
An approach to model checking C based

on an explicit semantics

Stella Lau
Trinity College

A dissertation submitted to the University of Cambridge

in partial ful�lment of the requirements for the

Computer Science Tripos, Part III

University of Cambridge
Department of Computer Science and Technology

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Email: sl715@cam.ac.uk

June 2018

Declaration

I, Stella Lau of Trinity College, being a candidate for Computer Science Tripos,
Part III, hereby declare that this report and the work described in it are my
own work, unaided except as may be speci�ed below, and that the report does
not contain material that has already been used to any substantial extent for a
comparable purpose.

Signed:

Date: 1 June 2018

This dissertation is copyright c©2018 Stella Lau.
All trademarks used in this dissertation are hereby acknowledged.

Abstract

Formal veri�cation augments traditional bug-�nding techniques by proving or
disproving correctness properties. The correctness of C programs, widely used
throughout computing infrastructure, is critical. However, C lacks a clear and
unambiguous semantics�the semantics of C is informally speci�ed by the AN-
SI/ISO standards in prose form. Consequently, the semantics of C assumed by
compilers, programmers, and existing C code have diverged both from the ISO
standard and from each other. Formal veri�cation tools for C must implicitly
assume a semantics of C.

This project presents an approach to formal veri�cation of C code using an explicit
C semantics, Cerberus. Cerberus is a formal model for C that aims to both
formalize a large fragment of the ISO standards and reconcile the ISO standards
with C as used in practice. The Cerberus model is expressed through translation
to a Core language that makes explicit many subtle aspects of C such as unde�ned
behaviour, evaluation order, and unspeci�ed values. We reduce correctness of C
programs to correctness of corresponding Core programs, and reduce correctness
of Core programs to satis�ability of SMT problems.

From a formal methods point of view, we demonstrate a principled approach to
formal veri�cation of ISO C11 based on a clear interpretation of C semantics.
From a practical point of view, we implement a bounded model checker that
exhaustively explores the behaviour of programs in fragments of both sequential
and concurrent C, based on the C11 concurrency model.

Total word count: 119931

1The word count was computed by TEXcount, http://app.uio.no/ifi/texcount/. This word
count includes footnotes, but omits code listings.

http://app.uio.no/ifi/texcount/

Acknowledgements

I would like to express my utmost gratitude to my supervisor, Peter Sewell, for all
his time, support, and guidance throughout this year. This work would also not
have been possible without the support of Victor Gomes, who provided valuable
insights in our discussions, and Kayvan Memarian, who patiently introduced me
to Cerberus and promptly and thoroughly responded to all my questions.

Contents

List of Figures ii

List of Tables iii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3

2 Preliminaries 5
2.1 Correctness of C programs . 5

2.1.1 Unde�ned behaviour . 7
2.2 Cerberus and the Core language . 7
2.3 SMT-based bounded model checking 11

2.3.1 SAT and SMT solvers . 12

3 Model checking sequential Core programs 14
3.1 Overview . 14
3.2 Example: Core program to SMT problem 15
3.3 Core-to-Core rewrites . 16
3.4 Representation of Core expressions in SMT 18

3.4.1 Core types to SMT sorts . 18
3.4.2 Compositional representation of Core expressions 19

3.5 Syntactic constraints . 20
3.5.1 Pattern matching . 22
3.5.2 Summary table . 22

3.6 Veri�cation conditions . 23
3.7 Memory constraints . 26

3.7.1 Modelling program state . 26
3.7.2 Pointer sort . 27
3.7.3 Memory actions . 28
3.7.4 Branching control �ow . 30
3.7.5 Optimisation: alias analysis 30

3.8 Runs and saves . 31
3.8.1 Return values . 33
3.8.2 Function calls . 33
3.8.3 Loops . 33

3.9 Summary . 34

4 Model checking C11 concurrency 35
4.1 Relaxed memory models . 35
4.2 C11 memory model . 36

4.2.1 Relations . 37
4.3 Operational semantics: pre-execution 38
4.4 Candidate executions . 40
4.5 Consistent executions . 42

4.5.1 Auxiliary relations . 44
4.6 Race-free executions . 45
4.7 Summary: model checking procedure 46

5 Evaluation 47
5.1 Example programs . 47

5.1.1 Single-threaded program . 47
5.1.2 Multi-threaded litmus test 49

5.2 Correctness of implementation . 49
5.2.1 Toyota software analysis benchmark 50
5.2.2 Litmus tests . 51

5.3 Performance . 51
5.3.1 From C to Core . 52
5.3.2 Experiments . 54

5.4 Related work . 56
5.4.1 Bounded model checking . 56
5.4.2 C11 concurrency . 57

6 Conclusion 59
6.1 Future work . 59

Bibliography 60

A Core integer conversion functions 65

B Litmus tests 66

List of Figures

1.1 Model checker architecture . 4

2.1 Core syntax . 8
2.2 Example Core program . 9

3.1 Example SMT problem of a simple Core program 16
3.2 SMT problem corresponding to Listing 3.1 on Page 20 26
3.3 Example Core program with memory accesses 27
3.4 Example Core program demonstrating aliasing and C pointers . . . 31
3.5 Example Core program with runs and saves 32

4.1 Store bu�ering execution graphs . 39
4.2 Coherence axioms . 43
4.3 Data race example . 45

5.1 Examples of C programs handled by the model checker 48
5.2 IRIW execution graph with rearranged stores 50
5.3 Toyota test suite examples . 50
5.4 Experiment runtimes . 55

ii

List of Tables

2.1 Examples of unde�ned behaviour 6

3.1 SMT representation of Core types 19
3.2 Representation of Core expressions in SMT 21
3.3 Syntactic constraints . 24
3.4 Veri�cation conditions . 25

4.1 Computation of the sequenced-before relation 40

5.1 Toyota test summary . 51
5.2 Runtime on litmus tests . 56

iii

Chapter 1

Introduction

The correctness of hardware and software systems is critical. Although simula-
tion and testing are well-established error-�nding methods, exhaustive analysis
of all possible behaviours is generally infeasible and thus so is guaranteeing the
absence of bugs with these methods. Understanding the behaviour of systems
code is especially challenging due to the low-level, and often architecture-speci�c,
constructs used to generate heavily-optimized and e�cient code. For instance,
concurrent programming is pervasive to exploit multi-core hardware, yet its non-
determinism is di�cult to reason about and makes concurrency bugs di�cult to
diagnose [41]. Formal veri�cation augments traditional bug-�nding techniques by
mathematically proving or disproving correctness properties.

The C programming language is widely used in systems programming and through-
out our computing infrastructure. Writers of C code, compilers, and analysis tools
need to handle the semantics of C and correctly reason about pointers, memory ob-
jects, and concurrency. However, the semantics of C is informally speci�ed by the
ANSI/ISO standards in prose form, and is ambiguous and lacking mathematical
precision.

This dissertation presents an approach to automatic formal veri�cation of C code
using an explicit C semantics, Cerberus. Cerberus, introduced by Memarian et
al. [44], is a semantic model for C that aims to both formalise a large fragment
of the ISO standards and reconcile the ISO standards with C as used in practice,
the de facto standards. From a formal methods point of view, we demonstrate
a principled approach to veri�cation of C that is based on a clear interpretation
of C semantics. From a practical point of view, we present a prototype bounded
model checker that exhaustively explores the behaviour of programs in fragments
of both sequential and concurrent C, based on the C11 concurrency model [13, 20].

1.1 Motivation

This project is motivated by the following:

1

Principled approach to correctness Formal veri�cation can be de�ned as
mathematically proving correctness with respect to a formal speci�cation. Au-
tomatic formal veri�cation tools for C programs generate a formal speci�cation
from C source code, expressing safety conditions under which erroneous behaviours
do not occur. C programs are then checked against the generated speci�cation.
This process implicitly makes assumptions about C's language semantics, with
the interpretation of the language tightly coupled with the implementation of the
veri�cation tool.

C lacks an unambiguous and mathematically precise semantics: the language is
speci�ed in prose form in the ISO standard, with ambiguities and subtleties leading
to di�erent interpretations of C programs. Consequently, it is often unclear what
exactly is being veri�ed. A more thorough approach is to explicitly base analysis
on a formalisation of the ISO standard. We take a principled approach to building
a model checker, by using a formal model for C (Cerberus) to translate C code
into an intermediate �Core� language with clear and consistent semantics, and
expressing the correctness of the resulting Core program as an SMT (satis�ability
modulo theories) problem.

Explicit, de facto C semantics While a number of projects [13, 33, 34, 38]
have worked on formalising aspects of the C semantics, there are discrepancies
between the ISO de facto standards; compilers, legacy C code, and analysis tools
assume behaviours either inconsistent with, or not clearly speci�ed in, the ISO
standard [44].

The ISO standard de�nes the notion of unde�ned behaviour [37, �3.4.3]:

behavior, upon which use of a nonportable or erroneous program con-
struct or of erroneous data, for which this International Standard im-
poses no requirements

From this ISO point of view, compilers are free to optimize programs under
the assumption that unde�ned behaviour never occurs. Consequently, code that
works when compiled without optimizations may fail when compiled with a higher
optimization level, potentially due to the compiler eliminating code considered
dead [56]. Large projects such as the Linux kernel are compiled with �ags such
as -fno-strict-overflow and -fno-strict-aliasing to instruct the compiler to not
assume certain behaviours classi�ed as unde�ned in the ISO standard (such as
signed integer over�ow and dereferencing a pointer aliasing another of an �incom-
patible type�) are unde�ned. These �ags explicitly ask for a di�erent semantics
than that described in the ISO standard.

As described by Bessey et al. [14], based on experiences with commercializing a
static analysis tool, reporting �false� positives that are contrary to users' expec-
tations (despite these being real errors as de�ned by ISO) is not always desir-
able. These inconsistencies arise from discrepancies between the ISO and de facto
standards. Analysis tools thus implicitly encode these de facto standards by, for

2

instance, disabling certain analyses. We aim to build our tool based upon an ex-
plicit formal model of C that uni�es the ISO and de facto standards and precisely
de�nes a range of allowed behaviours.

Relaxed memory model Programming languages de�ne an interface to mem-
ory. In multithreaded programs, the memory model de�nes the semantics of mem-
ory accesses. The simplest (and �strongest�) memory model is sequential consis-
tency (SC), in which atomic memory accesses between threads are interleaved in
a total order, with each read reading from the most recent write to the same
address. This is often implemented by restricting compiler optimisations and in-
serting hardware fence instructions appropriately into compiled code.

C/C++11, as well as hardware architectures such as ARM and x86, has a weak
memory model, with atomic memory actions without the aforementioned inter-
leaving semantics, for e�cient implementation. For example, release-acquire ac-
cesses allow �message passing� between threads without the full implementation
cost of SC, and the weaker and less expensive relaxed accesses are intended to be
compiled to simple loads and stores with minimal synchronization guarantees.

The possible executions arising from the C11 concurrency model may be chal-
lenging to reason about and exhaustively test [41]. We aim to verify C programs
based on the C11 relaxed memory semantics and provide tool support to allow
programmers to explore the range of allowed behaviours.

1.2 Contributions

We present a principled approach to building a bounded model checker that for-
mally veri�es correctness of a fragment of C by proving the existence or absence of
errors such as failed user-de�ned assertions and unde�ned behaviours. We verify
correctness with respect to a formal model of ISO C11, such that the interpretation
of C programs is precise and unambiguous. Finally, we produce a tool enabling
exploration and visualization of possible executions based on C11's relaxed mem-
ory model along the lines of Cppmem [12], but with the ability to handle a larger
fragment of C.

We demonstrate our approach on a fragment of C without arbitrary pointer arith-
metic and pointer type casting. Our model checker has two modes: a simpli�ed
sequential mode for single-threaded programs which assumes a total memory or-
der, and a concurrent mode that implements the C11 relaxed memory model as
formalised by Batty et al. [11, 13], with the exception of locks, fences, and read-
modify-writes.

Figure 1.1 presents the model checker architecture. The Cerberus semantics are ex-
pressed via translation from C to a typed Core language, which is parametrised on
a speci�c implementation and decoupled from the memory layout and concurrency

3

C source

Core

Core

Core

SMT expressions

Satis�ability result

Interpretation and executions

Cerberus parsing, typechecking, and elaboration

Optional Core-to-Core rewrite to sequentialise the program

Core-to-Core transformations for model checking

Generation of logical expressions
• Syntactic constraints
• Veri�cation conditions
• Memory constraints

Z3 SMT solver

Extract model; output execution graphs (C11 variation)

Figure 1.1: Model checker architecture. The gray components are part of the Cerberus
architecture and systems [44]; the other parts were implemented in this project.

models, and an optional Core-to-Core rewrite sequentialising the program (for the
sequential model). We implement Core-to-Core rewrites to facilitate model check-
ing, replacing implementation-de�ned expressions with a given implementation
and inlining pure functions. The resulting Core program is translated into a set
of �rst-order logic expressions representing syntactic constraints, veri�cation con-
ditions, and memory constraints, with the memory constraints di�ering between
the sequential and concurrent models. The constraints are passed to Z3 [32], an
SMT solver, which either produces a counterexample trace for a violation of a
safety property or a proof that none exists. For the concurrent mode, all possible
executions are extracted and presented to the user.

4

Chapter 2

Preliminaries

This chapter provides the necessary background to understand the rest of the
report. We assume basic knowledge of C. � 2.1 recalls the notion of unde�ned
behaviours and correctness of C programs. � 2.2 introduces the Cerberus model
and Core language. Finally, � 2.3 introduces SMT-based bounded model checking.

2.1 Correctness of C programs

There is a design trade-o� in the extent to which a programming language under-
speci�es program behaviour to allow compilers to generate e�cient code for a
target architecture. Programmers would like to predict both the performance and
behaviour of code, preferring that programs behave identically across platforms.
On the other hand, programmers want high performance obtainable by allowing
compilers to exploit properties of target architectures.

For example, x86 raises an exception for division-by-zero, whereas PowerPC ig-
nores it [55]. Rather than enforce uniform behaviour across instruction sets (i.e. by
forcing compilers for PowerPC to generate instructions detecting division-by-zero),
the C language speci�cation de�nes division-by-zero as unde�ned behaviour [37,
�6.5.5]. Compilers are free to assume unde�ned behaviour does not occur, and can
optimize programs based on this assumption.

The ISO standard de�nes the following types of compiler freedom, which can
result in programs exhibiting di�erent behaviours when compiled for di�erent
architectures or with di�erent parameters:

unspeci�ed behaviour
use of an unspeci�ed value, or other behavior where this International
Standard provides two or more possibilities and imposes no further
requirements on which is chosen in any instance

The compiler chooses one possibility from a set of possibilities for each instance.
For example, the evaluation order of arguments to functions and certain operators

5

Example Condition Unde�ned behaviour
x/y, x%y y = 0 division-by-zero
∗p p = NULL null pointer deference
a[i] i ≥ ARRAY_SIZE(a) bu�er over�ow
x+ y x∞ + y∞ /∈ [−2n−1, 2n−1 − 1] signed integer over�ow
x << y, x >> y y < 0 ∨ y ≥ n negative or oversized shift
use q after free(p) alias(p, q) use after free
int f() {} value of f() used end of function w/o return

Table 2.1: Examples of unde�ned behaviour, largely taken from [56]. Here, p and q

are pointers, x and y are n-bit integers, x∞ means to consider x as an in�nitely-ranged
mathematical integer, and alias(p, q) is true i� p and q point to the same object.

such as (+) is unspeci�ed.

int foo(void) { printf("foo"); return 0;}
int bar(void) { printf("bar"); return 0;}
int main(void) {

int x = foo() + bar();
printf("\n");

}

The above program can output either foobar or barfoo.

implementation-de�ned behaviour

unspeci�ed behavior where each implementation documents how the
choice is made

The compiler chooses and documents a behaviour and obeys it consistently. For
example, sizeof(int) is implementation de�ned.

unde�ned behaviour

behavior, upon use of a nonportable or erroneous program construct or
of erroneous data, for which this International Standard imposes no
requirements

Compilers can assume unde�ned behaviour never occurs and if it does, the be-
haviour of the program is entirely unconstrained. Unde�ned behaviour occurring
is clearly undesirable.

In this report, we say a program is erroneous or incorrect if it can exhibit un-
de�ned behaviour or failed assertions. We prove correctness with respect to a
speci�c implementation, accounting for all possibilities with regard to unspeci�ed
behaviours.

6

2.1.1 Unde�ned behaviour

Table 2.1 provides some examples of unde�ned behaviour. The ISO standard
de�nes ∼200 types of unde�ned behaviour. These are all de�ned in prose form
and require non-trivial understanding of the semantics. For example, the following
is unde�ned behaviour [37, �J.2]:

Pointers that do not point to the same aggregate or union (nor just
beyond the same array object) are compared using relational operators.

This requires understanding of pointer aliasing, which depends on the memory
object layout model.

Another source of unde�ned behaviour is unsequenced races (ur). In C, reads to
the same location can be unordered. However, a write that is unordered with
respect to another read or write from the same thread and on the same location
is considered unde�ned behaviour.

int main() {
int x = 0;
int y = (x == (x=3));

}

a:W x=0

b:R x=0 c:W x=3

d:W y=0

rf

ur

a:W x=0

b:R x=3 c:W x=3

d:W y=1

rf,ur

The program order, represented by black arrows, permits either of the above
executions with (b) reading from (rf) (a) or (c), resulting in y=0 or y=1. This
program has unde�ned behaviour.

2.2 Cerberus and the Core language

Cerberus [44] is a formal model for a large fragment of C designed to be in close
correspondence with the ISO text. The Cerberus semantics are de�ned by elab-
oration: after parsing and typechecking, it compositionally translates C into a
typed �Core� language that makes explicit many subtle aspects of C such as un-
de�ned behaviours, evaluation order, and integer conversions. The syntax of Core
is summarized in Figure 2.1.

Core is essentially a typed, �rst-order lambda calculus extended with features such
as run and save to represent constructs such as loops and gotos. The type sys-
tem distinguishes between pure expressions (expressions without memory actions,
sequencing, or multiple threads) and e�ectful expressions, with the elaboration
aiming to map C expressions into pure expressions where possible.

Figure 2.2 provides an example of the elaboration to Core of the following C
program.

7

oTy ::= types for C objects

| integer
| floating
| pointer
| cfunction (oTy, oTyi

i
)

| array (oTy)
| struct tag
| union tag

bTy ::= Core base types

| unit unit
| boolean boolean
| ctype Core type of C type exprs

| (bTyi
i
) tuple

| oTy C object value
| loaded oTy oTy or unspeci�ed

pat ::= Core patterns

| _ wildcard pattern
| ident identi�er pattern
| ctor(pat1, .. ,patn) constructor pattern

ctor ::= Core constructors

| Tuple tuple
| Ivmax max integer value
| Ivmin min integer value
| Ivsizeof sizeof value
| Ivalignof alignof value
| IvOR bitwise OR
| Iv.. bitwise ..
| Specified non-unspeci�ed loaded value
| Unspecified unspeci�ed value

value ::= Core values

| object_value C object value
| loaded_value loaded C object value
| Unit unit
| True true
| False false
| ctype C type expr as value
| (value1, .. ,valuen) tuple

a ::= memory actions

| create (pe1,pe2)

| alloc (pe1,pe2)

| kill (pe)
| store (pe1,pe2,pe,mem-order)
| load (pe1,pe2,mem-order)
| rmw (pe1,pe2,pe3,pe4,mem-order1,mem-order2)

| fence (pe)

pa ::= memory actions with polarity

| a positive, sequenced by let weak and let strong

| neg (a) negative, only sequenced by let strong

pe ::= Core pure expressions

| ident Core identi�er
| <impl-const> implementation-de�ned constant
| value value
| undef (ub-name) unde�ned behaviour
| error (string,pe) impl-de�ned static error
| ctor(pe1, .. ,pen) constructor application

| case pe with |pati=>pei i
end pattern matching

| array_shift(pe1,ctype,pe2) pointer array shift
| member_shift(pe,tag.member) pointer struct/union member shift
| not (pe) boolean not
| pe1 binop pe2 binary operators

| (struct tag){ .memberi = pei
i
} C struct expression

| (union tag){.member = pe} C union expression
| name(pe1, .. ,pen) pure Core function call
| let pat = pe1 in pe2 pure Core let
| if pe then pe1 else pe2 pure Core if
| is_scalar(pe)
| is_integer(pe)
| is_signed(pe)
| is_unsigned(pe)

e ::= Core expressions

| pure (pe) pure expression
| ptrop (ptrop,pe1, .. ,pen) pointer op involving memory
| pa memory action

| case pe with |pati=>ei i
end pattern matching

| if pe then e1 else e2 Core if
| skip skip
| ccall (pe,pe1, .. ,pen) Core cfunction call
| unseq (e1, .. ,en) unsequenced expressions
| let weak pat = e1 in e2 weak sequencing
| let strong pat = e1 in e2 strong sequencing
| let atomic (sym : oTy) = a1 in pa2 atomic sequencing
| indet [n](e) indeterminately sequenced expr
| bound [n](e) . . .and boundary
| nd (e1, .. ,en) nondeterministic sequencing

| save label(identi:ctypei
i
) in e save label

| run label(identi := pei
i
) run from label

| par (e1, .. ,en) cppmem thread creation
| wait (thread-id) wait for thread termination

definition ::= Core de�nitions

| funname(identi:bTyi
i
):bTy := pe Core function de�nition

| procname(identi:bTyi
i
): eff bTy := e Core procedure de�nition

The result of elaborating a C program includes a set of Core declarations
together with the name of the startup (main) function; a set of names, core
types, and allocation/initialisation expression for C objects with static
storage duration; de�nitions of implementation-de�ned constants (some
of which are Core functions); and a library of Core utility functions and
procedures used by the elaboration.

Figure 2.1: Summary of relevant aspects of the Core syntax, heavily based upon [44,
Figure 2]. The grey text indicates features not addressed in this report. Here, mem-

order is as de�ned by the ISO standard, ctype ranges over representations of C type
expressions, label ranges over C labels. The semantics of Ivmin, Ivmax, is_signed, etc. are
implementation de�ned. This report only address the ptrop PtrValidForDeref.

8

1 proc main (): eff loaded integer :=
2 let strong x: pointer =
3 create(Ivalignof("signed int"), "signed int") in
4 let strong a_74: loaded integer =
5 {-#6.5.6#-}
6 (let weak (a_75: loaded integer, a_76: loaded integer) =
7 unseq(pure(Specified(42)), pure(Specified(1))) in
8 pure(case (a_75, a_76) of
9 | (Specified(a_77: integer), Specified(a_78: integer)) =>
10 Specified(catch_exceptional_condition("signed int",
11 conv_int("signed int", a_77) + conv_int("signed int", a_78)))
12 | _: (loaded integer,loaded integer) =>
13 undef(<<UB036_exceptional_condition>>)
14 end)) in
15 store("signed int", x, conv_loaded_int("signed int", a_74)) ;
16 let strong a_80: loaded integer =
17 bound[0] (let weak a_79: pointer = pure(x) in
18 load("signed int", a_79)) in
19 kill(x) ;
20 run ret_71(conv_loaded_int("signed int", a_80)) ;
21 kill(x) ;
22 (save ret_71: loaded integer (a_72: loaded integer:= Specified(0)) in
23 pure(a_72))

Figure 2.2: Elaboration of int main(void){int x = 42 + 1; return 0;} into Core

int main(void) {
int x = 42 + 1;
return x;

}

Memory actions The Core language makes many aspects of C programs ex-
plicit, with interaction with the memory object and concurrency models factored
via primitive language constructs (memory actions). The lifetime of x is made
explicit with the create and kill memory actions, and the semantics of mem-
ory accesses such as store (line 15) and load (line 18) are determined by a linked
memory model. The alignment constraint of x is expressed as the implementation-
de�ned Ivalignof.

Evaluation order The unsequenced evaluation order of arguments to (+) is
expressed using unseq (line 7), with let strong/weak expressing other aspects of
C's loose evaluation order.

Arithmetic and integer conversions Arithmetic in Core is de�ned over the
mathematical integers. The ISO standard [37, �6.3.1] describes rules for integer
conversions, for converting between di�erent bit widths and signedness. For exam-
ple, converting between unsigned integer types of di�erent sizes is well-de�ned (by

9

essentially taking the remainder), but a signed integer is not always representable
in a smaller signed type. Integer conversions are performed using the Core func-
tion conv_int (see Appendix A), which returns a Core (mathematical) integer. C
arithmetic operations implicitly perform integer conversions on the arguments to
make them the same type (line 11). The catch_exceptional_condition function
(line 10) checks that the sum is representable as a signed integer, returning an
undef expression otherwise (indicating, for instance, signed integer over�ow).

fun catch_exceptional_condition(ty: ctype, n: integer) : integer :=
if is_representable(n, ty) then
n

else
undef(...)

Unde�ned behaviour Unde�ned behaviour can arise from unde�ned arith-
metic operations (e.g. signed integer over�ow or division-by-zero) or mem-
ory actions (e.g. unsafe memory accesses). For the former, the elaboration
to Core introduces an explicit test, undef (line 13). The latter depends on
the memory object model, and are factored using Core expressions such as
ptrop(PtrValidForDeref,ptr).

Loops and gotos C control-�ow constructs such as loops, break, and return

are elaborated using Core labels, run and save, a goto-like construct. Essentially,

save label(identi : ctypei := pei
i
) in e evaluates to e[pei/identi

i
] (substitution of

pei for each occurrence of identi in e) and run label(pei
i) �jumps� to the cor-

responding save with pei substituted for each bound identi�er. For example, C
functions are elaborated to Core procedures ending with save ret, and a C �re-
turn� to a run ret jumping to the aforementioned save. The substitution handles
the lifetime of block-scoped variables in C. For example, when jumping into the
middle of a block such as {int x; label: ...}, the lifetime of local objects start.
Annotating runs/saves with these objects allows the dynamics of a run to do a
create for objects in scope at the target save but not at the run, and a kill for
the converse [44].

Speci�ed and unspeci�ed values In the ISO standard, uninitialised values
are indeterminate values, which are either unspeci�ed values (valid values of the
relevant type with no requirement on which value is chosen [37, �3.19.3]) or trap
representations (object representations that need not represent a value of the
object type [37, �3.19.4]). It is unde�ned behaviour to load trap representations,
and sometimes unde�ned to load unspeci�ed values.

As examined in a survey by Memarian et al. [45] and discussed in a WG14 defect
report [58], the semantics of reading from an uninitialized variable is unclear.
Possible interpretations could be:

10

1. unde�ned behaviour

2. making the result of any expression involving the read value unpredictable

3. an arbitrary and unstable value (with a di�erent value on another read)

4. an arbitrary but stable value (with the same value if read again)

The Cerberus semantics mostly1 adopts (2) by extending values with a token
�unspeci�ed value� introduced by reads of uninitialised values. Thus for every C
object type oTy, there is a Core loaded oTy type (e.g. loaded_integer):

loaded oTy :=
| Specified of oTy
| Unspecified

In most cases, if one or more arguments of an expression are unspeci�ed, the
result is unspeci�ed. However if there exists a value giving unde�ned behaviour
(e.g. dividing by an unspeci�ed value), the result is unde�ned. These semantics
are made explicit in the elaboration to Core.

2.3 SMT-based bounded model checking

Model checking is an automatic formal veri�cation technique for �nite-state sys-
tems, with both the system and speci�cation expressed as precise logical formulae,
based on exhaustively �traversing� states to determine whether the speci�cation
holds. Veri�cation of a safety property amounts to checking whether a given set of
states is reachable [25]. Bounded model checking (BMC) with the aid of satis�a-
bility (SAT) solving [16, 17] is a falsi�cation-based approach successfully used for
veri�cation of hardware designs and embedded systems [31]. BMC expresses the
veri�cation problem as a propositional formula satis�able i� there exists a coun-
terexample path of a given length. As loops and unbounded data structures may
give rise to in�nite-state systems, BMC reduces programs to �nite-state systems
by, for instance, restricting the depth of recursive function calls and loops.

BMC has essentially two steps. First, the sequential behaviour of the program over
a �nite number of steps is encoded as a logical formula. Second, the formula is
given to a decision procedure (e.g. a SAT solver) to obtain a satisfying assignment
or a proof that none exists. The logical formula represents a counterexample
trace, such that satis�ability corresponds to a concrete counterexample proving a
correctness property is violated.

Consider the following Core program:

1Reading an uninitialised object is unde�ned for types (e.g. _Bool) implementation-de�ned
to have trap representations.

11

1 fun foo() : integer :=
2 let x : integer = 5 in
3 if x > 0 then
4 undef(...)
5 else
6 x

To verify undef can not be reached in any execution, we want to assert ¬(x > 0).
From line 2, we have the constraint x = 5. As BMC is a falsi�cation approach,
we construct a formula that is satis�able if any safety condition (in this case, just
¬(x > 0)) fails to hold. Thus, we consider the negation of the conjunction of
the veri�cation conditions. The resulting formula passed to an SAT/SMT solver
would represent

(x = 5) ∧ ¬(¬(x > 0))

This is satis�able; the program has unde�ned behaviour.

2.3.1 SAT and SMT solvers

SAT solvers reason about propositional logic2, determining if there exists an
assignment of the variables V in a propositional formula F , that is a map
σ : V → {0, 1}, such that F evaluates to 1 under σ. If such an assignment
exists, the formula is satis�able.

The expression (x = 5) ∧ (¬(¬(x > 0)) is not directly expressible in propositional
logic, which does not have the notion of integers nor predicate symbols such as
(=) or (>). This formula can naturally be expressed in �rst-order logic, which
extends propositional logic to allow reasoning about members of a non-empty
universe, containing quanti�ers (∀ and ∃), predicates, and functions in addition to
the usual variables. We are interested not in general �rst-order satis�ability of the
above expression, which allows non-standard interpretations of (>) or (=), but
rather in satis�ability with respect to the background theory of integer arithmetic
where (>) and (=) are respectively the usual ordering and equivalence relation
over integers. Background theories �x an interpretation of certain predicate and
function symbols.

Satis�ability modulo theories, or SMT, is the problem of deciding whether a �rst-
order logic formula is satis�able with respect to some background theory. SMT
solvers often work with a many-sorted �rst-order logic, in which variables are
associated with a sort (such as int or bool), and enable satis�ability problems to
be expressed more naturally at a higher level of abstraction such as that of integers
and bit-vectors (�nite-sized Boolean arrays).

While SMT solvers can be considered front-ends to SAT solvers (e.g. an n-
dimensional bit-vector can be translated into n propositional variables), the more

2Recall in propositional logic, logical expressions are de�ned over Boolean variables and logical
connectives (∧, ∨, ¬).

12

compact representation enables specialized inference methods and optimizations
in the decision procedure [22]. For example, while the satis�ability of �rst-order
formulae built with {0, 1,+, ∗, <,=} is decidable in the theory of real numbers
(non-linear integer arithmetic is not decidable), faster solvers can be implemented
by restricting the language to quanti�er-free formulas [8, 21]. SMT solvers can
identify occurrences of these �sub-logics� and apply more specialized and e�cient
techniques. Armando et al. [3] demonstrated that bounded model checking with
SMT solvers instead of SAT solvers resulted in more compact formulae and better
scaling. We refer to [9] for a more formal introduction to SMT.

Notation In this report, we represent SMT expressions either in mathematical
notation or in the SMT-LIB [8] language as S-expressions. The SMT-LIB format
is designed to be a common language for SMT solvers. In SMT-LIB syntax, the
expression (x = 5) ∧ ¬(¬(x > 0)) would be represented as

(declare-fun x () Int)
(assert (= (x 5)))
(assert (not (not (> x 0))))

Functions are declared using declare-fun, with constants such as x declared as
0-place function symbols. The integer sort Int is built in, and the interpretation
of (>) and (=) are de�ned by SMT-LIB as is standard for the theory of integers.
This is clearly satis�able with x interpreted as the integer 5, or

(define-fun x () Int 5)

We introduce SMT-LIB notation as necessary throughout the report.

13

Chapter 3

Model checking sequential Core

programs

This chapter discusses the bounded model checking of a sequential fragment of
Core (highlighted in Figure 2.1 on Page 8) corresponding to C constructs express-
ible with an �abstract� memory model, in which variables are modi�able only
using direct assignments or via pointer access if the address was obtained us-
ing the address-of (&) operator. We do not address arbitrary pointer arithmetic,
pointer type-casting, unions, or �oating points. Non-sequential constructs such as
concurrency and unsequenced evaluation order are addressed in Chapter 4.

We �rst provide an overview of the translation from C to SMT problems, followed
by more detailed discussion of the formulation. We aim for a compositional trans-
lation from Core expressions to SMT expressions based on recursing over the Core
AST.

3.1 Overview

We reduce the model checking problem to an SMT problem. An overview of the
reduction (recall Figure 1.1) is as follows:

1. Translation of C to Core: The Cerberus semantics is expressed through
elaboration to a Core language [44], making explicit aspects of C such as
unde�ned behaviour and evaluation order.

2. Core-to-Core rewrite: Implementation-dependent Core expressions are
rewritten based on a provided C implementation. We uniquely rename
Core identi�ers (analogous to single static assignment, or SSA) and inline
pure function calls to a speci�ed bound. We impose a sequential order on
unseq(. . .) expressions as a Core-to-Core rewrite, �xing an evaluation order
(this restriction is removed in Chapter 4).

14

3. Generate Z3 assertions: We recurse over the Core AST to compositionally
generate the following types of logical assertions:

� Syntactic constraints: Core �let� expressions of the form

let pat = e in . . .

generate equality constraints between the SMT representation of pat and
e. We create fresh SMT variables for Core identi�ers in pat and bind them
appropriately to e.

� Veri�cation conditions: Veri�cation conditions (VCs) represent safety
properties such that an erroneous state (i.e. undef and error) is not
reached. These correspond to a set of guards for control �ow resulting
in errors or unde�ned behaviour (e.g. for if cond then undef else..., a
VC would be ¬cond).

� Memory constraints: The memory constraints constrain the values cor-
responding to loads and stores, the semantics of which are dependent on
the memory model. This chapter implements an abstract memory model
with sequential memory accesses. Chapter 4 discusses the C11 concur-
rency model.

4. Solving the SMT problem: Let C be the set of memory and syntactic
constraints, and V the set of VCs. We pass the following SMT problem to
an SMT solver: ∧

c∈C

c ∧ ¬
∧
v∈V

v

The memory and syntactic constraints represent assumptions and are de-
signed such that

∧
c∈C is satis�able. The expression is satis�able i� any of

the VCs fail to hold under the assumptions C (the program is erroneous)
and unsatis�able otherwise.

The Cerberus semantics are formally speci�ed in Lem [48], which generates exe-
cutable OCaml. We implement our model checker in OCaml and use the Z3 SMT
solver [32], which has an OCaml API.

3.2 Example: Core program to SMT problem

Figure 3.1 presents a Core program asserting (in a normal form) 1 + 1 ≥ 2 along
with a corresponding SMT problem.

Core-to-Core rewrite Every Core variable (and expression) has a type. We
represent every Core variable (e.g. x) as a well-sorted SMT constant, such that
in a given execution every SMT constant has one value (analogous to SSA form).
Thus, we rename Core identi�er z to z1 in the �rst branch (line 5) and z2 in the
second (lines 7-9).

15

1 fun main() : integer :=
2 let x : integer = 1 in
3 let y : integer = x + x in
4 if y >= 2 then
5 let z : integer = 0 in z
6 else
7 let z : integer =
8 error("assert failure", ...)
9 in z

(declare-fun |x| () Int)
(declare-fun |y| () Int)
(declare-fun |z1| () Int)
(declare-fun |z2| () Int)
(declare-fun error!1 () Int)
(assert (= |x| 1))
(assert (= |y| (+ |x| |x|)))
(assert (= |z1| 0))
(assert (= |z2| error!1))
; verification condition
(assert (not (>= |y| 2)))

Figure 3.1: An example SMT problem (right) in SMT-LIB notation for a simple Core
pure function (left). This SMT problem is not satis�able. No erroneous behaviour
occurs.

Syntactic constraints For each Core let pat = e in . . . expression, we de-
clare fresh SMT constants for all Core identi�ers in pat and generate equality
constraints for the SMT representation of expression e. For instance, Core vari-
ables x, y, z1, and z2 of type integer are declared as 0-place function symbols
(constants) |x|, |y|, |z1|, and |z2| of sort Int1.

For each Core expression (such as 1, x + x, and let z1 : integer = 0 in z1), we
recursively compute an SMT representation (correspondingly 1, |x| + |x|, and
|z1| of sort Int). This allows us to express syntactic equality constraints such
as |x| = 1 and |y| = |x| + |x|. We represent undef and error expressions as
fresh uninterpreted SMT constants of the appropriate sort (e.g. error!1). This
allows expressions such as undef(...) + 1 to be compositionally translated to
SMT expressions.

Veri�cation conditions We generate VCs expressing that undef and error ex-
pressions are unreachable. In this example, an error occurs i� not (y >= 2), which
is not satis�able under the assumptions of the syntactic constraints.

Memory constraints Pure expressions do not have memory constraints. The
distinction between pure and e�ectful expressions simpli�es the translation to
SMT problems.

3.3 Core-to-Core rewrites

We implement Core-to-Core rewrites primarily to incorporate implementation-
de�ned behaviour, but also to simplify model checking by ensuring variables are
in SSA form and inlining pure functions. This makes the program being checked

1Or Bit-Vector

16

more explicit. In this chapter, Core-to-Core rewrites are additionally used to
sequentialise the Core program by ordering unseq expressions. This demonstrates
how the semantics of C programs is decoupled from the model checking procedure,
with altering the evaluation order being a Core-to-Core rewrite independent of the
translation from Core to SMT.

The following program checks for signed integer over�ow when incrementing 215−1
by 1. There is unde�ned behaviour if 215 is not representable as, or within the
allowed range of, a �signed int� in the given C implementation.

1 fun is_representable (n: integer, ty: ctype): boolean :=
2 Ivmin(ty) <= n /\ n <= Ivmax(ty)
3
4 fun catch_exceptional_condition (ty: ctype, n: integer) : integer :=
5 if is_representable(n, ty) then
6 n
7 else
8 undef(<<UB036_exceptional_condition>>)
9
10 fun main() : integer :=
11 let ty : ctype = "signed int" in
12 let large_int : integer = 32767 in -- (2^15 - 1)
13 catch_exceptional_condition(ty, large_int + 1)

Inlining pure functions We inline pure functions to a speci�ed depth, with
function calls exceeding the depth replaced with an unwind assertion (a Core
error expression that, if reachable, indicates the inlining depth was insu�cient).
Identi�ers in inlined functions are freshly renamed such that symbols are uniquely
bound for each function call. The result of inlining functions in the above is below:

1 fun main() : integer :=
2 let ty1 : ctype = "signed int" in
3 let large_int : integer = 32767 in
4 let (ty2 : ctype, n1 : integer) = (ty1, large_int + 1) in
5 if Ivmin(ty2) <= n1 /\ n1 <= Ivmax(ty2) then
6 n1
7 else
8 undef(<<UB036_exceptional_condition>>)

Implementation-de�ned constants Implementation-de�ned constructs such
as Ivmax(ctype), the maximum value of a C integer type, are rewritten as Core
expressions based on a given implementation.

For example, assuming an implementation with two's complement representation
and 16-bit ints, Ivmax(ty) would be rewritten as a sequence of if-then-else state-
ments (terminating with an error for invalid arguments):

17

if ty == "signed int" then 32767 else --(2^15-1)
if ty == "unsigned int" then 65535 else --(2^16-1)
...
error(...)

The correctness of a Core program depends on the C implementation. In the
above program, there is unde�ned behaviour (signed integer over�ow) assuming
16-bit integers, but not with 32-bit integers.

Instead of replacing implementation-de�ned constructs such as Ivmax with Core
expressions based on an implementation, we could declare uninterpreted SMT
functions accompanied with implementation-de�ned constraints. For example,
assuming the Ctype sort were appropriately de�ned with signedInt and unsignedInt

of Ctype, we could de�ne Ivmax as follows:

(declare-fun Ivmax (Ctype) Int)
(assert (= (Ivmax signedInt) 32767))
(assert (= (Ivmax unsignedInt) 65535))
(assert (= (Ivmax ...) ...))

However, some implementation-de�ned constructs are represented as Core pure
functions and constraining the SMT problem such that the solver computes a
desired interpretation of a function for a large domain is potentially expensive or
complex to express e�ciently. For consistent treatment of implementation-de�ned
behaviour and pure functions, and also to make the C semantics explicit in the
Core program, we elect to �inline� implementation-de�ned constructs and pure
functions.

3.4 Representation of Core expressions in SMT

Our model checker is designed to be compositional, with the procedure based on
recursing over the AST. For example, for a Core expression such as pe1 binop pe2,
we compute for each subexpression pe1 and pe2 a well-sorted SMT representa-
tion (along with VCs and syntactic/memory constraints). The representation of
pe1 binop pe2 is then the application of an SMT function representing the binary
operator to the SMT representations of pe1 and pe2.

3.4.1 Core types to SMT sorts

SMT solvers reason with a many-sorted �rst-order logic�every SMT variable and
expression has a sort. To express Core expressions in SMT, we �rst represent Core
types as SMT sorts.

We de�ne a function
mk_sort : bTy -> Z3Sort

taking a Core base type and returning a Z3 sort, summarized in Table 3.1.

18

bTy mk_sort(bTy)

unit | Unit

boolean Boolean (built-in)
ctype Ctype: variant type of C type expressions
integer Int or �xed-width BitVector (built-in)
pointer | Addr of alloc_id * index

loaded integer | Specified of mk_sort(integer)

| Unspecified of Ctype

loaded pointer | Specified of mk_sort(pointer)

| Unspecified of Ctype

Table 3.1: SMT sorts corresponding to Core types. The �| Constructor of ty� nota-
tion is used to construct algebraic datatypes (more speci�cally, variants). For example,
a loaded integer has two constructors: Specified which takes a value of sort Int or
BitVector, and Unspecified which take a value of sort Ctype. Ctype is the sort containing
values of C type expressions. For example, void, signed int, and signed_int[5] (for an
array of size 5 storing signed integers) are Core values with Core type ctype, translated
to SMT values with sort Ctype.

Z3 supports algebraic datatypes. For example, loaded integer is represented as a
datatype with two constructors, Specified and Unspecified, and we de�ne Ctype

(with values representing C types such as �signed int� and �void�) as an algebraic
datatype. A Core integer corresponds to mathematical integers and would most
accurately be represented with sort Int in Z3. However, non-linear integer arith-
metic (e.g. multiplication and division) is undecidable and there is no/limited
support for exponentiation and bitshifting. In contrast to the theory of integers,
satis�ability of the theory of bit-vectors is decidable even with multiplication [10].
Furthermore, bit-wise operations are e�ciently supported. On the other hand,
avoiding over�ow or under�ow in Core may involve additional checks or use of un-
necessarily large bit-vectors. Our implementation supports both representations,
toggled by a �ag.

Finally, we represent Core pointers with their associated �address� (discussed in
� 3.7).

3.4.2 Compositional representation of Core expressions

We recursively compute the Z3 representation of Core expressions with the func-
tion

INTERP : expr -> Z3Expr

as presented in Table 3.2.

Each Core identi�er is mapped to a Z3 variable maintained in a symbol table,
such that INTERP(ident) either creates a fresh Z3 variable or looks up the bound
Z3 representation. The undef and error expressions are represented as fresh Z3

19

constants of the appropriate sort, enabling compositional translation of expressions
such as undef+ 1.

Core constructors such as Specified are represented as Z3 functions from con-
structor arguments to Z3 expressions of the constructed sort. For instance, the
Z3 function LoadedInt_Specified takes an Int (or BitVector) and returns a value
of sort LoadedInteger. We represent case expressions as a sequence of if-then-else
expressions. Let expressions of the form let pat = e1 in e2 are represented as
INTERP(e2) (with symbols in pat or e1 added to the symbol table beforehand by
computing INTERP(e1) and binding symbols from pat). nd(e1, . . . , en) represents
non-deterministic choice of execution of exactly one of the ei expressions. We
generate n choice variables nd_1, . . . , nd_n such that XOR(nd_1, . . . ,nd_n) and rep-
resent the non-deterministic expression as a sequence of if-then-else statements
branching on the choice variables. We discuss representation of memory-related
expressions, function calls, and runs/saves in later sections.

3.5 Syntactic constraints

�Let� expressions give rise to syntactic constraints, or assumptions, on variable
bindings. The set of syntactic constraints is always satis�able. The following
program expressing the division of loaded integers x and y is unde�ned if x or y is
unspeci�ed or y is 0.

1 fun main() : integer :=
2 let (x : loaded integer, y : loaded integer) =
3 (Specified(42), Specified(2)) in
4 case (x, y) of
5 | (Specified (a1 : integer), Specified(a2 : integer)) =>
6 if a2 = 0 then
7 undef(...)
8 else
9 a1 / a2
10 | _ : (loaded integer, loaded integer) =>
11 undef(...)
12 end

Listing 3.1: Pattern matching example

We generate syntactic constraints (individually for tuple elements) for
let pat = pe1 in . . . by computing the representation of pe1 and generating equal-
ity expressions using

mk_eq : Z3Expr -> pattern -> Z3Expr

such that (for lines 2-3)

mk_eq(Tuple(|x|,|y|), (Specified(42), Specified(2)))

→ (|x| = LoadedInt_Specified(42)) ∧ (|y| = LoadedInt_Specified(2))

In the process, we declare fresh SMT constants for the identi�ers in pat:

20

pexpr INTERP(pexpr)

ident if ident /∈ sym_table then sym_table[ident] = mk_fresh(ty);
sym_table[ident]

value mk_val(value)
<impl-const> N/A (inlined)
undef(. . .) mk_fresh(ty)

error(. . .) mk_fresh(ty)

ctor(pe1, . . . , pen) mk_ctor(ctor)(INTERP(pe1), . . . , INTERP(pen))

case pe with |pati ⇒ pei
i
end mk_ite(MATCH(pe, pat1), INTERP(pe1),

mk_ite(MATCH(pe, pat2), INTERP(pe2), . . .)
array_shift(pe1, ctype, pe2) mk_shift(INTERP(pe1), INTERP(pe2))
not(pe) mk_not(INTERP(pe))
pe1 binop pe2 mk_binop(binop, INTERP(pe1), INTERP(pe2))
name(pe1, . . . , pen) N/A(inlined)
let pat = pe1 in pe2 INTERP(pe2)
if pe then pe1 else pe2 mk_ite(INTERP(pe), INTERP(pe1), INTERP(pe2))
is_signed(pe) N/A(inlined)
. . .

expr INTERP(expr)

pure(pe) INTERP(pe)
create(pe1, pe2) mk_addr(INTERP(pe2))
store(pe1, pe2, pe,mem− order) mk_unit()

ptrop(PtrValidForDeref, pe1) 0 ≤ index(addr_of(INTERP(pe1))) < alloc_size(alloc_of(INTERP(pe1)))
load(pe1, pe2,mem− order) mk_fresh(bty_of_ctype(pe1))

case pe with |pati ⇒ ei
i

mk_ite(MATCH(pe, pat1), INTERP(e1),
mk_ite(MATCH(pe, pat2), INTERP(e2), . . .)

if pe then e1 else e2 mk_ite(INTERP(pe), INTERP(e1), INTERP(e2))
skip mk_unit()

ccall(pe, pe1, . . . , pen) ret_value(body(pe, pe1, . . . , pen))
unseq(e1, . . . , en) (INTERP(e1), . . . , INTERP(en))
let weak pat = e1 in e2 INTERP(e2)
let strong pat = e1 in e2 INTERP(e2)
nd(e1, . . . , en) mk_ite(nd_1, INTERP(e1),

mk_ite(nd_2, INTERP(e2), . . .

save label(identi := pei
i
) in e INTERP(e[pei/identi

i
])

run label(identi := pei
i
) INTERP(find_save(label)[pei/identi

i
])

par(e1, . . . , en) mk_unit()

Table 3.2: A simpli�ed representation of the mapping of Core expressions into SMT.
Here, ty is the Z3 sort of the expression. We omit side e�ects such as adding new
patterns to the symbol table with �let� expressions. Type parameters to the functions
are elided. For reasons of scope, in this report we omit object lifetimes and simplify
PtrValidForDeref to a bounds check (e�ectively asserting that the address was created).

21

(declare-fun |x| () LoadedInt)
(declare-fun |y| () LoadedInt)

3.5.1 Pattern matching

De�ning algebraic datatypes, such as LoadedInteger, in Z3 results in the de�nition
of recognizer function, such as isLoadedInt_Specified which takes a LoadedInteger

and returns true i� the argument was constructed using LoadedInt_Specified. We
use recognizer function to pattern match in case expressions.

We de�ne the function

MATCH : Z3Expr * pat -> Z3Expr

taking a Z3 expression and Core pattern, and returning an SMT Boolean predi-
cating whether the expression matches the pattern. For example:

MATCH(|x|, Specified (a1 : integer)) = isLoadedInt_Specified(|x|)

Matching the wildcard pattern or a Core identi�er (guaranteed fresh by the SSA
transformation) is always true.

In case pe with |pati ⇒ pei
i
end, the kth case is selected if the kth pattern is matched

(MATCH(INTERP(pe), patk)) and all previous patterns pati for i < k are not matched.
That is

selectk = MATCH(INTERP(pe), patk) ∧ ¬
∨
i<k

MATCH(INTERP(pe), pati)

For each case, we generate a guarded equality constraint binding the pattern to
pe:

selectk ⇒ mk_eq(pe, patk)

In Listing 3.1, the pattern matching on line 5 gives

isLoadedInt_Specified(|x|) ∧ isLoadedInt_Specified(|y|)
⇒ |a1| = getSpecified(|x|) ∧ |a2| = getSpecified(|y|)

Here, getSpecified is an accessor function de�ned by Z3 upon construction of the
LoadedInt datatype, retrieving the argument passed to the LoadedInt_Specified

constructor function.

3.5.2 Summary table

We de�ne a function
ASSUME : expr -> Z3Expr

22

generating a Z3 Boolean representing the syntactic constraints derived from a Core
expression (summarized in Table 3.3).

These constraints are recursively generated from subexpressions. We carefully
ensure they do not need to be guarded by control �ow (apart from case expressions)
by appropriately guarding VCs and memory constraints; syntactic constraints
represent de�nitions or bindings of SMT variables, and variables are guaranteed
to be de�ned at most once by the SSA Core-to-Core rewrite. Thus although
ASSUME(if pe then pe1 else pe2) would naturally be expressed as

ASSUME(pe) ∧ (INTERP(pe)⇒ ASSUME(pe1)) ∧ (¬(INTERP(pe)⇒ INTERP(pe2))

⇒ ASSUME(pe2)

the branch condition guards are not required. For non-deterministic sequencing
nd, we assert exactly one of the (fresh) choice variables nd_i is true. Again, the
generated constraints are not guarded by the choice variables. This simpli�es the
implementation of ASSUME as well as the SMT problem.

3.6 Veri�cation conditions

Veri�cation conditions represent safety conditions that must hold for program cor-
rectness. Encoding reachability of erroneous states (undef and error) corresponds
to encoding control �ow. In Listing 3.1 on page 20, an undef is reached if the �rst
case is selected and a2 = 0, or if the second case is selected. Thus, the set of VCs
corresponds to

{¬ (select1 ∧ (|a2| = 0)) , ¬select2}

Figure 3.2 presents the SMT problem for Listing 3.1, consisting of the constraints
along with the negation of the conjunction of the VCs.

The computation of veri�cation conditions (using VC : expr -> Z3Expr) is sum-
marized in Table 3.4. Observe that VC(undef(...)) is false, such that

VC(if cond then undef else 1) = (|cond|⇒⊥) = ¬|cond|

which corresponds to asserting the �rst branch is not taken. The VCs for subex-
pressions of case expressions are guarded by whether or not the case was se-
lected, and the VCs for subexpressions ei of the non-deterministic expression
nd(e1, . . . , en) are guarded by choice variables. For e�ectful sequencing expres-
sions let weak/strong pat = e1 in e2, e2 might not execute if e1 contains a return
or goto statement (a Core run). Thus the VCs for e2 are guarded by whether the
continuation of e1 (e2) is dropped (expressing e2 is not reachable and hence VC(e2)
does not need to hold). This is discussed in � 3.8.

Notice that we reduced the problem of generating safety conditions to guarding
control �ow without discussion of implementation-de�ned behaviour, C semantics,

23

pexpr ASSUME(pexpr)

ident >
value >
<impl-const> N/A (inlined)
undef(. . .) >
error(. . .) >
ctor(pe1, . . . , pen)

∧
i ASSUME(pei)

case pe with |pati ⇒ pei
i
end

∧
i

(
MATCH(INTERP(pe), pati) ∧ ¬

∨
k<i MATCH(INTERP(pe), patk)

)
⇒ mk_eq(INTERP(pe), pati)

array_shift(pe1, ctype, pe2) ASSUME(pe1) ∧ ASSUME(pe2)
not(pe) ASSUME(pe)
pe1 binop pe2 ASSUME(pe1) ∧ ASSUME(pe2)
name(pe1, . . . , pen) N/A (inlined)
let pat = pe1 in pe2 mk_eq(INTERP(pe1), pat) ∧ ASSUME(pe1) ∧ ASSUME(pe2)
if pe then pe1 else pe2 ASSUME(pe) ∧ ASSUME(pe1) ∧ ASSUME(pe2)
is_signed(pe) N/A (inlined)
. . .

expr ASSUME(expr)

pure(pe) ASSUME(pe)
create(pe1, pe2) see 3.7
store(pe1, pe2, pe,mem− order) see 3.7
load(pe1, pe2,mem− order) see 3.7
ptrop(PtrValidForDeref, pe) ASSUME(pe)

case pe with |pati ⇒ ei
i ∧

i

(
MATCH(INTERP(pe), pati) ∧ ¬

∨
k<i MATCH(INTERP(pe), patk)

)
⇒ mk_eq(INTERP(pe), pati)

if pe then e1 else e2 ASSUME(pe) ∧ ASSUME(pe1) ∧ ASSUME(pe2)
skip >
ccall(pe, pe1, . . . , pen) ASSUME(body(pe, pe1, . . . , pen)) ∧

∧
i ASSUME(pei)

unseq(e1, . . . , en)
∧

i ASSUME(ei)
let weak pat = e1 in e2 mk_eq(INTERP(e1), pat) ∧ ASSUME(e1) ∧ ASSUME(e2)
let strong pat = e1 in e2 mk_eq(INTERP(e1), pat) ∧ ASSUME(e1) ∧ ASSUME(e2)
nd(e1, . . . , en) XOR(nd_1,...,nd_n) ∧

∧
i ASSUME(ei)

save label(
−−−−−−−−−→
identi := pei

i) in e ASSUME(e[pei/identi
i
])

run label(
−−−−−−−−−→
identi := pei

i) ASSUME(find_save(label)[pei/identi
i
])

par(e1, . . . , en)
∧

i ASSUME(ei)

Table 3.3: Syntactic constraints (simpli�ed) generated from Core expressions. Con-
straints from case expressions are guarded by pattern matching guards (constraints of
the case branches are omitted). Although syntactic constraints for if-then-else ex-
pressions can be guarded by control �ow, we carefully ensure this is unnecessary by
appropriately guarding the veri�cation conditions and memory constraints by control
�ow. Syntactic constraints represent de�nitions (e.g. of variables) and every variable is
guaranteed to be de�ned at most once due to the SSA transformation; the syntactic
constraints, on their own, are always satis�able.

24

pexpr VC(pexpr)

ident >
value >
<impl-const> N/A (inlined)
undef(. . .) ⊥
error(. . .) ⊥
ctor(pe1, . . . , pen)

∧n
i=1 VC(pei)

case pe with |pati ⇒ pei
i
end

∧
i

((
MATCH(pe, pati) ∧ ¬

∨
k<i MATCH(pe, patk)

)
⇒ VC(pei)

)
array_shift(pe1, ctype, pe2) VC(pe1) ∧ VC(pe2)
not(pe) VC(pe)
pe1 binop pe2 VC(pe1) ∧ VC(pe2)
name(pe1, . . . , pen) N/A(inlined)
let pat = pe1 in pe2 VC(pe1) ∧ VC(pe2)
if pe then pe1 else pe2 VC(pe) ∧ (INTERP(pe)⇒ VC(pe1)) ∧ (¬(INTERP(pe))⇒ VC(pe2))
is_signed(pe) N/A(inlined)
. . .

expr VC(expr)

pure(pe) VC(pe)
create(pe1, pe2) VC(pe1) ∧ VC(pe2)
store(pe1, pe2, pe,mem− order) VC(pe1) ∧ VC(pe2) ∧ VC(pe)
load(pe1, pe2,mem− order) VC(pe1) ∧ VC(pe2)
ptrop(PtrValidForDeref, pe1) VC(pe1)

case pe with |pati ⇒ ei
i ∧

i

((
MATCH(pe, pati) ∧ ¬

∨
k<i MATCH(pe, patk)

)
⇒ VC(pei)

)
if pe then e1 else e2 VC(pe) ∧ (INTERP(pe)⇒ VC(pe1)) ∧ (¬(INTERP(pe))⇒ VC(pe2))
skip >
ccall(pe, pe1, . . . , pen) VC(body(pe, pe1, . . . , pen)) ∧

∧
i VC(pei)

unseq(e1, . . . , en)
∧

i VC(ei)
let weak pat = e1 in e2 VC(e1) ∧ (¬drop_cont(e1)⇒ VC(e2))
let strong pat = e1 in e2 VC(e1) ∧ (¬drop_cont(e1)⇒ VC(e2))
nd(e1, . . . , en)

∧
i nd

_i⇒ VC(ei)

save label(
−−−−−−−−−→
identi := pei

i) in e VC(e[pei/identi])

run label(
−−−−−−−−−→
identi := pei

i) VC(find_save(label)[pei/identi
i
])

par(e1, . . . , en)
∧

i VC(ei)

Table 3.4: (Simpli�ed conjunction of) veri�cation conditions generated compositionally
from Core expressions. Veri�cation conditions express control �ow paths in which erro-
neous behaviours occur.

25

(declare-fun |x| () LoadedInt)
(declare-fun |y| () LoadedInt)
(assert (= |x| (LoadedInt_Specified(42))))
(assert (= |y| (LoadedInt_Specified(2))))
; matching case 1
(assert (=> (and (isSpecified(|x|)) (isSpecified(|y|)))

(and (= |a1| (getSpecified(|x|))
(= |a2| (getSpecified(|y|)))))

; matching case 2 (wildcard - no syntactic constraints)
(assert (=> (not (and (isSpecified(|x|)) (isSpecified(|y|))))

true))
; verification conditions
(assert (not (and (not (and (isSpecified(|x|))

(isSpecified(|y|))
(= |a2| 0)))

(not (not (and (isSpecified(|x|))
(isSpecified(|y|)))))))

Figure 3.2: SMT problem corresponding to Listing 3.1 on Page 20. Assuming the other
assertions hold, the problem is satis�able i� any of the veri�cation conditions fail to hold
(¬
∧

v∈V C v).

or the > 200 sources of unde�ned behaviour described in the ISO standard. The
semantics of C are expressed in the elaboration to Core, such that the model
checking procedure largely does not depend on the nuances of C semantics.

3.7 Memory constraints

Memory interactions such as store and ptrop(PtrValidForDeref,...) are primitive
constructs in Core, the semantics of which are de�ned by a linked sequential
memory layout or concurrency model. This section describes the interpretation of
Core memory expressions by the model checker for a sequential model in which
loads read the most recent stores to the same location.

3.7.1 Modelling program state

Programming languages de�ne an interface to memory. However, the semantics
of pointers and memory objects (the memory object model) as speci�ed by the
ISO standard is unclear. Analysis tools for imperative languages such as C must
consider how to model program state.

In type-safe languages, state could be modelled with an abstract memory model
as a map from (object, �eld) pairs to values, with aliasing arising only from two
pointers of the same type pointing to the same location [30]. However, in C, values
are not purely abstract (types only provide a means for interpreting memory): the

26

1 proc main() : eff loaded integer :=
2 let strong x : pointer =
3 create(Ivalignof("signed int"), "signed int") in
4 store("signed int", x, pure(Specified(0));
5 store("signed int", x, pure(Specified(1));
6 let alias_x : pointer = pure(x) in
7 load("signed int", alias_x)

Figure 3.3: Example Core program with memory accesses

standard allows manipulation of underlying representations with char* pointers
and casts between pointer and integer types.

On the other extreme, state could be modelled as a �nite map from addresses to
bytes in a concrete model. While this is the case at runtime, the standard de�nes
abstract notions of types, pointer provenance [44], and uninitialised values (for
which the value can change without direct action of the program [58]).

Work by Memarian et al. [43, 44] contributes to developing a memory object model
for de facto C. For reasons of scope, we focus instead on the C11 concurrency model
and limit our support to a fragment of C allowing the assumption of an abstract
memory model, in which variables are modi�ed only using direct assignments or
through pointers if the address was obtained using (&). We do not support pointer
typecasting or arbitrary pointer arithmetic.

3.7.2 Pointer sort

The Core program in Figure 3.3 creates a pointer x, writes to its address, and
returns the value stored at x.

Each object declaration in C is translated to a create of a Core pointer that we
associate with a unique allocation identi�er. Each allocation is associated with a
number of locations, one for types such as �signed int� and n for arrays or structs
with n elements or members; creating a pointer to an array of �ve elements with
allocation id @1 results in 5 locations: (@1, 0), (@1, 1), . . . , (@1, 4).

We represent locations in Z3 as tuples (alloc_id, index). This representation
allows array indexing and struct member accesses via pointer arithmetic on index.
For instance, an array_shift of a pointer ptr by some (numerical) expression pe

can be represented in Z3 as

(alloc_id(addr_of(INTERP(ptr))), index(addr_of(ptr)) + INTERP(pe))

Recalling the compositional approach to model checking, we compute the SMT
representation of ptr and pe with INTERP. Here, addr_of, alloc_id, and index are
SMT functions for accessing the address of a pointer, allocation id of an address,

27

and index of an address respectively. As pe has type integer, its SMT repre-
sentation has the corresponding sort, either Int or BitVector. To allow pointer
arithmetic, index must have the same sort as mk_sort(integer).

We do not support the creation of pointers from pointer arithmetic with pointers
of di�erent allocation identi�ers, and do not allow a pointer derived from an array
shift or pointer operation to have a di�erent allocation id to that of its source(s).
This does not con�ict with the ISO standard and corresponds to the notion of
�pointer provenance� [45, 57].

In the elaboration, pointer dereferences are guarded with a check for pointer va-
lidity:

1 if memop(PtrValidForDeref, ptr) then
2 (* Pointer can be dereferenced *)
3 else
4 pure(undef(...))

As we currently do not account for object lifetimes2 due to scope, we de�ne
memop(PtrValidForDeref, ptr) to be true if ptr is not NULL and its index is in-
bounds, or:

0 <= index(addr_of(|ptr|)) < alloc_size(alloc_of(|ptr|))

This enables detection of bu�er over�ows from accessing out-of-bounds indices.

C's memory model is not abstract and thus a more �ne-grained representation is
needed to model arbitrary pointer arithmetic and typecasting. For simplicity, in
the following, we assume a pointer or address is represented only with an allocation
id.

3.7.3 Memory actions

Create(ty) Each dynamic instance of a create (in one-to-one correspon-
dence with static instances after Core transformations) is associated with a
fresh allocation id (in Z3, an integer or bit-vector). A Core create re-
turns a Core pointer, thus the SMT representation of create(...) is a vari-
able of pointer sort. When representing pointers only as allocation ids,
from let strong x : pointer = create(Ivalignof("signed int"), "signed int")

we might assert
(assert (= |x| (Ptr (Loc (0)))))

to represent x 7→ @0. We associate with each location a sequence of fresh assign-
ment variables, such that @0

0 represents the initial value at @0, @
1
0 the next store

to that location, etc. We �initialize� the initial value to an Unspecified value (of
loaded object type) to represent uninitialized values :

2Object lifetimes are explicit with create and kill and can be represented as an SMT expres-
sion predicating whether a kill for the corresponding location was encountered in the control
�ow.

28

(assert (= loc!0!0 (LoadedInt_Unspecified(signedInt))))

where loc!0!0 represents@0
0. We internally maintain a memory map, mem, mapping

each location to an SMT expression representing its current value. Thus we have

mem[@0] = @0
0

To implement structs and arrays, a create(...) of struct or array type, such as

create(Ivalignof("signed_int[5]"), "signed_int[5]")

results in n creates with the same allocation id (where n is the array size or number
of �elds in the struct) and indices from 0 to n− 1, along with an assertion that

alloc_size(new_alloc_id) = n

Locations are initialized as above, and a pointer to the location at index 0 is
returned.

Store(ptr,value) Without alias analysis, the location pointed to by a Core
pointer symbol is unknown. The naïve solution to model a store is to generate
equations, one for each created location, of the form

(addr_of(|ptr|) = @i)⇒ next(@i) = value

∧(addr_of(|ptr|) 6= @i)⇒ next(@i) = mem(@i)

and update mem such that
@i

mem7−→ next(@i)

where next(@i) is a fresh sequence variable. This de�nes next(@i) to be the new
value if ptr points to location i, and retains the old value otherwise.

We reduce the number of generated equations by approximating, for each Core
pointer, the set of locations it may alias with in � 3.7.5.

Load(ptr) In the sequential model, a load reads the previous store at the same
location. We create a Z3 constant, say load, for the loaded value, and generate a
set of equations

(addr_of(|ptr|) = @i)⇒ load = mem(@i)

which de�ne the value of load based on the current values in memory. In the
concurrent model, the notion of �previous store� does not necessarily exist and the
�reads-from� relation is more complex.

29

3.7.4 Branching control �ow

The contents of mem after e�ectful, branching expressions (e.g. case, if-then-else,
and nd) must be guarded by control �ow. Suppose memk is the memory map
resulting from model-checking the expression in the kth branch. To compute the
new memory map mem, we declare for every location @i potentially updated in the
branches

mem[@i] = next(@i)

for fresh next(@i) and assert

guardk ⇒ next(@i) = memk[@i]

where guardk is a Boolean predicating whether the kth branch was taken (as when
computing VCs). Unchanged locations retain their old values. We could represent
mem[@i] as a sequence of if-then-else expressions instead of creating fresh variables,
however our chosen representation simpli�es SMT expressions with memory values
(which are now just SMT constants).

3.7.5 Optimisation: alias analysis

Instead of generating equations for every location, we perform alias analysis to
approximate the set of �addresses� each Core pointer might represent, and which
addresses locations storing pointers might point to.

We maintain a map from Core pointer symbol to set of addresses

alias : symbol 7→ addr set

and compute for each expression (of Core pointer type) a set of addresses it
may represent. Thus an expression of the form let x : pointer = create(...)

maps x to the address returned by create, and an expression of the form
let x2 : pointer = x . . . gives

alias[x2] = alias[x]

We maintain a points_to map

points_to : addr 7→ addr set

from addresses containing pointer values to the set of addresses the stored pointer
may �point to�. This increases the precision of the analysis when accessing the
location from a pointer loaded from memory.

In Figure 3.4, the two creates (lines 3 and 7) with respective allocations @0 and
@1 give

alias[x] = {@0}
alias[px] = {@1}

30

1 proc main() : eff loaded integer :=
2 let strong x : pointer =
3 create(Ivalignof("signed int", "signed int")) in
4 store("signed int", x, Specified(0));
5
6 let strong px : pointer =
7 create(Ivalignof("signed int*", "signed int*")) in
8 store("signed int*", px, Specified(x));
9
10 let strong y : loaded pointer =
11 load("signed int*", px) in
12 case y of
13 | Specified (z : pointer) => load("signed int", z)
14 | _ => error(...)
15 end

Figure 3.4: Example Core program demonstrating aliasing and C pointers. Here y and
z alias with x.

and storing a pointer on line 8 gives

∀@i ∈ alias[px]. (points_to[@i] = points_to[@i] ∪ alias[x]))

This indicates that any location px represents may point to any location x repre-
sents, and simpli�es to

points_to(@1) = {@0}

The set of locations potentially associated with the load on line 11 corresponds to⋃
@i∈alias[px]

points_to[@i]

which is @0. Thus we have

alias(y) = @0

alias(z) = @0

and know the load on line 13 reads from address @0. Only one equation is gener-
ated for the load.

3.8 Runs and saves

C loops and returns are elaborated using Core labels, runs, and saves. A run

�jumps to� the corresponding save, such that the continuation is not executed.

Figure 3.5 shows a C function call, with a simpli�ed corresponding Core program.
C functions are elaborated into procedures terminating with save. For the pur-

poses of this report, the semantics of save(identi := pei
i
) in e is e[pei/identi],

31

int foo(int x) {
return x;

}

int main(void) {
if (1) return 2;
return foo(1);

}

proc foo (x : pointer) : eff loaded integer :=
let strong y : loaded integer =

load("signed int", pure(x)) in
run ret(y);
(save ret : loaded integer

(a : loaded integer :=
undef(<<end_of_function>>)) in

pure(a))

proc main () : eff loaded integer :=
if true then run ret(Specified(2))

else skip;
let strong tmp_ptr : pointer =

create(Ivalignof("signed int", "signed int")) in
store("signed int", tmp_ptr, Specified(1));
let strong z : loaded integer =

ccall(Cfunction(foo), tmp_ptr) in
run ret(z);
(save ret: loaded integer

(a: loaded integer := Specified(0)) in
pure(a))

Figure 3.5: A simpli�ed, hand-written Core program (right) representing the C program
on the left. The function call is never executed.

that is e with pei substituted for each identi. Recall these substitutions are used
to handle object lifetimes in C cross-scope gotos. The main procedure terminates
with a �default� save with value Specified(0) such that if no run ret is reached,
the procedure returns 0. Other procedures returning values have undef as the
default �return value�, indicating unde�ned behaviour if the end of a function is
reached (and the value is used by the caller).

The run label(pe1, . . . , pen) acts as a �goto� to the corresponding save label, with
pei substituted for each occurrence of identi in the save. For example, executing
ret(Specified(2)) jumps to the end of the procedure with the new continua-
tion being pure(Specified(2)) and the old continuation (let strong tmp_ptr . . .)
�dropped�.

let strong/weak pat = e1 in e2 expressions involve sequencing of two e�ectful
expressions, such that e1 may contain a run. If e1 contains a run, the �continuation�
e2 is dropped and not reachable. We de�ne a function

drop_cont : expr -> Z3Expr

computing an SMT Boolean predicating whether a run occurred in the expression
(guarded by control �ow). The VCs of e2 are guarded by ¬(drop_cont(e1)) such
that

VC(let weak pat = e1 in e2) = VC(e1) ∧ (¬drop_cont(e1)⇒ VC(e2))

32

3.8.1 Return values

The return value of a procedure is constrained by SMT assertions guarded by
control �ow, accounting for whether a return was previously encountered. For
main in Figure 3.5, this is expressed as

(> ⇒|ret| = LI_Specified(2))

∧(¬> ⇒|ret| = LI_Specified(z)

∧(¬(> ∨ ¬>)⇒|ret| = LI_Specified(0))

For procedure return values, there are no expressions after

save ret(identi := . . .
i
) in e, thus we can translate run ret(pei) simply to

e[pei/identi]. This is not the case for arbitrary runs and saves (see � 3.8.3).

3.8.2 Function calls

C functions are elaborated into Core procedures with arguments of pointer type.
Function calls are elaborated by creating temporary Core pointers for arguments.

The Core expression ccall(Cfunction(foo), tmp_ptr) is represented in SMT
as the return value of the called function, with tmp_ptr substituted for
each occurrence of the argument x : pointer in the function body of foo.
For general ccall(pe, pe1, . . . , pen), the model checking procedure is called on
the body of pe with pe1, . . . , pen substituted for function arguments (written
body(pe, pe1, . . . , pen)), with

VC(ccall(pe, pe1, . . . , pen))

=VC(body(pe, pe1, . . . , pen))

To handle recursive functions, calls beyond a speci�ed depth are placed with
error(...). This unwinds function calls to a given bound.

Although pure function calls are inlined prior to model checking, we elect not to
inline C function calls to exploit that the save for returns occurs at the end of
Core procedures and has no continuation.

3.8.3 Loops

Consider the following (simpli�ed) Core program corresponding to

while (n > 0) { n = n - 1; }

33

int bar(int n) {
while (n > 0) {
n = n - 1;

}
return n;

}

proc bar(n : pointer) : eff loaded integer :=
save loop: integer (n_ptr: pointer := n) in
let strong Specified(n: integer) =
load("signed int", n_ptr) in

if n > 1 then
store("signed int", n_ptr, Specified(n-1));
run loop(n_ptr)

else
skip;

load ("signed int", i_ptr)

run loop is handled similarly to run ret for returns, except the save is followed by
a �continuation� (load ("signed int", i_ptr)). Instead of run loop being simply
replaced by the save expression, the run is replaced with the save expression
followed by the continuation:

let strong _ = save_expr in continuation

The save_expr contains a run. To keep model checking bounded, we track the
loop unwinding depth similarly to function calls and replace run with error after
a given depth.

3.9 Summary

This chapter discussed the compositional translation of Core expressions to SMT
constraints and safety properties for a sequential fragment of Core. Next, we
discuss C11's relaxed memory model and model checking of concurrent programs.

34

Chapter 4

Model checking C11 concurrency

This chapter discusses model checking an illustrative fragment of C11's concur-
rency model. We remove the sequential constraint imposed previously, restoring
unsequenced evaluation order and parallel execution. We �rst introduce relaxed
memory models and the C11 concurrency model, and then demonstrate how the
axiomatic formalization of Batty et al. [11, 13] is naturally translated to SMT
memory constraints.

4.1 Relaxed memory models

The concurrency model describes the interaction between threads via shared mem-
ory. A strong memory model (called sequentially consistent or SC) guarantees
atomic memory accesses between threads are interleaved to form a total order. A
memory model exposing more behaviours than from an interleaving of threads is
called relaxed or weak.

Subtle di�erences between memory models are often illustrated with short parallel
programs called litmus tests. Consider the load bu�ering litmus test below.

Initialisation: x = 0, y = 0

Thread 1 Thread 2
r1 = x.load() r2 = y.load()

y.store(1) x.store(1)

Assuming loads and stores are interleaved in a total SC order, the values of r1

and r2 cannot both be 1. The �rst three executions below illustrate a sequentially
consistent ordering of the memory actions, such that (r1,r2)=(0,0),(0,1), or(1,0).

R x=0 R y=0

W y=1 W x=1

sc

sc
sc

R x=0 R y=1

W y=1 W x=1

sc sc
sc

R x=1 R y=0

W y=1 W x=1

sc scsc

R x=1 R y=1

W y=1 W x=1

35

In architectures with weak memory models such as ARM and x86, memory actions
can be rearranged. For instance, the loads and stores may be rearranged and
both r1 and r2 can equal 1. SC ordering can be implemented by inserting fence
instructions appropriately into compiled code.

4.2 C11 memory model

To enable e�cient implementations on modern parallel architectures, the stan-
dardization committees extended C with support for low-level atomic operations
and an accompanying relaxed memory model. C11 programs manipulate a set of
shared memory locations, each of atomic or non-atomic type. Atomic locations
are accessed with atomic reads, writes, and read-modify-writes. Atomic and
non-atomic locations are accessed with non-atomic reads and writes. There are
additionally fences and locks (omitted for simplicity). Each action is associated
with a thread id tid and a unique action id aid.

De�nition (Memory action (fences and locks omitted)).

action =

aid , tid : Rna l = v non-atomic read

| aid , tid : Wna l = v non-atomic write

| aid , tid : Rmo l = v atomic read

| aid , tid : Wmo l = v atomic write

Atomic memory actions have a memory order (mo) [37, J.2]:
De�nition (Memory order1).

o ::=RLX relaxed

| ACQ acquire, reads/RMWs only

| REL release, writes/RMWs only

| AR acquire-release, RMWs only

| SC sequentially consistent, the default

The memory order, defaulting to SC, constrains how memory accesses are ordered
around an atomic operation.

1We exclude memory_order_consume for simplicity as in [11] (their actual formalization includes
memory_order_consume). Although memory_order_consume exists to allow more e�cient implemen-
tations, it can (and is, in many compilers) safely be substituted with memory_order_acquire.
Furthermore, its de�nition is subject to discussion and revision by the WG14 committee [42]

36

Relaxed: The relaxed order imposes few constraints, only guaranteeing atomic-
ity and a total ordering between atomic writes to the same location .

Release/acquire: Release/acquire allows synchronization between threads. A
write-release can not be reordered with any memory action preceding it in pro-
gram order. A read-acquire can not be reordered with any memory action follow-
ing it in program order. Release/acquire synchronization supports the following
idiom where the producer writes to x and sets a �ag y, while the consumer spins
on y. The consumer must see the data written by the producer.

// producer
x = ...
y.store(1, REL)

// consumer
while(0 == y.load(ACQ));
r = x

Sequentially consistent: The sequentially consistent order establishes a total
order on all SC operations. SC operations also order memory in the same way as
release/acquire ordering, such that everything that happens before an SC write
in one thread is �visible� in the thread that �reads-from� the write.

In the C11 memory model, the semantics of a program are de�ned in terms of a set
of allowed executions. An execution is essentially a partial order over memory ac-
tions. The ISO standard constrains the set of allowed executions with consistency
axioms de�ned using a number of relations. For example, the modi�cation order
relation [37, �5.1.2.4] ensures stores in each atomic location are totally ordered,
such that there is a memory-coherent ordering shared by the program. Modi�ca-
tion order must be consistent with the happens before relation, which encompasses
ordering between events from the same thread as well as synchronisation across
threads. The set of allowed executions describes possible behaviours that can
occur.

4.2.1 Relations

We summarize the relations de�ned in the ISO standard:

sequenced-before (sb): a strict partial order between events from the same
thread established by the operational semantics. This captures program order.

sequential consistency (sc): a strict total order between SC events. The total
order establishes an �interleaving� semantics.

reads-from (rf): a relation linking writes to reads, such that (w, r) ∈ rf if event
r reads the value stored by w.

modi�cation order (mo): a strict total order between writes to the same
atomic location, representing a memory-coherent ordering shared by the program.

synchronizes-with (sw): a transitive relation capturing synchronisation be-
tween events from di�erent threads. Synchronisation occurs from thread cre-
ate/join and release/acquire synchronisation.

37

happens-before (hb): the transitive closure of sb and sw. In relaxed mem-
ory models, there is no global linear time so the �most recent� write does not
necessarily exist. Instead, rf is constrained by the hb order.

Consider the following store bu�ering (a.k.a. Dekker's) litmus test2 with release-
acquire pairs.

int main() {
_Atomic(int) x=0, y=0;
int z1, z2;
{{{ { atomic_store_explicit(&y, 1, memory_order_release);

z1 = atomic_load_explicit(&x, memory_order_acquire); }
||| { atomic_store_explicit(&x, 1, memory_order_release);

z2 = atomic_load_explicit(&y, memory_order_acquire); }
}}};

return z1 + (2 * z2);
}

There are four possible return values: (0, 1, 2, 3). These executions are depicted
in Figure 4.1 with loads and stores to z1 and z2 elided. Each column contains
memory actions of a di�erent thread, with actions within a thread ordered by the
sb relation. Action (b) is synchronized-with actions (c) and (e) from the thread
create. The mo relation orders stores for non-atomic locations.

Each read (actions (d) and (f)) reads-from either of the two writes in the corre-
sponding locations. Figure 4.1a demonstrates relaxed memory ordering. A read-
acquire reading from a write-release leads to an sw edge, such that all memory
actions that happen-before the write-release can not be reordered with the write-
release and all memory action that happen after the read-acquire can not be
reordered with the read-acquire.

4.3 Operational semantics: pre-execution

We �rst extract a set of executions (called pre-executions) based on the operational
C11 semantics from the Core program. Each pre-execution is compatible with
memory actions in individual threads, but does not account for behaviour of shared
memory and hence over-approximates allowed behaviours.

De�nition (Pre-execution). A pre-execution X consists of a tuple
(E, thd, sb, asw) where

� E is a set of memory actions or events

� thd is an equivalence relation between events from the same thread

� sb ⊆ thd is the sequenced-before relation

2The notation {{{...|||...}}} expresses parallel execution.

38

(a) (b)

(c) (d)

Figure 4.1: Four possible executions for the store bu�ering litmus test. Actions in the
same column are in the same thread and related by sb. A read-acquire reading from (rf)
a write-release introduces a synchronization sw edge. The top left demonstrates relaxed
ordering.

� asw is the additional-synchronized-with relation, capturing thread creates/joins

Event sort Let events(expr) be the set of events in Core expression expr.
We accumulate a set of events by recursing over the AST. For instance,
events(unseq(e1, . . . , en)) =

⋃n
i=1 events(ei). Each event has an associated mem-

ory action (with location, type, etc.) and control-�ow guard, an SMT expression
predicating whether the action actually occurs (as when computing VCs).

sb and asw The syntactic structure of C/Core programs determines the sb
and asw relation, independent of memory model. In Core, sequencing of memory
actions is made explicit via unseq, nd, and let strong/weak. Memory actions
have a polarity ∈ {+,−} in Core, with positive actions sequenced by both let

strong and let weak and negative actions sequenced only by let strong. The
compositional computation of sb is summarized in Table 4.1. The sb relation on a
Core expression is essentially the union of the sb relations on the subexpressions
(with the exception of let strong/weak pat = e1 in e2, which sequences actions
in e1 before actions in e2).

The asw relation is computed similarly (as the union of asw of the subexpressions)
apart from with par(e1, . . . , en). We track thread creates and joins, such that if
thread t1 creates thread t2, all maximal actions in t1 before the creation of thread
t2 (that is, actions a from t1 such that ¬∃b.(a, b) ∈ sb1 for sb1 the sb relation
before thread creation) are asw -related before minimal actions in t2, and similar

39

expr sb(expr)

pure(pe) {}
create(pe1, pe2) {}
store(pe1, pe2, pe,memory-order) {}
load(pe1, pe2,memory-order) {}
case pe with |pati ⇒ ei

i
end

⋃
i sb(ei)

if pe then e1 else e2 sb(e1) ∪ sb(e2)
skip {}
pcall(pe, pe1, . . . , pen) sb(body(pe, pe1, . . . , pen))
unseq(e1, . . . , en)

⋃
i sb(ei)

let weak pat = e1 in e2 {(a1, a2) ∈ E(e1)× E(e2)|is_pos(a1) ∧ is_pos(a2)}
∪sb(e1) ∪ sb(e2)

let strong pat = e1 in e2 {(a1, a2) ∈ E(e1)× E(e2)}
∪sb(e1) ∪ sb(e2)

nd(e1, . . . , en)
⋃

i sb(ei)

save label(identi := pei
i
) in e sb(e[pei/identi

i
])

run label(identi := pei
i
) sb(find_save(label)[pei/identi])

par(e1, . . . , en)
⋃

i sb(ei)

Table 4.1: Computation of the sequenced-before relation. sb(expr) is essentially the
union of the sb relation of the subexpressions, apart from let weak and let strong which
explicitly sequence memory actions. Here, E(expr) is the set of events in expr. Omitted
here, initial events from a create are sequenced before all non-initial events.

for thread joins.

4.4 Candidate executions

We augment pre-executions with existentially quanti�ed witnesses to form
candidate executions, constrained using well-formed and consistency axioms. A
candidate execution introduces (memory) constraints on the load and store values.

De�nition (Candidate execution). A candidate execution consists of a pair
(X,w), where X is a pre-execution and w = (rf ,mo, sc) a witness consisting
of the reads-from, modi�cation order, and sequential consistency relations.

De�nition (well-formed). A candidate execution is well-formed if the following
axioms [11] hold:

Axiom 1 well-formed reads-from: every read event is linked to a unique write
event of the same location (=loc) such that the values match.

∀e ∈ R.∃!e′ ∈ W.(e′, e) ∈ rf

and rf ⊆ (=loc ∩ =val)

40

Axiom 2 well-formed modi�cation order : the modi�cation order relates in a
strict total order (mo is acyclic) all and only those events that write
to the same atomic location

(mo ∪mo−1) = (=loc ∩W 2 \ nal2 \ id)
and acy(mo)

Axiom 3 well-formed sequential consistency : SC relates in a strict total order
all and only the SC events:

(SC ∪ SC−1) = (SC2 \ id)
and acy(SC)

We express the well-formed axioms using SMT expressions quanti�ed over the set
of events. First, we de�ne SMT functions to represent relations:

rf reads-from E → E
mo modi�cation-order E → Z
sc sequential-consistency E → Z
hb happens-before E × E → B
sw synchronizes-with E × E → B
fr from-reads E × E → B

We de�ne reads-from as a function rf : E -> E such that rf(r) = w if r ∈ R reads
from w ∈ W . Expressing rf as a function ensures every read is associated with
exactly one write, and reduces the number of quanti�ers needed when reasoning
about rf. For example, Axiom 1 can be expressed in �rst-order logic as follows:

∀e.isRead(e) ∧ guard(e)⇒
isWrite(rf(e)) ∧ guard(rf(e))

∧ loc(e) = loc(rf(e))

∧ val(e) = val(rf(e))

Instead of using two quanti�ers to express ∀e ∈ R.∃!e′ ∈ W , we use a single
quanti�er. As rf is de�ned over the entire domain of events, we constrain the
value of rf(e) only if e is a read and the event actually occurs (guard(e) holds).

As mo and sc are relations expressing strict total order, they can be represented
as functions from events to integers such that

events a and b mo-related⇒ mo(a) < mo(b).

Expressing mo and sc using these �clock� constraints removes the need to directly
encode transitive closure when de�ning mo and sc in Z3. The implication does not
go the other way; for example two events at di�erent locations could be ordered by

41

the mo-clock. Rather than assert the �all and only the� part of the well-formed ax-
ioms, for simplicity we only constrain the Z3 relations or functions on the relevant
events and guard their usage.

For instance, Axiom 2 can be expressed as

∀e1, e2.isWrite(e1) ∧ isWrite(e2) ∧ guard(e1) ∧ guard(e2)

∧ (loc(e1) = loc(e2)) ∧ isAtomic(loc(e1)) ∧ (e1 6= e2)

⇒ (mo(e1) < mo(e2)) ∨ (mo(e1) > mo(e2))

We only constrain the mo-ordering of distinct write events at the same non-atomic
location that occur in the program, allowing arbitrary ordering between other
event pairs.

4.5 Consistent executions

After asserting executions are well-formed, we assert their consistency with the
memory model.
De�nition (consistent). As formalized by Batty et al. [11], a candidate execution
(X,w) is consistent if it is well-formed and satis�es the following:

Axiom 1 irr(hb): happens-before contains no cycles3

Axiom 2 Coherence axioms: relationship between hb and mo (see Figure 4.2)

CoRR two reads ordered by hb may not read from two writes mo-
ordered in the opposite direction (irr(rf−1;mo; rf ;hb)4)

CoWR a read must not observe a write that is happens-before hidden
by a later write in the modi�cation order (irr(rf−1;mo;hb))

CoWW happens-before and modi�cation order must not disagree
(irr(mo;hb))

CoRW a read must not observe a write that is mo-after a write it
happens before (irr(mo; rf ;hb))

Axiom 3 irr(rf ;hb): a read must not observe a write that happens after it

Axiom 4 empty((rf ; [nal] \ vis): a read of a non-atomic location must observe a
visible write, where a write w is visible to a read r (written vis(w, r))
if it is the most recent write in happens-before.

3As happens-before is transitively closed, this is equivalent to happens-before being irre�exive.
4rf−1 denotes the inverse relation of rf . R;S denotes the composition of relations R and S,

such that aRb ∧ bSc⇒ a(R;S)c

42

a:W x=1 c:R x=1

b:W x=2 d:R x=2

rf

hbmo

rf

(a) CoRR

a:W x=1 b:W x=2

c:R x=1

mo

rf
hb

(b) CoWR

a:W x=1

b:W x=2

hbmo

(c) CoWW

a:W x=1 b:R x=1

c:W x=2

rf

hb
mo

(d) CoRW

Figure 4.2: The four irre�exive coherence axioms. An execution is not consistent if any
of these cycles occur.

Axiom 5 acy(SC2 \ id∩ (hb∪ fr∪mo))5: SC must be consistent with happens-
before, �from-read�, and modi�cation-order. The from-read relation
links each read to all the writes that are mo after the write it read
from (fr = rf−1;mo).

These axioms are expressed in Z3 using the mo and sc clock and rf functions to
reduce the complexity of the quanti�ed expression.

For example, the CoRR constraint can be expressed by quantifying over two read
events:

∀e1, e2.isRead(e1) ∧ isRead(e2) ∧ guard(e1) ∧ guard(e2)∧
hb(e1,e2) ∧ (loc(e1) = loc(e2)) ∧ isAtomic(loc(e1))

⇒ ¬(mo(rf(e2)) < mo(rf(e1)))

In Figure 4.2a, e1 and e2 correspond to actions (c) and (d). We assert that
assuming e1 and e2 are happens-before ordered, the writes they read from ((a) and
(b)) must not be mo-ordered in the opposite direction. Our de�nition of rf as a
function from reads to writes andmo as a �clock� (function from events to integers)
allows us to quantify over two events to avoid expressing relational composition
(which naturally involves an existential, with a(R;S)c ⇐⇒ ∃b. aRb ∧ bRc). The
trade-o� is the need to introduce additional (simple) guards, such as asserting the
events are at the same atomic location (else the mo ordering is meaningless) and
e1 and e2 are reads (else rf(e1) and rf(e2) is meaningless).

The �rst three (irre�exive) axioms are expressed similarly. Axiom 4 is represented
by asserting rf(e) is visible to e (which is true if rf(e) happens-before e and there

does not exist another write w at the same location such that rf(e)
hb−→ w

hb−→ e).
Axiom 5 is expressed by asserting that if distinct SC events e1 and e2 are related
by hb, fr, or <-ordered by mo, they must be <-ordered bysc.

5This axiom from Batty et al.'s �Overhauling SC Atomics� [11] strengthens the C11 mem-
ory model (disallowing certain executions). They argue that this simpli�es the formalization
(reducing the number of SC axioms from seven to one) and is a natural strengthening.

43

4.5.1 Auxiliary relations

We directly encode the hb, sw, and fr relations as functions E × E → B in Z3. A
clock (such as used for mo) can not be used for hb as there is no global linear time.

happens-before The transitive closure of sequenced before and synchronizes-
with is expressed in Z3 as follows:

∀e1,e2. hb(e1,e2) =sb(e1,e2) ∨ sw(e1,e2)

∨ ∃e3. ((sb(e1,e3) ∨ sw(e1,e3)) ∧ hb(e3,e2))

synchronizes-with Excluding RMWs, locks, and fences, the sw relation is de-
�ned by Batty et al. in [11] as

sw = ([rel]; rf ; [acq]) \ thd

where

acq = ACQ ∪ (SC ∩R)
rel = REL ∪ (SC ∩W)

This captures release-acquire synchronization, where a read-acquire reading from
a write-release introduces a synchronization edge. We additionally assert the
existence of synchronization edges for thread creates and joins (the �additional-
synchronizes-with� relation). In Z3:

∀e1,e2. sw(e1,e2) =asw(e1,e2)∨
(isRel(e1) ∧ isAcq(e2)∧
guard(e1) ∧ guard(e2) ∧ (e1 = rf(e2))∧
isAtomic(loc(e1)) ∧ ¬thd(e1,e2))

from-reads fr relates each read to all writes that are mo after the write it reads
from (fr = rf−1;mo). We express this as follows, guarding the rf and mo events
appropriately:

∀e1,e2.fr(e1,e2) =isRead(e1) ∧ isWrite(e2)∧
guard(e1) ∧ guard(e2) ∧ isAtomic(loc(e2))∧
mo(rf(e1)) < mo(e2)

Ultimately, we observe that the axioms and relations are encoded naturally ac-
cording to the axiomatic formulation of Batty et al., with simpli�cations by using
clock-constraints for sc and mo and expressing rf as a function.

44

int main() {
int x = 1;
int y;
{{{ x = 2;
||| y = (x == 2);
}}}

}

a:Wna x=1

b:Wna x=2 c:Rna x=1

d:Wna y=0

hb

hb,rf

dr

hb

Figure 4.3: Data race example. There is a data race between actions (b) and (c).

4.6 Race-free executions

Consistent executions (executions consistent with memory ordering) have unde-
�ned behaviour if they have data races or unsequenced races.

A data race occurs when there are

two con�icting actions in di�erent threads, at least one of which is not
atomic, and neither happens before the other [37, �5.1.2.4]

In Figure 4.3, the con�icting, non-atomic actions (b) and (c) are not hb-related.
Action (c) can consistently read-from (a) or (b). A data race exists.

We either assert no executions contain races, or extract consistent executions from
Z3 and identify (outside of Z3) exactly which executions contain data races. We
implement both options.

A no-data-race assertion resembles the following, asserting con�icting actions from
di�erent threads are hb-related:

∀e1,e2. e1 6= e2 ∧ isWrite(e1) ∧ isWrite(e2)∧
(loc(e1) = loc(e2)) ∧ ¬thd(e1,e2)∧
(is_na(e1) ∨ is_na(e2)) ∧ guard(e1) ∧ guard(e2)

⇒ hb(e1,e2) ∨ hb(e2,e1)

A pre-execution has an unsequenced race (recall � 2.1.1) if there is a write and
another read/write to the same location from the same thread not sequenced by
sequenced-before:

∀e1,e2. (e1 6= e2) ∧ (loc(e1) = loc(e2))∧
(isWrite(e1) ∨ isWrite(e2))∧
(thd(e1,e2) ∧ guard(e1) ∧ guard(e2)

⇒ sb(e1,e2) ∨ sb(e2,e1)

45

4.7 Summary: model checking procedure

This chapter described the extraction of memory actions and programs order from
Core programs, and how memory constraints were expressed using C11 well-formed
and consistency axioms in Z3. We summarize this below:

1. As in Chapter 3, we compute syntactic constraints and veri�cation condi-
tions. Only memory constraints for loads and stores di�er in the concurrent
mode.

2. We extract the memory events along with the sequenced-before relation (rep-
resenting program order) and additional-synchronized-with relation (repre-
senting thread create/join):

create: address creation is identical. We create an initial action repre-
senting an unspeci�ed value (as before) that is sequenced-before non-initial
actions.

store: create a write memory event associated with the value being stored.

load: create a read memory event associated with the value being written.
Distinct from the sequential mode, we do not explicitly track the value
currently at the location being read from.

3. We assert well-formed and consistency constraints to constrain candidate
executions and the values of loads/stores. The conjunction of syntactic con-
straints S act as assumptions. The conjunction of memory constraints M
given the syntactic assumptions, expressed as below∧

s∈S

s ∧
∧

m∈M

m

is satis�able i� there exists a consistent execution.

4. Given a satis�able interpretation, we optionally extract all consistent exe-
cutions from Z3 by successively adding �distinctness� assertions to require
di�erent executions. We then directly (in Ocaml) compute the existence of
races and output visualizations of all executions.

5. Alternatively (or additionally, by removing the distinctness assertions from
Z3's �stack� of assertions), we treat the race check as a veri�cation condition.∧

s∈S

s ∧
∧

m∈M

m ∧ ¬(
∧
v∈V

v)

This equation is satis�able i� any of the veri�cation conditions (including
race assertions) fail to hold.

46

Chapter 5

Evaluation

We demonstrate the model checker on simple C programs, followed by experi-
mental evaluation of implementation correctness and performance. � 5.4 discusses
related work.

5.1 Example programs

Figure 5.1 contains two C programs analysed with the model checker.

5.1.1 Single-threaded program

The �rst program, in Figure 5.1a, computes the factorial of 5 in two ways: the �rst
by initializing an array such that a[i] = i+1 and then multiplying the elements in
the array, and the second with a while loop. The program features arrays, control
�ow, loops, function calls, integer arithmetic, and pointers.

Translation to Core The C program is translated into a 500-line Core pro-
gram based on the Cerberus semantics. This makes explicit aspects of C such as
pointer safety checks, implementation-de�ned behaviour, and, crucially, unde�ned
behaviour.

Core-to-Core rewrites We rewrite implementation-de�ned expressions based
on a given implementation. We optionally sequentialise the program by selecting,
as a Core-to-Core rewrite, an ordering for unspeci�ed evaluation orders (arising
from, for instance, evaluating arguments to operators such as (+)). This enables
usage of the sequential model checker presented in Chapter 3 with the trade-
o� being losing the ability to detect unsequenced races and all behaviours when
arguments have side e�ects.

47

void init(int* p, int n) {
for (int i = 0; i < n; i++) {
p[i] = i + 1;

}
}

int multiply(int* p, int n) {
int ret = 1;
for (int i = 0; i < n; i++) {
ret *= p[i];

}
return ret;

}

int factorial(int n) {
int x = 1;
while (n > 0) {
x *= n;
n--;

}
return x;

}

int main(void) {
int a[5];
// ERROR: assert(a[1] == 0);
// ERROR: a[-1] = 0;
if (42) {
a[1] = 0;

}
a[1] = 0;
assert(a[1] == 0);
init(a, 5);
// ERROR: init(a, 6);
// ERROR: assert(a[1] == 0)
assert(a[1] == 2);
int fact = multiply(a, 5);
// ERROR: multiply(a, 6);
assert (fact == 120);
// ERROR: assert(fact != 120);
int fact2 = factorial(5);
assert(fact == fact2);
// ERROR: a[0] = 1 / (a[1] - 2);
// ERROR: a[1] = INT_MAX + 1;

}

(a) A C program with control �ow, loops, function calls, integer arithmetic, arrays, and
pointers. The model checker returns NOT SATISFIABLE, indicating no faulty states could
be reached. Uncommenting any of the ERROR lines results in the model checker returning
SATISFIABLE due to bu�er over�ow/under�ow, division by zero, or failed assertions.

#include <stdatomic.h>

int main(void) {
_Atomic(int) x = 0;
_Atomic(int) y = 0;
int z1; int z2; int z3; int z4;
{{{ atomic_store_explicit(&x, 1, memory_order_release);
||| atomic_store_explicit(&y, 1, memory_order_release);
||| { z1=atomic_load_explicit(&x, memory_order_acquire);

z2=atomic_load_explicit(&y, memory_order_acquire); }
||| { z3=atomic_load_explicit(&y, memory_order_acquire);

z4=atomic_load_explicit(&x, memory_order_acquire); }
}}};
return (z1 + 2 * (z2 + 2 * (z3 + 2 * z4))); }

(b) The IRIW (Independent-Reads-Independent-Writes) litmus test. The reading
threads do not have to see the stores in the same order, so there are 16 possible return
returns. If the memory order were sequentially consistent, the (z1,z2,z3,z4)=(1,0,0,1)

execution would not be allowed. Thus there would be 15 possible return values.

Figure 5.1: Examples of C programs handled by the model checker

48

Generating an SMT problem Function calls and loops are unwound to a
given depth. We encode the syntactic constraints of the Core program as well as
the veri�cation and imposed memory constraints into an SMT problem, which is
passed to the Z3 SMT solver.

Result For the program in Figure 5.1a, Z3 returns NOT SATISFIABLE, indicating
no error occurs. Uncommenting any of the ERROR lines results in Z3 returning
SATISFIABLE due to reachability of errors such as bu�er over�ow, signed integer
over�ow, division by zero, and failed user-de�ned assertions. This entire process,
with loop unrolling depth of 6, took ∼7s with the sequential mode. The SMT
problem had ∼7750 fresh variables and ∼7250 assertions (mostly from syntactic
assumptions on variables).

5.1.2 Multi-threaded litmus test

Figure 5.1b contains a litmus test, a short parallel program designed to identify
subtle di�erences between memory consistency models. The test featured is IRIW
(independent-reads-independent-writes), which tests whether the reader threads
can see the stores in a di�erent order. With relaxed or release/acquire memory
orders, the threads can see the stores in a di�erent order and there are 16 possible
executions (each load can read 0 or 1). With the sequentially consistent memory
order, the execution (z1,z2,z3,z4)=(1,0,0,1) is not allowed and there are only 15
possible return values.

Initialisation: x = 0, y = 0
Thread 1 Thread 2 Thread 3 Thread 4
x.store(1) y.store(1) z1 = x.load() z3 = y.load()

z2 = y.load() z4 = x.load()

Based on Cppmem [12], our tool outputs the 16 (or 15) execution graphs to enable
visualization and reasoning about concurrent behaviours. Figure 5.2 presents one
such output graph with the reads-from, sequenced-before, synchronizes-with, and
modi�cation-order relations. The reader threads see the stores in a di�erent order.

5.2 Correctness of implementation

Using Cerberus as a model for C clari�es the interpretation of the ISO standard
and thus the interpretation of the C source analysed by the model checker. Using
a principled approach increases con�dence in implementation correctness in terms
of consistency with the ISO standard. Unspeci�ed and implementation-de�ned
behaviours are made explicit in the elaboration to Core, forcing the model checker
to explicitly handle these behaviours.

49

Figure 5.2: Example execution graph for the IRIW test when the reader threads see the
stores in a di�erent order. The writes in (c) and (d) are not related by happens-before,
the transitive closure of sb and sw, and there is no globally consistent linear ordering.
The graph was generated by our tool from an execution extracted from Z3, based on
pretty-printing code from Cppmem.

void bit_shift_aux(int shift) {
int a = 1;
int ret;
ret = a << shift;

}

void bit_shift() {
bit_shift_aux(32);

}

void overrun_st() {
int buf[5];
int *p;
int i;
p = buf;
for (i = 0; i <= 5; i ++) {

*p = 1;
p++;

}
}

Figure 5.3: Examples of programs in the Toyota test suite. Left: unde�ned behaviour
from bit shift (assuming 32-bit integers). Right: bu�er over�ow error.

We produced a suite of unit tests used to guide development. Furthermore, we test
our implementation on the Toyota software analysis benchmark1 [54] and litmus
tests.

5.2.1 Toyota software analysis benchmark

The Toyota benchmark is a test suite designed to evaluate static analysis tools,
with �defects� ranging from bu�er over�ows to dead code. Not all defects are
unde�ned behaviour. We test our model checker on �ve categories of defects:
bit shifts, data over/under�ow, static bu�er overrun, and division-by-zero. Tests
are of varying complexity, containing pointer aliasing, loops, function calls, and
arrays. Two example tests are in Figure 5.3

Our test coverage is summarized in Table 5.1. For each variation, there are tests
with and without defects. Some were not analysed due to unimplemented features

1https://github.com/Toyota-ITC-SSD/Software-Analysis-Benchmark/

50

https://github.com/Toyota-ITC-SSD/Software-Analysis-Benchmark/

Defect type
Analysed/# of Variations Defects

detected
Defects
not UB

False
positives

w/ Defects w/o Defects

Bit shifts 15/17 15/17 13 2 0
Data over�ow 19/25 19/25 12 7 0
Data under�ow 9/12 9/12 8 1 0
Static bu�er overrun 35/54 35/54 35 0 0
Zero division 11/16 11/16 11 0 0

Table 5.1: Summary of our coverage of the Toyota test suite for selected defect types.
Some tests were not analysed due to unimplemented features in Cerberus or our model
checker (e.g. tests with �oats). Some defects were not actually unde�ned behaviour
(e.g. unsigned integer over�ow) and hence would not be detected by the model checker,
or only contained unde�ned behaviour dependent on the implementation. Accounting
for this, the model checker behaved correctly for all analysed tests.

in Cerberus (bit�elds), the model checker (i.e. �oats, structs) or lack of a rand()

function. Some �defects� (such as unsigned integer over�ow) were not instances of
unde�ned behaviour and thus were not detected (as desired). The model checker
behaved as expected, detecting all unde�ned behaviours in the covered tests with
no false positives.

Tests with bit shifts were executed using bit-vectors of size 128 to represent in-
tegers, as the Z3 API does not support integer exponentiation and the theory of
bit-vectors e�ciently implements bit shifts. Tests without loops ran in less than
2s. Tests with loops ran in less than 5s (unwound to depth 6).

5.2.2 Litmus tests

We test our implementation of the C11 concurrency model by analysing litmus
tests. These short parallel programs exercise particular behaviours of the memory
model, with di�erent behaviours allowed with di�erent memory orders. We ran
our tool on all the litmus tests presented in Cppmem examples [12], along with
additional variations on the memory order (see Appendix B). The executions found
by our tool were the same as those of Cppmem, with the outputted graphs used
for additional veri�cation.

5.3 Performance

Although the focus of this project was not e�ciency, we evaluate the performance
by �rst discussing the scaling of the translation from C to Core, followed by
quantitative evaluation of runtime over a sequence of C programs of increasing
size.

51

5.3.1 From C to Core

Aspects of C programs such as integer conversions, sequencing, and unde�ned
behaviour are implicit in C code. The Cerberus semantics are expressed via a
compositional translation from an AST to Core, which introduces additional let-
bound variables and case-splits. For example, the C program below is elaborated
into the Core program presented on page 53. Assuming 32-bit integers, our model
checker proves the existence of unde�ned behaviour resulting from signed inte-
ger over�ow (from an undef in catch_exceptional_condition on lines 38-39 being
reachable).

#include <limits.h>

int main(void) {
int x = INT_MAX;
if (x != 32767) {
x = x + 1;

}
}

The resulting 72-line program contains function calls to conv_int and
catch_exceptional_condition to handle integer conversions and range checks of
integers (�representability�). Each of the 13 calls to conv_int or conv_loaded_int

are expanded into ∼20 lines after inlining pure function calls and implementation-
de�ned expressions, resulting in a multi-hundred-line Core program.

There are opportunities for optimization to reduce Core program size (i.e. with
constant propagation and branch elimination) or more e�ciently represent com-
mon functions such as conv_int in Z3 (instead of simply inlining the function).
Nonetheless, without attempts at optimization, our tool detects unde�ned be-
haviour in less than 500ms (in both sequential and concurrent modes).

Non-deterministic evaluation of if-statements In the elaboration, branch-
ing on an unspeci�ed value is translated into non-deterministic evaluation of the
branches:

if Unspecified(_) then e1 else e2 => nd(e1,e2)

More generally:

if (cond) { e1 } else { e2 } => let bool = ... in
case bool of
| Specified(a: integer) ->

if not(a==1) then e1 else e2
| Unspecified(_) -> nd(e1,e2)
end

where bool is de�ned to be either Specified(1), Specified(0), or Unspecified(_)

(lines 5-25) based on interpretation of cond.

52

1 proc main (): eff loaded integer :=
2 let strong x: pointer = create(Ivalignof("signed int"), "signed int") in
3 let strong a_74: loaded integer = pure(Specified(2147483647)) in
4 store("signed int", x, conv_loaded_int("signed int", a_74)) ;
5 (let weak a_76: loaded integer =
6 let weak (a_83: loaded integer, a_84: loaded integer) =
7 unseq(let weak (a_78: loaded integer, a_79: loaded integer) =
8 unseq(let weak a_77: pointer = pure(x) in
9 load("signed int", a_77), pure(Specified(32767))) in
10 pure(case (a_78, a_79) of
11 | (Specified(a_80: integer), Specified(a_81: integer)) =>
12 if not(conv_int("signed int", a_80) == conv_int("signed int",
13 a_81)) then
14 Specified(1)
15 else
16 Specified(0)
17 | _: (loaded integer,loaded integer) => Unspecified("signed int")
18 end), pure(Specified(0))) in
19 pure(case (a_83, a_84) of
20 | (Specified(a_85: integer), Specified(a_86: integer)) =>
21 if conv_int("signed int", a_85) == conv_int("signed int", a_86) then
22 Specified(1)
23 else
24 Specified(0)
25 | _: (loaded integer,loaded integer) => Unspecified("signed int")
26 end) in
27 case a_76 of
28 | Specified(a_75: integer) =>
29 if not(a_75 == 1) then
30 let strong _: loaded integer =
31 bound[0] (let weak (a_88: pointer, a_89: loaded integer) =
32 unseq(pure(x),
33 let weak (a_91: loaded integer, a_92: loaded integer) =
34 unseq(let weak a_90: pointer = pure(x) in
35 load("signed int", a_90), pure(Specified(1))) in
36 pure(case (a_91, a_92) of
37 | (Specified(a_93: integer), Specified(a_94: integer)) =>
38 Specified(catch_exceptional_condition("signed int",
39 conv_int("signed int", a_93) + conv_int("signed int", a_94)))
40 | _: (loaded integer,loaded integer) =>
41 undef(<<UB036_exceptional_condition>>)
42 end)) in
43 let weak _: unit =
44 neg(store("signed int", a_88, conv_loaded_int("signed int", a_89))) in
45 pure(conv_loaded_int("signed int", a_89))) in
46 pure(Unit) ;
47 skip)
48 else
49 skip
50 | Unspecified(_: ctype) =>
51 nd(let strong _: loaded integer =
52 bound[0] (let weak (a_88: pointer, a_89: loaded integer) =
53 unseq(pure(x),
54 let weak (a_91: loaded integer, a_92: loaded integer) =
55 unseq(let weak a_90: pointer = pure(x) in
56 load("signed int", a_90), pure(Specified(1))) in
57 pure(case (a_91, a_92) of
58 | (Specified(a_93: integer), Specified(a_94: integer)) =>
59 Specified(catch_exceptional_condition("signed int",
60 conv_int("signed int", a_93) + conv_int("signed int", a_94)))
61 | _: (loaded integer,loaded integer) =>
62 undef(<<UB036_exceptional_condition>>)
63 end)) in
64 let weak _: unit =
65 neg(store("signed int", a_88, conv_loaded_int("signed int", a_89))) in
66 pure(conv_loaded_int("signed int", a_89))) in
67 pure(Unit) ;
68 skip, skip)
69 end) ;
70 kill(x) ;
71 (save ret_71: loaded integer (a_72: loaded integer:= Specified(0)) in
72 pure(a_72))

53

As the branches e1 and e2 are duplicated in the Core expression, a sequence of C
programs of the form

if(1) { x = x + 1; }

if(1) { if(1) { x = x + 1; } }

if(1) { if(1) { if(1) { x = x + 1; } } }

would result in an exponential growth in size of the generated Core program due
to the nested case expressions, with x=x+1 appearing twice in the �rst program
(once for each branch of case), four times in the second, and eight in the third.

Branching based on unspeci�ed or uninitialized values is a rare condition that is
often unintentional; the WG14 committee discussed whether control-�ow choices
based on unspeci�ed values should be unde�ned behaviour [43] (ISO C11 is un-
clear). We adopt this latter semantics and consider branching on unspeci�ed
values to be unde�ned:

if Unspecified(_) then e1 else e2 => undef(...)

This conveniently removes the exponential growth in code size with nested ifs (and
loops, which branch on the loop condition) and was implemented as a four-line
change in the de�nition of the Cerberus model. This demonstrates the decou-
pling of the model checker with the semantic interpretation of C, with the model
checker's implementation being unchanged.

5.3.2 Experiments

Sequential model: loops

We evaluate the performance of our sequential model on loops of increasing depth
n, with programs of the following from:

int main(void) {
int x = 0;
while (x < n) {
x++;

}
assert(x == n);
return 0;

}

Figure 5.4a plots the loop unwind depth against the runtime in seconds averaged
over �ve runs. The runtime using Z3 integers to represent numerical values scales
linearly with loop unwind depth, with loops of depth 50 analysed in ∼5s. This
corresponds to Core program size scaling linearly (Core program size in characters
is approximately 15000n).

The runtime of the bit-vector representation (size 64) appeared to scale quadrati-
cally with the loop unwind and program size. For this program, integer represen-
tation appeared more e�cient. Integer representation is also consistent with the

54

(a) Runtime vs loop bound for the sequen-
tial mode on a program incrementing a
counter in a while loop:
{int x=0; while(x<n){x++;} assert...}

(b) Runtime (log scale) vs number of x++

statements for a simple program of the
form
{int x=0; x++; ...; x++; assert...}

Figure 5.4: Experiment runtimes

semantics of Core integers as mathematical integers. However, non-linear integer
arithmetic is undecidable and operations such as bit-shifts are implemented more
e�ciently with bit-vectors. We elect to enable the choice of representation with a
�ag.

Concurrent mode: scaling with memory actions

While the sequential model scales linearly with program size, the concurrent model
depends on the number of memory actions. We illustrate this by considering a
sequence of C programs of the following form, where the nth program contains n
x++ statements. The generated Core program, and the number of memory actions,
scales linearly with the number of x++ statements (the nth program contains 2n+3
memory actions).

int main(void) {
int x = 0; // create, store
x++; // load, store; repeat n times
x++;
assert (x == 2); // load: assert (x == n)

}

The results are plotted in Figure 5.4b. We plot the runtime for the concurrent
and sequential models on the C program, as well as for the concurrent model on
analogous hand-written Core programs to reduce the size of the Core program be-
ing analysed. We observe exponential scaling with the number of memory actions
for the concurrent implementation, with minor di�erences between analysing C
programs and hand-written Core programs. This suggests the number of mem-
ory actions dominates runtime for the concurrent model. The sequential model
handles these programs in <500ms.

We expressed memory constraints in the concurrent mode using SMT quanti�ers.

55

actions # executions C runtime (s)
Hand-written

Core runtime (s)

LB+acq_rel+acq_rel 12 (8) 3 11.1 1.7
LB+rlx_rlx+rlx_rlx 12 (8) 4 8.4 1.1
LB+Rsc_Wsc+Rsc_Wsc 12 (8) 3 11.7 1.7
MP+na_rel+acq_na 12 (8) 3 12.0 1.3
SB+rel_acq+rel_acq 12 (8) 4 9.7 1.1
SB+Wsc_Rsc+Wsc_Rsc 12 (8) 3 (6) 13.9 (22.2) 0.9
WRC+rel+acq_rel+acq_acq 15 (9) 7 25.0 2.1
IRIW+rel+rel+acq_acq+acq_acq 18 (10) 16 83.5 4.6
IRIW+Wsc+Wsc+Rsc_Rsc+Rsc_Rsc 18 (10) 15 (180) 79.7 (186.3) 5.3

Table 5.2: Runtime to �nd all consistent executions for various litmus tests. The number
of actions refer to the number of memory actions in a Core program generated from the
C program, and the number in a hand-written Core litmus test (parenthesized). Here,
the number of consistent executions treat di�erent sc relations with the same reads-from
relation as the same execution, with the number of executions including di�erent sc

relations (and corresponding runtime) parenthesized.

Solving constraints with quanti�ers is generally less e�cient [7] than solving the
simple Boolean constraints used to express memory constraints in the sequential
mode. Further work could involve reducing or eliminating the use of quanti�ers.

Concurrent mode: litmus test

The concurrency mode was designed as a tool to explore C11's relaxed memory
model, along the lines of Cppmem [12] but with the ability to handle a larger
fragment of C. We summarize the runtimes to �nd all consistent executions in
Table 5.2 for litmus tests written in C as well as hand-written litmus tests in Core
(see Appendix B).

5.4 Related work

5.4.1 Bounded model checking

SAT-based bounded model checking is an e�cient technique for veri�cation of C
programs [15]. CBMC [39], a bounded model checker targeted at embedded soft-
ware, models a range of properties, including array bound violations and pointer
safety, by unwinding loops and passing a bit-vector equation to a decision proce-
dure. Our approach was inspired by CBMC, with a focus on using principled C
semantics and exploring the C11 concurrency model.

CBMC uses GOTO programs as an intermediate representation, performing static
analysis to instrument GOTO programs with assertions guarding for behaviours

56

such as bu�er over�ow. Our intermediate representation, Core, is based on elabo-
ration of a formal C semantics, which explicitly represents unde�ned behaviour as
a primitive construct. By using Cerberus as a semantic interpretation for C, our
model checker is designed for consistency with the ISO standard. For example, in
CBMC, no error is detected in the following�reads of uninitialised values appear
to be given a stable value, though these semantics are unclear in the ISO standard.

int main(void) {
int x, y, z;
if (x) {
y = x;
z = x;
assert (y == z);

}
}

CBMC supports concurrency and weak memory [1], however the support is tar-
geted at embedded systems and does not address the C11 concurrency model. We
contribute towards this area.

CBMC inspired various other BMCs, such as ESBMC [47], targeted for multi-
threaded software, and LLBMC [46], which uses LLVM's intermediate representation
as an intermediate language. Using Core as an intermediate language shares the
advantage of having a more explicit syntax and semantics than C to aid logical
encoding and the program being analysed being closer to the program actually
executed. Using LLVM-IR as the intermediate language has the disadvantage
that bugs �optimized away� by the compiler will not be detected, and does not
focus on checking programs according to the ISO standard.

5.4.2 C11 concurrency

Mathematical formalisations of the C11 concurrency model have been developed
by Batty et al. [11, 13] and others [49]. The Cppmem tool [12] enables the vi-
sualization and analysis of possible executions of litmus test programs. Cppmem
exhaustively enumerates all program executions, and checks their validity against
semantics speci�ed in Isabelle/HOL [50]. Blanchette et al. [19] used the Nitpick
tool [18] to e�ciently explore the C/C++11 executions. These tools were intended
to explore litmus test examples � we aim for an approach that handles a larger
fragment of sequential C, while being easily adaptable for concurrent C.

Norris and Demsky presented CDSChecker [51], a stateless model checker that
exhaustively explores all possible executions consistent with the C/C++11 mem-
ory model using a hand-written constraints solver and partial order reduction.
We also use a constraints-based approach to model the C11 memory model, using
an SMT solver as the backend as opposed to a hand-written constraint solver.
This constraints-based approach is largely decoupled from the remainder of the
model checker: one could potentially automatically generate constraints based on

57

a memory model speci�cation [2] to analyse di�erent memory models. Finally,
CDSChecker assumes a total order of operations in a thread (no unsequenced
evaluation). We relax this assumption.

58

Chapter 6

Conclusion

This dissertation presented a principled approach to bounded model checking C
based on an explicit, formal semantics. By �rst translating C source into an
intermediate language based on a formalization of ISO C11 that makes explicit
many subtle aspects of C such as unde�ned behaviours and uninitialized values,
this approach decouples the often-ambiguous interpretation of C semantics with
the implementation of the model checker and increases the clarity in what is being
veri�ed.

In addition to model checking single-threaded C programs, we implement an illus-
trative fragment of the C11 concurrency model based on an axiomatic formaliza-
tion by Batty et al. [11, 13]. Apart from verifying the correctness of multi-threaded
programs, our tool can be used to analyse and visualize the possible executions
and weak memory behaviour of concurrent programs.

6.1 Future work

Along the lines of consistency with ISO C11, future work could involve increas-
ing feature completeness and thoroughly handling the semantics of pointers and
memory objects by implementing a more explicit C memory object model. The C
memory object model is unclear in the ISO standard and in some aspects con�icts
with de facto usage [43].

There is scope for exploring optimizations to generate satis�ability problems that
are can be solved more e�ciently by satis�ability solvers. For instance, constant
propagation and common subexpression elimination could be used to reduce the
size of the SMT problem, and incremental techniques used for lazy unrolling of
loops. The e�cient representation of consistent executions in the C11 concurrency
model as an SMT problem is an area for future work.

59

Bibliography

[1] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for
e�cient bounded model checking of concurrent software. In International
Conference on Computer Aided Veri�cation, pages 141�157. Springer, 2013.

[2] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Mod-
elling, simulation, testing, and data mining for weak memory. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 36(2):7, 2014.

[3] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded
model checking of software using SMT solvers instead of SAT solvers. In-
ternational Journal on Software Tools for Technology Transfer, 11(1):69�83,
2009.

[4] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A Decade of Software
Model Checking with SLAM. Commun. ACM, 54(7):68�76, July 2011.

[5] Thomas Ball, Andreas Podelski, and Sriram Rajamani. Boolean and Carte-
sian abstraction for model checking C programs. Tools and Algorithms for
the Construction and Analysis of Systems, pages 268�283, 2001.

[6] Balyo, Tomá² and Heule, Marijn JH and Järvisalo, Matti. Proceedings of
SAT Competition 2017: Solver and Benchmark Descriptions. 2017.

[7] Clark Barrett, Morgan Deters, Leonardo De Moura, Albert Oliveras, and
Aaron Stump. 6 years of SMT-COMP. Journal of Automated Reasoning,
50(3):243�277, 2013.

[8] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard:
Version 2.0. In Proceedings of the 8th International Workshop on Satis�ability
Modulo Theories (Edinburgh, England), volume 13, page 14, 2010.

[9] Clark Barrett and Cesare Tinelli. Satis�ability modulo theories. In Handbook
of Model Checking, pages 305�343. Springer, 2018.

[10] Clark W Barrett, David L Dill, and Jeremy R Levitt. A decision procedure for
bit-vector arithmetic. In Proceedings of the 35th annual Design Automation
Conference, pages 522�527. ACM, 1998.

[11] Mark Batty, Alastair F Donaldson, and John Wickerson. Overhauling SC
atomics in C11 and OpenCL. ACM SIGPLAN Notices, 51(1):634�648, 2016.

60

[12] Mark Batty, Scott Owens, Jean Pichon, Susmit Sarkar, and Peter Sewell.
Cppmem. Available at http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/.

[13] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.
Mathematizing C++ concurrency. ACM SIGPLAN Notices, 46(1):55�66,
2011.

[14] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A
few billion lines of code later: using static analysis to �nd bugs in the real
world. Communications of the ACM, 53(2):66�75, 2010.

[15] Dirk Beyer. Software veri�cation with validation of results. In International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 331�349. Springer, 2017.

[16] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Sym-
bolic model checking without BDDs. Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 193�207, 1999.

[17] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Masahiro Fujita, and
Yunshan Zhu. Symbolic model checking using sat procedures instead of bdds.
In Proceedings of the 36th annual ACM/IEEE Design Automation Confer-
ence, pages 317�320. ACM, 1999.

[18] Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterexample
generator for higher-order logic based on a relational model �nder. In Inter-
national conference on interactive theorem proving, pages 131�146. Springer,
2010.

[19] Jasmin Christian Blanchette, Tjark Weber, Mark Batty, Scott Owens, and
Susmit Sarkar. Nitpicking C++ Concurrency. In Proceedings of the 13th
International ACM SIGPLAN Symposium on Principles and Practices of
Declarative Programming, PPDP '11, pages 113�124, New York, NY, USA,
2011. ACM.

[20] Hans-J Boehm and Sarita V Adve. Foundations of the C++ concurrency
memory model. In ACM SIGPLAN Notices, volume 43, pages 68�78. ACM,
2008.

[21] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila,
Peter Van Rossum, Stephan Schulz, and Roberto Sebastiani. An incremen-
tal and layered procedure for the satis�ability of linear arithmetic logic. In
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 317�333. Springer, 2005.

[22] Robert Brummayer and Armin Biere. Boolector: An e�cient SMT solver for
bit-vectors and arrays. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 174�177. Springer, 2009.

[23] Sebastian Burckhardt, Rajeev Alur, and Milo MK Martin. CheckFence:

61

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

checking consistency of concurrent data types on relaxed memory models.
In ACM SIGPLAN Notices, volume 42, pages 12�21. ACM, 2007.

[24] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson En-
gler. An empirical study of operating systems errors. In ACM SIGOPS
Operating Systems Review, volume 35, pages 73�88. ACM, 2001.

[25] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded
model checking using satis�ability solving. Formal methods in system design,
19(1):7�34, 2001.

[26] Edmund Clarke and Daniel Kroening. Hardware Veri�cation using ANSI-C
Programs as a Reference . In Proceedings of ASP-DAC 2003, pages 308�311.
IEEE Computer Society Press, January 2003.

[27] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 168�176. Springer, 2004.

[28] Edmund Clarke, Daniel Kroening, and Karen Yorav. Behavioral consistency
of C and Verilog programs using bounded model checking. In Proceedings of
the 40th annual Design Automation Conference, pages 368�371. ACM, 2003.

[29] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
press, 1999.

[30] Ernie Cohen, Michaª Moskal, Stephan Tobies, and Wolfram Schulte. A precise
yet e�cient memory model for C. Electronic Notes in Theoretical Computer
Science, 254:85�103, 2009.

[31] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. SMT-based bounded
model checking for embedded ANSI-C software. IEEE Transactions on Soft-
ware Engineering, 38(4):957�974, 2012.

[32] Leonardo De Moura and Nikolaj Bjørner. Z3: An e�cient SMT solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337�340. Springer, 2008.

[33] Chucky Ellison and Grigore Rosu. An executable formal semantics of C with
applications. ACM SIGPLAN Notices, 47(1):533�544, 2012.

[34] Chris Hathhorn, Chucky Ellison, and Grigore Ro³u. De�ning the unde�ned-
ness of C. In ACM SIGPLAN Notices, volume 50, pages 336�345. ACM,
2015.

[35] ISO. ISO C Standard 1999. Technical report, 1999. ISO/IEC 9899:1999 draft.

[36] Franjo Ivancic, Ilya Shlyakhter, Aarti Gupta, Malay K Ganai, Vineet Kahlon,
Chao Wang, and Zijiang Yang. Model checking C programs using F-Soft. In
Computer Design: VLSI in Computers and Processors, 2005. ICCD 2005.
Proceedings. 2005 IEEE International Conference on, pages 297�308. IEEE,
2005.

62

[37] ISO Jtc. SC22/WG14. ISO/IEC 9899: 2011. Informa-
tion technology�Programming languages�C. http://www. iso.
org/iso/iso_catalogue/catalogue_ tc/catalogue_detail. htm, 2011.

[38] Robbert Krebbers and Freek Wiedijk. A Formalization of the C99 Standard in
HOL, Isabelle and Coq. In International Conference on Intelligent Computer
Mathematics, pages 301�303. Springer, 2011.

[39] Daniel Kroening and Michael Tautschnig. CBMC�C bounded model checker.
In TACAS, pages 389�391, 2014.

[40] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. Repairing sequential consistency in C/C++ 11. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 618�632. ACM, 2017.

[41] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mis-
takes: a comprehensive study on real world concurrency bug characteristics.
ACM SIGOPS Operating Systems Review, 42(2):329�339, 2008.

[42] Paul E McKenney, Torvald Riegel, Je� Preshing, Hans Boehm, Clark Nel-
son, and Olivier Giroux. Towards implementation and use of memory order
consume. ISO SC22 WG21 N, 4321, 2015.

[43] Kayvan Memarian, Victor Gomes, and Peter Sewell. N2223: Clarifying the C
Memory Object Model: Introduction to N2219 - N2222. http://www.open-std.
org/jtc1/sc22/wg14/www/docs/n2223.htm, 2018.

[44] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis,
David Chisnall, Robert NM Watson, and Peter Sewell. Into the depths of C:
elaborating the de facto standards. In ACM SIGPLAN Notices, volume 51,
pages 1�15. ACM, 2016.

[45] Kayvan Memarian and Peter Sewell. What is C in practice? (Cerberus
survey), 2015. Website.

[46] Florian Merz, Stephan Falke, and Carsten Sinz. LLBMC: Bounded model
checking of C and C++ programs using a compiler IR. In International
Conference on Veri�ed Software: Tools, Theories, Experiments, pages 146�
161. Springer, 2012.

[47] Jeremy Morse, Mikhail Ramalho, Lucas Cordeiro, Denis Nicole, and Bernd
Fischer. ESBMC 1.22. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 405�407. Springer, 2014.

[48] Dominic P Mulligan, Scott Owens, Kathryn E Gray, Tom Ridge, and Peter
Sewell. Lem: reusable engineering of real-world semantics. In ACM SIGPLAN
Notices, volume 49, pages 175�188. ACM, 2014.

[49] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. An operational

63

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2223.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2223.htm

semantics for C/C++11 concurrency. Draft available at www.cl.cam.ac.uk/

~pes20/cerberus, 2016.

[50] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL:
a proof assistant for higher-order logic, volume 2283. Springer Science &
Business Media, 2002.

[51] Brian Norris and Brian Demsky. CDSchecker: checking concurrent data struc-
tures written with C/C++ atomics. In ACM SIGPLAN Notices, volume 48,
pages 131�150. ACM, 2013.

[52] Ishai Rabinovitz and Orna Grumberg. Bounded model checking of concurrent
programs. In Computer Aided Veri�cation, pages 319�325. Springer, 2005.

[53] Bastian Schlich and Stefan Kowalewski. Model checking C source code for
embedded systems. International Journal on Software Tools for Technology
Transfer, 11(3):187�202, Jul 2009.

[54] Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. Test suites
for benchmarks of static analysis tools. In Software Reliability Engineering
Workshops (ISSREW), 2015 IEEE International Symposium on, pages 12�15.
IEEE, 2015.

[55] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and
M Frans Kaashoek. Unde�ned behavior: what happened to my code? In
Proceedings of the Asia-Paci�c Workshop on Systems, page 9. ACM, 2012.

[56] Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando Solar-
Lezama. Towards optimization-safe systems: Analyzing the impact of un-
de�ned behavior. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 260�275. ACM, 2013.

[57] WG14. Defect report 260. http://www.open-std.org/jtc1/sc22/wg14/www/

docs/dr_260.htm, 2004.

[58] WG14. Defect report 451. http://www.open-std.org/Jtc1/sc22/WG14/www/

docs/dr_451.htm, 2013.

64

www.cl.cam.ac.uk/~pes20/cerberus
www.cl.cam.ac.uk/~pes20/cerberus
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/Jtc1/sc22/WG14/www/docs/dr_451.htm
http://www.open-std.org/Jtc1/sc22/WG14/www/docs/dr_451.htm

Appendix A

Core integer conversion functions

This appendix contains the Core pure functions used to perform integer conversion
as used in Cerberus. The functions are annotated with the their corresponding
de�nition in the ISO standard.

fun is_representable (n: integer, ty: ctype): boolean :=
Ivmin(ty) <= n /\ n <= Ivmax(ty)

-- see 5.1.2 from ISO/IEC 10967-1:1994(E)
fun wrapI(ty: ctype, n: integer) : integer :=

let dlt: integer = Ivmax(ty) - Ivmin(ty) + 1 in
let r: integer = n rem_f dlt in
if r <= Ivmax(ty) then r

else r - dlt

fun catch_exceptional_condition (ty: ctype, n: integer) : integer :=
if is_representable(n, ty) then n
else undef(<<UB036_exceptional_condition>>)

fun conv_int (ty: ctype, n: integer): integer :=
-- (STD 6.3.1.2#1) When any scalar value is converted to _Bool,
-- the result is 0 if the value compares equal to 0;
-- otherwise, the result is 1.
if ty = !(_Bool) then
if n = 0 then 0 else 1

-- (STD 6.3.1.3#1) When a value with integer type is converted to
-- another integer type other than _Bool, if the value can be represented
-- by the new type, it is unchanged.
else
if is_representable(n, ty) then
n

-- (STD 6.3.1.3#2) Otherwise, if the new type is unsigned, the value
-- is converted by repeatedly adding or subtracting one more than the
-- maximum value that can be represented in the new type until the value
-- is in the range of the new type.
else
if is_unsigned(ty) then
wrapI(ty, n)

-- (STD 6.3.1.3#3) Otherwise, the new type is signed and the value
-- cannot be represented in it; either the result is
-- implementation-defined or an implementation-defined signal is raised.

else
<Integer.conv_nonrepresentable_signed_integer>(ty, n)

65

Appendix B

Litmus tests

This appendix contains the litmus tests (taken from the Cerberus test suite and
Cppmem) used to test and evaluate the model checker.

LB: Load bu�ering

The load bu�ering litmus test with acquire/release pairs. The values of z1 and z2

cannot both be 1. This program can return 0, 1, or 2. If the memory order were
relaxed, the values of z1 and z2 can both be 1 (and the program can also return
3).

#include <stdatomic.h>

int main() {
_Atomic(int) x=0, y=0;
int z1, z2;
{-{ { z1 = atomic_load_explicit(&x, memory_order_acquire);

atomic_store_explicit(&y, 1, memory_order_release); }
||| { z2 = atomic_load_explicit(&y, memory_order_acquire);

atomic_store_explicit(&x, 1, memory_order_release); } }-};
return z1 + (2 * z2);

}

66

MP: Message passing

Message passing of data held in the non-atomic variable x with release/acquire
synchronisation on y. If the value of z1 is 1, the read must see the write and thus
the value of z2 should also be 1. This program could return 1 or 2, but not 0.

#include <stdatomic.h>

int main(void) {
int x = 0;
_Atomic(int) y = 0;
int z1, z2;
{-{ { x = 1;

atomic_store_explicit(&y, 1, memory_order_release); }
||| { z1 = atomic_load_explicit(&y, memory_order_acquire);

if (z1 == 1)
z2 = x;

else
z2 = 2; } }-};

return z2;
}

SB: Store bu�ering

The store bu�ering litmus test with release-acquire pairs. The reads can both see
0 in the same execution. This program can return 0, 1, 2, or 3. If the memory
orders were instead SC, the reads would not be able to both see 0.

#include <stdatomic.h>

int main() {
_Atomic(int) x=0, y=0;
int z1, z2;
{-{ { atomic_store_explicit(&y, 1, memory_order_release);

z1 = atomic_load_explicit(&x, memory_order_acquire); }
||| { atomic_store_explicit(&x, 1, memory_order_release);

z2 = atomic_load_explicit(&y, memory_order_acquire); } }-};
return z1 + (2 * z2);

}

67

WRC: Write to read causality

If z1 and z2 both read 1, then it is necessarily the case that z3 also reads one.
There are seven possible return values ((z1,z2,z3)=(1,1,0) is not allowed).

#include <stdatomic.h>

int main() {
_Atomic(int) x = 0;
_Atomic(int) y = 0;
int z1; int z2; int z3;

{-{ { atomic_store_explicit(&x, 1, memory_order_release); }
||| { z1 = atomic_load_explicit(&x, memory_order_acquire);

atomic_store_explicit(&y, 1, memory_order_release); }
||| { z2 = atomic_load_explicit(&y, memory_order_acquire);

z3 = atomic_load_explicit(&x, memory_order_acquire);
}

}-}
return (z1 + 2 * (z2 + 2 * (z3)));

}

IRIW: Independent reads of independent writes

This tests whether the reading threads must see the writes to x and y in the same
order. For release-acquire pairs, the writes can be reordered and there are 16 possi-
ble return values. For the sequentially-consistent memory order, the writes can not
be reordered and there are 15 possible return values ((z1,z2,z3,z4) = (1,0,0,1))
is not allowed.

#include <stdatomic.h>

int main(void) {
_Atomic(int) x = 0;
_Atomic(int) y = 0;
int z1; int z2; int z3; int z4;
{-{ atomic_store_explicit(&x, 1, memory_order_release);
||| atomic_store_explicit(&y, 1, memory_order_release);
||| { z1 = atomic_load_explicit(&x, memory_order_acquire);

z2 = atomic_load_explicit(&y, memory_order_acquire); }
||| { z3 = atomic_load_explicit(&y, memory_order_acquire);

z4 = atomic_load_explicit(&x, memory_order_acquire); }
}-};
return (z1 + 2 * (z2 + 2 * (z3 + 2 * z4))); }

68

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions

	Preliminaries
	Correctness of C programs
	Undefined behaviour

	Cerberus and the Core language
	SMT-based bounded model checking
	SAT and SMT solvers

	Model checking sequential Core programs
	Overview
	Example: Core program to SMT problem
	Core-to-Core rewrites
	Representation of Core expressions in SMT
	Core types to SMT sorts
	Compositional representation of Core expressions

	Syntactic constraints
	Pattern matching
	Summary table

	Verification conditions
	Memory constraints
	Modelling program state
	Pointer sort
	Memory actions
	Branching control flow
	Optimisation: alias analysis

	Runs and saves
	Return values
	Function calls
	Loops

	Summary

	Model checking C11 concurrency
	Relaxed memory models
	C11 memory model
	Relations

	Operational semantics: pre-execution
	Candidate executions
	Consistent executions
	Auxiliary relations

	Race-free executions
	Summary: model checking procedure

	Evaluation
	Example programs
	Single-threaded program
	Multi-threaded litmus test

	Correctness of implementation
	Toyota software analysis benchmark
	Litmus tests

	Performance
	From C to Core
	Experiments

	Related work
	Bounded model checking
	C11 concurrency

	Conclusion
	Future work

	Bibliography
	Core integer conversion functions
	Litmus tests

