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Abstract
The process isolation enforceable by commodity hardware and
operating systems is too weak to protect secrets from malicious
code running on the same machine: attacks exploit timing side
channels derived from contention on shared microarchitectural
resources to extract secrets. With appropriate hardware support,
however, we can construct isolated enclaves and safeguard inde-
pendent processes from interference through timing side channels,
a step towards confidentiality and integrity guarantees.

In this paper, we describe our work on formally specifying and
verifying that a synthesizable hardware architecture implements
strong timing isolation for enclaves. We reason about the cycle-
accurate semantics of circuits with respect to a trustworthy for-
mulation of strong isolation based on “air-gapped machines” and
develop a modular proof strategy that sidesteps the need to prove
functional correctness of processors. We apply our method on a
synthesizable, multicore, pipelined RISC-V design formalized in
Coq.

CCS Concepts
• Security and privacy→ Logic and verification; Side-channel
analysis and countermeasures.
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1 Introduction
We often want to run trusted, security-critical code on the same
machine as untrusted code without leaking secrets. We can decom-
pose this problem into two parts: i) attackers should neither be able
to observe secrets from nor interfere with trusted code due to being
colocated on the same machine, and ii) security-critical code should
not itself leak secrets when executing independently on its own
machine.

Traditionally, programmers rely on architectural process isola-
tion provided by primitives such as virtual memory and context
switching to achieve i) and constant-time programming techniques
to achieve ii). However, the isolation and constant-time guaran-
tees that can be enforced with commodity hardware are too weak:
microarchitectural timing side channels are exploited to extract se-
crets from both colocated processes and code traditionally deemed
constant-time [9, 18, 21, 27]. Despite years of mitigations, new
attack vectors continue to be discovered.

This paper focuses on i). Recent projects on Intel SGX [10] and
Keystone [20] introduced hardwaremodifications to reconstruct iso-
lated processes, yet they remain vulnerable to timing-side-channel
attacks [8]. Sanctum [11] and MI6 [6] featured novel hardware
modifications to protect against a wider spectrum of microarchitec-
tural attacks, including those using the cache and DRAM controller
bandwidth. But, with the complexity of modern microarchitectures,
it remains challenging to design architectures free of timing side
channels and be confident in their security guarantees.

Our approach. We propose to build confidence in mechanisms for
eliminatingmicroarchitectural leakages by formally ruling out, with
machine-checked proof, interference across isolated processes or
security domains, hereby referred to as enclaves. This paper presents
a methodology to formally verify that a register-transfer-level (RTL)
design securely implements timing-sensitive strong isolation for
enclaves. Informally:

Definition 1 (Strong isolation). Programs colocated on the samema-
chine observably behave as if they were running on separate machines,
connected only by a dedicated API.

At a high level, an attacker on a different machine is only able to
interact with the victim through a dedicated API, such as network
calls. The attacker can observe the latency of API calls but should
not be able to infer private information through shared microar-
chitectural resources such as caches or shared buffers. Thus, if we
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Figure 1: Preview of specifying strong isolation. Different
colours denote different enclaves. (a) In the real system, en-
claves on the same machine share microarchitectural re-
sources and main memory. (b) In the specification, enclaves
run on dedicated machines connected via a well-defined API.
(c) Transitioning from one enclave to the next is modeled as
booting up a new machine.

can prove a design implements strong isolation, then any private
information that can be exfiltrated—via timing side channels or
otherwise—by a local attacking process can also be exfiltrated by a
remote process. This property restores the process-isolation abstrac-
tion to the enclave programmer, yet it is not complete: subtleties
remain with enclave context switching and communication.

This work provides 1) a formalisation of strong isolation in the
presence of context switching, previewed in Figure 1. We develop
a cycle-level specification logically modelling enclaves as running
on separate machines that are air-gapped apart from communica-
tion made explicit via an API allowed by the threat model. This
formulation rules out interference arising from shared microar-
chitectural resources by definition: enclaves cannot be affected
through e.g. shared cache lines or contention for DRAM controller
bandwidth as they do not share cache lines or DRAM controllers
in the specification. We extend this formalisation to capture the
dynamically evolving security domains present with context switch-
ing, answering questions such as how do we eliminate microar-
chitectural leakage across context switches?; what information is
preserved across context switch?; what is the initial state of a new
enclave? We model context switching as “throwing away the old
machine and starting a new machine” and explicitly define informa-
tion preserved across context switches and used to initialise a new
enclave. This pattern rules out leakages via leftover, e.g., branch-
predictor state and L1 caches when transitioning across protection
domains as any leftover microarchitectural state is “thrown away”
when exiting an enclave (due to not being explicitly preserved)
and thus cannot be used to initialise a new enclave. Crucially, by
adopting the principle of using an allowlist rather than a blocklist,
our specification rules out sources of interference or leakage not
yet discovered. Furthermore, the specification is parametric on non-
security-critical functional and timing behavior. This formalisation
is readable, concise, and trustworthy—a specification-reader does
not need to reason about design-specific, low-level details—and is
general enough to capture a range of secure designs.

The specification imposes minimal restrictions on an implemen-
tation’s functional correctness, setting the stage for 2) a method-
ology to formally verify isolation in an RTL design that sidesteps
the need to prove functional correctness. We show that securely
implementing and proving isolation can be decomposed into two
parts largely independent of functional correctness: i) enforcing a

simulation relation between running enclaves in the implementa-
tion and specification through spatially and temporally partition-
ing resources, and ii) reaching a state functionally equivalent to
an appropriately initialised new machine when context switch-
ing by purging microarchitectural state. This decoupling allows
non-security-critical design modifications to be made with minimal
effects on the proof, alleviating a traditional problem with formal
verification where relatively small changes trigger avalanches of
proof breakages. For example, substituting a simple RISC-V pro-
cessor with a more complex processor would only require modifi-
cations to the proof that pertain to the secure implementation of
purge. In addition, we show how to decompose the proof modu-
larly into per-component security obligations, allowing hardware
designers and verifiers to implement and prove security properties
independently for submodules such as the processor and mem-
ory hierarchy. Lastly, we demonstrate a hybrid Coq-SMT strategy
and toolchain, MTIsolation1, that partially automates reasoning
about circuit-level designs. This hybrid approach reduces verifica-
tion costs while bypassing the usual scalability challenges faced by
SMT solvers and maintaining an expressive specification language
for readability and composability with future work on full-stack,
hardware-software guarantees.

Finally, we provide 3) a prototype multicore, pipelined RISC-V
system formally proven to implement strong timing isolation for en-
claves. The system is written in the Kôika [7] hardware description
language (HDL) and translated into circuits using Kôika’s verified
compiler, ensuring that the security properties verified with Kôika’s
semantics are preserved with cycle-level accuracy. We provide a
machine-checked proof and explore design modifications involving
branch predictors and caches. We validate the prototype’s func-
tionality through executing a suite of RISC-V and C tests compiled
with standard toolchains using Cuttlesim [26] and Verilator, and
we study programming under the enclave abstraction with a toy
password-manager application. To the best of our knowledge, this
is the first machine-checked proof of strong isolation (or lack of
timing side channels) for an enclave system.

Contributions. In summary, this paper contributes:
• A formalisation of strong timing isolation supporting dy-
namically evolving security domains based on the principle
of using allowlists instead of blocklists.

• A modular methodology and Coq-SMT toolchain, MTIso-
lation, for formal verification of isolation for circuit-level
designs that sidesteps functional-correctness proof.

• A case-study prototype and machine-checked proof of a
multicore, pipelined RISC-V system implementing strong
timing isolation.

Source code for MTIsolation and the case studies is available at
https://github.com/mit-plv/isolation.

Limitations and nongoals. Our focus is on security problems emerg-
ing from sharing a computer among mutually distrusting applica-
tions, leaving integration with application security and proofs of
specific software programs to future and existing related work [17,
23]. We focus on decoupling security from functional correctness:

1For “Microarchitectural Timing Isolation”. Pronounced “Mount Isolation”.

https://github.com/mit-plv/isolation
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verifying functional correctness was a nongoal. We chose our case-
study processor and enclave model to include just enough features
to make the problem interesting, not to be fully representative of
complications found in commodity systems.

2 Background
2.1 Microarchitectural Timing Side Channels
For performance, microarchitectures contain resources such as
caches and branch predictors. The availability of these resources
affects execution time. Most modern architectures are designed
to maximize resource utilization by sharing, e.g., cache lines be-
tween processes. However, when processes can measure time, there
is opportunity for information leakage and interference through
microarchitectural timing side channels [22, 34]. For example, an
attacker colocated with a victim can prime a cache line with data,
then probe the line, measuring the latency of its memory request,
to observe whether the victim evicted the line. Moreover, they can
interfere with the victim’s timing, breaking isolation boundaries.
Contention for these resources has been exploited to leak crypto-
graphic secrets [5]. Numerous defenses have been proposed, such
as disabling speculation and set-partitioning the cache. However,
attacks continue to be discovered as these solutions are either un-
verified or too localised [6].

2.2 Enforcing Strong Timing Isolation
Work on trusted execution environments (TEEs) such as Intel SGX
and Keystone introduces primitives to protect the execution of
sensitive programs, but these systems are vulnerable to microar-
chitectural timing side channels. Sanctum and MI6 add hardware
modifications to achieve strong isolation by spatially and tempo-
rally partitioning resources. Resources are assigned to protection
domains independently of their demand; for example, last-level
caches and DRAMs are partitioned across protection domains, and
a domain can have at most, e.g., half the DRAM controller band-
width irrespective of the memory intensity of colocated domains. In
addition, microarchitectural state persisting across context switches
breaks strong isolation. MI6 introduced a purge instruction to erase
program-dependent state when exiting an enclave, involving flush-
ing in-flight instructions, purging branch predictors, and flushing
caches. We develop a specification of strong isolation that captures
the dynamically evolving security domains present with context
switching and adapt the partitioning and purging mechanisms pro-
posed in MI6 to achieve provable strong isolation.

2.3 Hardware Verification with Kôika
Circuit-level formal verification of isolation is useful because, first,
the precise statement of the isolation policy is often complex, and
formalisation subjects it to additional scrutiny; and, second, cor-
rectly implementing microarchitectural isolation is challenging.
However, verifying RTL is difficult as even simple designs have
large and complex state spaces.

To verify a hardware design, we need a mathematical, cycle-
accurate characterisation of the system. We implement our proto-
type in Kôika, a rule-based language in the same family as Blue-
spec [1], but we expect our methods are also largely applicable to
designs implemented in non-rule-based HDLs. In rule-based HDLs,

the design specifies stateful elements (registers) and describes the
behaviour using atomic rules. Each rule defines a deterministic state
transformation on registers, and it is guaranteed that rules appear
to execute atomically, or “one-at-a-time.” The atomic transactions
allow sequential, high-level reasoning about designs. Kôika and
its formal, cycle-accurate semantics are mechanized in Coq, along
with a verified compiler from Kôika to circuits.

3 Overview
Figure 2a introduces the implementation or “real-world”2 system
and enclave programming model used as a motivating example
throughout this paper. Figure 2b shows a corresponding “ideal”
system serving as a specification.

3.1 Threat Model and Security Guarantee
In our threat model, an attacker enclave attempts to extract secrets
from or interfere with a victim enclave colocated on the same
machine (either concurrently on a different core or after context
switching on the same core). The attacker enclave can send memory
and memory-mapped I/O (MMIO) requests; observe memory and
MMIO responses, including response times; and yield the processor
to another enclave.

We formally verify the strong-isolation property of Definition 1
for enclaves during execution (timelined in Figure 3), which guaran-
tees that any information exfiltrated by a colocated attacker could
be obtained by a remote attacker. As such, we do not protect against
remote timing side channels such as NetSpectre [28]. Additionally,
we prove that the system’s execution aligns with our enclave pro-
gramming model, which defines the memory and MMIO regions
an enclave can access and the semantics and information-sharing
policy of context switching. For instance, our example model in
Figure 2 specifies that the register file is preserved across enclave
exits to facilitate argument passing. As enclave memory regions
are exclusively owned, our model leaks information about which
enclave is running (by blocking entry to running regions).

The programmer is responsible for ensuring that the program
does not itself leak secrets with respect to a hardware-software
contract [17], either directly through e.g. writing secrets to MMIO
or indirectly by e.g. leaving secrets in the register file when (coop-
eratively) context switching or via enclave run time or tear-down
time. Symmetrically, the hardware is responsible for adhering to
the contract for programs run in isolation.

We do not consider availability or physical side channels.

3.2 Components to Prove Strong Isolation
Here, we outline the components needed, and summarize our in-
stantiations thereof, in a formal proof of strong isolation.

1) A formal, cycle-accurate model of our implementation. A hard-
ware system includes synthesizable components (such as the proces-
sor) implemented in an HDL such as Verilog and non-synthesizable,
“external” components such as SRAM traditionally modeled in sim-
ulation. This system must be designed to be secure with a clear
separation of resources, whereas conventional architectures are
not secure. We implement our system in Kôika and model external
components in Coq. We use a hardware security monitor to enforce
2Terminology borrowed from the cryptography community.
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(a) Implementation or “real-world system” with three cores, a security monitor (SM), memory subsystem, and main memory. Enclaves, denoted
by different colours, have exclusive access to private memory regions and can obtain locks for “mailbox” and MMIO regions, held for the
duration of execution. (1): The SM maintains an enclave configuration per core: Core0 runs yellow enclave and has UART lock; Core1 runs
green enclave and has locks for USB and green-yellow mailbox; Core2 waits for SM permission to enter blue enclave. (2): The SM enforces
architectural isolation by filtering out-of-region memory accesses. (3): Secure communication with the external world via MMIO is enforced by
SM. (4): Static, round-robin arbiter enforces memory noninterference. (5): Core1 exits green enclave, purging microarchitectural (𝜇arch) state
but preserving architectural state (main-memory regions and register file, rf) and requests to switch to blue enclave. (6): Core2 transitions from
waiting state to running blue enclave.
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(b) Specification or “ideal” system showing enclave execution (Core0), exit (Core1), and creation (Core2). Execution: enclaves run independently
as “air-gapped” machines, modulo external communication. Exit: modeled as “throwing away” the old machine, preserving only architectural
state and the next enclave configuration. Creation: modeled as initialising a “brand-new” machine with preserved architectural state and the
enclave’s memory regions. The specification is parameterised on non-security-critical implementation and timing details, denoted by dotted
blue boxes. The 𝜎 parameter merges outputs from different enclaves as a function of enclave configs and cycle counter (elided in the figure).

Figure 2: A real-world system implementing, and corresponding ideal system specifying, strong isolation. An implementation
is secure if there exists an ideal system such that, for any external-world oracle, the observations (per-cycle 𝜏s) are equivalent.

initidlepurge

CPU time

init code execution

enclave execution exit enterenter

Figure 3: An example timeline of enclave execution on a core.
We verify strong isolation holds throughout an enclave’s
lifetime or execution, inclusive of any initialization, code
execution, and purging. We specify behavior on enclave con-
text switching (exit and enter).

architectural noninterference by controlling access to memory and
MMIO regions. Microarchitectural noninterference is achieved by
partitioning resources spatially or temporally. Upon context switch-
ing, we purge or flush microarchitectural state like scoreboards,
outstanding memory requests, and caches to erase any program-
dependent, non-preserved state that could affect future executions.

2) A formal, cycle-accurate model of our ideal system. The spec
is part of our trusted computing base (TCB), and we must trust
that it corresponds to our desired notion of strong isolation: we
strive to make the model easy to audit. The spec must be cycle-
accurate, but it need not be synthesizable. As shown in Figure 2b,
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Figure 4: (a): Implementation system with single job-request
input port and single job-result output port. (b): Step tran-
sition of the specification system running two jobs on air-
gapped machines. (1): Finishing a job modeled as throwing
away old machine. (2): A new job starts from fresh state.

enclaves are modeled as “air-gapped” machines during execution
(apart from explicit external communication) and context switching
as “throwing away a machine and getting a new one” (apart from
explicitly preserved state when exiting and explicit arguments when
initializing).

To ensure that the spec is expressive enough to capture a wide
range of secure implementations, we express the spec as a family
of deterministic, cycle-accurate state machines parameterised on
non-security-critical implementation and timing details. Intuitively,
one must exhibit an air-gapped machine with the same timing as
the implementation, but we do not constrain that timing further
(beyond constraints imposed by the enclave programming model).
With respect to security, these parameters are not in the TCB and
hence do not need to be audited.

3) An observation function corresponding to the threat model. The
observation function formalises what an attacker can observe and
influence and relates the implementation to the specification. In
our example, the observations 𝜏s are defined as the cycle-accurate
interactions with the external environment (MMIO requests/re-
sponses)3.

An implementation is secure if it has the same observable be-
havior as the spec, for any external environment.

4) A machine-checked proof that the implementation is secure. We
avoid the need to prove functional correctness according to an ISA
semantics. In our verification methodology, we emphasize modu-
larity, to allow independent design and verification of hardware
components; and automation, via static analyses and selective usage
of SMT solvers to reduce verification cost.

4 Specifying and Enforcing Isolation
In this section, we first illustrate the key points of specifying and
achieving strong isolation with a toy example and then apply these
principles in the enclave-isolation setting.

4.1 Toy Example: Resource Isolation
Consider a machine taking jobs (𝑚,𝑛, 𝑥) ∈ N3 and computing
𝑔𝑛 (𝑓𝑚 (𝑥)) (for some combinational functions 𝑓 and 𝑔) using three4

3Traditional approaches often describe observations as memory requests and responses.
Our definition captures the intuition that it is not a security violation if an attacker
obtains a victim’s secret if the attacker cannot exfiltrate it (e.g. by communicating it to
the outside world).
4Our verified implementation uses two sets of boxes—we use three here to compactly
show different state transitions. It also assigns tags to jobs, elided here for simplicity,
that can be used to demultiplex responses by consumers of the output.
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Figure 5: Resource-isolation specification’s state transition,
split into local and context-switching steps. (1): When run-
ning, subsidiary machines behave independently, with no in-
puts. (2): When finishing, no local machine state is preserved.
(3): If a job can_start, a brand-new machine is initialised with
only the new job. (4): 𝜎 combines the outputs from subsidiary
machines. I/O arrows abbreviated for intermediate steps.

𝑓 and 𝑔 boxes, as shown in Figure 4a. The machine guarantees in-
dependence of job-completion time (and result) from any other
concurrently executing job. An implementation can meet the re-
quirement by running at most three jobs at a time—eagerly reserv-
ing or spatially partitioning an 𝑓 and 𝑔 box per job—and temporally
partitioning the output port job_resp with a round-robin arbitrator.
Potential sources of security violations in insecure implementations
include:

(1) Backpressure when trying to run more than three jobs simul-
taneously and all 𝑔 boxes are occupied (i.e. when a job has
completed its 𝑓 phase on 𝑓0 and is only using 𝑔0, it would be
faster to eagerly run another job on 𝑓0). This issue is analo-
gous to backpressure caused by contention on finite cache
bandwidths.

(2) Output-port contention in the absence of time partitioning:
if two jobs finish simultaneously and output-port contention
delays the output (and thus, completion time) of a job, then
isolation is broken.

(3) Performance optimizations leading to results being forwarded
between e.g. 𝑓 boxes, or caching intermediate results (e.g. if
the machine expects to receive many jobs with the same 𝑥
value).

Specification. Figure 4b summarizes a spec system ruling out the
above violations. The state consists of three subsidiary air-gapped
machines, either Running or Waiting. Figure 5 details the state tran-
sitions, separated into two phases: 1) a local step where jobs run in
isolation and 2) a context-switching step (that is, a step where hard-
ware units switch to servicing different client requests) specifying
job exit (no state is preserved) and job start (initialised only with the
new job). The spec is parameterised on 𝑓 and 𝑔 boxes, a can_start

function, and a well-formed 𝜎 function combining outputs from
subsidiary machines. This definition guarantees that independently
of the implementation of the 𝑓 and 𝑔 boxes, concurrent executions
cannot affect or observe the runtime or result of another job.

Spec expressivity and audit: capturing a range of secure implemen-
tations using existentially quantified parameters. From an isolation
perspective, the functional behaviour of the implementation and
thus of subsidiary machines is unimportant (i.e. machines do not



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Stella Lau, Thomas Bourgeat, Clément Pit-Claudel, and Adam Chlipala

have to compute 𝑔𝑛 (𝑓𝑚 (𝑥)) or have 𝑓 or 𝑔 boxes). The implemen-
tation is secure if there exist subsidiary machines such that the
specification is observably indistinguishable from the implementa-
tion, for all external-world behaviours (inputs to job_req).

In other words, the spec is existentially parameterised on deter-
ministic state machines (𝑆, 𝑠0, 𝛿, 𝜔)𝑖 , for 𝑖 ∈ {0, 1, 2}, where 𝑆𝑖 is
the set of states, 𝑠0𝑖 : job_req → 𝑆𝑖 is the initial state as a func-
tion of job request, 𝛿𝑖 : 𝑆𝑖 → 𝑆𝑖 is the transition function, and
𝜔𝑖 : 𝑆𝑖 → {0, 1} × job_resp is the output function with a bit in-
dicating job completion. Then, 𝑛 cycles after a req ∈ job_req is
accepted, the machine 𝑖 has state 𝛿𝑛

𝑖
(𝑠0𝑖 (req)). The job-completion

time is 𝑡𝑒𝑖 := min{𝑡 ∈ N | 𝜋1 (𝜔𝑖 (𝛿𝑡𝑖 (𝑠0𝑖 (req)))) = 1}, and the job
response is 𝜋2 (𝜔𝑖 (𝛿𝑡𝑒𝑖 (𝑠0𝑖 (req)))). Clearly, completion time and
response are independent of concurrently executing jobs. This prop-
erty is extended to the trace through a well-formedness predicate on
𝜎 (the parameterised output-merging function) specifying that out-
puts at any given cycle must come exclusively from one statically
predetermined machine. The parameterisation of 𝜎 allows different
static schedules, the choice of which is implementation-specific and
non-security-relevant.

This family of specifications existentially parameterised on non-
security-relevant design choices style matches intuitive notions of se-
curity, decoupling security properties from functional-correctness
properties thereby enabling the spec-reader to avoid reading low-
level design details. The top-level spec remains concise, because
the (possibly quite complex) state machines and logical rules that
get substituted for the parameters are not in the TCB. This ap-
proach also allows one compact spec to support a wide range of
implementations.

Instantiating the spec. The subsidiary machines are instantiated
according to the implementation with single 𝑓 and 𝑔 boxes and
arbitration logic. The can_start function is implementation-specific
and not security-critical and hence is existentially parameterised,
supporting a range of job-assignment implementations. For exam-
ple, jobs can be assigned to unoccupied machines in priority order
or to certain machines based on the request (e.g. to take advantage
of an 𝑓 accelerator or when𝑚 = 0). 𝜎 is instantiated based on the
implementation of arbitration, e.g. by returning the response from
machine 𝑛 mod 3 at cycle 𝑛 for a round-robin arbiter.

4.2 Static Strong Isolation
We extend the techniques from § 4.1 in the context of processors and
a memory system running hardware enclaves, with communica-
tion defined by the enclave programming model (e.g. MMIO), as in
Figure 2. As in § 4.1, we decompose the spec into two parts, pertain-
ing to the semantics of 1) enclave execution while running and 2)
enclave context switching. We are guided by the principle of using
allowlists instead of blocklists: we use “air-gapped” machines as a
starting point, explicitly add I/O as defined by the enclave program-
ming model, and then define the semantics of context switching on
top of the baseline “throwing away” the old machine and starting a
“new” machine. We discuss and formalise 1) in this section and 2)
in § 4.3.

Isolation without context switching. Consider a machine𝑀 with𝑚
processors running𝑚 enclaves initialised with secrets (e.g. enclave

[o0,...,on-1]
ιn π σ [o0,...,on-1,on]

on

Figure 6: External world as a function over output history.

memory contents) sec𝑘 for 1 ≤ 𝑘 ≤ 𝑚. Intuitively, in the absence
of context switching, the machine is secure if it can be expressed
as an observationally indistinguishable product machine with 𝑚

submachines 𝑀𝑘 , each initialised with corresponding sec𝑘 . More
formally:

Definition 2 (Static strong isolation with fixed inputs). Suppose
we have an implementation machine5 𝑀 := (𝑆, 𝑠0, 𝐼 ,𝑂, 𝛿, out) where
𝑆 is the set of machine states, 𝑠0 : {Sec}𝑚 → 𝑆 is the initial state
as a function of𝑚 enclave secrets, 𝐼 and 𝑂 are the input and output
types, 𝛿 : 𝑆 × 𝐼 → 𝑆 is the (cycle-accurate) transition function, and
out : 𝑆 × 𝐼 → 𝑂 is the output function. Given inputs 𝜄1, . . . 𝜄𝑛 and𝑚
enclave secrets {𝑠𝑒𝑐}𝑚 , the machine steps as follows after 𝑛 cycles:

𝑠0 [{sec}𝑚] 𝜄1−−→
𝑜1

𝑠1
𝜄2−−→
𝑜2

· · · 𝜄𝑛−−→
𝑜𝑛

𝑠𝑛

The trace is defined as the (cycle-accurate) sequence of outputs𝑜1, . . . , 𝑜𝑛 .
𝑀 securely implements isolation without context switching if there
exists, for a given input-partitioning function 𝜋 , a product machine
Π := ({𝑀}𝑘 ), and well-formed6 output-joining function 𝜎 such that,
for each𝑀𝑘 and enclave secret 𝑠𝑒𝑐𝑘 ,

𝑠0𝑘 [sec𝑘 ]
𝜋 (𝑘,𝜄1 )−−−−−−→
𝑜1𝑘

𝑠1
𝜋 (𝑘,𝜄2 )−−−−−−→
𝑜2𝑘

· · ·
𝜋 (𝑘,𝜄𝑛 )−−−−−−→
𝑜𝑛𝑘

𝑠𝑛𝑘

and Π’s output 𝑜Π𝑖
:= 𝜎 (𝑜𝑖1 , . . . , 𝑜𝑖𝑚 ) is equal to 𝑀’s output 𝑜𝑖 at

every cycle 𝑖 . 𝜋 and 𝜎 denote functions splitting inputs and combining
outputs respectively.

Trace equivalence here expresses that the implementation’s out-
puts can be constructed from separate machines initialized with
separate secrets. We detail the modeling of inputs and outputs
next and then provide intuition for sources of leakage ruled out by
Definition 2.

Nondeterministic I/O. A challenge with I/O is handling nondeter-
minism: secrets can be leaked through nondeterminism in the spec-
ification. Our strategy for I/O is to model the external world as
a deterministic “oracle” state machine Ω, ensuring the resulting
implementation and specification systems remain deterministic,
and prove trace equivalence for all possible Ωs. Without loss of
generality, the external world’s state can be defined to be the (cycle-
accurate) history of external observations (outputs) of the imple-
mentation or specification machines as shown in Figure 6. Then, at
each cycle, the external world generates an output (used as input
to the enclave machine) as a function out𝜔 of its state.

5A finite Mealy machine.
6As in § 4.1, a well-formedness property captures isolation constraints on the im-
plementation’s output such as “Outputs for the UART must come from the enclave
currently owning the lock to the UART.”
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In other words, Ωout𝜔 := (𝑆, 𝑠0,𝑂, 𝐼 , 𝛿, out𝜔 )7 with

𝑠0𝜔
𝑜1−−→
𝜄1

𝑠1𝜔
𝑜2−−→
𝜄2

· · · 𝑜𝑛−−→
𝜄𝑛

𝑠𝑛𝜔

𝑠0 := [] the initial state with no history, 𝛿 (𝑠, 𝑜) := 𝑠++[𝑜] updat-
ing the external world with the enclave machine’s output, and
𝜄𝑘 := out𝜔 (𝑠𝑘−1𝜔 ) the enclave machine’s input at cycle 𝑘 . These
enclave inputs (oracle outputs) can be censored or partitioned in
some way, via the 𝜋 function, and there can be additional proper-
ties on the 𝑜𝑢𝑡𝜔 depending on the threat model. For example, we
might enforce that USB responses are dependent only on previous
USB requests. The oracle function is incorporated into the state-
transition system of the implementation and secure system, which
remain deterministic. In other words, (𝑀,Ωout ) and (Π,Ωout ) are
deterministic state machines.

Definition 3 (Strong isolation without context switching). 𝑀 is
secure for a given input-partitioning function 𝜋 and output-joining
function 𝜎 if ∃Π. ∀out𝜔 . (𝑀,Ωout𝜔 ) ≡ (Π𝜋,𝜎 ,Ωout𝜔 ) where ≡
denotes trace equivalence.

4.2.1 Security audit and enforcing isolation with spatial and tempo-
ral partitioning. Modern microarchitectures generally do not satisfy
Definition 2 and Definition 3. Consider enclaves 𝐸𝑛𝑐𝑖 and 𝐸𝑛𝑐 𝑗 colo-
cated on the same machine. To satisfy Definition 3 and view 𝐸𝑛𝑐𝑖
and 𝐸𝑛𝑐 𝑗 as running on separate machines 𝑀𝑖 and 𝑀𝑗 , we must
eliminate contention through spatial and temporal partitioning. We
provide examples of leakages, discuss how they are ruled out by the
specification, and provide example enforcement techniques. Thanks
to the allowlist approach, the spec does not explicitly enumerate
attacks of leakage sources such as caches, allowing it to rule out
attacks not yet discovered.

Enc𝑖 and Enc 𝑗 try to access the same address. By assigning Enc𝑖 ’s
main-memory region exclusively to sec𝑖 and Enc 𝑗 ’s to sec 𝑗 , Defi-
nition 3 rules out such architectural leakages as, i.e., M𝑖 does not
have access to sec 𝑗 . To enforce this architectural isolation, we as-
sign Enc𝑖 and Enc 𝑗 separate address spaces by, e.g., partitioning the
main memory into disjoint regions and using a security monitor
(SM) to filter out-of-region requests.

Dynamic contention for L2 cache sets. If Enc𝑖 and Enc 𝑗 access
physical addresses in the same L2 cache set, then accesses from
Enc𝑖 can evict entries from Enc 𝑗 , which allows Enc 𝑗 to observe a
timing leakage from a cache miss versus a hit. Definition 3 rules out
such leakages as 𝑀𝑖 and 𝑀𝑗 simply do not share a cache and run
as independent state machines. The MI6 fix is to partition the L2
cache spatially through set partitioning, such that themain-memory
regions map to disjoint cache sets, and each set is exclusively owned
by a single enclave. The memory subsystem must ensure that if
memory requests from different cores are from different regions,
then there should be no interference.

Port contention for cache-access pipeline or DRAM.Messages from
different cores arriving at the single entry of an L2 cache may block
each other for a cycle, leading to timing leakage. Definition 3 rules
out such leakages, as enclaves do not share ports. A solution is static
temporal partitioning of access to the port using, e.g., a round-robin
arbiter enforcing that 𝐸𝑛𝑐𝑖 can only access the port on even cycles
and 𝐸𝑛𝑐 𝑗 on odd cycles. This pattern of having a multiplexer (mux)
7A Moore machine.

choosing between 𝑛 different inputs is common: a similar round-
robin technique must be applied whenever there is a mux of inputs
from different protection domains.

4.3 Dynamic Enclave Isolation
There are subtleties with defining secure context switch: what in-
formation is preserved?; what is the initial state of a new enclave?;
what if two cores want the same enclave? To implement secure con-
text switching, we erase program-dependent, non-preserved state
that could affect future executions. We model context switching as
“throwing away the old machine and starting a new one,” initialized
based on programming model. We use an allowlist instead of a
blocklist to require explicit authorization of information preserved
upon exit and used in entry. Figure 7 contains an example from our
case study, sketched out below.

Exit. We extend the spec with state preserved 𝑆preserved and (exis-
tentially parameterised) functions extract_preserved𝑘 : 𝑆𝑘 →
𝑆preserved and exit : 𝑆𝑘 × 𝐼 → {0, 1} (analogous to the job-finished
bit of job_resp from § 4.1). E.g.: extract_preserved returns the
register file and DRAM, and exit returns 1 when the SM releases
enclave resources. We illustrate informally below, eliding I/O, in a
single-core setting with preserved state 𝑠𝑝 :

(𝑠0, 𝑠𝑝 ) −−−−→
!exit

(𝑠1, 𝑠𝑝 ) −−−−→
!exit

· · · −−−−→
exit

(𝑠𝑛, 𝑠𝑝 )
extract−−−−−−−→ ((), 𝑠𝑝′ )

Start. Defining start involves extending the specification with an
existentially quantified can_start function (with arguments spec-
ifying what information can be used to determine whether an
enclave can start) and init function determining what information
is used to initialise an enclave (e.g. the register file and enclave
memory regions). A well-formedness predicate can be imposed on
can_start, for example to ensure that enclaves access disjoint re-
gions or to enforce a policy on which enclaves a given enclave can
switch to. Diagramatically:

((), 𝑠𝑝0 ) −−−−−−−−−→!can_start
((), 𝑠𝑝1 ) −−−−−−−−−→!can_start

· · · init−−−−−−−−−→
can_start

(𝑠0, 𝑠𝑝′ )

Definition 4 (Strong isolation with context switching). Let
Spec(Π𝜋,𝜎 , extract, exit, can_start, init) be the deterministic
state machine defined by its existentially quantified parameters, with
enclave 𝑘 transitioning according to Π𝑘 when running, exiting accord-
ing to exit with state preserved defined by extract, and starting
according to can_start with initial state defined by init. 𝑀 is se-
cure for a given input-partitioning function 𝜋 and output-joining
function 𝜎 if there exists params such that ∀out𝜔 .(𝑀,Ωout𝜔 ) ≡
(Spec(params),Ωout𝜔 ) where ≡ denotes trace equivalence.

5 Case Study: Multicore RISC-V Processor
As a case study, we specify, implement, and verify strong isolation
for a two-core enclave system (shown in Figure 28) for the following
enclave programming model.

Enclave programming model. The address space is statically par-
titioned into regions exclusively owned by enclaves and “locked
mailbox” regions shared by pairs of enclaves (but exclusively owned
8Our implementation has two cores. The figure has three cores to show different state
transitions.
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Figure 7: Spec system’s transition corresponding to Figure 2, decomposed into local and context-switching steps. (1): Enclave0
runs yellow enclave with UART. At cycle 𝑛, Enclave0’s state is a (parameterised) function of its initial state (denoted by the
red box, containing cycle counter ctr, register file rf, and memory regions) and 𝑛 UART inputs received thus far. (2): Enclave0
independently steps, outputting 𝑜0, and is now a function of its initial state and the 𝑛 + 1 inputs. (3): When exiting, the rf,
enclave memory regions, and requested config (blue) are preserved. The exiting enclave’s memory regions are returned to
the spec’s map of unused regions. (4): can_start is a function of the requested config, configs in use, and public state (i.e. ctr).
Its well-formedness condition enforces config disjointness. If a machine can_start, it is initialised with ctr, previous rf, and
memory regions. Else, it remains idle. (5): The external world (MMIO) input 𝐼𝑛 is split with 𝜋 based on enclave config, with
UART inputs passed to Enclave0 and USB inputs to Enclave1. (6): 𝜎 combines enclave outputs to generate the spec’s output 𝑂𝑛 ,
with UART outputs from Enclave0 and USB outputs from Enclave1.

during execution). An enclave runs on a single core and is config-
ured with a set of mailbox regions and locked MMIO regions. En-
claves can send memory and MMIO requests and receive responses
and measure their latencies. An enclave has exclusive ownership
over its regions, cannot access other regions, and runs in isolation.

Enclaves communicate via the external world through MMIO
or via the register file (rf) or mailboxes after context switching.
Preserving the rf enables more efficient implementation of enclave
calls (i.e. Enclave0 calls a function from Enclave1 with arguments
in standard ISA argument registers, and Enclave1 returns control to
Enclave0with the result). The programmer is responsible for remov-
ing secrets from the rf and saving e.g. stack and frame pointers to
resume execution. Alternatively, mailboxes allow exchanging more
data. A mailbox shared by Enclave0 and Enclave1 can be written to
by Enclave0 and later read by Enclave1, after Enclave0 exits.

Enclaves cooperatively yield to other enclaves, by requesting
to switch to new configurations. When exiting, enclaves preserve
their memory regions and register files. A new enclave can only
be created with a config if no other enclave’s config conflicts (this
check leaks information about enclave configs and runtime). A new
enclave is initialized as a fresh machine with assigned memory
regions and register file.

5.1 Specification
Figure 2b summarizes a spec for our programming model. Figure 7
details the spec’s state-transition function, showing information
preserved upon exiting and used in initialisation. Figure 7 illustrates
that after running for 𝑛 cycles, an enclave can be viewed as a
(existentially parameterised) function exclusively of its initial state
(register file, memory regions, and cycle counter) and the 𝑛 MMIO

inputs from the external world. 𝜋 splits the MMIO inputs according
to enclave config such that, e.g., Enclave0 receives inputs for UART
addresses and Enclave1 for USB addresses. 𝜎 combines the enclaves’
outputs according to the configs (e.g. UART output is equal to the
output from the enclave owning the UART). This spec allows a
wide range of implementations by imposing minimal restrictions
on functional correctness, while ruling out any interference not via
MMIO while enclaves are running. We mechanize this spec in Coq,
with a snapshot in Figure 8.

5.2 Implementation
We instantiated our approach with two pipelined RISC-V cores, a
security monitor, and a memory subsystem arbitrating access to a
single-port BRAM (extended with caches in § 7.1). The SM enforces
architectural isolation and the enclave programming model. The
processor and memory are responsible for purging microarchitec-
tural state upon context switching, reaching a state functionally
equivalent to a new machine initialised only with state in the al-
lowlist. The memory is also responsible for guaranteeing that, from
a purged state, if requests from different cores are from disjoint
configs then it should behave for each core as if it were two separate
subsystems.

Purge state machine. Upon receiving a switch request, the SM in-
structs the core and memory to purge microarchitectural state. The
purge state machine has three states: i) Ready: the CPU/memory
are running an enclave, ii) Purging: the CPU/memory are requested
to purge microarchitectural state, and iii) Purged: the CPU/mem-
ory have purged and await SM instruction to start a new enclave
execution.
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1 Definition step_local core core_state input :=

2 match core_state with

3 | CS_Running mst config ⇒
4 let (mst',obs) := step_running core mst input in

5 match obs.obs_exit_enclave core with

6 | Some config' ⇒ TS_Exit config' (config, extract_dram mst', extract_rf mst' core) obs

7 | None ⇒ TS_Core (CS_Running mst' config) obs

8 | CS_Waiting new rf exit_cycle ⇒ TS_Core st empty_obs.

9 Definition step_enter core ts_state cycles mem_regions :=

10 match ts_state with

11 | TS_Core (CS_Waiting config' rf t_exit) obs ⇒
12 if does_not_conflict new other_config

13 && can_start core t_exit cycles config' other_config then

14 let machine := init core (cycles+1) new (get_dram params mem_regions config') rf in

15 TS_Core (CS_Running machine config')

16 else ts_state

17 | _ ⇒ ts_state.

Figure 8: A snapshot of the Coq specification (extended ver-
sion in Appendix A.2), parameterised on the red text. Each
core running an enclave takes a local step step_running in-
dependently of other cores. A waiting core begins execut-
ing an enclave if it does_not_conflict with other enclaves and
can_start, initialised with the register file, memory regions,
and cycle counter.

Processor. The processor is based on the four-stage RISC-V core
from [7]. The processor tracks in-flight instructions via queues,
bookkeeping state, a scoreboard for detecting hazards, and state to
track speculation/branches (extended with a BTB and BHT for pre-
diction and an epoch mechanism to correct misprediction in § 7.1).
The processor is connected to the SM via pairs of FIFOs (instruction
memory, data memory, and MMIO) and uses a custom RISC-V in-
struction to switch enclaves. Upon executing a switch request, the
processor drains its pipeline and purges microarchitectural state.

Security monitor. The hardware SM stores an enclave config per
core, consisting of enclave ID, any locked mailboxes, and reserved
MMIO addresses. The SM filters out-of-enclave address requests
and arbitrates access to the shared MMIO bus. Upon receiving a
switch request, it instructs the core and memory to start Purging
and waits until they are Purged to exit. The SM waits until no other
enclave owns requested regions before allowing enclave entry.

Memory subsystem. We implement two memory subsystems: a
simple, round-robin arbiter (described below) and a system with
L1 caches (see § 7.1). Both are connected to the SM via four pairs
of FIFOs (instruction and data memory per core) and interface
with a single-port, single-cycle SRAM shared by the cores. The
subsystem maintains queues per-core and shares “status-holding
request” registers tracking requests in the shared SRAM queue. A
round-robin arbiter ensures requests do not contend for SRAM
bandwidth. To avoid backpressure, the system ensures that there
is enough space in the FIFOs to reply to the SM, before sending a
request to SRAM. Finally, it executes a purge state machine (flushing
caches and draining FIFOs) after ensuring there are no in-flight
requests per-core.

6 Verifying Strong Isolation
Our approach enables a modular proof, allowing architects and ver-
ifiers to implement and prove security properties of submodules

SMTLIB problems

Koika Impl

Modular δKoika Impl

Circuit-Level Impl Spec

Verified compiler

Coq Proof

Koika Semantics

Circuit Semantics External Memory ≅

 {Pre} Module {Post}
Modular δKoika semantics

SMT model of CF δKoika OCaml δKoika Modules OCaml:  {Pre} Module {Post}

Z3

 Coq extraction

δKoika to SMT

coqc

δKoika ImplδKoika semantics

Koika to δKoika transpiler

Verified decomposition

Figure 9: Architecture for proving that a circuit-level im-
plementation satisfies a specification. Grey boxes are pro-
vided by MTIsolation. Blue boxes are implemented by the
developer. Yellow boxes are intermediate steps generated by
MTIsolation. Red boxes denote assumptions within Coq, val-
idated using Z3. The green-dotted box indicates parts within
Coq. The star indicates components in the TCB.

independently. We found it valuable to state modular security obli-
gations independently of functional correctness, allowing verifiers
to prove security without proving functional correctness. We fea-
ture a hybrid Coq-SMT approach, using Coq’s expressivity for clear
specs and to soundly reduce security to single-cycle, circuit-level
properties amenable to automatic verification with SMT solvers. We
summarize the proof architecture in § 6.1, discuss instantiation of
existentially quantified parameters in § 6.2, describe per-component
obligations in § 6.3, and detail MTIsolation (the Coq-SMT toolchain)
in § 6.4.

6.1 Proof architecture
Figure 9 summarizes our verification framework. The spec is written
in Gallina (Coq’s specification language) and the implementation
in Kôika (for synthesizable components) and Gallina (for models of
SRAM). To capture a range of implementations, the spec is param-
eterised on non-security-critical behaviours. We leverage Kôika’s
verified compiler to circuits to generate semantically equivalent
circuits.

We use an (unverified) translation from Kôika to 𝛿Kôika, a deriv-
ative of Kôika that is syntactically and semantically nearly identical
to Kôika’s reference implementation [2]. 𝛿Kôika was designed with
a term representation to support verification and crucially extends
Kôika’s semantics with support for reasoning about external func-
tions.

Modular decomposition. Kôika has non-local interactions between
rules and no first-class support for modules: a rule may fail to
execute based on “conflicts” with what happened previously (dy-
namically) in a cycle9. To restore modularity, we use static analyses
(verified in Coq) to decompose the design into per-component
semantics by checking that rules do not conflict across modular
boundaries. We implement our designs in a style such that we can

9Registers can only be written to once in a cycle. In Kôika, to enable data forwarding or
pipelining in the same cycle between rules, reads and writes to registers are associated
with ports 𝑃0 and 𝑃1 , and certain orderings such as write1 followed by read0 lead to
conflicts and a rule failing.
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guarantee statically that rules do not conflict across component
boundaries, enabling a “one-component-at-a-time” semantics. We
expect modular reasoning to be more straightforward with HDLs
with good support for modularity.

Proving trace equivalence using state-machine refinement. After in-
stantiating the Coq spec based on the implementation (see § 6.2),
the proof developer states (in Coq) a simulation relation between
the spec and implementation along with a single-cycle, circuit post-
condition (e.g. MMIO calls are adequately related). The developer
proves (in Coq) that strong isolation (for an unbounded number of
cycles) can be reduced to the single-cycle preservation of the simu-
lation relation and the postcondition implying trace equivalence.

Hybrid Coq-SMT approach. The simulation relation and postcon-
dition are composed of per-component obligations (preconditions
and postconditions) expressed in MTIsolation’s custom symbolic
assertion language. MTIsolation extracts the assertions into OCaml,
translates the assertions into SMT-LIB via a Kôika-to-SMT encod-
ing (§ 6.4), and checks the generated SMT formulae using Z3 [14].
The developer strengthens the invariant as need be, if MTIsolation
finds a counterexample. After this process, the developer obtains a
proof that the circuit-level design implements strong isolation.

6.2 Instantiating the Specification
The developer must instantiate existentially quantified parameters
in the specification by, e.g., providing a state-machine definition
for an enclave running in isolation. We found that a convenient
template to instantiate the enclave’s state machine is to take the
underlying implementation and essentially erase or prove unused
circuitry for other cores. As an example, one could take the imple-
mentation and disable fetch for other cores or delete other CPUs.

With an implementation expressed in a rule-based language de-
signed with a separation of resources between security domains, we
simply erased rules corresponding to other cores. For example, to
instantiate the state machine for Core0, we removed the processor
corresponding to Core1 and memory/SM rules exclusively perform-
ing computation for Core1. For rules performing computation for
both cores, we could either rewrite the rules to remove Core1’s com-
putation or provably maintain the invariant that Core1’s circuitry
does not affect Core0’s computation. For simplicity and to avoid
rewriting rules, we chose the latter. This instantiation style actu-
ally allows us to prove a stronger property about the architectural
behaviour of an enclave (see § 7.4).

6.3 Per-Component Security Obligations
The proof of strong isolation can be decomposed into two parts: i)
enforcing a simulation relation between running enclaves in the
implementation and specification through spatial and temporal
partitioning, and ii) reaching and maintaining a state functionally
equivalent to a newmachine when context switching through purg-
ing. These two properties are amenable to a modular proof with
per-component obligations of a similar form: each individual com-
ponent must i) spatially and temporally partition resources and
ii) purge program-dependent state when context switching. The
modular decomposition requires stating additional per-component
guarantees and assumptions (e.g. the SM guarantees that addresses

from disjoint cores are from disjoint enclave regions, and the mem-
ory subsystem guarantees that it behaves like two separate memory
subsystems assuming addresses from disjoint cores are from dis-
joint regions). Establishing these per-component specifications is
useful from a design standpoint, clarifying guarantees and assump-
tions. Note that this decomposition is not limited to Kôika and is
fundamental: e.g. purging operations are mostly local to individual
components.

Processor. There are minimal constraints on the processor when
running (as it is owned by a single enclave), but it must guarantee
that it reaches a state functionally equivalent to a new machine
when purging. Purging does not require resetting all microarchi-
tectural state: there are multiple states equivalent to an empty
processor pipeline (e.g. if implementing a queue with a circular
buffer, any configuration where head and tail pointers are equal
maps to an empty state and indeed, our implementation empties
FIFOs without purging all data registers), and any such configu-
ration is indistinguishable. The simulation relation captures this
notion of equivalence. Note that the processor’s proof obligation is
independent of functional correctness and does not mention ISA
semantics.

Security Monitor. The SM’s guarantees include that enclaves start
only when both memory and core have purged and the core-to-
memory pipeline is flushed, configs are disjoint, and requests for-
warded to memory are within allowed memory regions. As a result,
the memory may assume that, from a purged state, requests from
cores will come from disjoint regions. The SM also arbitrates access
to MMIO, with the simulation relation stating that MMIO requests
from the implementation and spec are related based on enclave
configuration, and an invariant maintains that enclaves do not have
outstanding requests to unowned MMIO regions.

Memory subsytem. The memory subsystem implements a similar
purge state machine as the processor, but it must further act as
two independent state machines assuming that requests from dif-
ferent cores are from disjoint enclave regions from a purged state.
The memory subsystem must spatially and temporally partition
resources across cores, maintaining invariants about requests made
to caches or main memory. For example, the memory subsystem
guarantees requests to main memory must previously have been re-
ceived from the SM. The memory subsystem temporally partitions
access to a single-port main memory with a two-bit arbiter, shown
in Appendix B.1 with example invariants. We discuss invariants
pertaining to caches in § 7.1.

6.4 MTIsolation: a Kôika-to-SMT Toolchain
The proof developer expresses pre- and postconditions (over a
sequence of rules, per module or otherwise) in a symbolic language
deeply embedded in Coq provided by MTIsolation, included in
Appendix A.2. These symbolic predicates express cycle-granularity
conditions over registers and external function calls before and after
executing a sequence of rules and are associated with a symbolic
interpretation that reflects the predicates back into Coq propositions
for use in proving strong isolation for an unbounded number of
cycles. We additionally chain together the module specifications,
asserting that postconditions of one module imply the precondition
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1 Example core_regs_purged core : fancy_spred :=

2 {{{ impl1.[reg_purge core] = #(enum purge_state "Purged") →
3 ∀ x in (regs_to_reset core), impl1.[x] = #(zeroes (reg_type x)) }}}.

4 Example assume_uart_sim core : fancy_spred :=

5 {{{ forall1 "arg" of (fn_arg_type ext_uart_write),

6 sget_field enc_data_sig "ext_uart_write" spec0.[reg_enc_data core] = Ob~1 →
7 iapp ext_uart_write "arg" = sapp ext_uart_write "arg" }}}.

Figure 10: core_regs_purged shows the processor’s purge in-
variant. assume_uart_sim relates the behaviours of external
function ext_uart_write: if an enclave owns the UART, then
ext_uart_write behaves the same in both implementation and
specification for all inputs.

of the next. MTIsolation’s SMT encoding of Kôika discharges these
conditions to Z3. This approach soundly leverages the automation
of SMT solvers while being largely immune to their scalability
challenges and unpredictable performance: we use SMT solvers for
single-cycle verification (comparable to assertion-based verification
in traditional hardware verification) while proving the soundness
of the reduction and metatheory in Coq. MTIsolation supports the
developer in finding design bugs as well as iterating on invariants: if
a counterexample is found, MTIsolation outputs violating assertions
and provides a query interface to inspect register assignments of
the counterexample at rule boundaries.

Symbolic assertions. Figure 10 shows examples of assertions in
MTIsolation’s symbolic language in Coq. Symbolic assertions for
our design could be expressed in a fragment of first-order logic
without existential quantifiers and with limited usage of universal
quantifiers (which can trigger issues with SMT). Universal quanti-
fiers are only used for arguments to external functions, modeled
as uninterpreted functions constrained using assertions such as
assume_uart_sim. The ∀ quantifier in core_regs_purged is part of a
sugared syntax that is translated to a conjunction of assertions
in a verified desugaring phase in Coq before translation to SMT.
This sugaring allows convenient reflection with Gallina’s forall
quantifier for concise term representation and usage in Coq proofs.

7 Evaluation and Discussion
We showed that our method can be applied to a synthesizable
machine. We additionally discuss the following:

• What changes are needed whenmaking designmodifications
to the processor? And to the memory system?

• What is the developer’s proof effort and process?
• What is the process of running applications on our enclave
hardware?

• Does the spec style extend to other enclave programming
models and compose with other properties?

7.1 Design Modifications
Adding a branch predictor. We improve the branch predictor (a PC
+ 4 predictor) with a Branch Target Buffer recording target ad-
dresses of branches and jumps. This extension required no changes
to the spec and Coq proof, taking about a day and showing that
non-security-critical changes can be made without triggering an
avalanche of proof breakages.

Adding caches. Our framework was designed to work with caches.
The basic idea is to flush caches upon enclave switching and prove
cache-coherence protocols are not needed as enclaves access dis-
joint regions. As an example, we implement a memory subsystem
with four L1 caches (two per core, for instruction and data memory)
without a cache-coherence protocol (which would not be triggered,
anyway). The metadata and cache lines are stored in external SRAM
and are flushed with a multicycle state machine. Implementing and
proving the cache took 3-4 weeks. The modular proof structure
meant that the proofs of the core and SM were unchanged, and the
bulk of modifications were to strengthen memory invariants (see
Appendix B.2). For example:

All valid addresses in a core’s slice of the memory subsystem are
in the enclave configuration. Valid addresses include addresses in
requests sent from the SM, addresses of requests that the cache
protocol sent to main memory, and interestingly, addresses corre-
sponding to valid cache lines (as defined by the metadata). With
cache requests, stating the invariant involved reconstructing the
address from the tag and index from the metadata and outstanding
request from the SM.

On flushing caches. The verified prototype paves the way for ex-
perimenting with design optimizations. For example, our imple-
mentation has a write-back cache and invalidates one line per cycle
(independently of whether the line is dirty), which increases the
cost of context switching. A design with a write-through cache
could invalidate all clean cache lines in a single cycle by storing
an epoch counter with the metadata (such that a line is valid if
the metadata is valid and the counter matches the current epoch)
and incrementing the epoch counter upon context switch. This
scheme is insecure: epoch bits can overflow (this bug might not
show up with testing or bounded model checking but is ruled out
by our spec). Isolation can be restored by resetting all metadata
valid bits before the counter overflows. This change alters enclave
execution time. Thus, in our framework, a new machine must be
initialized with the epoch counter (the number of context switches
on that core), and this design would only be secure in a threat model
allowing leaking the number of context switches.

7.2 Verification Cost
Figure 11 shows the lines of code for the implementation, specifica-
tion, and proof for various examples, and the verification time in
Coq and Z3. We proved the resource-isolation example from § 4.1
entirely in Coq, with per-rule specifications and a postcondition
semantics for 𝛿Kôika, and used a hybrid Coq-SMT approach for the
other examples.

As proof writing, debugging and iterating on invariants is an
interactive process, it is preferable for interaction cycles to be short
(i.e. waiting three minutes for every interaction with the SMT
solver hampers the proof experience). Most of our SMT queries
are checked in <1 second. Modularity reduces the size of the SMT
formulae and verification time, from a maximum of 360 seconds
to a maximum of 95 seconds. The overhead of modularity, in this
instance, is the need to state intermediate invariants and prove mod-
ule boundaries align (postconditions of one imply preconditions of
another).
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SLOC Time(s)
Design Kôika Csim4 Vlog5 Spec Pf Coq6 SMT7

Resource 1630 - - 160 6600 130 -
Enc:pf-mono2 2410 12780 1870 280 12550 540 720,360,1
Enc:pf-mod3 " " " " 13050 780 200,95,1
Enc+BTB 2750 14760 2080 " " " 340,160,1
Enc+Caches 2850 17710 2320 " 17750 1340 380,95,1

Figure 11: Our examples. 1Written in 𝛿Kôika. 2Monolithic
simulation proof. 3Modular simulation proof. 4Cuttlesim’s
generated C++. 5Kôika’s generated Verilog. 6Inclusive of ex-
traction time. 7Total, max, median (per-use-of-SMT) time.

7.3 Running an Application
We implement a basic programming toolchain to compile and link
enclave programs (placing them at appropriate addresses) and run
a toy password-manager application using Cuttlesim to validate
our design’s functionality. The password-manager enclave takes
requests get_pswd(id, key) and add_pswd(id, pswd, key). A call-
ing enclave saves stack and frame pointers on its stack, flushes
secrets from registers, then requests to switch to the password-
manager enclave, passing a function identifier, arguments, and a
requested return config in registers. Upon context switch, the SM
jumps to the bootloader address for the enclave, which processes the
function-call request and returns execution to the calling enclave.
One limitation is the lack of shared read-only memory, resulting in
duplicating libraries across enclaves.

7.4 Extensions and Future Work
Alternative enclave programming models. Our examples used a co-
operative enclave model, which allows a malicious enclave to run
indefinitely. Instead, we can introduce a timeout and allow the SM
to preempt an enclave after some number of cycles. This extension
is straightforward: we could track the number of cycles elapsed in
the spec, and the SMwould force the enclave to exit. Another model
could implement privilege levels by specifying that unprivileged
enclaves switch back to a privileged enclave. This extension simply
involves constraining the can_start transition appropriately.

Our case studies demonstrated support for configurable static al-
location (we parameterise over enclave configurations with disjoint
regions) and dynamic allocation of resources through the “locked
mailbox” and MMIO regions (a similar technique could be used to
support requests for cache lines by “creating a new machine with
the requested resources”). To support security domains dynami-
cally evolving during enclave execution (i.e. adding and removing
pages), we can allow running enclaves to output requests such as
add_page(id) to a specification API handler and have the handler
return the page if allowed.

Composability. Composing strong isolationwith traditional constant-
time guarantees is insufficient to avoid leaking secrets: purge time
can depend on microachitectural state and thus be used as a side
channel. For example, the time to flush the L1 may depend on
which cache lines are dirty. While it is straightforward to specify
constant-time purge in this framework (each processor must prove
there exists a constant number of cycles after which it has been
purged, and the SM pads the time), the performance cost may be
unacceptable.

In addition, to reason about the security of enclave software,
we need functional correctness of processors. By instantiating the
specification with subsidiary machines that behave architecturally
equivalently to the implementation machine per enclave, we prove
a property stronger than strict strong isolation that can be used
in future work to reason about the architectural behaviour of an
enclave.

Verifying designs in other HDLs. We implemented our design in
Kôika for composability with future work on hardware-software
guarantees, but we expect our presented techniques for isolation
verification to be applicable to other HDLs including Verilog. In-
deed, the spec style is largely independent of the implementation’s
HDL, we expect the modular decomposition to work even better in
languages with first-class support for modularity, and the single-
cycle, SMT verification style should be even more effective with
languages closer to RTL.

8 Related Work
Timing-side-channel defenses. TEEs [10] construct enclaves to avoid
trusting the OS but are not designed to protect against timing side
channels. TEEs typically rely on virtual memory for architectural
isolation, whereas Sanctum, its successors [6, 20] and this work
depend on physical memory isolation similar to RISC-V’s PMP.
Sanctum and MI6 use spatial and temporal isolation. They are
methodologically closest to this paper but do not tackle the ver-
ification challenges in formally proving isolation. Subramanyan
et al. [29] verified Sanctum’s security, but they verify models rather
than synthesizable designs, and their spec is expressed as relatively
complex invariants (in contrast with our high-level isolation spec).
Wistoff et al. [32] implement a temporal fence instruction for con-
text switching analogous to MI6’s purge, experimentally validated
to have secure (history-independent) timing and low performance
overhead.

Noninterference. Hyperflow [16], mCertiKOS-secure [12], and Ko-
modo [15] formalise noninterference and information-flow security
using declassification policies to express allowed leakages. While
necessary for expressivity, when defined at a low level associated
with a particular implementation’s code, understanding the security
guarantee requires detailed auditing and deep understanding of the
system. We propose a spec that is auditable without understanding
low-level details of the implementation and captures isolation in
the context of dynamic security domains.

HW/SW security verification. Several works [13, 17, 24, 30, 31, 33]
formalized and verified HW/SW contracts for simple microarchi-
tectures. These contracts promise that a hardware model does not
leak more than a software model. In this style, an attacker actively
controls the victim’s initial state but is limited to passive observa-
tion of channels while the victim executes. In our formalization,
the attacker can provably run concurrently with the victim without
interference. The HW/SW contracts focus on speculative constant
time without addressing strong isolation. These two properties
are complementary yet orthogonal, with different threat models
and assumptions. Strong isolation provides guarantees that reduce
the attack surface to remote attacks, even for code not written in
constant-time style with a clear separation of public/secret data.



Specification and Verification of Strong Timing Isolation of Hardware Enclaves CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

To close off remote attacks and prove cryptographic code running
on our machine does not leak secrets even through completion
time, we would need to compose our isolation guarantees with
speculative constant-time guarantees. LeaVe [31] also observes that
different techniques can be used to verify ISA versus leakage and
that functional guarantees can be composed with leakage guaran-
tees. A difference is that LeaVe assumes ISA correctness (proving a
HW/SW contract), whereas we prove hardware isolation indepen-
dently of ISA.

Knox [4] and Notary [3] use automatic verification tools to col-
lapse abstraction layers symbolically, from software down to RTL,
and prove functional and leakage properties about a program on
specific hardware without addressing colocation. VRASED [25]
verifies a HW/SW codesign for remote attestation. While the above
target verification of specific programs, this work proves properties
about the microarchitecture for all programs.

9 Conclusion
We presented a methodology to formally verify strong timing iso-
lation in enclave systems, ruling out microarchitectural timing
side channels with machine-checked proof. Our methodology has
demonstrated tractable for analyzing synthesizable hardware de-
signs, not just models thereof. We believe it is worth continuing to
explore how the method can generalize to more interesting enclave
models and other hardware-security mechanisms.
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A Additional Coq Code
A.1 Coq Specification of Enclave Isolation

1 Inductive core_state_t :=

2 | CS_Running (st: machine_st) (config: enclave_config)

3 | CS_Waiting (new: enclave_config) (rf: reg_file_t) (exit_cycle: nat).

4 Definition ctx_switch_data:= enclave_config * dram_t * reg_file_t.

5 Inductive transition_state_t :=

6 | TS_Exit (new: enclave_config) (ctx: ctx_switch_data) (obs: local_obs_t)

7 | TS_Core (st: core_state_t) (obs: local_obs_t).

8 Record state_t := { core_st: core_id → core_state_t;

9 mem_regions: mem_region → dram_t;

10 cycles: nat }.

11 Definition step_local (core: core_id) core_state input :=

12 match core_state with

13 | CS_Running mst config ⇒
14 let (mst',obs) := step_running core mst input in

15 match obs.obs_exit_enclave core with

16 | Some config' ⇒
17 TS_Exit config' (config, extract_dram mst', extract_rf mst' core) obs

18 | None ⇒ TS_Core (CS_Running mst' config) obs

19 | CS_Waiting new rf exit_cycle ⇒ TS_Core st empty_obs.

20 Definition step_enter core ts_state (other_config: option enclave_config)

21 cycles mem_regions :=

22 match ts_state with

23 | TS_Exit _ _ _ ⇒ ts_state

24 | TS_Core (CS_Running _ _) _ ⇒ ts_state

25 | TS_Core (CS_Waiting config' rf t_exit) obs ⇒
26 if does_not_conflict new other_config &&

27 can_start core t_exit cycles config' other_config then

28 let machine := spin_up_machine core (cycles+1) new

29 (get_dram enclave_params mem_regions config') rf in

30 TS_Core (CS_Running machine config')

31 else ts_state.

32 Parameter wf_can_start: forall t_exit0 t_exit1 cycles new0 new1,

33 conflicts new0 new1 →
34 can_start Core0 t_exit0 cycles new0 None = true →
35 can_start Core1 t_exit1 cycles new1 None = true → False.

36 Definition step_exit ts_state mem_regions cycles :=

37 match state with

38 | TS_Exit new ctx obs ⇒
39 let regions' := update_regions enclave_params ctx.config ctx.dram mem_regions) in

40 (CS_Waiting new ctx.rf cycles, obs, regions')

41 | TS_Core st obs ⇒ (st,obs,mem_regions).

42 Definition spec_step (st: state_t) input : state_t * output_t :=

43 let ts0 := step_local Core0 (st.core_st Core0)

44 (filter_input (get_config (st.core_st Core0)) input) in

45 let ts1 := step_local Core1 (st.core_st) Core1)

46 (filter_input (get_config (st.core_st Core1)) input) in

47 let ts0' := step_enter Core0 ts0 (get_config (st.core_st Core1))

48 st.cycles st.mem_regions in

49 let ts1' := step_enter Core1 ts1 (get_config (st.core_st Core0))

50 st.cycles st.mem_regions in

51 let (cst0', obs0, mem0) := step_exit ts0' st.mem_regions st.cycles in

52 let (cst1', obs1, mem1) := step_exit ts1' mem0 st.cycles in

53 ({| core_st := fun c ⇒ match c with | Core0 ⇒ cst0' | Core1 ⇒ cst1' end;

54 mem_regions := mem1; cycles := st.cycles +1 |},

55 (merge_external_observations obs0 obs1)).

56 Definition step input_machine (st: state_t) (ext_world: ext_world_state_t)

57 : state_t * ext_world_state_t * output_t :=

58 let input := input_machine.get_input ext_world in

59 let (st', output) := spec_step st input in

60 (st', input_machine.ext_step ext_world output, output).

Figure 12: Specification of strong isolation in Coq. The inputs
and outputs are bitvectors containing MMIO requests and
responses. The specification is parameterised on the text in
red.
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A.2 Symbolic Language

1 Inductive mid_t := MachineImpl | MachineSpec.

2 Inductive sval :=

3 | SConst:list bool→ sval | SGetField:mid_t→ field_t→ sval→ sval

4 | SBits1:bits1→ sval→ sval | SBits2: bits1→ sval→ sval→ sval

5 | SExtCall:mid_t→ id_t→ sval → sval | SBound: string→ sval.

6 | S{Init,Mid,Final}Reg: mid_t→ reg_t→ sval

7 | S{Mid,Final,Committed}Ext: mid_t→ fn_t→ sval

8 Inductive spred :=

9 | PConst: bool→ spred | PNot: spred→ spred

10 | PAnd : spred→ spred→ spred | POr : spred→ spred→ spred

11 | PImpl: spred→ spred→ spred | PExtFnEq: fn_t

12 | PEq: sval→ sval→ spred | PNEq: sval→ sval→ spred

13 | PForallArg1: (string*nat)→ spred→ spred

14 | PForallArg2: (string*nat)→ (string*nat)→ spred→ spred

15 | PFancy: fancy_spred→ spred

16 with fancy_spred :=

17 | PBase: spred→ fancy_spred

18 | PForallRegs: (reg_t→ fancy_spred)→ list reg_t→ fancy_spred.

Figure 13: Symbolic assertion language deeply embedded in
Coq

B Memory Subsystem Invariants
B.1 Memory Arbiter
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Figure 14: Memory arbiter for single-cycle, single-port mem-
ory. [1] Access to memory is time-partitioned: on cycles 00

and 01, Core0 and Core1 respectively can exclusively send re-
quests. [2] Status holding request (SHReq) register tracks
the source of the outstanding request. [3] Specification must
guarantee 𝜏𝐼𝑚𝑝𝑙 = 𝜏𝑆𝑝𝑒𝑐 , assuming memory requests from
different cores access disjoint regions. [4a] If memory has
an outstanding response, then SHReqImpl = SHReqSpec. [4b] Else,
they are not necessarily related (e.g. at cycle 10, the SHReqs
hold different values). [5] Specification maintains invariant
that there are only responses at cycle 11. So, the memory is
self-purging. At cycle e.g. 10, Core0 is guaranteed not to have
outstandingmemory responses and can enter the Purged state.

B.2 Cache Extension

State Example invariant
Ready No metadata/cache/mainMem resps
ProcessRequest Valid meta resp→ valid (tag++index++00)
SendFillReq Addresses of reqs to mainMem are in config
WaitFillResp Impl-spec reqs/resps to/from mainMem are equal
FlushLineReady 𝑖𝑑𝑥 Metadata lines < 𝑖𝑑𝑥 are invalid; no mem resps
FlushLineProcess 𝑖𝑑𝑥 Valid meta resp→ impl-spec cache data equal
FlushPrivateData All metadata lines are invalid; no mem resps
Flushed All 𝜇arch state is invalid; no mem resps

Figure 15: Examples of cache invariants proved using SMT
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