∶ ∀ {n} (a ∶ A) (as ∶ Vec A n) → Vec A (suc n)

The type of Vec A is ℕ → Set, so Vec A is a family of types indexed by natural
numbers. Agda guarantees that for a vector v ∶ Vec A k, not only is every element
of v of type A but, moreover, that v has exactly k elements. This is unlike ML, for
instance.

2.3.3 Curry-Howard correspondence

Classically, a proposition is just a truth value, an element in the set {true, false}.
In intuitionistic logic,

a proposition is defined by laying down what counts as a proof,
and

a proposition is true if it has a proof [34].
So in intuitionistic logic, truth is identified with provability. If we consider the
idea that a proposition is defined by stating how its proofs are formed (for instance

21

Logic ⟺ Type theory
True formula 𝑇 ⟺ ⊤ Unit type
False formula 𝐹 ⟺ ⊥ Empty type
Conjunction 𝐴 ∧ 𝐵 ⟺ 𝐴×𝐵 Product type
Disjunction 𝐴 ∨ 𝐵 ⟺ 𝐴⊎𝐵 Sum type
Implication 𝐴 ⇒ 𝐵 ⟺ 𝐴 → 𝐵 Function type

Universal quantification ∀𝑎 ∈ 𝐴. 𝐵(𝑎) ⟺ Π (𝑎 ∶ 𝐴) 𝐵(𝑎) Dependent function
Existential quantification ∃𝑎 ∈ 𝐴. 𝐵(𝑎) ⟺ Σ (𝑎 ∶ 𝐴) 𝐵(𝑎) Dependent pair

Modus ponens ⟺ Function application
Provability ⟺ Inhabitation

Table 2.1: Curry-Howard correspondence for intuitionistic logic

a proof of 𝐴∧𝐵 has the form (𝑎, 𝑏) where 𝑎 is a proof of 𝐴 and 𝑏 is a proof of 𝐵)
and that a set is defined by prescribing how its elements are formed, then there is
a correspondence between the notions of propositions and sets and the associated
notions of a proof of a proposition and an element of a set. This isomorphism is the
formulae-as-types interpretation of the Curry-Howard correspondence, presented
in Table 2.1.
The type theory equivalents of truth (⊤) and falsity (⊥) in Agda are given below:

data ⊤ ∶ Set where
tt ∶ ⊤

data ⊥ ∶ Set where

The type ⊥ has no constructor, which means it is impossible to construct values
of type ⊥. This is consistent with the idea that you can not prove false (you can
not inhabit the ⊥ type).
Product types (corresponding to conjunction) can be constructed using the record
keyword. Records group terms together and are essentially tuples of named fields.
The optional constructor introduces syntax to construct terms of the record type.

record _×_ {ℓ} {k} (A ∶ Set ℓ) (B ∶ Set k) ∶ Set (ℓ ⊔ k) where
constructor _, _
field

proj1 ∶ A
proj2 ∶ B

A proof of 𝐴 ∨ 𝐵 is either inj1 a, where a is a proof of 𝐴, or inj2 b, where b is an

22

element of type 𝐵.

data _⊎_ {ℓ k} (A ∶ Set a) (B ∶ Set k) ∶ Set (ℓ ⊔ k) where
inj1 ∶ (a ∶ A) → A ⊎ B
inj2 ∶ (b ∶ B) → A ⊎ B

We can prove that disjunction is commutative𝐴∨𝐵 → 𝐵∨𝐴 by pattern matching
on the element of type 𝐴⊎𝐵 and swapping the constructor to build an element of
type 𝐵 ⊎ 𝐴.

⊎−comm ∶ ∀ {ℓ k} {A ∶ Set ℓ} {B ∶ Set k} → A ⊎ B → B ⊎ A
⊎−comm (inj1 a) = inj2 a
⊎−comm (inj2 b) = inj1 b

The type of ⊎−comm states that given a proof that𝐴∨𝐵 is true, we can construct
a proof that 𝐵 ∨ 𝐴 is true.
Dependent product and sum types can be used to express universal and existential
quantification. Indexed productsΠ (𝑎 ∶ 𝐴)𝐵(𝑎) and indexed sumsΣ (𝑎 ∶ 𝐴)𝐵(𝑎)
correspond, respectively, to universal quantifications∀𝑎 ∈ 𝐴.𝐵(𝑎) and existential
quantifications ∃𝑥 ∈ 𝐴. 𝐵(𝑥). A proof of ∀𝑎 ∈ 𝐴. 𝐵(𝑎) takes the form of a
function 𝜆𝑎 ∈ 𝐴. 𝑏(𝑎) where 𝑏(𝑎) is a proof of 𝐵(𝑎) provided 𝑎 is a proof of 𝐴.
This is the dependent function type presented in § 2.3.2.
Similarly, a proof of ∃𝑎 ∈ 𝐴. 𝐵(𝑎) takes the form of a pair (𝑎, 𝑏(𝑎)) where 𝑏(𝑎)
is a proof of 𝐵(𝑎) provided 𝑎 is a proof of 𝐴. The type of the dependent pair is as
follows:

record ∑ {ℓ k} (A ∶ Set ℓ) (B ∶ A → Set k) ∶ Set (ℓ ⊔ k) where
field

proj1 ∶ A
proj2 ∶ B proj1

Modus ponens states that if𝐴 and𝐴 ⇒ 𝐵 are true,𝐵 is true. In other words, given
elements 𝑎 and 𝑓 of type 𝐴 and 𝐴 → 𝐵, we need to construct an element of type
𝐵. This is given by function application in the Curry-Howard correspondence, as
demonstrated below.

modus−ponens ∶ ∀ {ℓ k} {A ∶ Set ℓ} {B ∶ Set k} → A → (A → B) → B
modus−ponens a f = f a

These examples illustrate how inhabitability in type theory corresponds to prov-

23

ability in logic.

2.3.4 Equality

In type theory, one distinguishes various notions of equality. These are definitional
equality, which is Agda’s internal notion of program equality, and propositional
equality, which is a type-theoretic notion of equivalence.
Definitional equality is used by the type checker and is a meta-theoretic relation
between terms and types. When defining a function such as

not ∶ Bool → Bool
not true = false
not false = true

one adds the defining equation to Agda’s definitional equality.
Crucially, note that in order to prove that two programs are equal, definitional
equality can not be directly used. A proof is a program with a type, so the type
in this case should express that two things are equal. For example, the functions
𝜆𝑥. 𝑥+ 1 and 𝜆𝑥. 1+𝑥 are equal, but are not definitionally equal. In type theory,
we introduce an identity type Id 𝐴 𝑎 𝑏 when 𝐴 is a type and 𝑎 and 𝑏 are both equal
terms of 𝐴. This is the “type of proofs that 𝑎 = 𝑏”. When Id 𝐴 𝑎 𝑏 is inhabited,
we say that 𝑎 is propositionally equal to 𝑏.
In contrast to ML, where one needs a distinction between types and equality types,
every type in Agda has an identity type, including function types. Propositional
equality is defined as follows in Agda:

data _≡_ {a} {A ∶ Set a} (x ∶ A) ∶ A → Set a where
refl ∶ x ≡ x

Two elements of the same type are propositionally equal if we can find a proof or
program that constructively shows that the two elements are equal. In defining a
term of the x ≡ y type, one provides a proof that x is propositionally equal to y.
For example, we prove that 2 + 2 ≡ 4:

pf1 ∶ 2 + 2 ≡ 4
pf1 = refl

Agda’s type checker reduces both sides of the equality until they are equal. Note
that definitional equality entails propositional equality, but not vice versa.

24

Martin-Löf type theories are often divided into two camps: extensional and inten-
sional. Extensional theories identify definitional equality (used in type checking)
with propositional equality. Intensional theories, like Agda’s, distinguish between
definitional and propositional equality. Propositional equality is undecidable, and
identifying definitional equality with propositional equality makes type checking
undecidable [18], an undesirable feature.

2.3.5 Proof example

We present a proof (or program) that list append is associative6.
++−assoc ∶ ∀ {a} {A ∶ Set a} (xs ys zs ∶ List A) →

(xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)

We prove this by induction on the length of the first list. Recall that list append is
defined as

++ ∶ ∀ {a} {A ∶ Set a} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)

For the base case (xs being []), ([] ++ ys) ++ zs is definitionally equal to
[] ++ (ys ++ zs), so the proof is refl:

++−assoc [] ys zs = refl

For the inductive step, we show that ((x ∷ xs) ++ ys) ++ zs is propositionally
equal to (x ∷ xs) ++ (ys ++ zs) using Agda’s equational reasoning, which pro-
vides pen-and-paper like syntax for writing proofs using the transitivity property
of equality.

6Based on [1]

25

++−assoc (x ∷ xs) ys zs =
begin

((x ∷ xs) ++ ys) ++ zs
≡⟨ refl ⟩

x ∷ ((xs ++ ys) ++ zs)
≡⟨ cong (_∷_ x) (++−assoc xs ys zs) ⟩

x ∷ (xs ++ (ys ++ zs))
≡⟨ refl ⟩

(x ∷ xs) ++ (ys ++ zs)
∎

((x ∷ xs) ++ ys) ++ zs is definitionally equal to x ∷ ((xs ++ ys) ++ zs) and as
definitional equality entails propositional equality, the proof is given by refl. The
next step uses congruence, which is a proof that if 𝑥 ≡ 𝑦 then 𝑓 𝑥 ≡ 𝑓 𝑦. In Agda:

cong ∶ ∀ {a b} {A ∶ Set a} {B ∶ Set b}
(f ∶ A → B) {x y} → x ≡ y → f x ≡ f y

cong f refl = refl

Thus, cong applied to _∷_ x and, inductively, ++−assoc xs ys zs gives the proof
that x ∷ ((xs ++ ys) ++ zs) is equal to x ∷ (xs ++ (ys ++ zs)).

2.4 Summary

This project has two components: (i) a formal theory of big operators and (ii) an
implementation of a big operator library in Agda. Rather than developing the the-
ory and implementation separately, we followed an iterative cycle of development:
developing new theory then implementing it in Agda, which formalizes the theory
and proves its correctness. We identified some ubiquitous equations in Table 1.1
to structure the development.
We identified an open-source Agda category theory library [31] that provided def-
initions for categories, functors, and natural transformations. This, along with the
idea of defining big operators in terms of monad algebras[10] and Table 3.1 on
page 32, was the starting point of the project. From here, the components break
down as follows.

Big operators Define big operators mathematically and in Agda. De-
cide what category to work with and develop and implement theory

26

for the category of choice. Prove and implement the generic equations
in Table 3.1.
Monads: associativity, commutativity, idempotence Operators
with different properties correspond to different monads. Implement
the tree, list, multisets, and powerset monads in order to express
equations such as ∑𝑥 ∑𝑦 𝑓(𝑥, 𝑦) = ∑𝑦 ∑𝑥 𝑓(𝑥, 𝑦).
Algebras: distributivity and algebraic structures Develop and
implement the correspondence between algebras and structures like
monoids and semirings. Derive distributivity equations such as
𝑐 ⋅ ∑𝑥 𝑓(𝑥) = ∑𝑥 𝑐 ⋅ 𝑓(𝑥).
Usability Ensure the library is usable without knowledge of category
theory. Instantiate common big operators and provide lemmas for list
manipulations such as filtering and partitioning to express equations
such as

∑
0≤𝑖≤𝑁

𝑓(𝑖) = ∑
0≤𝑖≤𝑁
𝑖 even

𝑓(𝑖) + ∑
0≤𝑖≤𝑁
𝑖 odd

𝑓(𝑖)

Examples Provide example proofs using the library and evaluate the
difficulty and steps needed to go from an informal big operator equa-
tion to a concrete proof.

This chapter provided the necessary category theory and Agda background to un-
derstand the rest of this report. Next, we discuss the theory and implementation
of the components above.

27

Chapter 3

Implementation

Contents
3.1 Big operators . 29

3.1.1 Mathematical definition of big operators 29
3.1.2 Implementation of big operators in Agda 31
3.1.3 Generic big operator equations 32

3.2 Monads . 34
3.2.1 Free monads . 35
3.2.2 Lists . 35
3.2.3 A permutation library 38
3.2.4 Finite multisets . 41
3.2.5 Strength . 43
3.2.6 Commutative monads 44

3.3 Monad algebras . 47
3.3.1 List algebras from monoids 47
3.3.2 Multiset algebras from commutative monoids 49
3.3.3 𝑇 -algebra homomorphisms 50

3.4 Usability . 53
3.4.1 From the language of algebra to category theory . . . 53
3.4.2 Types with propositional equality 54
3.4.3 List comprehensions 55

3.5 Summary of equations . 57

28

This chapter details the theory of a categorical framework for big operators based
on monad algebras along with an associated implementation of a big operator li-
brary in Agda.
The work of this dissertation involved translating between and, in a sense, unifying
different languages: (i) the language of abstract algebra when reasoning about
familiar big operators, (ii) the language of category theory1 when generalizing big
operators and presenting a categorical framework, (iii) the language of dependent
type theory when providing a more familiar syntax for the former, and (iv) the
language of Agda when writing formal, type-checked proofs and implementing
the library.
This chapter develops the components of the categorical framework in all four
languages. Big operators are defined and implemented in § 3.1. § 3.2 and § 3.3
describe the interpretations of monads and algebras in the framework and their
associated big operator properties. § 3.4 explains lemmas implemented to increase
usability of the library.

3.1 Big operators

3.1.1 Mathematical definition of big operators

Informally, a big operator consists of four components:
1. A container of values of type 𝑋. We think of this as a value of type 𝑇𝑋,

where 𝑇 is a functor in a monad (𝑇 , 𝜂, 𝜇) that acts as a type constructor.
For instance, with the list monad, the container is of type List X.
Then 𝜂𝑋 ∶ 𝑋 → List X injects the singleton 𝑥 ∶ 𝑋 into [𝑥], and
𝜇𝑋 ∶ List (List X) → List X flattens a list of lists into a list by concatenating
the lists.

2. A type 𝐴 that is the type of the result.
3. A function 𝑓 ∶ 𝑋 → 𝐴 that maps each value in the container of type 𝑋 to

a value of type 𝐴. The morphism map of the functor 𝑇 lifts the function to
the monadic type (e.g. map for lists), with 𝑇 (𝑓) ∶ 𝑇𝑋 → 𝑇𝐴.

4. A reduction function of type 𝑇𝐴 → 𝐴 that reduces the values in the con-
tainer. The type 𝐴 and reduction function are combined into an algebra for

1More specifically, of locally Cartesian-closed categories

29

the monad2 (𝐴, 𝛼 ∶ 𝑇𝐴 → 𝐴). The algebra laws express correctness prop-
erties for the reduction. An example of 𝛼 is the summation function, which
takes a value of type List ℕ and returns a value of type ℕ.

The above is deliberately imprecise to provide intuition: the languages of type
theory and category theory have been mixed and discussion of the category upon
which the monads and thus algebras were defined avoided. As per [19], a seman-
tic function can be defined that interprets the syntax of dependent type theory in
locally Cartesian-closed categories. Then types 𝑋, 𝐴, and 𝑇𝑋 are objects in the
category of choice. The function 𝑓 ∶ 𝑋 → 𝐴 should be an arrow in the category
for the expression 𝑇 (𝑓) to make sense. As types are objects, it was implicitly as-
sumed that objects have elements. The concept of “elements of” does not exist for
arbitrary categories and suggests that objects in our category should be set-like.

Setoids A logical choice of a category with set-like objects is the category of
𝒮𝑒𝑡𝑠, in which the objects are sets and the arrows functions. However, types and
sets are not mathematically equivalent [5] and we need a way to represent equal-
ity, more specifically extensional equality, in Agda’s intentional type theory (re-
call § 2.3.4).
Frequently in mathematics, when defining an equivalence relation on a set, we
immediately form the quotient set that turns equivalence into equality. However,
in type theories that do not have an established notion of quotient types such as
Agda’s, formalizing mathematics often requires representing sets as setoids [4].
These are sets (or types) together with an explicit equivalence relation representing
the intended notion of equality between elements of the set.
Thus, rather than using 𝒮𝑒𝑡𝑠, we choose to work with the category of 𝒮𝑒𝑡𝑜𝑖𝑑𝑠,
a locally Cartesian-closed category that interacts well with dependent type the-
ory [4, 19] (and has many desirable properties beyond the scope of this report). In
𝒮𝑒𝑡𝑜𝑖𝑑𝑠, the objects are setoids and an arrow 𝑋 ⟶ 𝐴 is a function from 𝑋 to 𝐴
that preserves the equality of the setoid. That is, such that

∀𝑥1, 𝑥2 ∈ 𝑋. 𝑥1 ≡𝑋 𝑥2 ⇒ 𝑓(𝑥1) ≡𝐴 𝑓(𝑥2)
Note that we can define a setoid of functions based on extensional equality with
the equivalence relation

𝑓 ≡𝑋→𝐴 𝑔 ⟺ ∀𝑥 ∈ 𝑋. 𝑓(𝑥) ≡𝐴 𝑔(𝑥)
Thus, for any two objects𝑋 and𝐴, the setoid of functions from𝑋 to𝐴 is an object
in𝒮𝑒𝑡𝑜𝑖𝑑𝑠. From now on, we place ourselves in the category of𝒮𝑒𝑡𝑜𝑖𝑑𝑠. Thus, for

2As defined in § 2.2.5.

30

readability when we say “function”, we mean “function that preserves equality”
or “arrow in 𝒮𝑒𝑡𝑜𝑖𝑑𝑠”. We use the notations 𝑥 ∈ 𝑋 and 𝑥 ∶ 𝑋 interchangeably,
depending on whether we are working with the language of mathematics built
on set theory or on type theory, and often treat 𝑋 more familiarly as a set rather
than a setoid. The distinctions are made clear in the Agda implementation, which
increases confidence that details have not been erroneously ignored.

Big operators Previous work [14] defined big operators as follows:
A big operator for a small operator _ ⊕ _ together with default value
𝜖 of type 𝑈 is a function that, given a body of type 𝐴 → 𝑈 for some
type𝐴, will apply some values of𝐴 and combine them with the _⊕_
operator. If there are no values to apply, 𝜖 is returned.

We generalise and formalize this by defining big operators as follows:

Definition (Big operator).
A big operator for a given monad (𝑇 , 𝜂, 𝜇) on the category 𝒮𝑒𝑡𝑜𝑖𝑑𝑠
and 𝑇 -algebra (𝐴, 𝛼) is a function (preserving equality) that, for every
setoid 𝑋, given a function 𝑓 ∶ 𝑋 → 𝐴 preserving equality on 𝑋 and
a structured value 𝑡 of type 𝑇𝑋, applies the function 𝑇 (𝑓) to 𝑡 and
combines the result with 𝛼. In mathematical form:

𝛼 ∶ ∀𝑋.(𝑋 → 𝐴) → 𝑇𝑋 → 𝐴

𝛼 𝑋 𝑓 𝑡 def= (𝛼 ∘ 𝑇 (𝑓)) 𝑡
(3.1)

Intuitively, given 𝑓 ∶ 𝑋 → 𝐴 and 𝑡 ∶ 𝑇𝑋, applying 𝑇 (𝑓) ∶ 𝑇𝑋 → 𝑇𝐴 gives a
value of type 𝑇𝐴. Composing the result with 𝛼 ∶ 𝑇𝐴 → 𝐴 returns a value of type
𝐴. In a sense, 𝛼 𝑋 is a functional taking an arrow𝑋 → 𝐴 and returning another
arrow 𝑇𝑋 → 𝐴. Thus 𝛼 𝑋 is an arrow in 𝒮𝑒𝑡𝑜𝑖𝑑𝑠 from 𝑋 → 𝐴 to 𝑇𝑋 → 𝐴.
We write the above expression using the notation below, where we treat 𝑋 as an
implicit argument and omit it. 𝛼

𝑥∈𝑡
𝑓(𝑥)

3.1.2 Implementation of big operators in Agda

In Agda, we use a category theory library [31] that provides fundamental category
theory definitions to define big operators as follows:

31

module Bigop {c ℓ} (M ∶ Monad (Setoids c ℓ)) (T ∶ T−algebraM) where
bigop ∶ ∀ {X ∶ Setoid c ℓ} → (f ∶ X ⟶ A) → (t ∶ Setoid.Carrier (F0 X)) →

Setoid.Carrier A
bigop f t = (α ∘ F1 f) ⟨$⟩ t

We defined a module parametrised by a monad on the category Setoids and a
T−algebra on the monad, which gives us the setoid A and function α ∶ F0 X ⟶ A.
F0 and F1 correspond to the object and morphism map of 𝑇 respectively. The long
arrow ⟶ is a type constructor for the type of functions preserving equality.
The big operator takes (implicitly) a setoid X, a function preserving equality f, and
an element of the carrier type of the setoid 𝑇𝑋, written as Setoid.Carrier (F0 X),
and returns an element of the carrier type of setoid A.

3.1.3 Generic big operator equations

We can derive some general big operator equations in our framework without as-
suming anything about the monad or algebra. These are presented in Table 3.1.

𝛼 id 𝑡 = 𝛼(𝑡) (3.2)

𝛼 𝑓 𝜂𝑋(𝑎) = 𝑓(𝑎) (3.3)

𝛼 (𝑓 ∘ 𝑔) 𝑡 = 𝛼 𝑓 𝑇(𝑔)(𝑡) (3.4)

𝛼 𝑓 (𝜇 𝑔 𝑡) = 𝛼 (𝜆 𝑥. 𝛼 𝑓 𝑔(𝑥)) 𝑡 (3.5)

𝛼 𝑓 𝜇𝑋(𝑠) = 𝛼
𝑡∈𝑠

𝛼 𝑓 𝑡 (3.6)

Table 3.1: Base equations

Recall from § 2.2.5 that if we fix an 𝐴, (𝑇𝐴, 𝜇𝐴) is a 𝑇 -algebra that we write as

𝜇 ∶ ∀𝑋. (𝑇𝑋 → 𝑇𝐴) → 𝑇 2𝑋 → 𝑇𝐴
𝜇 𝑋 𝑓 𝑡 = (𝜇 ∘ 𝑇 (𝑓)) 𝑡

(3.7)

32

The abstract forms in Table 3.1 have concrete counterparts that are commonplace
in the act of manipulating big operators. For example, eq. 3.3 is inspired by equa-
tions like

∑
𝑥∈{𝑎}

𝑓(𝑥) = 𝑓(𝑎)

Equation 3.4 is inspired by equations like

∑
𝑥∈{𝑚,…,𝑛}

𝑓(𝑥 + 1) = ∑
𝑥∈{𝑚+1,…,𝑛+1}

𝑓(𝑥)

This equation is similar to index renaming. We can prove (as in § 2.1) that

∑
0≤𝑘≤𝑛

(𝑎 + 𝑏𝑘) = ∑
𝑛≤𝑛−𝑘≤0

(𝑎 + 𝑏𝑘) (by commutativity)

= ∑
0≤𝑘≤𝑛

(𝑎 + 𝑏(𝑛 − 𝑘)) (by 3.4)

Equation 3.5 is similar to equations like

max
𝑦∈⋃𝑥∈𝑆 𝑔(𝑥)

𝑓(𝑦) = max
𝑥∈𝑆

(max
𝑦∈𝑔(𝑥)

𝑓(𝑦))

Equation 3.6 is similar to equations like

∑
𝑥∈(𝑙1++⋯++𝑙𝑛)

𝑓(𝑥) ≡ ∑
𝑙∈[𝑙1,…,𝑙𝑛]

∑
𝑥∈𝑙

𝑓(𝑥)

We implemented, and thus proved, the base equations in Agda. These equations
can be used to reason about big operator expressions derived from arbitrary mon-
ads and algebras on 𝒮𝑒𝑡𝑜𝑖𝑑𝑠. Deriving these equations in a general form under
minimal assumptions allows us to naturally structure our library in a way that cor-
responds to the underlying structure of the big operators themselves.
Below we present a proof of eq. (3.4) in informal mathematics and in Agda. The
remaining proofs are in Appendix A.

𝛼 (𝜂𝑋(𝑎)) 𝑓 = (𝛼 ∘ 𝑇 (𝑓)) (𝜂𝑋(𝑎)) (by definition)
= (𝛼 ∘ 𝑇 (𝑓) ∘ 𝜂𝑋) 𝑎 (by definition)
= (𝛼 ∘ 𝜂𝐴 ∘ 𝑓) 𝑎 (by eq. (2.11): naturality of 𝜂)
= (1𝐴 ∘ 𝑓) 𝑎 (by eq. (2.16): unit law of 𝛼)
= 𝑓(𝑎) (by eq. (2.7))

33

The proof falls out from 𝜂 being a natural transformation and 𝛼 a 𝑇 -algebra. The
proof using equational reasoning in Agda follows the same steps, with Setoid.refl
A corresponding to “by definition”, NT.commute M−η to naturality of 𝜂, and
T−algebra.unit T to the unit law of 𝛼. Notice that the mathematical “equality”
is now that given by the explicit equivalence relation Setoid._≈_ A, the equality
of setoid A.

unit ∶ ∀ {X} {x} {f} → Setoid._≈_ A (bigop f ((η X) ⟨$⟩ x)) (f ⟨$⟩ x)
unit {X} {x} {f} =

begin
bigop f ((η X) ⟨$⟩ x)

≈⟨ Setoid.refl A ⟩
(α ∘ F1 f) ⟨$⟩ ((η X) ⟨$⟩ x)

≈⟨ Setoid.refl A ⟩
α ∘ (F1 f ∘ (η X)) ⟨$⟩ x

≈⟨ ∘−resp−≡r {f = F1 f ∘ (η X)} {h = (η A) ∘ f} {g = α}
(sym {i = (η A) ∘ f} {j = F1 f ∘ (η X)} (NT.commute M−η f)) ⟩
(α ∘ (η A) ∘ f) ⟨$⟩ x

≈⟨ ∘−resp−≡l {f = α ∘ (η A)} {h = C.id} {g = f} (T−algebra.unit T) ⟩
(C.id ∘ f) ⟨$⟩ x

≈⟨ C.identityl {f = f} ⟩
f ⟨$⟩ x

∎

3.2 Monads

Asmentioned in § 2.1, we use monads to represent container types. Different mon-
ads account for different properties of big operators such as associativity, commu-
tativity, and idempotency.
We begin by presenting monads as being “freely” generated from algebraic struc-
tures with associativity, commutativity, and idempotency. In §§ 3.2.2 and 3.2.4,
we detail the implementation of the list and multiset monads in Agda, as they
are arguably the most common container types. In order to represent multisets
in Agda, we implemented a permutation library (§ 3.2.3). In §§ 3.2.5 and 3.2.6,
we discuss a categorical representation of commutativity and derive some general
equations from it.

34

3.2.1 Free monads

Big operators operate on elements in well-defined collections such as trees, lists,
multisets, and sets. Each kind of collection has different properties. For example,
binary trees have a fully bracketed structure, lists have an associative structure,
multisets “ignore” ordering (commutativity), and sets further ignore repeated ele-
ments (idempotency).
In category theory, such collection monads are derived from “adjunctions” be-
tween a free functor and an underlying functor between the category of setoids
and a category of algebraic structures (see Table 3.2). Intuitively, this means that
given a set, we can generate the most general algebraic structure of the kind under
consideration and show a correspondence between the various collection monads.

Collection monad Algebraic structure
Binary tree Semigroup
Finite list Monoid

Finite multiset Commutative monoid
Finite powerset Idempotent, commutative monoid

Table 3.2: Collection monads and their underlying algebraic structure

For example, given a set 𝑆, the free monoid is the set 𝑆∗ of all finite sequences
(lists) of elements of 𝑆, made into a monoid using concatenation. The empty list
nil corresponds to the identity element, and append(x, y) corresponds to the binary
operation. We proved that append is associative in § 2.3.5.
The underlying properties of these collection monads correspond to properties of
the binary operator (no property, associativity, commutativity, idempotency) lifted
to the big operator. Therefore big operators defined on the list monad have as-
sociativity freely built in and big operators defined on the multiset monad have
commutativity.
We implemented the tree, list, multiset, and powerset monads in Agda. We will
focus our discussion on the two more common containers, lists and multisets.

3.2.2 Lists

To implement the list monad, we need to define its structure (𝑇 , 𝜂, 𝜇) as in § 2.2.4.

35

Object map of 𝑇

We want 𝑇 to map a setoid X to a setoid with the carrier List X.
In Agda, List is defined as follows:
data List {a} (A ∶ Set a) ∶ Set a where

[] ∶ List A
∷ ∶ (x ∶ A) (xs ∶ List A) → List A

Two lists containing values of a setoid 𝑋 are equal if they are equal pointwise
under the equality given by 𝑋. We define a relation on lists:
data Rel {a b ℓ} {A ∶ Set a} {B ∶ Set b}

(_∼_ ∶ REL A B ℓ) ∶ REL (List A) (List B) ℓ where
[] ∶ Rel _∼_ [] []
∷ ∶ ∀ {x xs y ys} (x∼y ∶ x ∼ y) (xs∼ys ∶ Rel _∼_ xs ys) →

Rel _∼_ (x ∷ xs) (y ∷ ys)

The above expresses that two empty lists are equivalent and two lists x ∷ xs and
y ∷ ys are equivalent if x is equivalent to y under the given equality and, recursively,
xs is equivalent to ys. For a list containing elements from a setoid𝑋, we instantiate
the relation _∼_ to≡𝑋. We proved that List X together with the relation is a setoid
in Agda.

Morphism map of 𝑇

The morphism map of 𝑇 takes functions (preserving equality) from 𝑋 ⟶ 𝐴 to
functions (preserving equality) List 𝑋 ⟶ List 𝐴. We defined 𝑇 (𝑓) to be map f
and proved it preserves equality.

Functorality of 𝑇

To prove that 𝑇 is a functor, we show that it preserves identity and composition of
arrows (recall § 2.2.2). This corresponds to the following proofs (or programs).

identity ∶ ∀ {c l} {A ∶ Setoid c l} {x ∶ List (Setoid.Carrier A)} →
Rel (Setoid._≈_ A) (map (Fun.id) x) x

homomorphism ∶ ∀ {c l} {X Y Z ∶ Setoid c l} {f ∶ X ⟶ Y}
{g ∶ Y ⟶ Z} {x ∶ List (Setoid.Carrier X)} →

36

Rel (Setoid._≈_ Z)
(map (_⟨$⟩_ (g ∘−Π f)) x)
((map (_⟨$⟩_ g) ∘ map (_⟨$⟩_ f)) x)

identity says that mapping the identity function is the identity and thus preserves
the identity arrow of 𝒮𝑒𝑡𝑜𝑖𝑑𝑠. homomorphism says that given arrows 𝑓 ∶ 𝑋 → 𝑌
and 𝑔 ∶ 𝑌 → 𝑍, mapping (or “lifting”) 𝑔 ∘ 𝑓 is equivalent to lifting 𝑓 and lifting 𝑔
separately and then composing them.

Natural transformations: 𝜂 and 𝜇

Recall that 𝜂𝑋 ∶ 𝑋 → List 𝑋 and 𝜇𝑋 ∶ List (List 𝑋) → List 𝑋. We define 𝜂𝑋 to
be the function that takes an element 𝑥 ∈ 𝑋 and injects it into a list [𝑥] and 𝜇𝑋 to
be the function that takes a list of lists and concatenates them. Again, we provide
proofs that the functions preserve equality. For example, for 𝜇𝑋 we prove that if
two lists of lists xss and yss are equivalent (each xs ∈ xss is pointwise equivalent
to each ys ∈ yss), then concat xss is equivalent to concat yss.

cong ∶ ∀ {c l} {X ∶ Setoid c l} {l1 l2 ∶ List (List (Setoid.Carrier X))} →
Rel (Rel (Setoid._≈_ X)) l1 l2 →
Rel (Setoid._≈_ X) (concat l1) (concat l2)

For naturality (eq. (2.11)) of 𝜂 and 𝜇, we proved the following commute:

𝑋 𝐴

List 𝑋 List 𝐴

𝑓

[_] [_]

map 𝑓

List (List 𝑋) List (List 𝐴)

List 𝑋 List 𝐴

map (map 𝑓)

𝑐𝑜𝑛𝑐𝑎𝑡 𝑐𝑜𝑛𝑐𝑎𝑡

map 𝑓

Recall from § 2.2.3 that natural transformations can represent polymorphic
functions. The natural transformations 𝜂 and 𝜇 are indexed sets of func-
tions, with 𝜂 ∶ ∀𝑋. 𝑋 → List 𝑋 injecting an element of any type into a list
𝜇 ∶ ∀𝑋. List (List 𝑋) → List 𝑋 taking a list of lists of any type and concatenat-
ing it. The commutativity of the above diagrams ensures that the polymorphic
functions “act the same way” on different types.

37

Identity and associativity

To complete the definition of the monad, we prove the following in Agda.

List X List (List X) List X

List X

[_]

𝑖𝑑 concat

map [_]

𝑖𝑑

List (List (List X)) List (List X)

List (List X) List X

concat

map concat concat

concat

In proving that the above diagrams commute, we prove properties of concat
and its interaction with map and [_]. We can not choose any arbitrary function
𝛽 ∶ ∀𝑋. List (List 𝑋) → List 𝑋, such as the constant function that returns the
empty list, for 𝜇. These conditions ensure that our monad “behaves nicely”.

Instantiating a general big operator equation for lists

We can instantiate eq. (3.6)

𝛼 𝑓 𝜇𝑋(𝑠) = 𝛼
𝑡∈𝑠

𝛼 𝑓 𝑡

to prove ∑𝑥∈𝑥𝑠++𝑥𝑠′ 𝑓(𝑥) = ∑𝑥∈𝑥𝑠 𝑓(𝑥) +∑𝑥∈𝑥𝑠′ 𝑓(𝑥), or more generally:

∑
𝑥∈(𝑙1++⋯++𝑙𝑛)

𝑓(𝑥) ≡ ∑
𝑙∈[𝑙1,…,𝑙𝑛]

∑
𝑥∈𝑙

𝑓(𝑥) (3.8)

where 𝜇 corresponds to concat (informally written ++).

3.2.3 A permutation library

Recall that a multiset is a set-like object in which ordering is irrelevant but multi-
plicity is explicitly significant. Two lists aremultiset equivalent if and only if there
is a bijection between them. This is equivalent to the two lists being permutations
of each other.
Implementing multisets in Agda requires implementing permutations in Agda. As
Agda’s standard library does not contain support for permutations, we wrote a
library to facilitate reasoning about permutations and thus equivalence between
multisets. This library includes over 30 lemmas and proofs and is a permutation
library of interest in its own right, independently of the intended application of the
multiset monad.

38

Defining permutations

Dependent types allow types to be predicated on values, expressing what the pro-
gram does and what invariants are maintained. We can represent list permutations
as a type, which is not possible in non-dependently typed languages like ML [26].
Our implementation is based on work by Brady et al. [8] and Rupert Horlick, a
Part III student.
Informally, the empty list is the only permutation of the empty list, and a list x ∷ xs
is a permutation of ys if its tail xs is a permutation of ys with head x removed from
it. We need to formalize this in the type system. We proceed as follows.
First, we define the type Any.

data Any {a p} {A ∶ Set a}
(P ∶ A → Set p) ∶ List A → Set (a ⊔ p) where
here ∶ ∀ {x xs} (px ∶ P x) → Any P (x ∷ xs)
there ∶ ∀ {x xs} (pxs ∶ Any P xs) → Any P (x ∷ xs)

The Any type is a dependent type, with Any P xsmeaning that at least one element
in xs satisfies P. Such an element must either be the head of the list (here) or in the
tail of the list (there). A value of this type contains an index into xs and a proof
that the predicate holds for the indexed element.
We useAny to define the type x ∈ xs that is inhabited iff there is a proof that 𝑥 ∈ xs.
A value of type x ∈ xs is an index into xs and a proof of equivalence to x for the
indexed element.
module Membership {c ℓ ∶ Level} (S ∶ Setoid c ℓ) where

∈ ∶ Carrier → List Carrier → Set _
x ∈ xs = Any (_≈_ x) xs

For example, here refl is a proof that the head of a list is in the list and, given a
proof that y ∈ xs, there y∈xs is a proof that y ∈ (x ∷ xs) for some x. One can think
of there as incrementing the index in the list where the element is found.

head−in ∶ (x ∶ Carrier) (xs ∶ List Carrier) → x ∈ (x ∷ xs)
head−in x xs = here refl

tail−in ∶ ∀ {y} → (x ∶ Carrier) (xs ∶ List Carrier) →
y ∈ xs → y ∈ (x ∷ xs)

tail−in x xs y∈xs = there y∈xs

39

We can use a proof of x ∈ xs to remove the element x from the list xs, by using
the proof as an index into the list and removing the element by induction over the
index. The first case remove [] () is absurd, as no element can be in the empty list.
If the element that satisfies the predicate is the head of the list (here), we return the
tail. Else, we return the head concatenated with the result of recursively removing
the element from the rest of the list.

remove ∶ ∀ {x} (xs ∶ List Carrier) → x ∈ xs → List Carrier
remove [] ()
remove (x1 ∷ xs) (here x≈x) = xs
remove (x1 ∷ xs) (there x∈xs) = x1 ∷ (remove xs x∈xs)

Finally, we define permutations:

data Perm ∶ List Carrier → List Carrier → Set (c ⊔ ℓ) where
nil ∶ Perm [] []
cons ∶ ∀ {x} {xs ∶ List Carrier} {xs′} → (e ∶ x ∈ xs′) →

Perm xs (remove xs′ e) → Perm (x ∷ xs) xs′

Perm is a dependent type defined inductively with two constructors, nil and cons.
For the base case, two empty lists are permutations with their only permutation
given by nil. For the inductive case, two lists x ∷ xs and xs′ are permutations if we
can provide a proof e that x is in xs′, and also that xs is a permutation of xs′ with
x removed from it (that is, we can inhabit Perm xs (remove xs′ e)).
Thus, an element of type Perm xs ys is a verified (by Agda’s type checker) con-
structive proof that xs and ys are permutations.

Permutation is an equivalence relation

We need to prove that Perm is an equivalence relation to use it as the multiset
equality. The proof of reflexivity is straight-forward—it is simply the identity
permutation. The proofs for symmetry and transitivity are complex and omitted,
requiring in-depth reasoning about the construction of permutations (more specif-
ically, inverting and composing permutations).
Generally, the more complex the data type, the more information needs to be pro-
vided to the type checker and thus the more involved the proofs. As all proofs
written in Agda are constructive, providing an element of type Perm xs ys requires
providing a complete description of how to construct the bijection or manipulate
other permutations to obtain a new permutation. This is non-trivial.

40

The type signatures for reflexivity, symmetry, and transitivity are below.
id−perm ∶ (l ∶ List Carrier) → Perm l l
id−perm [] = nil
id−perm (x ∷ xs) = cons (here (Setoid.refl S)) (id−perm xs)

inv−perm ∶ ∀ {xs ys ∶ List Carrier} → Perm xs ys → Perm ys xs

∘ ∶ ∀ {xs ys zs} → Perm ys zs → Perm xs ys → Perm xs zs

Examples of lemmas

We implemented over 30 lemmas and proofs to facilitate reasoning about permu-
tations. We provide some examples below.
remove−perm states that if ys is a permutation of zs, 𝑎 ∈ 𝑦𝑠, 𝑏 ∈ 𝑧𝑠, and 𝑎 ≡ 𝑏,
then the list given by removing 𝑎 from ys is a permutation of the list given by
removing 𝑏 from zs. This is not as straightforward as it may first appear because
of the constructive nature.

remove−perm ∶ ∀ {a b ∶ Carrier} ys zs (e1 ∶ a ∈ ys) (e2 ∶ b ∈ zs) →
Perm ys zs → a ≈ b → Perm (remove ys e1) (remove zs e2)

partition−is−perm allows us to rearrange a list into the concatenation of two lists
based on a predicate.

partition−is−perm ∶ (p ∶ Carrier → Bool) → (as ∶ List Carrier) →
Perm as (proj1 (partition p as) ++ proj2 (partition p as))

We defined partition−is−perm inductively. For the base case where as is the
empty list, the permutation is nil. Given a proof 𝜎 of type partition−is−perm p as,
we can construct a term of type partition−is−perm p (a ∷ as) for some a by adding
a to the first part of 𝜎 if the predicate p a holds and to the latter if it does not.

3.2.4 Finite multisets

Now that we have a permutation library, we can implement the finite multiset
monad, Mfin, by defining (𝑇 , 𝜂, 𝜇). In Agda, we again define the functor 𝑇 to
take a type 𝑋 to List X (this implies that the multiset is finite [11]). However, we
need to change the underlying equality. This is straightforward as we are working

41

in the category of 𝒮𝑒𝑡𝑜𝑖𝑑𝑠—we define two lists to be multiset equivalent whenever
they are permutations of each other.
Then using partition−is−perm from § 3.2.3, we can write equations like

∑
1≤𝑘≤𝑛

𝑓(𝑘) ≡ ∑
1≤𝑘≤𝑛
𝑘 even

𝑓(𝑘) + ∑
1≤𝑘≤𝑛
𝑘 odd

𝑓(𝑘) (3.9)

We define the morphism map of 𝑇 to bemap f as with the list monad. Proving that
this preserves equality requires proving that if xs and ys are permutations, then the
result of mapping 𝑓 over xs is a permutation of the result of mapping 𝑓 over ys, as
follows:

perm−fmap ∶ ∀ {ℓ} {S T ∶ Setoid ℓ ℓ} {xs} {ys} (f ∶ S ⟶ T) →
Perm S xs ys →
Perm T (map (_⟨$⟩_ f) xs) (map (_⟨$⟩_ f) ys)

Natural transformations: 𝜂 and 𝜇

The natural transformations 𝜂 and 𝜇 are defined as with lists as [_] and concat
respectively. The difference is in the proofs of naturality and of [_] and concat
preserving equality (“congruence”).
For example, to prove congruence of concat, it is necessary to prove that if two
lists of lists xss and yss are multiset equivalent, then concat xss is multiset equiva-
lent to concat yss. Two lists of lists xss and yss are multiset equivalent if there is a
permutation of xss such that each list within xss is a permutation of its correspond-
ing list in yss (i.e. [[𝑎1, 𝑎2], [𝑏1, 𝑏2]] is equivalent to [[𝑏2, 𝑏1], [𝑎2, 𝑎1]]). Defining
the bijection in this case requires careful manipulation of the permutations and
is omitted due to length (constructing the bijection requires reasoning about two
“levels” of permutations: the permutation of the list of lists [𝑙1, 𝑙2,… , 𝑙𝑛] as well
as the permutation of each list 𝑙𝑖 within the list of lists).

Identity and associativity

To complete the definition of Mfin, we prove the identity and associativity laws
below.

42

Mfin X Mfin (Mfin X) Mfin X

Mfin X

[_]

𝑖𝑑 concat

map [_]

𝑖𝑑

Mfin (Mfin (Mfin X)) Mfin (Mfin X)

Mfin (Mfin X) Mfin X

concat

map concat concat

concat

To prove the above is to do formal proofs of program correctness for the union of
multisets.

An equation for multisets

We want to support equations like

∑
𝑥

∑
𝑦

𝑓(𝑥, 𝑦) = ∑
𝑦

∑
𝑥

𝑓(𝑥, 𝑦)

which hold for commutative operators such as+ (and hence for multisets), but not
for non-commutative operators (and hence not for lists). To derive this generally,
we define strength and commutative monads.

3.2.5 Strength

Monads used in functional programming correspond to strong monads in category
theory. Intuitively in the language of type theory, for a given monad (𝑇 , 𝜂, 𝜇), a
strength is a function3 that for any types𝐴 and𝐵maps pairs𝐴×𝑇𝐵 to 𝑇 (𝐴×𝐵),
with some properties.

st ∶ ∀𝐴,𝐵. 𝐴 × 𝑇𝐵 → 𝑇(𝐴 × 𝐵)
The idea being that st provides a mechanism by which parameters can be rippled
through the monad structure. For instance, of the list monad,

st (𝑎, [𝑏1,… , 𝑏𝑛]) = [(𝑎, 𝑏1),… , (𝑎, 𝑏𝑛)]
3Strength is really a natural transformation.

43

Every endofunctor on 𝒮𝑒𝑡𝑜𝑖𝑑𝑠 comes with a canonical strength. We proved this in
Agda, by defining strength for arbitrary endofunctors in 𝒮𝑒𝑡𝑜𝑖𝑑𝑠. We can define a
symmetric function

st’ ∶ ∀𝐴,𝐵. 𝑇𝐴 × 𝐵 → 𝑇(𝐴 × 𝐵)
such that, for the list monad, st’ ([𝑎1,… , 𝑎𝑛], 𝑏) = [(𝑎1, 𝑏),… , (𝑎𝑛, 𝑏)].

3.2.6 Commutative monads

Commutativity of Mfin

The multiset monad is a commutative monad. This means that the following dia-
gram commutes for all objects 𝐴 and 𝐵.

𝑇𝐴 × 𝑇𝐵 𝑇(𝑇𝐴 × 𝐵) 𝑇 2(𝐴 × 𝐵)

𝑇 (𝐴 × 𝑇𝐵) 𝑇 2(𝐴 × 𝐵) 𝑇 (𝐴 × 𝐵)

𝑠𝑡𝑇𝐴,𝐵

𝑠𝑡′𝐴,𝑇𝐵

𝑇(𝑠𝑡′𝐴,𝐵)

𝜇𝐴×𝐵

𝑇(𝑠𝑡𝐴,𝐵) 𝜇𝐴×𝐵

Intuitively, this expresses that given {[{[𝑎1, 𝑎2,… , 𝑎𝑛]}, {[𝑏1, 𝑏2,… 𝑏𝑛]}]}, we can
pair the elements in either order and end up with an equivalent multiset (this is not
true for lists as the ordering of elements matters).

⎡
⎢⎢
⎣

(𝑎1, 𝑏1) (𝑎2, 𝑏1) … (𝑎𝑛, 𝑏1)
(𝑎1, 𝑏2) (𝑎2, 𝑏2) … (𝑎𝑛, 𝑏2)

⋮ ⋮ ⋱ ⋮
(𝑎1, 𝑏𝑛) (𝑎2, 𝑏𝑛) … (𝑎𝑛, 𝑏𝑛)

⎤
⎥⎥
⎦

≡
⎡
⎢⎢
⎣

(𝑎1, 𝑏1) (𝑎1, 𝑏2) … (𝑎1, 𝑏𝑛)
(𝑎2, 𝑏1) (𝑎2, 𝑏2) … (𝑎2, 𝑏𝑛)

⋮ ⋮ ⋱ ⋮
(𝑎𝑛, 𝑏1) (𝑎𝑛, 𝑏2) … (𝑎𝑛, 𝑏𝑛)

⎤
⎥⎥
⎦
(3.10)

Proving this in Agda requires constructing the bijection, which was done by induc-
tion over the “rows” in the first “matrix” and “columns” in the second. We showed
that if

⎡⎢
⎣

(𝑎1, 𝑏2) (𝑎2, 𝑏2) … (𝑎𝑛, 𝑏2)
⋮ ⋮ ⋱ ⋮

(𝑎1, 𝑏𝑛) (𝑎2, 𝑏𝑛) … (𝑎𝑛, 𝑏𝑛)
⎤⎥
⎦

≡
⎡
⎢⎢
⎣

(𝑎1, 𝑏2) … (𝑎1, 𝑏𝑛)
(𝑎2, 𝑏2) … (𝑎2, 𝑏𝑛)

⋮ ⋱ ⋮
(𝑎𝑛, 𝑏2) … (𝑎𝑛, 𝑏𝑛)

⎤
⎥⎥
⎦

then we can add [(𝑎1, 𝑏1), (𝑎2, 𝑏1),… , (𝑎𝑛, 𝑏1)] as a “row” in the first matrix and
as a “column” in the second matrix (by weaving in the elements) to compute a
permutation.

44

Commutativity of big operators

In order to write equations like

∑
𝑥

∑
𝑦

𝑓(𝑥, 𝑦) = ∑
(𝑥,𝑦)

𝑓(𝑥, 𝑦) = ∑
(𝑦,𝑥)

𝑓(𝑥, 𝑦) = ∑
𝑦

∑
𝑥

𝑓(𝑥, 𝑦)

we need away of lifting an operator to pairs of containers. We define “parametrised
big operators” for a 𝑇 -algebra (𝐴, 𝛼) as follows:

𝛼
1

∶ ∀𝑋, 𝑌 . (𝑓 ∶ 𝑋 × 𝑌 → 𝐴) → 𝑇𝑋 × 𝑌 → 𝐴

𝛼
1

𝑋 𝑌 𝑓 𝑡 def= (𝛼 ∘ 𝑇 (𝑓) ∘ 𝑠𝑡′) 𝑡

𝛼
2

∶ ∀𝑋, 𝑌 . (𝑓 ∶ 𝑋 × 𝑌 → 𝐴) → 𝑋 × 𝑇𝑌 → 𝐴

𝛼
2

𝑋 𝑌 𝑓 𝑡 def= (𝛼 ∘ 𝑇 (𝑓) ∘ 𝑠𝑡) 𝑡

By way of example, when 𝛼 corresponds to ∑,

𝛼
1

𝑓 ([𝑎1, 𝑎2, 𝑎3], 𝑏)

is equivalent to 𝑓(𝑎1, 𝑏) + 𝑓(𝑎2, 𝑏) + 𝑓(𝑎3, 𝑏) and

𝛼
2

𝑓 (𝑎, [𝑏1, 𝑏2, 𝑏3]])

is equivalent to 𝑓(𝑎, 𝑏1) + 𝑓(𝑎, 𝑏2) + 𝑓(𝑎, 𝑏3).
We can recover the above definitions from the non-parametrised big operator (see
Appendix A).
Now we can consider 𝛼

2
(𝛼

1
𝑓) and 𝛼

1
(𝛼

2
𝑓)

both of type 𝑇𝑋 × 𝑇𝑌 → 𝐴 and determine whether or not they are equal. This
is true whenever the monad is commutative (we proved this in Agda and in Ap-
pendix A on page 82) and so, for instance, available for the multiset monad.
By way of intuition, when 𝛼 corresponds to ∑,

𝛼
2

(𝛼
1

𝑓) ([𝑎1, 𝑎2], [𝑏1, 𝑏2])

45

is equivalent to 𝑓(𝑎1, 𝑏1) + 𝑓(𝑎1, 𝑏2) + 𝑓(𝑎2, 𝑏1) + 𝑓(𝑎2, 𝑏2), and

𝛼
1

(𝛼
2

𝑓) ([𝑎1, 𝑎2], [𝑏1, 𝑏2])

is equivalent to 𝑓(𝑎1, 𝑏1)+𝑓(𝑎2, 𝑏1)+𝑓(𝑎1, 𝑏2)+𝑓(𝑎2, 𝑏2). This corresponds to
the equivalence presented in eq. (3.10).

An example equation in Agda

Suppose we have two lists (tx, ty) = ([𝑥1, 𝑥2], [𝑦1, 𝑦2]) and a function
𝑔 ∶ 𝑋 × 𝑌 → 𝑍. We can combine the two lists as in the previous section with
𝑔, to produce

tz = [𝑔(𝑥1, 𝑦1), 𝑔(𝑥2, 𝑦1), 𝑔(𝑥1, 𝑦2), 𝑔(𝑥2, 𝑦2)]

We can also combine the two lists in another way to produce

tz’ = [𝑔(𝑥1, 𝑦1), 𝑔(𝑥1, 𝑦2), 𝑔(𝑥2, 𝑦1), 𝑔(𝑥2, 𝑦2)]

From this, we derive a general big operator equation:

𝛼
𝑧∈tz

𝑓(𝑧) ≡ 𝛼
𝑥∈tx

𝛼
𝑦∈ty

𝑓(𝑔(𝑥, 𝑦)) (3.11)

In Agda, a corresponding lemma (using propositional equality for simplicity) is
formalized as follows:

product−rewrite ∶ ∀ {X Y Z ∶ Set c} {f ∶ Z → A} {g ∶ X × Y → Z}
{tz ∶ Mfin Z} {tx ∶ Mfin X} {ty ∶ Mfin Y} →
Perm (setoid Z) tz (combine1 g (tx , ty)) →

⊚ f tz ≈ ⊚ (λ x → ⊚ (λ y → f (g (x , y))) ty) tx

Notice the precision of the formalization in properly typing all data but also in
assuming that tz be a permutation of the application of g to the combination of tx
and ty.
We will use this in § 4.1 to express the number-theoretic equation

∑
𝑑|𝑚𝑛

𝑓(𝑑) ≡ ∑
𝑒|𝑚

∑
𝑒′|𝑛

𝑓(𝑒𝑒′)

assuming 𝑚 and 𝑛 are coprime.

46

Using the lemma and the commutativity of the multiset monad, we can express

∑
𝑥∈𝑡𝑥

∑
𝑦∈𝑡𝑦

𝑓(𝑥, 𝑦) ≡ ∑
(𝑥,𝑦)∈tz

𝑓(𝑥, 𝑦) ≡ ∑
(𝑥,𝑦)∈tz’

𝑓(𝑥, 𝑦) ≡ ∑
𝑦∈tz

∑
𝑥∈tx

𝑓(𝑥, 𝑦)

where 𝑡𝑧 = [(𝑥1, 𝑦1), (𝑥2, 𝑦1), (𝑥1, 𝑦2), (𝑥2, 𝑦2)] when 𝑔 is the identity. Note that
∑(𝑥,𝑦)∈tz 𝑓(𝑥, 𝑦) and ∑(𝑥,𝑦)∈tz’ 𝑓(𝑥, 𝑦) are equivalent to

𝛼
1

(𝛼
2

𝑓) (tx, ty) and 𝛼
2

(𝛼
1

𝑓) (tx, ty)

3.3 Monad algebras

In our framework, the algebra for a big operator combines the values in a monadic
type and is the categorical interpretation of a “lifted operator”. Given an arbitrary
monoid, we can “lift” the binary operator to the list monad and derive a unique
(up to isomorphism) 𝑇 -algebra. For example, given the (ℕ,+, 0) monoid, we
can derive an algebra that sums over a list. We detail this construction for lists and
multisets and then we derive general equations to reason about distributivity based
on algebra morphisms.

3.3.1 List algebras from monoids

Recall that an algebra for amonad (𝑇 , 𝜂, 𝜇) consists of an object𝐴 and amorphism
𝛼 ∶ 𝑇𝐴 → 𝐴 such that the following diagrams commute:

𝐴 𝑇𝐴

𝐴

𝜂𝐴

1𝐴
𝛼

𝑇 2 𝑇𝐴

𝑇𝐴 𝐴

𝑇𝛼

𝜇𝐴 𝛼

𝛼

For the list monad, 𝜂𝐴 injects an element 𝑎 ∈ 𝐴 to the singleton list [𝑎] and 𝜇
flattens a list of lists into a list.

𝜇𝐴([[𝑎11,… , 𝑎1𝑛1
],… , [𝑎𝑚1,… , 𝑎𝑚𝑛𝑚

]]) = [𝑎11,… , 𝑎1𝑛1
,… , 𝑎𝑚1,… , 𝑎𝑚𝑛𝑚

]

By the laws of 𝑇 -algebras, we have

𝛼([𝑎]) = 𝑎

47

and

𝛼([𝑎11,… , 𝑎1𝑛1
,… , 𝑎𝑚1,… , 𝑎𝑚𝑛𝑚

]) = 𝛼(𝛼([𝑎11,… , 𝑎1𝑛1
]),… , 𝛼([𝑎𝑚1,… , 𝑎𝑚𝑛𝑚

]))

Given a monoid (𝑀, ⋅, 𝜖), we can get a List-algebra 𝛾 ∶ List 𝑀 → 𝑀 by defining

𝛾[𝑚1,… ,𝑚𝑛] = 𝑚1 ⋅ … ⋅ 𝑚𝑛 (3.12)

This clearly satisfies the laws. We can even recover the monoid from 𝛾, with
𝜖 = 𝛾([]) and 𝑥 ⋅ 𝑦 = 𝛾([𝑥, 𝑦]). It can be proved that every List-algebra is of this
form for a unique monoid [2].

Implementation in Agda

We define 𝑇 -algebras in Agda directly from the mathematical definition:
record T−algebra {o ℓ e} {C ∶ Category o ℓ e}

(M ∶ Monad C) ∶ Set (o ⊔ ℓ ⊔ e) where
field

A ∶ Obj
α ∶ F0 A ⇒ A

.{unit} ∶ C [C [α ∘ M−η A] ≡ id]

.{struct} ∶ C [C [α ∘ M−μ A] ≡ C [α ∘ F1 α]]

Given a monoid, we can construct a List-algebra by defining
algebra−from−monoid ∶ ∀ {c ℓ} → Monoid c ℓ → T−algebra (monad {c} {ℓ})

with the carrier of the 𝑇 -algebra, A, being the setoid of the monoid, and the struc-
ture map of the 𝑇 -algebra, α, having two components: a function _⟨$⟩_ that takes
a list containing values of type4 A and returns a value of type A, and a proof of
equality cong that states that the results of applying _⟨$⟩_ on two equivalent5 lists
are equivalent.

⟨$⟩ = λ xs → foldr _∙_ ε xs

The function _⟨$⟩_ folds the binary operator over the list. We prove that if 𝑙1 ≡ 𝑙2
then the value of folding over 𝑙1 is equivalent to the value of folding over 𝑙2.

4This is really the carrier type of A, as A is a setoid.
5Equivalence is defined using the equality of A.

48

cong ∶ ∀ {e ∶ Carrier} {l1 l2 ∶ List Carrier} →
Rel _≈_ l1 l2 → (foldr _∙_ e l1) ≈ (foldr _∙_ e l2)

We prove the unit property using the identity property of ε, with𝛼([𝑎]) ≡ 𝑎⋅𝜖 ≡ 𝑎.
The struct property says that flattening a list of lists and then summing over the
elements is equivalent to summing over each of the lists and then summing over the
resulting values. The proofs are in Appendix A. This allows us to instantiate a big
operator from an arbitrary monoid, without needing to directly define a 𝑇 -algebra.

3.3.2 Multiset algebras from commutative monoids

Similarly, we can construct an algebra 𝛾 ∶ Mfin 𝑀 → 𝑀 for the multiset monad
from an arbitrary commutative monoid (𝑀, ⋅, 𝜖). The algebra is of the same form
as previously:

𝛾{[𝑚1,… ,𝑚𝑛]} = 𝑚1 ⋅ … ⋅ 𝑚𝑛

Thus when defining
algebra−from−cmonoid ∶ ∀ {c} → CommutativeMonoid c c →

T−algebra (mfin−monad {c})

the definitions implemented in algebra−from−monoid can be reused to de-
fine A, unit, and struct for the T−algebra. The action of α (given by
λ xs → foldr _∙_ ε xs) is as before. The crucial difference is the proof of con-
gruence:

cong ∶ ∀ {e ∶ Carrier} {l1 l2 ∶ List Carrier} →
Perm l1 l2 → (foldr _∙_ e l1) ≈ foldr _∙_ e l2

stating that if 𝑙1 and 𝑙2 are multiset equivalent (equal modulo permutation), then
𝛼(𝑙1) ≡ 𝛼(𝑙2), a property that relies on commutativity of the monoid multipli-
cation. We proved this via the following lemma, which uses commutativity to
rearrange the order of applying _∙_.

remove−comm ∶ ∀ {e ∶ Carrier} {xs ∶ List Carrier} {x} →
(i ∶ x ∈ xs) → foldr _∙_ e xs ≈ x ∙ (foldr _∙_ e (remove xs i))

algebra−from−cmonoid lets us easily instantiate a big operator on multisets from
an arbitrary commutative monoid (many of which, such as (ℕ,+, 0), are provided
in Agda’s standard library) and thereby take advantage of the equations provided
in our library.

49

3.3.3 𝑇 -algebra homomorphisms

We want to express equations like

𝑐∑𝑎∈𝐴 𝑓(𝑎) ≡ ∏
𝑎∈𝐴

𝑐𝑓(𝑎) (3.13)

In the above equation, exponentiation forms a monoid homomorphism (a structure
preserving map) between the addition monoid (ℕ,+, 0) and the multiplication
monoid (ℕ, ∗, 1). This means that ∀𝑚,𝑛 ∈ ℕ. exp(𝑥 + 𝑦) = exp(𝑥) ∗ exp(𝑦)
and also exp(0) = 1. We will show that a monoid homomorphism between
two monoids gives rise to a big operator equation of the form above using the
categorical notion of algebra homomorphisms.

Definition (Monoid homomorphism). A homomorphism between two monoids
(𝑀, ∗, 𝜖𝑀) and (𝑁, ⋅, 𝜖𝑁) is a function 𝑓 ∶ 𝑀 → 𝑁 such that
– ∀𝑥, 𝑦 ∈ 𝑀. 𝑓(𝑥 ∗ 𝑦) = 𝑓(𝑥) ⋅ 𝑓(𝑦)
– 𝑓(𝜖𝑀) = 𝜖𝑁
By defining 𝑞𝑐(𝑥) = 𝑐𝑥 (𝑞𝑐 is a monoid homomorphism), we can represent
eq. (3.13) as

𝑞𝑐 (𝛼
𝑎∈𝐴

𝑓(𝑎)) ?≡ 𝛽
𝑎∈𝐴

𝑞𝑐(𝑓(𝑎)) (3.14)

or, equivalently,

(𝑞𝑐 ∘ (𝛼 ∘ 𝑇 (𝑓)) 𝐴 ?≡ (𝛽 ∘ 𝑇 (𝑞𝑐 ∘ 𝑓)) 𝐴 (3.15)

for 𝑇 being List. In fact, these equalities hold for any monad 𝑇 whenever 𝑞𝑐 is an
algebra morphism from (𝐴, 𝛼) to (𝐵, 𝛽).

Definition (Algebra morphism). Suppose (𝐴, 𝛼) and (𝐵, 𝛽) are two 𝑇 -algebras.
An arrow 𝑞 ∶ 𝐴 → 𝐵 is an algebra morphism if

𝑞 ∘ 𝛼 = 𝛽 ∘ 𝑇 (𝑞) (3.16)

That is, the following diagram commutes.

𝑇𝐴 𝐴

𝑇𝐵 𝐵

𝛼

𝑇𝑞 𝑞
𝛽

50

Proof of eq. (3.14).

𝑞𝑐 (𝛼
𝑎∈𝐴

𝑓(𝑎)) = (𝑞𝑐 ∘ (𝛼 ∘ 𝑇 (𝑓)) 𝐴 (by definition)

= ((𝑞𝑐 ∘ 𝛼) ∘ 𝑇 (𝑓)) 𝐴 (by eq. (2.6))
= ((𝛽 ∘ 𝑇 (𝑞)) ∘ 𝑇 (𝑓)) 𝐴 (by eq. (3.16))
= (𝛽 ∘ (𝑇 (𝑞𝑐) ∘ 𝑇 (𝑓))) 𝐴 (by eq. (2.6))
= (𝛽 ∘ 𝑇 (𝑞𝑐 ∘ 𝑓)) 𝐴 (by eq. (2.9))
= 𝛽

𝑎∈𝐴
𝑞𝑐(𝑓(𝑎)) (by definition)

We prove that whenever 𝑞 is a monoid homomorphism from (𝐴, ∗, 𝜖𝐴) to
(𝐵, ⋅, 𝜖𝐵), we can construct a 𝐿𝑖𝑠𝑡-algebra morphism 𝑞𝑐 as detailed above from
(𝐴, 𝛼) to (𝐵, 𝛽), where 𝛼 and 𝛽 are derived from their respective monoids as in
§ 3.3.1. That is, we prove 𝑞𝑐 ∘ 𝛼 = 𝛽 ∘ List (𝑞𝑐).

Proof. For the empty list,

(𝑞 ∘ 𝛼) [] = 𝑞(𝜖𝐴) (𝛽 ∘ List (𝑞)) [] = 𝛽([])
= 𝜖𝐵 = 𝜖𝐵

where the equalities follow from 𝑞 preserving identity.
For a list of length 𝑛,

(𝑞 ∘ 𝛼)[𝑎1,… , 𝑎𝑛] = 𝑞(𝑎1 ∗ … ∗ 𝑎𝑛)
= 𝑞(𝑎1) ⋅ … ⋅ 𝑞(𝑎𝑛)

and

(𝛽 ∘ List (𝑞)) [𝑎1,… , 𝑎𝑛] = 𝛽([𝑞(𝑎1),… , 𝑞(𝑎𝑛)])
= 𝑞(𝑎1) ⋅ … ⋅ 𝑞(𝑎𝑛)

Thus, given a monoid homomorphism between two monoids, we can derive an
algebra morphism between two algebras and thereby derive a general big operator
equation. This lets us prove equations like

51

𝑐∑𝑎∈𝐴 𝑓(𝑎) ≡ ∏
𝑎∈𝐴

𝑐𝑓(𝑎) and ¬(⋁
𝑎∈𝐴

𝑓(𝑎)) ≡ ⋀
𝑎∈𝐴

¬𝑓(𝑎)

where negation ¬ is a monoid homomorphism between (𝔹, ∨, 0) and (𝔹, ∧, 1) in
the second equation.

Distributivity and 𝑇 -algebra endomorphisms

When the two 𝑇 -algebras of an algebra homomorphism are identical, we have an
algebra endomorphism. Suppose (𝐴, 𝛼) is a 𝑇 -algebra. An arrow 𝑞 ∶ 𝐴 → 𝐴 is
an algebra endomorphism if

𝑞 ∘ 𝛼 = 𝛼 ∘ 𝑇 (𝑞) (3.17)

Consider 𝑇 = List, and let the corresponding monoid of (𝐴, 𝛼) be (𝐴,⊕, 0). Then
the algebra endomorphism 𝑞 corresponds to a monoid endomorphism 𝑞 such that
𝑞(𝑎1 ⊕ 𝑎2) = 𝑞(𝑎1) ⊕ 𝑞(𝑎2) and 𝑞(0) = 0.
Such monoid endomorphisms arise commonly from a semiring6 structure
(𝑆,⊕,⊗, 0, 1), where ⊗ distributes over ⊕:

𝑥 ⊗ (𝑦 ⊕ 𝑧) = (𝑥 ⊗ 𝑦) ⊕ (𝑥 ⊗ 𝑧)

Then if we take 𝑞𝑐 = 𝜆𝑎. 𝑐 ⊗ 𝑎, we get a monoid endomorphism and thus an
algebra endomorphism. To see this, note that

𝑞𝑐(𝑎1 ⊕ 𝑎2) = 𝑐 ⊗ (𝑎1 ⊕ 𝑎2) = (𝑐 ⊗ 𝑎1) ⊕ (𝑐 ⊗ 𝑎2)

and 𝑞𝑐(0) = 𝑐 ⊗ 0 = 0.
For an arbitrary semiring structure, we can derive an algebra endomorphism and
thus the following equation (a particular case of eq. (3.14)):

𝑞𝑐 (𝛼
𝑎∈𝐴

𝑓(𝑎)) ≡ 𝛼
𝑎∈𝐴

𝑞𝑐(𝑓(𝑎))

For example, for the semiring (ℕ,+,×, 0, 1), we get the following equation for
left distributivity ∀𝑐 ∈ ℕ:

6A semiring (𝑆,⊕,⊗, 0, 1) is a set 𝑆 such that (𝑆,⊕, 0) is a commutative monoid, (𝑆,⊗, 1)
is a monoid, ⊗ left and right distributes over ⊕, and ∀𝑠 ∈ 𝑆. 𝑠 ⊗ 0 = 0 ⊗ 𝑠 = 0.

52

𝑐 ∗
𝑛

∑
𝑥=0

𝑓(𝑥) ≡
𝑛

∑
𝑥=0

(𝑐 ∗ 𝑓(𝑥))

We get right distributivity when 𝑞𝑐 is of the form 𝜆𝑎. 𝑎 ⊗ 𝑐.
In Agda, we implemented a module that takes a semiring and provides a function
to construct an algebra morphism 𝑞𝑐 for any 𝑐. We used eq. (3.14) to derive right
and left distributivity lemmas. When instantiated for propositional equality and
multisets, the laws are as follows:

l−distrib ∶ ∀ {X} {x ∶ A} {l ∶ Mfin X} {f ∶ X → A} →
x ∗ ∑ f l ≈ ∑ (λ y → x ∗ f y) l

r−distrib ∶ ∀ {X} {x ∶ A} {l ∶ Mfin X} {f ∶ X → A} →
(∑ f l) ∗ x ≈ ∑ (λ y → (f y) ∗ x) l

These distributivity equations were proved in a more general form in the library,
using algebra morphisms as in eq. (3.14). The above laws are instantiations of
the general equations in a module that takes a semiring and constructs the corre-
sponding big operator and algebra morphism. Thus,∑ and ∗ are defined from the
particular semiring given, which is not necessarily (ℕ,+,×, 0, 1).

3.4 Usability

In the previous sections, we took common algebraic equations using big opera-
tors and categorically derived general equations using our framework of monad
algebras. We implemented (and thus formally proved) these equations in Agda.
However, as a consequence of implementing the equations in their full general-
ity, it can be difficult for practitioners to use the equations in application to reason
about simple big operators such as ∑, ∏, or the Boolean ⋁ and ⋀. This section
gives an overview of steps taken, after evaluating common use cases, to increase
the usability of the library.

3.4.1 From the language of algebra to category theory

Familiarity with basic terms of algebra such as monoids, semirings, and homomor-
phisms is arguably a more reasonable assumption than familiarity with category
theory terms for the average Agda user. As such, we defined lemmas that “trans-
late” between the languages of algebra and category theory.

53

For example, to instantiate a big operator, we need a monad and an algebra. We
wrote lemmas to construct an algebra for the list monad from an arbitrary monoid
(§ 3.2.2) and an algebra for the multiset monad from an arbitrary commutative
monoid (§ 3.2.4). This lets us instantiate a big operator by simply providing a
monoid structure, common implementations of which exist in Agda’s standard li-
brary.
Similarly, rather than having to construct an algebra homomorphism (§ 3.3.3),
the user can provide a monoid homomorphism or a semiring structure to use the
distributivity equations.
In essence, although category theory is used to develop the underlying theoretical
framework and structure the library in order to derive equations in a general way,
the library was built to be usable without knowledge of category theory.

3.4.2 Types with propositional equality

This section discusses a technical point regarding the implementation in type the-
ory. For generality, the implementation was based on setoids. Setoids are impor-
tant in intensional type theories such as that of Agda’s [4], where propositional
equality is distinguished from definitional equality, as they allow the formation of
quotient types (e.g. when constructing the multiset or powerset types or defining
the rational numbers).
The cost of this is unnecessary complexity when reasoning about types with propo-
sitional equality, such as the natural numbers or Booleans. Our big operators were
defined to take functions that preserve equality on the setoid. This is a particular
type in Agda, so an expression like

∑ (λ d → ∑ (λ d′ → f (d) ∗ f (d′)) (divisors n)) (divisors m)

to express ∑𝑑|𝑚 ∑𝑑′|𝑛 𝑓(𝑑) ⋅ 𝑓(𝑑′) is not well-typed (as the 𝜆 expression is not
of the “function that preserves equality” type).
To remedy this, we wrote a module instantiating the big operator equations to
work with the Agda type Set instead of Setoid, and with Agda functions instead
of “functions that preserve equality”.
This changes the type of the big operator from

⊚ ∶ ∀ {X ∶ Setoid c ℓ} → (f ∶ X ⟶ A) → (t ∶ Setoid.Carrier (F0 X)) →
Setoid.Carrier A

54

as defined in § 3.1.2, where the long arrow indicates that 𝑓 is of the “function that
preserves equality” type, to

⊚ ∶ ∀ {X ∶ Set c} → (f ∶ X → A) → (xs ∶ F0 X) → A

The big operator equations were instantiated similarly. Thus, the above expres-
sion for∑𝑑|𝑚 ∑𝑑′|𝑛 𝑓(𝑑) ⋅ 𝑓(𝑑′) is now well-typed. This simplifies proof-writing
as it removes the need to write the equality proofs associated with setoids when
propositional equality is used.

3.4.3 List comprehensions

In evaluating the usability of the library, we considered the ease with which users
can create containers. By using lists as the underlying structure of our collection
monads, users can take advantage of over 2000 lines of code in the standard library
to reason about lists. Lists can be constructed using interval, filtering, and parti-
tioning operations. For example, to define∑𝑑|𝑚 𝑓(𝑑), we might construct the list
corresponding to the interval (1 ≤ 𝑘 ≤ 𝑚) and then filter it with the predicate
𝜆𝑑 → 𝑑|?𝑚.
The standard library provides support for such common list operations, for instance
via the following:

filter ∶ ∀ {a} {A ∶ Set a} → (A → Bool) → List A → List A

partition ∶ ∀ {a} {A ∶ Set a} → (A → Bool) → List A → (List A × List A)

We discuss filtering and partitioning below.

Filtering. When filtering by a predicate 𝑝 ∶ A → Bool, the resulting type is List,
which does not contain information (that is, a proof) that the elements in the re-
sulting list satisfy the predicate. For instance,

∑
1≤𝑘≤𝑛
𝑘 even

⌊𝑘/2⌋ = ∑
1≤𝑘≤𝑛
𝑘 even

𝑘/2

holds because of the particular collection of values being even, but this fact can
not be used directly without a corresponding proof and big operator equation. The
standard library provides a lemma to construct a proof that all elements in a filtered
list satisfy the predicate. We provide a lemma all−f

55

all−f ∶ ∀ {X} → (f g ∶ X → A) → (xs ∶ Mfin X) →
All (λ x → f x ≈ g x) xs → ⊚ f xs ≈ ⊚ g xs

which roughly states

(∀𝑥 ∈ 𝑡. 𝑓(𝑥) = 𝑔(𝑥)) ⇒ 𝛼 𝑓 𝑡 = 𝛼 𝑔 𝑡 (3.18)

This allows us to reason about equivalence of filtered big operators.

Partitioning. To handle partitioning a collection and express equations like

∑
1≤𝑘≤𝑛

𝑓(𝑘) ≡ ∑
1≤𝑘≤𝑛;𝑘 even

𝑓(𝑘) + ∑
1≤𝑘≤𝑛;𝑘 odd

𝑓(𝑘) (3.19)

we proved the following:
partition−lemma ∶ ∀ {X ∶ Set c} {f ∶ X → A} {t ∶ Mfin X} →

(p ∶ X → Bool) →
⊚ f t ≈ ⊚ f (proj1 (partition p t)) ∙ ⊚ f (proj2 (partition p t))

The proof of partition−lemma comes from being able to show that partitioning a
list on a predicate gives a permutation

partition−is−perm ∶ (p ∶ Carrier → Bool) → (as ∶ List Carrier) →
Perm as (proj1 (partition p as) ++ proj2 (partition p as))

and the 𝜇-property from eq. (3.6), of which the propositional equality form is be-
low:

concat−property ∶ ∀ {X ∶ Set c} {f ∶ X → A} {t ∶ Mfin (Mfin X)} →
⊚ f (concat t) ≈ ⊚ (⊚ f) t

A particular instance of concat−property is when 𝑡 contains only two lists, in
which case the following holds:

concat−lemma ∶ ∀ {X ∶ Set c} {f ∶ X → A} {t1 t2 ∶ Mfin X} →
⊚ f (t1 ++ t2) ≈ (⊚ f t1) ∙ (⊚ f t2)

56

Then
partition−lemma {X} {f = f} {t} p =

begin
⊚ f t

≈⟨ cong2 refl (partition−is−perm (setoid X) p t) ⟩
⊚ f (proj1 (partition p t) ++ proj2 (partition p t))

≈⟨ concat−lemma {X} {f} {proj1 (partition p t)} ⟩
⊚ f (proj1 (partition p t)) ∙ ⊚ f (proj2 (partition p t))

∎

This is a general lemma for partitioning equations such as eq. (3.19).

3.5 Summary of equations

In this chapter, we summarised the theory and Agda implementation of a general
framework for big operators. We derived big operator equations in a unified way,
and outlined how the library maintains its usability. Table 3.3 is a generalised
version of Table 1.1 on page 6, presenting general forms of big operator equations
derived categorically and implemented in the library.

57

Equation

Unit identity1 𝛼
𝑥∈𝜂𝑋(𝑎)

𝑓(𝑥) = 𝑓(𝑎)

Composition 𝛼
𝑥∈𝑆

𝑓(𝑔(𝑥)) = 𝛼
𝑥′∈𝑇(𝑔)𝑆

𝑓(𝑥′)

𝜇-identity 𝛼
𝑥∈𝜇𝑋(𝑆)

𝑓(𝑥) = 𝛼
𝑡∈𝑆

𝛼
𝑥∈𝑡

𝑓(𝑥)

Distributive law2 𝑔(𝛼
𝑥∈𝑡

𝑓(𝑥)) = 𝛼
𝑥∈𝑡

𝑔(𝑓(𝑥))

Homomorphism3 ℎ(𝛼
𝑘∈𝐾

𝑓(𝑘)) = 𝛽
𝑘∈𝐾

ℎ(𝑓(𝑘))

Commutative law4 ⨁
𝑥

⨁
𝑦

𝑓(𝑥, 𝑦) = ⨁
𝑦

⨁
𝑥

𝑓(𝑥, 𝑦)

Partition law ⨁
𝑘∈𝑆

𝑓(𝑘) = ⨁
𝑘∈𝑆
𝑝(𝑘)

𝑓(𝑘) ⊕ ⨁
𝑘∈𝑆
¬𝑝(𝑘)

𝑓(𝑘)

Product law5 ⨁
𝑘∈𝑇(𝑔)(∆(𝑋×𝑌))

𝑓(𝑘) = ⨁
𝑥∈𝑋

⨁
𝑦∈𝑌

𝑓(𝑔(𝑥, 𝑦))

Commutativity ⨁
𝑘∈𝐾

𝑓(𝑘) = ⨁
𝑘∈perm(𝐾)

𝑓(𝑘)

Distributive product6 ⨁
(𝑥,𝑦)∈𝑋×𝑌

(𝑓(𝑥) ⊗ 𝑔(𝑦)) = (⨁
𝑥∈𝑋

𝑓(𝑥)) ⊗(⨁
𝑦∈𝑌

𝑔(𝑦))

Filtering lemma7 𝛼
𝑘∈𝑆
𝑝(𝑘)

𝑓(𝑘) = 𝛼
𝑘∈𝑆
𝑝(𝑘)

𝑔(𝑘)

Table 3.3: Examples of general equations proved in the implementation

1 𝛼 denotes an arbitrary algebra for an arbitrary monad.
2 𝑔 is an algebra endomorphism on the 𝛼 algebra.
3 ℎ is an algebra homomorphism from the 𝛼 algebra to the 𝛽 algebra.
4 ⨁ denotes an algebra for a commutative monad.
5 ∆ denotes the combinator presented in § 3.2.6.
6 ⊕ and ⊗ have a semiring structure.
7 Assuming ∀𝑘. 𝑝(𝑘) ⇒ 𝑓(𝑘) ≡ 𝑔(𝑘).

58

Chapter 4

Evaluation

Contents
4.1 A demonstrative proof in Agda 59

4.1.1 Defining the proposition in Agda 60
4.1.2 Proving the proposition 62

4.2 Practicality and usability of the library 64
4.3 A discussion of equations 65
4.4 Correctness of the theory and implementation 66
4.5 Success criteria . 66
4.6 Summary . 67

Chapter 3 described a theoretical framework for big operators and an associated
Agda implementation, concluding with a discussion of the implementation’s us-
ability. This chapter continues the evaluation of the framework and implementa-
tion. To guide our discussion and demonstrate use of the library, we first present
a demonstrative proof in § 4.1. We then discuss the practicality and usability of
the library in § 4.2 and the expressibility of the framework in § 4.3. Finally, we
evaluate the correctness of the theory and implementation in § 4.4.

4.1 A demonstrative proof in Agda

The following is a proposition and proof from number theory, presented in and
used throughout Alan Baker’s A concise introduction to the theory of numbers [3].

59

Proposition. A function 𝑓 defined on the positive integers is multiplicative if
𝑓(𝑚)𝑓(𝑛) = 𝑓(𝑚𝑛) for all 𝑚,𝑛 with 𝑚 and 𝑛 coprime. Suppose 𝑓 is multi-
plicative. Let

𝑔(𝑛) = ∑
𝑑|𝑛

𝑓(𝑑)

where the sum is over all divisors 𝑑 of 𝑛. Then 𝑔 is a multiplicative function.

Proof. If 𝑚 and 𝑛 are coprime, then

𝑔(𝑚𝑛) = ∑
𝑑|𝑚

∑
𝑑|𝑛

𝑓(𝑑𝑑′) = ∑
𝑑|𝑚

𝑓(𝑑)∑
𝑑′|𝑛

𝑓(𝑑′) = 𝑔(𝑚)𝑔(𝑛)

This one line proof is more involved in formal mathematics, requiring instantiating
the big operator with multisets and invoking various divisibility, commutativity,
and distributivity lemmas. We demonstrate the step-by-step process of going from
a proposition to a proof using our library.

4.1.1 Defining the proposition in Agda

Coprimality. The standard library provides support for coprimes. For
𝑚,𝑛 ∈ ℕ, Coprime m n is the type that for all 𝑖 ∈ ℕ, if 𝑖|𝑚 and 𝑖|𝑛, then 𝑖 = 1.
Coprime m n is inhabited, meaning we can provide a term of the type, if and only
if m and n are coprime.

Coprime ∶ (m n ∶ ℕ) → Set
Coprime m n = ∀ {i} → i ∣ m × i ∣ n → i ≡ 1

Multiplicative functions. The type of multiplicative functions can be defined
straightforwardly from the mathematical definition. Again, isMultiplicative f is
inhabited iff f is multiplicative.

isMultiplicative ∶ (f ∶ ℕ → ℕ) → Set
isMultiplicative f = ∀ {m n} → Coprime m n → (f m) ∗ (f n) ≡ f (m ∗ n)

Divisors. Given 𝑛 ∈ ℕ, we generate the divisors of 𝑛 by taking the interval
1 ≤ 𝑘 ≤ 𝑛 and filtering using the decidable predicate λ d → d ∣? n.

divisors ∶ (n ∶ ℕ) → Mfin ℕ
divisors n = filter (⌊_⌋ ∘ (λ d → d ∣? n)) (interval 1 n)

60

We check this behaves as expected by providing a proof refl that
divisors 20 ≡ 1 ∷ 2 ∷ 4 ∷ 5 ∷ 10 ∷ 20 ∷ [] (which shows the type is inhabited).

pf1 ∶ divisors 20 ≡ 1 ∷ 2 ∷ 4 ∷ 5 ∷ 10 ∷ 20 ∷ []
pf1 = refl

Instantiating the big operator. As (ℕ,+, 0) is a commutative monoid, we open
the module corresponding to the big operator for multisets, providing the standard
library term +−commutativeMonoid to instantiate the big operator to ∑. The
module provides lemmas parametrised for propositional equality (see § 3.4.2),
which is sufficient for natural numbers, and eliminates the need for the user to
provide proofs that functions preserve equality.

open import Bigop.Lemmas.Mfin
using (module Lemmas; module SemiringLemmas)

open Lemmas (+−commutativeMonoid) renaming (⊚ to ∑)
open SemiringLemmas (semiring)

Defining 𝑔𝑓(𝑛) = ∑𝑑|𝑛 𝑓(𝑑). We define 𝑔𝑓(𝑛) as divSum below.

divSum ∶ (f ∶ ℕ → ℕ) → (n ∶ ℕ) → ℕ
divSum f n = ∑ f (divisors n)

Defining the proposition. We translate the statement of the proposition to Agda.
prop ∶ ∀ {m n ∶ ℕ} → Coprime m n →

(f ∶ ℕ → ℕ) → isMultiplicative f →
divSum f (m ∗ n) ≡ divSum f m ∗ divSum f n

The type is a proposition stating that ∀𝑚,𝑛 ∈ ℕ, if we can provide a
proof that 𝑚 and 𝑛 are coprime, then for all multiplicative functions 𝑓 ,
𝑔𝑓(𝑚 ∗ 𝑛) = 𝑔𝑓(𝑚) ∗ 𝑔𝑓(𝑛) and hence 𝑔 is multiplicative.

61

4.1.2 Proving the proposition

An informal step-by-step proof

Below is a “pen-and-paper” proof of the proposition where each manipulation of
the expression is explicit.

𝑔(𝑚𝑛) = ∑
𝑑|𝑚𝑛

𝑓(𝑑) (by definition) (4.1a)

= ∑
𝑑|𝑚

∑
𝑑′|𝑛

𝑓(𝑑𝑑′) (by (∗) below) (4.1b)

= ∑
𝑑|𝑚

∑
𝑑′|𝑛

𝑓(𝑑)𝑓(𝑑′) (𝑓 multiplicative) (4.1c)

= ∑
𝑑|𝑚

⎛⎜
⎝
𝑓(𝑑)∑

𝑑′|𝑛
𝑓(𝑑′)⎞⎟

⎠
(distributivity with 𝑓(𝑑)) (4.1d)

= ⎛⎜
⎝
∑
𝑑|𝑚

𝑓(𝑑)⎞⎟
⎠

⎛⎜
⎝
∑
𝑑′|𝑛

𝑓(𝑑′)⎞⎟
⎠

(distributivity with ∑
𝑑′|𝑛

𝑓(𝑑′)) (4.1e)

= 𝑔(𝑚)𝑔(𝑛) (by definition) (4.1f)

(∗): A proof of eq. (4.1b) is based on defining a bijection

{𝑑 ∈ ℕ | 𝑑|𝑚𝑛} ≅ {(𝑑, 𝑑′) | 𝑑|𝑚 ∧ 𝑑′|𝑛}

which holds for 𝑚 and 𝑛 coprime.

Formalizing the proof in Agda

Proof in Agda. The informal proof can be formalized in Agda using its equa-
tional reasoning. Each of the steps in the informal proof corresponds to an equality
in Agda.

62

prop {m} {n} coprime f isMultiplicative =
begin

g (m ∗ n)
≡⟨ refl ⟩

∑ f (divisors (m ∗ n))
≡⟨ product−rewrite {tx = divisors m} lemma2 ⟩

∑ (λ d → ∑ (λ d′ → f (d ∗ d′)) (divisors n)) (divisors m)
≡⟨ sym (all−f (λ d → ∑ (λ d′ → f d ∗ f d′) (divisors n))

(λ d → ∑ (λ d′ → f (d ∗ d′)) (divisors n))
(divisors m) lemma) ⟩
∑ (λ d → ∑ (λ d′ → f (d) ∗ f (d′)) (divisors n)) (divisors m)

≡⟨ cong2 {t1 = divisors m}
(λ {x} → sym (l−distrib {x = f x} {l = divisors n}))
Mfin−refl ⟩
∑ (λ d → (f d) ∗ ∑ f (divisors n)) (divisors m)

≡⟨ sym (r−distrib {x = ∑ f (divisors n)} {l = divisors m}) ⟩
(∑ f (divisors m)) ∗ (∑ f (divisors n))

≡⟨ refl ⟩
g(m) ∗ g(n)

∎
where
g = divSum f

The first step, g (m ∗ n) ≡ ∑ f (divisors (m ∗ n)), follows from the definition of g
so the proof is given by propositional equality, refl.
The next step corresponds to eq. (4.1b). The idea is that we want to express the
multiset divisors (m ∗ n) as two multisets, divisors m and divisors n, that can be
combined with

combine1 ∶ ∀ {X Y Z} (g ∶ X × Y → Z) (tx×ty ∶ Mfin X × Mfin Y) → Mfin Z
combine1 g tx×ty = (map g ∘ concat ∘ map st1 ∘ st2) tx×ty

where 𝑔 in this case corresponds to 𝜆(𝑥, 𝑦). 𝑥 ∗ 𝑦.
For example, combine1 on ([𝑎1, 𝑎2], [𝑏1, 𝑏2]) would return
[𝑔(𝑎1, 𝑏1), 𝑔(𝑎1, 𝑏2), 𝑔(𝑎2, 𝑏1), (𝑎2, 𝑏2)] (the lists can also be combined the
other way, which was proved equivalent in § 3.2.6).
Assumingwe have a proof of the divisors of𝑚𝑛 being a permutation of the divisors
of 𝑚 and 𝑛 combined using multiplication with combine1 (e.g. for 𝑚 = 2 and

63

𝑛 = 3, this is a proof that [1, 2, 3, 6] is a permutation of [1 ∗ 1, 1 ∗ 3, 2 ∗ 1, 2 ∗ 3])
lemma2 ∶ Perm (setoid ℕ) (divisors (m ∗ n))

(combine1 (uncurry _∗_) (divisors m , divisors n)

then product−rewrite (from page 46)

product−rewrite ∶ ∀ {X Y Z ∶ Set c} {f ∶ Z → A} {g ∶ X × Y → Z}
{tz ∶ Mfin Z} {tx ∶ Mfin X} {ty ∶ Mfin Y} →
Perm (setoid Z) tz (combine1 g (tx , ty)) →
⊚ f tz ≈ ⊚ (λ x → ⊚ (λ y → f (g (x , y))) ty) tx

can be used to prove eq. (4.1b).
To prove ∑𝑑|𝑚 ∑𝑑′|𝑛 𝑓(𝑑𝑑′) = ∑𝑑|𝑚 ∑𝑑′|𝑛 𝑓(𝑑)𝑓(𝑑′), we use the “filtering
lemma” from Table 3.3 and eq. (3.18) with the following:

lemma ∶ All (λ x → (∑ (λ d′ → f x ∗ f d′) (divisors n) ≡
∑ (λ d′ → f (x ∗ d′)) (divisors n))) (divisors m)

which states that ∀𝑑 ∈ divisors m,∑𝑑′|𝑛 𝑓(𝑑𝑑′) = ∑𝑑′|𝑛 𝑓(𝑑)𝑓(𝑑′). The proof is
omitted here. The idea is that we carry along the proofs that ∀𝑑 ∈ divisors m, 𝑑|𝑚
and ∀𝑑′ ∈ divisors n, 𝑑′|𝑛 such that the multiplicative function property of 𝑓 can
be invoked.
The remaining equalities are straightforward using the equations provided by the
library, invoking distributivity of multiplication over addition.

4.2 Practicality and usability of the library

We demonstrated the process of going from amathematical proposition to a formal
proof in Agda using our library. Defining the proposition in Agda (implementing
divisors and instantiating the big operator) was straightforward, with the big oper-
ator definitions and equations available from importing a module parametrised by
a monoid defined in the standard library.
The proof demonstrated the three ideas regarding usability outlined in § 3.4:

1. Replacing the language of category theory with that of algebra: the proof
required no knowledge of category theory and used only ideas from algebra
such as distributivity.

64

2. Providing an interface for types with propositional equality: there was no
mention of setoids or “functions that preserve equality” in the proof. This
allows the user to use 𝜆 functions and simplifies proof-writing.

3. Providing lemmas to reason about list comprehensions: the proof demon-
strated the interaction of filtering (used in divisors) with big operator equa-
tions that are true based on a property of the values in the container (used
with all−f).

As desired, the steps in the Agda proof correspond directly to the steps in a pen-
and-paper proof that separated each manipulation of the expression into a separate
equation. This demonstrates the expressibility of the library, which provides a rich
set of equations to manipulate big operator expressions.
A challenge in terms of usability is due to the use of permutations to define multi-
set equality. Constructing a permutation each time commutativity is invoked may
not be straightforward. However, often big operator expressions are not arbitrar-
ily rearranged and are instead rearranged based on some predicate. We provide
support for many such manipulations with our permutation library.

4.3 A discussion of equations

Table 3.3 on page 58 (a general version of Table 1.1 on page 6) illustrates common
big operator equations proved in the implementation.
Equations expressed with 𝛼 hold regardless of the monad or algebra used. These
equations were proved once only in the language of category theory and can be
invoked without needing to reprove the equation for a specific monad or algebra.
Equations based on commutativity (expressed with ⨁) were derived using the
notion of a commutative monad. Thus, these equations can be used for any com-
mutative monad (such as the multiset or powerset).
The distributive law and homomorphism law were also proved abstractly using
the idea of algebra endomorphisms and homomorphisms respectively. We proved
that the equations arose out of semiring structures and monoid homomorphisms.
In deriving these equations, we developed theory on the representation of algebraic
expressions, structures, and morphisms in category theory.
The development of the library was motivated by examining common uses of big
operator expressions. We demonstrated the process of taking an algebraic expres-
sion and deriving a general equation in our framework. Overall, these equations

65

cover the vast majority of the equations presented in chapter two of Knuth’s Con-
crete Mathematics [13].

4.4 Correctness of the theory and implementation

Type theories are a class of formal systems. The implementation of our categori-
cal framework in Agda’s type theory serves to formally verify its correctness and
ensure the careful handling of issues often ignored in informal mathematics. The
informal categorical proofs and equations presented throughout Chapter 3 were
formally proved correct by implementing type-checked proofs in Agda.
Instantiating the list and multiset monads in §§ 3.2.2 and 3.2.4 required formally
proving various monad laws related to list concatenation and multiset union. Sim-
ilarly, constructing the algebras required proving the 𝑇 -algebra laws. This is in
contrast to languages like ML and Haskell, where the monads and algebras can be
implemented but not proved correct (that is, it can not be proved that the monad
laws are obeyed and this is left at the discretion of the programmer).
Finally, throughout the development of the project, unit testing was used to in-
crease confidence that the library behaved as expected. Unit testing was achieved
using Agda’s type system, where tests were represented as proofs of propositional
equality. The equality represented the expression and the “desired” result, with
the proof simply being refl. The type checker would raise an error if the test failed.

4.5 Success criteria

I have met all my success criteria and implemented two extensions.
Developed and formalized theory for a general framework for big
operators on algebras of monads.

Chapter 3 presented big operators in terms of monad algebras and developed in
the framework the theory for operator properties like associativity, distributivity,
and commutativity. This has not been done before at the abstract level of category
theory. I derived general equations to reason about algebraic structures such as
monoids and semirings.

Designed and implemented a generic framework for big operators
in Agda based on the theory of algebras of monads, having the abil-

66

ity to represent and define big operators with different properties and
monads of different types such as lists or sets.

I developed a library, consisting of over 30 modules and over 2500 lines of Agda
“code” structured using the categorical framework. Table 3.3 provides examples
of general equations derived and implemented in the library. I implemented four
different types of monads: the tree, list, multiset, and powerset monads.

Demonstrated the use of the library by proving various equivalences
using big operators such as results on summations from Concrete
Mathematics [13].

I implemented nearly all of the equations in chapter two (on Σ notation) of Con-
crete Mathematics and many others, as summarised in Table 3.3. I demonstrated
use of the library by writing proofs, such as that for number-theoretic multiplica-
tive functions in § 4.1.

Instantiate and prove results using non-standard monads such as mul-
tisets, indexed containers, or binary trees.

I proved lemmas for four monads including the multiset and binary tree. Identi-
fying the correspondence between container types and algebraic structures, and
thus the correspondence between the multiset and commutative monoid, was part
of the theoretical work of this project. This made multisets an essential part of
the implementation in Agda and resulted as a by-product in the creation of a li-
brary to reason about permutations (which can not be implemented as a type in
non-dependently typed languages like ML).

Formally verify the correctness of the implementation.

When instantiating the monads and algebras, I proved that the monad and algebra
laws hold. This formally proved the correctness of the implementation. This is
in contrast to Haskell and ML, where monads and algebras can be defined but not
formally proved correct. In addition, the implementation in Agda’s type system of
the theory developed in this dissertation serves as formal certification.

4.6 Summary

This chapter demonstrated that the project has exceeded its success criteria and
that the proposed framework can be used to structure an implementation of big
operators in Agda that is practical while deriving equations in a general way.

67

Chapter 5

Conclusion

Contents
5.1 Results . 68
5.2 Overview . 69
5.3 Lessons learned . 70

5.1 Results

This dissertation developed theory for a more general approach to big operators
than has been taken previously (c.f. [14, 15, 6]).
This project addressed each of the challenges presented in Chapter 1.

Problem I. Formalization of big operators
We developed and formalized a general framework for big operators in
terms of monads and their algebras, using category theory to provide
a generalized notion of functions and a rich conceptual background
for reasoning about monads and their algebras.
Problem II. Manipulation of big operator expressions
From specific big operator equations as in Table 1.1 on page 6, we
derived a rich set of generalized equations (presented in Table 3.3 on
page 58) in a unified way. We developed theory for operator prop-
erties such as associativity, distributivity, and commutativity in our
categorical framework.

68

Problem III. Formal implementation
We implemented our framework in Agda’s type theory for formal ver-
ification. We implemented and instantiated a variety of monads and
operator properties, and also developed an independent permutation
library. We present a big operator library designed and implemented
in a modular way, with lemmas and big operator equations for com-
monly used algebraic structures such as monoids and semirings.
Problem IV. Usability
We demonstrated how the theoretical framework could be used to de-
velop a big operator library that is both usable and well-structured
in a dependently-typed language. Despite big operator notation be-
ing ubiquitous, reasoning about big operators is not fully supported
in many proof assistants. This project explored a general framework
uponwhich to build a usable big operator library and produced a work-
ing prototype in Agda.

5.2 Overview

The formalization of mathematics is challenging for two reasons: firstly, formal
proofs require more detail and secondly, the formalized body of mathematics is
limited and thus many lemmas need to be formally proved before significant work
can be done.
This work developed infrastructure in a modular way in the form of a big operator
(and permutation) library. Big operator notation is common in the mathemati-
cal vernacular and this library increases the classes of formal proofs that can be
naturally expressed.
Moreover, this work demonstrated the process of formalizing an algebraic con-
cept through representing it in different languages: (i) the language of abstract
algebrawhen reasoning about familiar big operators, (ii) the language of category
theory when generalizing big operators and presenting a categorical framework,
(iii) the language of dependent type theory when providing a more familiar syntax
for the former, and (iv) the language of Agda when writing type-checked proofs
and thereby formalizing big operators.

69

5.3 Lessons learned

This project was research-like in nature, with the starting point being an abstract
definition of big operators in terms of monad algebras [10]. Expressing new equa-
tions in the framework involved expressing the algebraic equations using ideas
from category theory, and then further formalizing the mathematics by express-
ing the equations in Agda. Without having prior experience with category theory,
proof assistants, Agda, or dependently-typed programming, understanding how
to represent and prove big operator equations—first in the language of category
theory and then in that of dependent type theory and Agda—was a challenge.
Overall, I have gained an exciting glimpse into the world of research and the beau-
tiful correspondences between mathematical logic, type theory, and category the-
ory.

70

Bibliography

[1] Andreas Abel. Agda: equality, 2012.
[2] Steve Awodey. Category theory. Oxford University Press, 2010.
[3] Alan Baker. A concise introduction to the theory of numbers. Cambridge

University Press, 1984.
[4] Gilles Barthe, Venanzio Capretta, and Olivier Pons. Setoids in type theory.

J. Funct. Program., 13(2):261–293, March 2003.
[5] John L Bell. Types, sets, and categories.
[6] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical

Big Operators, pages 86–101. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2008.

[7] Andreas Blass. The interaction between category theory and set theory. 1984.
[8] Edwin Brady, Christoph A Herrmann, and Kevin Hammond. Lightweight

invariants with full dependent types. Trends in Functional Programming,
2007, 2008.

[9] Nils Anders Danielsson. Bag equivalence via a proof-relevant membership
relation. In Lennart Beringer and Amy P. Felty, editors, ITP, volume 7406
of Lecture Notes in Computer Science, pages 149–165. Springer, 2012.

[10] Marcelo Fiore and Timothy G. Griffin. On the algebras of big operators.
Unpublished manuscript.

[11] Denis Firsov and Tarmo Uustalu. Dependently typed programming with fi-
nite sets. In Proceedings of the 11th ACM SIGPLAN Workshop on Generic
Programming, WGP 2015, pages 33–44, New York, NY, USA, 2015. ACM.

[12] Herman Geuvers, Randy Pollack, Freek Wiedijk, and Jan Zwanenburg. The
algebraic hierarchy of the fta project.

71

[13] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics: A Foundation for Computer Science. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1994.

[14] Daniel Gustafsson and Nicolas Pouillard. Counting on type isomorphisms.
[15] Daniel Gustafsson and Nicolas Pouillard. Foldable containers and dependent

types.
[16] John Harrison. Hol light: A tutorial introduction. In International Con-

ference on Formal Methods in Computer-Aided Design, pages 265–269.
Springer, 1996.

[17] John Harrison. HOL Light: An overview. In Stefan Berghofer, Tobias Nip-
kow, Christian Urban, and Makarius Wenzel, editors, Proceedings of the
22nd International Conference on Theorem Proving in Higher Order Logics,
TPHOLs 2009, volume 5674 of Lecture Notes in Computer Science, pages
60–66, Munich, Germany, 2009. Springer-Verlag.

[18] Martin Hofmann. Extensional concepts in intensional type theory. 1995.
[19] Martin Hofmann. On the interpretation of type theory in locally cartesian

closed categories, pages 427–441. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1995.

[20] Max Kelly. Basic concepts of enriched category theory, volume 64. CUP
Archive, 1982.

[21] Anders Kock. Commutative monads as a theory of distributions. Theory and
Applications of Categories, 26(4):97–131, 2012.

[22] Joachim Lambek and Philip J Scott. Introduction to higher-order categorical
logic, volume 7. Cambridge University Press, 1988.

[23] Leonhard Mackert. Big operators in agda. 2015.
[24] P. Martin-Löf. Constructive mathematics and computer programming. In

Proc. Of a Discussion Meeting of the Royal Society of London on Mathe-
matical Logic and Programming Languages, pages 167–184, Upper Saddle
River, NJ, USA, 1985. Prentice-Hall, Inc.

[25] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 9.
Bibliopolis Napoli, 1984.

[26] Robin Milner. The definition of standard ML: revised. 1997.
[27] Tobias Nipkow, MarkusWenzel, and Lawrence C. Paulson. Isabelle/HOL: A

72

Proof Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg,
2002.

[28] Ulf Norell. Dependently typed programming in agda. In Proceedings of
the 6th International Conference on Advanced Functional Programming,
AFP’08, pages 230–266, Berlin, Heidelberg, 2009. Springer-Verlag.

[29] Bryan O’Sullivan, John Goerzen, and Donald Bruce Stewart. Real world
haskell: Code you can believe in. ” O’Reilly Media, Inc.”, 2008.

[30] Changhee Park, Guy L Steele Jr, and Jean-Baptiste Tristan. Parallel pro-
gramming with big operators. In ACM SIGPLAN Notices, volume 48, pages
293–294. ACM, 2013.

[31] Dan Peebles, James Deikun, Andrea Vezzosi, James Cook, and other
contributors. categories. https://github.com/copumpkin/
categories, 2016.

[32] Andrew M. Pitts. Lecture notes on types for part ii of the computer science
tripos. 2016.

[33] John Power and Yoshiki Kinoshita. Category theoretic structure of setoids.
2013.

[34] Dag Prawitz. Intuitionistic Logic: A Philosophical Challenge, pages 1–10.
Springer Netherlands, Dordrecht, 1980.

[35] Anirudh Sankar. Monads and algebraic structures. Technical report, Tech-
nical report, The University of Chicago, Chicago, IL, USA, 2012. URL:
http://math. uchicago. edu/˜ may/REU2012/REUPapers/Sankar. pdf, 2012.

[36] Dana S Scott and Christopher Strachey. Toward a mathematical semantics
for computer languages, volume 1.

[37] Robert AG Seely. Locally cartesian closed categories and type theory.
In Mathematical proceedings of the Cambridge philosophical society, vol-
ume 95, pages 33–48. Cambridge Univ Press, 1984.

[38] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard
isomorphism, volume 149. Elsevier, 2006.

[39] The Coq Development Team. The Coq Proof Assistant Reference Manual –
Version V8.0, April 2004. http://coq.inria.fr.

[40] Paul van der Walt and Wouter Swierstra. Engineering Proof by Reflection in
Agda. In Revised Selected Papers of the 24th International Symposium on
Implementation and Application of Functional Languages, volume 8241 of

73

https://github.com/copumpkin/categories
https://github.com/copumpkin/categories
http://coq.inria.fr

Lecture Notes in Computer Science, pages 157–173. Springer International
Publishing, 2012.

[41] Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM
conference on LISP and functional programming, pages 61–78. ACM, 1990.

[42] Philip Wadler. Propositions as types. Communications of the ACM,
58(12):75–84, 2015.

74

Appendix A

Category theory supplementals

Cartesian-closed categories

This section contains supplementary material regarding the correspondence be-
tween type theory (or rather, typed lambda calculus) and a particular kind of cat-
egory called a Cartesian-closed category. This is discussed in detail in [19, 37].
If there is a correspondence between type theory and category theory, then we
should be able to define familiar type-theoretic constructions such as products,
sums, and data structures like lists. Category theory does so by means of abstract
universal properties that characterize the structures up to canonical isomorphism.
Briefly, we show how the type theoretic notion of products can be represented in
category theory.

Definition (Product). A product of two objects 𝐴 and 𝐵 in a category 𝒞 is an
object 𝐴×𝐵 with two morphisms1

(𝜋1)𝐴,𝐵 ∶ 𝐴 × 𝐵 → 𝐴 (𝜋2)𝐴,𝐵 ∶ 𝐴 × 𝐵 → 𝐵

such that for any two morphisms 𝑓 ∶ 𝑋 → 𝐴 and 𝑔 ∶ 𝑋 → 𝐵 there exists
a unique morphism ⟨𝑓, 𝑔⟩ ∶ 𝑋 → 𝐴 × 𝐵 such that (𝜋1)𝐴,𝐵 ∘ ⟨𝑓, 𝑔⟩ = 𝑓 and
(𝜋2)𝐴,𝐵 ∘ ⟨𝑓, 𝑔⟩ = 𝑔.
For example, consider the category 𝒫𝑜𝑠𝑒𝑡 where the objects are partially or-
dered sets of the form A = (𝐴,⊑𝐴) and the morphisms are monotonic functions
𝑓 ∶ A → B such that 𝑥 ⊑𝐴 𝑦 ⇒ 𝑓(𝑥) ⊑𝐵 𝑓(𝑦). Posets arise everywhere in com-
puter science when modelling partially defined elements. The product A× B has

1We use “arrows” and “morphisms” synonymously.

75

the underlying set 𝐴×𝐵, the Cartesian products of sets 𝐴 and 𝐵, with the partial
order

(𝑥, 𝑦) ⊑𝐴×𝐵 (𝑥′, 𝑦′) ⟺ 𝑥 ⊑𝐴 𝑥′ ∧ 𝑦 ⊑𝐵 𝑦′

We can generalize the idea from binary products to arbitrary products. The
“terminal object”—the product of an empty family of objects—is denoted 1.

Definition (Terminal object). The terminal object in a category 𝒞 is an object 1
such that there is a unique arrow !𝑋 ∶ X → 1 from any object X of 𝒞.
In the category 𝒮𝑒𝑡, the terminal object is any one-element set. In functional pro-
gramming and type theory, the terminal object is the unit type, denoted () in
Haskell and Rust, and unit in ML.
In the category 𝒮𝑒𝑡, the collection of functions from 𝐴 to 𝐵 forms a set [𝐴 → 𝐵],
which is an object in the category. Similarly in the category 𝒫𝑜𝑠𝑒𝑡, the collection
of monotone functions from A to B written [A → B] with partial order

𝑓 ⊑𝐴→𝐵 𝑔 ⟺ ∀𝑥 ∈ 𝐴. 𝑓(𝑥) ⊑𝐵 𝑔(𝑥)

gives another object ([A → B], ⊑𝐴→𝐵). These function spaces correspond to the
idea of exponentials in category theory.

Definition (Exponential). For objects𝐴 and𝐵 in category𝒞, the exponential is an
object 𝐴 ⇒ 𝐵 (or 𝐵𝐴) together with a morphism eval𝐴,𝐵 ∶ (𝐴 ⇒ 𝐵) × 𝐴 → 𝐵
such that for any morphism 𝑓 ∶ 𝑍 × 𝐴 → 𝐵, there exists a unique morphism
ℎ ∶ 𝑍 → (𝐴 ⇒ 𝐵) such that eval𝐴,𝐵 ∘ (ℎ × id𝐴) = 𝑓 . We denote this unique
morphism ℎ familiarly by curry 𝑓 .

Definition (Cartesian-closed category). A category that has all finite products and
all exponentials is called a Cartesian-closed category, meaning we can form finite
products from all objects and for all pairs of objects there is an exponential.
Typed lambda calculus, and thus simple type theory, can be given semantics in a
Cartesian-closed category [19].

Monad equivalence

This section provides a proof that the Kleisli triple, which is the more commonly
used definition of a monad in functional programming, is equivalent to the monad
defined in § 2.2.4.

76

Definition (Kleisli triple). A Kleisli triple (𝑇 , 𝜂, (−)∗) on a category 𝒞 consists of
– an operator 𝑇 ∶ 𝒞 → 𝒞
– for each 𝐴 ∈ 𝒞, an arrow 𝜂𝐴 ∶ 𝐴 → 𝑇𝐴, and
– for all 𝐴,𝐵 ∈ 𝒞, an operator (−)∗ ∶ 𝒞(𝐴, 𝑇𝐵) → 𝒞(𝑇𝐴, 𝑇𝐵)
satisfying the following identities:

𝑓∗ ∘ 𝜂𝐴 = 𝑓 (A.1)
𝜂∗𝐴 = 1𝑇𝐴 (A.2)

(𝑔∗ ∘ 𝑓)∗ = 𝑔∗ ∘ 𝑓∗ (A.3)
Proposition. Monads and Kleisli triples are “equivalent”.

Proof. Let (𝑇 , 𝜂, 𝜇) be a monad on a category 𝒞. 𝑇 and 𝜂 correspond trivially
to the 𝑇 and 𝜂 in the Kleisli triple. For 𝑓 ∶ 𝐴 → 𝑇𝐵 in 𝒞, we define 𝑓∗ to be
𝑇𝐴

𝑇𝑓
−→ 𝑇 2𝐵

𝜇𝐵−→ 𝑇𝐵, or 𝜇𝐵 ∘ 𝑇𝑓 .
We show the three equations hold. Let 𝑓 ∶ 𝐴 → 𝑇𝐵. For (A.1):

𝑓∗ ∘ 𝜂𝐴 = 𝜇𝐵 ∘ 𝑇𝑓 ∘ 𝜂𝐴
= 𝜇𝐵 ∘ 𝜂𝑇𝐵 ∘ 𝑓 (by naturality)
= 1𝑇𝐵 ∘ 𝑓 (by 2.14)
= 𝑓

For (A.2):
𝜂∗𝐴 = 𝜇𝐴 ∘ 𝑇𝜂𝐴 = 1𝑇𝐴 (by 2.14)

Finally for (A.3), let 𝑓 ∶ 𝐴 → 𝑇𝐵 as previously and let 𝑔 ∶ 𝐵 → 𝑇𝐷. Then
𝑔∗ ∘ 𝑓∗ = (𝜇𝐷 ∘ 𝑇 𝑔) ∘ (𝜇𝐵 ∘ 𝑇𝑓)

= 𝜇𝐷 ∘ 𝜇𝑇𝐷 ∘ 𝑇 2𝑔 ∘ 𝑇𝑓 (by naturality of 𝜇 wrt 𝑔)
= 𝜇𝐷 ∘ 𝑇𝜇𝐷 ∘ 𝑇 2𝑔 ∘ 𝑇𝑓 (by 2.15)
= 𝜇𝐷 ∘ 𝑇 (𝜇𝐶 ∘ 𝑇 𝑔 ∘ 𝑓)
= (𝑔∗ ∘ 𝑓)∗

So (𝑇 , 𝜂, (−)∗) is a Kleisli triple derived from monad (𝑇 , 𝜂, 𝜇). We can recover
the original monad from the Kleisli triple as follows (𝑇 and 𝜂 are trivial):

1∗𝑇𝐴 = 𝜇𝑇𝐴 ∘ 𝑇1𝑇𝐴
= 𝜇𝑇𝐴 ∘ 1𝑇2𝐴
= 𝜇𝑇𝐴

77

Let (𝑇 , 𝜂, (−)∗) be aKleisli triple on a category𝒞. Wewant𝑇 to be an endofunctor
in 𝒞. For 𝑓 ∶ 𝐴 → 𝐵 in 𝒞 let 𝑇𝑓 ∶ 𝑇𝐴 → 𝑇𝐵 be defined as

𝑇𝑓 = (𝜂𝐵 ∘ 𝑓)∗

This is a functor as for all objects 𝐴 ∈ 𝒞
𝑇1𝐴 = (𝜂𝐴 ∘ 1𝐴)∗ = 𝜂∗𝐴 = 1𝑇𝐴 (by A.2)

and for arrows 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶 in 𝒞,
𝑇𝑔 ∘ 𝑇𝑓 = (𝜂𝑐 ∘ 𝑔)∗ ∘ (𝜂𝐵 ∘ 𝑓)∗

= ((𝜂𝑐 ∘ 𝑔)∗ ∘ 𝜂𝐵 ∘ 𝑓)∗ (by A.3)
= (𝜂𝑐 ∘ 𝑔 ∘ 𝑓)∗ (by A.1)
= 𝑇(𝑔 ∘ 𝑓)

To prove 𝜂 is a natural transformation id𝒞 → 𝑇 , we need to prove that for all
𝑓 ∶ 𝐴 → 𝐵 in 𝒞 the following square commutes.

𝐴 𝐵

𝑇(𝐴) 𝑇 (𝐵)

𝑓

𝜂𝐴 𝜂𝐵

𝑇(𝑓)

𝑇𝑓 ∘ 𝜂𝐴 = (𝜂𝐵 ∘ 𝑓)∗ ∘ 𝜂𝐴 = 𝜂𝐵 ∘ 𝑓 (by A.1)

Finally we define 𝜇 ∶ 𝑇 2 → 𝑇 as

𝜇𝐴 = 𝑖𝑑∗
𝑇𝐴

This is natural since for all 𝑓 ∶ 𝐴 → 𝐵
𝜇𝐵 ∘ 𝑇 2𝑓 = 𝑖𝑑∗

𝑇𝐵 ∘ (𝜂𝑇𝐵 ∘ 𝑇𝑓)∗
= (𝑖𝑑∗

𝑇𝐵 ∘ 𝜂𝑇𝐵 ∘ 𝑇𝑓)∗ (by A.3)
= (𝑖𝑑𝑇𝐵 ∘ 𝑇𝑓)∗ (by A.1)
= (𝑇𝑓)∗
= (𝜂𝐵 ∘ 𝑓)∗∗ (by definition of Tf)
= ((𝜂𝐵 ∘ 𝑓)∗ ∘ 1𝑇𝐴)∗
= (𝜂𝐵 ∘ 𝑓)∗ ∘ 𝑖𝑑∗

𝑇𝐴 (by A.3)
= 𝑇𝑓 ∘ 𝜇𝐴

78

Now we need to show the three monad laws. For the identity laws:

𝜇𝐴 ∘ 𝜂𝑇𝐴 = 𝑖𝑑∗
𝑇𝐴 ∘ 𝜂𝑇𝐴 = 1𝑇𝐴 (by A.1)

and

𝜇𝐴 ∘ 𝑇𝜂𝐴 = 1∗𝑇𝐴 ∘ (𝜂𝑇𝐴 ∘ 𝜂𝐴)∗
= (1∗𝑇𝐴 ∘ 𝜂𝑇𝐴 ∘ 𝜂𝐴)∗ (by A.3)
= (1𝑇𝐴 ∘ 𝜂𝐴)∗ (by A.1)
= 𝜂∗𝐴
= 1𝑇𝐴 (by A.2)

Finally for (2.15):

𝜇𝐴 ∘ 𝑇𝜇𝐴 = 1∗𝑇𝐴 ∘ (𝜂𝑇𝐴 ∘ 1∗𝑇𝐴)∗
= (1∗𝑇𝐴 ∘ 𝜂𝑇𝐴 ∘ 1∗𝑇𝐴)∗ (by A.3)
= (1𝑇𝐴 ∘ 1∗𝑇𝐴)∗ (by A.1)
= 1∗∗𝑇𝐴
= (1∗𝑇𝐴 ∘ 1𝑇2𝐴)∗
= 1∗𝑇𝐴 ∘ 1∗𝑇2𝐴 (by A.3)
= 𝜇𝐴 ∘ 𝜇𝑇𝐴

So (𝑇 , 𝜂, 𝜇) is a monad defined from Kleisli triple (𝑇 , 𝜂, (−)∗). We can recover
the original Kleisli triple. 𝑇 and 𝜂 are trivial. For (−)∗:

𝜇𝐵 ∘ 𝑇𝑓 = 1∗𝑇𝐴 ∘ (𝜂𝐵 ∘ 𝑓)∗
= (1∗𝑇𝐴 ∘ 𝜂𝐵 ∘ 𝑓)∗ (by A.3)
= (1𝑇𝐴 ∘ 𝑓)∗ (by A.1)
= 𝑓∗

So the Kleisli triple and monad are equivalent definitions.

Proofs of general big operator equations

This section provides category theory proofs of the base equations in Table 3.1.

𝛼 id𝐴 𝑡 = (𝛼 ∘ 𝑇 (id𝐴)) 𝑡
= 𝛼(𝑡)

79

𝛼 𝑓 (𝜂𝑋(𝑎)) = (𝛼 ∘ 𝑇 (𝑓)) (𝜂𝑋(𝑎))
= (𝛼 ∘ 𝑇 (𝑓) ∘ 𝜂𝑋) 𝑎
= (𝛼 ∘ 𝜂𝐴 ∘ 𝑓) 𝑎
= (1 ∘ 𝑓)
= 𝑓(𝑎)

𝛼 (𝑓 ∘ 𝑔) 𝑡 = (𝛼 ∘ 𝑇 (𝑓 ∘ 𝑔)) 𝑡
= (𝛼 ∘ (𝑇 (𝑓) ∘ 𝑇 (𝑔))) 𝑡
= (𝛼 ∘ 𝑇 (𝑓)) (𝑇 (𝑔)(𝑡))
= 𝛼 𝑓 (𝑇 (𝑔)(𝑡))

𝛼 𝑓 (𝜇 𝑔 𝑡) = (𝛼 ∘ 𝑇 (𝑓))(𝜇 ∘ 𝑇 (𝑔)) 𝑡
= (𝛼 ∘ 𝑇 (𝑓) ∘ 𝜇 ∘ 𝑇 (𝑔)) 𝑡
= (𝛼 ∘ 𝜇 ∘ 𝑇 2(𝑓) ∘ 𝑇 (𝑔)) 𝑡
= (𝛼 ∘ 𝑇𝛼 ∘ 𝑇 2(𝑓) ∘ 𝑇 (𝑔)) 𝑡
= (𝛼 ∘ 𝑇 (𝛼 ∘ 𝑇 (𝑓) ∘ 𝑔)) 𝑡
= 𝛼 (𝜆𝑥. 𝛼 𝑔(𝑥) 𝑓) 𝑡

𝛼 𝑓 (𝜇𝑋(𝑠)) = (𝛼 ∘ 𝑇 (𝑓)) (𝜇𝑋(𝑠))
= (𝛼 ∘ 𝑇 (𝑓) ∘ 𝜇𝑋) 𝑠
= (𝛼 ∘ 𝜇𝐴 ∘ 𝑇 2(𝑓)) 𝑠
= (𝛼 ∘ 𝑇𝛼 ∘ 𝑇 2(𝑓)) 𝑠
= (𝛼 ∘ 𝑇 (𝛼 ∘ 𝑇 (𝑓)) 𝑠
= 𝛼 𝑠 (𝛼 ∘ 𝑇 (𝑓))
= 𝛼

𝑡∈𝑠
(𝛼 𝑓) 𝑡

80

Proof of the construction of list algebras from monoids

This section provides the formal proofs in Agda that the algebra laws hold in the
construction of list algebras from monoids in § 3.2.2. These proofs were used for
formal verification of the theory.

unit′ ∶ (α′ ∘ (M−η A′)) C.≡ C.id
unit′ {x} = begin

α′ ∘ M−η A′ ⟨$⟩ x
≈⟨ refl ⟩

x ∙ ε
≈⟨ proj2 (Monoid.identity monoid) x ⟩

x
∎

struct′ ∶ ∀ {x} → (α′ ∘ M−μ A′) ⟨$⟩ x ≈ (α′ ∘ F1 α′) ⟨$⟩ x
struct′ {[]} = refl
struct′ {[] ∷ x1} =

begin
foldr _∙_ ε (concat x1)

≈⟨ struct′ {x1} ⟩
foldr _∙_ ε (map (foldr _∙_ ε) x1)

≈⟨ sym (proj1 (Monoid.identity monoid) _) ⟩
ε ∙ foldr _∙_ ε (map (foldr _∙_ ε) x1)

≈⟨ refl ⟩
foldr _∙_ ε (map (foldr _∙_ ε) ([] ∷ x1))

∎
struct′ {(x ∷ x1) ∷ x2} =

begin
x ∙ foldr _∙_ ε (concat (x1 ∷ x2))

≈⟨ ∙−cong refl (struct′ {x1 ∷ x2}) ⟩
x ∙ (foldr _∙_ ε x1 ∙ foldr _∙_ ε (map (foldr _∙_ ε) (x2)))

≈⟨ sym (Monoid.assoc monoid _ _ _) ⟩
x ∙ foldr _∙_ ε x1 ∙ foldr _∙_ ε (map (foldr _∙_ ε) (x2))

∎

Parametrised big operators

This section shows that we can recover the definition of the parametrised big oper-
ator defined in § 3.2.6 from the non-parameterised big operator using the idea of an

81

exponential object from category theory. An exponential object in a category with
binary products is an object 𝑍𝑌 together with a morphism eval ∶ (𝑍𝑌 × 𝑌) → 𝑍
with some properties. In the category 𝒮𝑒𝑡𝑜𝑖𝑑𝑠, an exponential object 𝑍𝑌 is the set
of all functions 𝑌 → 𝑍 and the map eval is just the evaluation map sending the
pair (𝑓, 𝑦) to 𝑓(𝑦).
By applying the big operator for the 𝑇 -algebra (𝑌 → 𝐴,𝛼𝑌) (where
𝛼𝑌 ∶ 𝑇 (𝑌 → 𝐴) → (𝑌 → 𝐴)) to the curried version, say 𝑓1 of 𝑓 of type
𝑋 → (𝑌 → 𝐴), we get

𝛼Y 𝑓1 ∶ 𝑇𝑋 → (𝑌 → 𝐴)

whose uncurried version of type 𝑇𝑋 × 𝑌 yields 𝛼1 𝑓 . We can do this similarly
with (𝑋 → 𝐴,𝛼𝑋).

Commutative monads

In this section, we prove that

𝛼
2

(𝛼
1

𝑓) and 𝛼
1

(𝛼
2

𝑓)

are equal whenever the monad is commutative.
Recall the definitions of 𝛼1 and 𝛼2 from § 3.2.6: Then

𝛼
2

(𝛼
1

𝑓) = 𝛼 ∘ 𝑇 (𝛼
1

𝑓) ∘ st

= 𝛼 ∘ 𝑇 (𝛼 ∘ 𝑇 (𝑓) ∘ st′) ∘ st
= 𝛼 ∘ 𝑇 (𝛼) ∘ 𝑇𝑇 (𝑓) ∘ 𝑇 (st′) ∘ st

and

𝛼
1

(𝛼
2

𝑓) = 𝛼 ∘ 𝑇 (𝛼
2

𝑓) ∘ st′

= 𝛼 ∘ 𝑇 (𝛼 ∘ 𝑇 (𝑓) ∘ st) ∘ st′
= 𝛼 ∘ 𝑇 (𝛼) ∘ 𝑇𝑇 (𝑓) ∘ 𝑇 (st) ∘ st′

A categorical proof of the equality follows.

82

𝑇𝑋 × 𝑇𝑌 𝑇(𝑇𝑋 × 𝑌) 𝑇 2(𝑋 × 𝑌) 𝑇 2𝐴 𝑇𝐴

𝑇(𝑋 × 𝑇𝑌) 𝑇 2(𝑋 × 𝑌) 𝑇 (𝑋 × 𝑌) 𝑇𝐴 𝐴

𝑇 2𝐴 𝑇𝐴

𝑠𝑡𝑇𝑋,𝑌

𝑠𝑡′𝑋,𝑇𝑌

𝑇(𝑠𝑡′𝑋,𝑌)

𝑇 (𝛼1 𝑓)

commutativity 𝜇𝑋×𝑌

𝑇2(𝑓)

naturality

𝑇(𝛼)

𝜇𝐴 𝛼
𝑇(𝑠𝑡𝑋,𝑌)

𝑇 (𝛼2 𝑓)

𝜇𝑋×𝑌

𝑇2(𝑓)

𝑇 (𝑓) 𝛼

𝑒𝑞. (2.17)𝜇𝐴

𝑇(𝛼)
𝛼

83

Computer Science Tripos – Part II – Project Proposal

Theory and implementation of a general framework for
big operators in Agda

Stella Lau, Trinity College

Originator: Timothy Griffin

20 October 2016

Project Supervisor: Timothy Griffin & Marcelo Fiore

Director of Studies: Sean Holden & Frank Stajano

Project Overseers: Markus Kuhn & Peter Sewell

Introduction

In mathematics, we often use notation such as

n∑
i=1

f(i)

to denote the use of a binary operator over a collection of values bracketed in some
prescribed way that does not matter when the operator is associative. This notation is
notably missing in its full generality from proof assistants and is not present at all in Agda,
a dependently-typed language and proof assistant. A large body of mathematical theory
exists to reason about big operations, some of which do not rely on any assumptions on
the operator and others of which assume some properties of the operators such as an
Abelian monoid structure or a semi-ring structure.

The goal of this project is to develop the theory for and implement a generic framework
to reason about a variety of big operators in Agda, from simple boolean conjunction to
a general max arg construction, indexed by arbitrary types. The project will extend and
generalise previous work on big operator libraries using the more general framework of
monad algebras [6].

Algebras over monads

We will abstractly regard big operators as monad algebras. The notion of monad here
represents “container types”. Examples include lists and generalisations such as sets,
multisets, and trees. In category theory, a monad is an endofunctor (a functor that
maps a category to itself) together with two natural transformations (functor morphisms)
endowing the former with a monoid structure. A monad has the form (T, η, µ), with
η : ∀A,A→ T (A) and µ : ∀A, T 2(A) → T (A), and obeys certain axioms.

1

We can think of T as both a type former, T (A), and a way of polymorphically transforming
functions, T (f). For example, if T (A) = List A and T (f) = map f , then η(a) = [a]
(constructing a list from a singleton) and µ(l) = concat l (like flatten, taking a list
of lists and flattening them to a single list). A T-algebra (R,α) with α : T (R) → R
gives rise to a big operator from which we can derive interesting equations without many
assumptions on T or α.

This project will further develop and formalise this theory and provide an implementation
in Agda based on this general framework. The use of the library will then be demonstrated
by providing some proofs in Agda. As a reach goal, we hope to end up with a library we
can release to the public.

Starting point

Implementations of big operators exist in Isabelle [1] and Coq [2]. Isabelle’s library for
big operators is based on an effort to formalise set theory and uses sets instead of the
more general lists. Coq’s library [3] for uniformly iterated big operations is more similar
to the intended approach of this project, with no restrictions on the underlying structure.
We aim to use previous work by Leonhard Mackert from his Part III dissertation as a
prototype to extend and refine using generalizations based on category theory.

Resources required

For this project I shall mainly use my own quad-core computer that runs Ubuntu. I accept
full responsibility for this machine and I have made contingency plans to protect myself
against hardware and/or software failure. Backup will be to github and to an external
hard disk. The MCS machines are on hand should my main machine suddenly fail. I
require no other special resources.

Work to be done

The project breaks down into the following sub-projects:

1. Familiarisation with Agda, dependent types, and any surrounding software tools.

2. Learning the fundamentals of category theory and conducting a detailed study of
previous work both in Cambridge and elsewhere on the underlying algebraic theory
of big operators.

3. Conducting a detailed design of data structures representing index structures and
operator structures aiming for generality (big operators indexed by arbitrary types
and the library being useful for different kinds of types and operations). Structuring
the code and module sensibly following the conventions used in the Agda standard
library.

2

4. Implementing syntax definitions and a framework grounded in theory that can ex-
press indexes, range descriptions, and operations.

5. Proving and implementing lemmas to reason about big operators without any as-
sumptions on the operator as well as with assumptions on structure (e.g. a monoid
structure).

6. Evaluation using illustrative proofs and comparison with proofs without the library.
Collating the evidence that will be included in the dissertation to demonstrate that
the code behaves as required.

7. Writing the dissertation.

Success criteria

The project will be deemed a success if I have completed the following:

1. Developed and formalised theory for a general framework for big operators based
on algebras of monads. This approach is more general than used in Isabelle or Coq
and should allow us to get more equations over more kinds of monads in a more
general way.

2. Designed and implemented a generic framework for big operators in Agda, based
on the theory of algebras of monads, having the ability to represent and define big
operators with different properties (such as associativity, commutativity, or distribu-
tivity) and monads of different types such as lists or sets.

3. Demonstrated the use of the library by proving various equivalences using big oper-
ators such as results on summations from Concrete Mathematics [4]. For instance:

∑
j∈J,k∈K

ajbk =

(∑
j∈J

aj

)(∑
k∈K

bk

)

Possible extensions

If I achieve my main result early, I can try some of the following:

1. Instantiate and prove results using non-standard monads such as multisets, indexed
containers, or binary trees (as opposed to “standard” monads like lists and sets).

2. Prove more complex theorems using more complex algebraic structures. For in-
stance, proving the Cayley-Hamilton theorem or the Cauchy-Binet formula, which
states that the determinant of a product of square matrices is equal to the product
of their determinants for matrices with entries from any commutative ring.

3. Clean up the code and attempt to release it to the general Agda community.

4. Formally verify the correctness of the implementation.

5. Use reflection [7] to automate congruence in Agda to simplify proofs.

3

Evaluation

Some ways I can evaluate my implementation include the following:

1. Conducting unit testing and discussing their effect on confidence in the correctness
of the implementation.

2. Discussing the complexity of proofs implemented using the library using metrics
such as lines of code.

3. Discussing the readability of proofs implemented using the library by comparison
to proofs without the library.

4. Comparing the generality, limitations, and structure of the implementation with
that of other big operator libraries.

5. Discussing the extent to which the implementation conforms with Agda standards
and is intuitive to use for Agda users.

Timetable

1. Michaelmas weeks 2–4 Install Agda and learn how to use it. Practice writing
small proofs and become familiarised with the standard library. Set up github
repository and get backup strategy in place. Learn category theory by reading
ahead in Part III course notes or reading a book. Study relevant literature and
implementations such as Coq’s bigop.

2. Michaelmas weeks 5–6 Develop theory to represent big operations as algebras
over monads. Design and implement basic prototype modules to represent big op-
erators and monads based on this theory.

3. Michaelmas weeks 7–8 Iterate on prototype and prove basic summation lemmas.
Start drafting introduction and preparation sections of the dissertation.

4. Michaelmas vacation Finish implementing and testing a working prototype with
modules required to prove summation lemmas. Prove some theorems with matrices
if time allows. Start drafting the implementation section of the dissertation and
finish the draft of the introduction and preparation sections.

5. Lent weeks 0–2 Write progress report. Generate some proof examples using the
library and evaluate its design. Plan to redesign, modify, and add parts as necessary.

6. Lent weeks 3–5 Achieve a working project and tidy up code.

7. Lent weeks 6–8 Attempt extensions. Have a very rough draft of the entire disser-
tation and get feedback.

8. Easter vacation: Incorporate feedback from reviewers. Finish writing dissertation
fully. Ensure code is in a state ready for submission.

9. Easter term 0–2: Proof read dissertation.

10. Easter term 3: Submit dissertation.

4

References

[1] Paulson, Lawrence C. and Tobias Nipkow (1994). Isabelle: a generic theorem prover.
Lecture notes in computer science 828. Berlin; New York: Springer. 321 pp.

[2] Huet, Gérard, Gilles Kahn, and Christine Paulin-Mohring (2015). The Coq Proof
Assistant: A Tutorial (version 8.4pl6).

[3] Bertot, Yves et al. (2008). Theorem Proving in Higher Order Logics: 21st Inter-
national Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Pro-
ceedings, chapter Canonical Big Operators, pages 86-101. Springer Berlin Heidelberg,
Berlin, Heidelberg,

[4] Graham, Ronald L, Donald E. Knuth, and Oren Patahnik. (1994). Concrete mathe-
matics: a foundation for computer science. 2nd ed. Reading, Mass: Addison-Wesley,
pp. 21-62.

[5] Gustafsson, Daniel and Nicolas Pouillard (2014). Foldable containers and dependent
types. https://nicolaspouillard.fr/publis/explore-iso.pdf.

[6] Griffin, Timothy G. and Marcelo Fiore (2016). On the Algebras of Big Operators.
Unpublished manuscript.

[7] Walt, Paul van der and Wouter Swierstra (2013). “Engineering Proof by Reflection
in Agda”. In: Implementation and Application of Functional Languages. Ed. by Ralf
Hinze. Lectures Notes in Computer Science 8241. Berlin; heiderlberg: Springer, pp.
157-173.

5

	Introduction
	Motivation and related work
	Contributions

	Preparation
	Requirements analysis
	Category theory background
	Category
	Functor
	Natural transformation
	Monad
	T-algebra

	Agda
	Basic data types and pattern matching
	Dependent types
	Curry-Howard correspondence
	Equality
	Proof example

	Summary

	Implementation
	Big operators
	Mathematical definition of big operators
	Implementation of big operators in Agda
	Generic big operator equations

	Monads
	Free monads
	Lists
	A permutation library
	Finite multisets
	Strength
	Commutative monads

	Monad algebras
	List algebras from monoids
	Multiset algebras from commutative monoids
	T-algebra homomorphisms

	Usability
	From the language of algebra to category theory
	Types with propositional equality
	List comprehensions

	Summary of equations

	Evaluation
	A demonstrative proof in Agda
	Defining the proposition in Agda
	Proving the proposition

	Practicality and usability of the library
	A discussion of equations
	Correctness of the theory and implementation
	Success criteria
	Summary

	Conclusion
	Results
	Overview
	Lessons learned

	Bibliography
	Category theory supplementals

