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Abstract
In this work we have proposed an improvement in the shape of the V-shaped microcantilever
by varying the width profile. In this paper we have studied the variation of resonant frequency
as a function of changes in profile determined by the length of the microcantilever, keeping
constant the active area for binding. It is observed that for the optimized nonlinear profile the
angle at the tip is 91.41◦, more than twice the angle at the tip of the linear profile cantilever.
The variation of the equivalent spring constant with changes in the profile is also studied. It is
proposed that the optimum nonlinear profile cantilever has a spring constant of
∼0.39 µN µm−1. The resonant frequency is obtained by using the Rayleigh–Ritz method, the
deflection model and the SUGAR simulator. The results are compared and an improvement in
the performance of the cantilever is observed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Microcantilevers are some of the earliest and most elementary
MEMS devices and have been used in many applications.
Atomic force microscopy (AFM) and various applications that
have enabled nanotechnology rely mainly on microcantilevers.
Over the last few years, these cantilever systems have provided
a new platform for sensing chemical and biological materials
and for a better understanding of their reaction mechanisms.
The performance of microcantilevers is determined by various
parameters such as stiffness, quality factor and resonant
frequency. With the goal of improving the performance,
various researchers have studied and developed models for
understanding cantilever behaviour [1–5]. There is always
a trade-off between parameters such as deflection and the
resonant frequency [6]. In AFM, cantilevers sense forces
and when the deflection of the cantilever is measured
optically, good deflection capability is required. For biological
applications, surface effects play an important role and the
binding can be related to changes in the resonant frequency.
High sensitivity is prevalent in systems with higher resonant
frequency [1]. The active region available on the upper surface
of the cantilever is also an important parameter for chemical
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or biological sensors. Different cantilever parameters are
weighted according to the requirements of the application
for optimizing the performance. Rectangular, V-shaped and
T-shaped cantilevers are the most commonly used cantilever
geometry for sensors. V-shaped cantilevers, with reduced
lateral twisting due to their geometry, have so far been
analysed using the parallel beam approximation (PBA) [7].
The V-shaped cantilever, with linear arms, has been equated as
the difference of two solid triangles and the resonant frequency
has been obtained using energy balancing principles and the
Rayleigh–Ritz (RR) method [7].

To date, many new models have been developed for
improved microcantilever profile for sensing applications
[6–8], but no work has been reported earlier that discusses the
variation in the width profile of a V-shaped microcantilever.

In this work, we optimize and improve the V-profile to get
an improved resonant frequency using the variation in the width
profile of a microcantilever and propose an analytical model
of the equivalent spring constant of the structure assuming that
the deflection is small and hence suitable for linearization. The
mass distribution of the cantilever also decides the resonant
frequency. Since different parts of the cantilever vibrate with
different amplitudes, the direct mass of the cantilever does not
provide a clear correlation between the resonant frequency and
the physical dimensions. In this work the total sensing area on
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the cantilever surface has been maintained constant and the
thickness is not varied.

2. Theory

When a system is forced into oscillations, the frequency of
the driving force decides the amplitude and a peak response is
obtained at the resonant frequency. The fundamental resonant
frequency decides the mass sensitivity of cantilevers and
assuming that the added mass causes negligible variation in the
stiffness of the cantilever, the change in the resonant frequency
of cantilevers is obtained as [1]

�f

�m
= −1

2

f0

m
, (1)

where �f is the change in the resonant frequency, �m is the
mass binding on the cantilever surface, f0 is the fundamental
resonant frequency and m is the cantilever mass. For a greater
change in frequency, i.e. better mass sensitivity, the required
value of f0 is very large. Modelling this frequency is an
important step towards the total analysis of cantilevers.

2.1. Existing model

Considering a linear V-shaped cantilever with E as the Young’s
modulus, ρ as the density, H as the cantilever thickness, W(x)

as the varying width and l1 as the length, from the symmetry
of the V-shaped cantilever and by using the RR method the
resonant frequency and W(x) are given as [7],
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where W1 is the width of the outer triangle, W0 is the width
of the inner triangle and x is the distance along the direction
shown in figure 1. The V-shaped cantilever is assessed as
the difference of a smaller triangle from the outer triangle.
L1 is the length of the outer triangle and L0 is the length of
the inner triangle. Assuming ρ = 104 kg m−3, E = 1010 Pa,
H = 1 µm and keeping the dimensions of the outer triangle
as L1 = 100 µm and W1 = 80 µm, using (2a) and (2b),
the variation of the resonant f with the dimensions of the
inner triangle, i.e. in the inner gap, is shown in figure 2.
The maximum resonant frequency of ∼33 KHz is obtained
for a V-structure with no gap in the centre, i.e. a simple solid
triangular cantilever beam [7].

2.2. New model: second order profile microcantilever

In the existing works, the width profile of the V-shape has
been considered to be linear. In this section, we investigate
the effects of choosing a general second order profile and

Figure 1. Structure of a general V-shaped microcantilever.

Figure 2. Variation of the resonant frequency f with change in
dimensions L0 and W0 of the inner cantilever gap.

Figure 3. Structure of a proposed V-shaped microcantilever with a
nonlinear width profile.

then proceed to optimize the coefficients. Using the result
of the previous model, a microcantilever with no internal gap
is considered. Symmetry is maintained about the x-axis.
Figure 3 shows the microcantilever with a nonlinear width
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Figure 4. Variation of the cantilever boundary with change in l. The
shape corresponding to l = 100 µm is the triangular cantilever.

profile. The profile on one half of the microcantilever is given
by a general second order polynomial,

W(x) = ax2 + bx + c (3)

with the following conditions, existing in the linear profile, to
retain the salient features of the V-shape:

W(0) = W1

2
, W(l) = 0, W ′(x) � 0,

x ∈ [0, l], (4)

where l is the length of the nonlinear profile microcantilever
and W(x) is the half width of the microcantilever as a function
of x. Conditions in (4) also ensure that the maximum width in
any resulting profile is W1 and is retained at the fixed end. The
area on top of the proposed nonlinear profile microcantilever,
Anl, is the active sensing area and is kept the same as the area
of the triangular microcantilever, Al , obtained in the existing
model. This can be expressed mathematically as

Anl = 2
∫ l

0
W(x) · dx = Al = 1

2
W1l1. (5)

Using (3), (4) and (5), the coefficients can be determined as a
function of one independent variable l, and the final expression
for the profile is given by

W(x) =
(

3W1l − 6Al

2l2

)
x2 +

(
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l2

)
x +

W1

2
. (6)

The value of l independently decides the profile and is a
parameter that decides the resonant frequency. Figure 4 shows
the cantilever shape as a function of the total length using the
same dimensions and material constants as those mentioned
in the previous subsection. A vertical cross section along the
length–width plane in figure 4 represents the top view of the
cantilever profile. The minimum limit for the total length l

is decided by (4) and (5). The starting value of l is ∼76 µm.
Here, the lower limit is set by the condition W ′(x) � 0. There
is no mathematical constraint on the maximum value of l.

2.3. Effective spring constant

Let the deflection of the cantilever be v(x) along the length of
the cantilever. The second order differential equation of the
bending function is given by [7]

d2v(x)

dx2
= F

EI
(l − x), (7)

where F is the applied force, E is Young’s modulus, I is the
cross-sectional area moment of inertia. The area moment of
inertia varies as

I (x) = 2W(x)H 3

12
. (8)

Since W(x = l) = 0, W(x) is modified as

W(x) = ax2 + bx + c = a(x − l)(x − p), p = c

la
,

(9)

where l and p are the roots of W(x).
Hence equation (7) becomes

d2v(x)

dx2
= −6F

aEH 3(x − p)
. (10)

Integrating (10) twice, and using the boundary conditions,
v(x = 0) = 0 and v′(x = 0) = 0, the deflection function
v(x) is obtained as

v(x) = 6F

aEH 3
[(x − p)(1 − ln(x − p))

+ ln(−p)x + p(1 − ln(−p))]. (11)

For small deflections the effective spring constant Keff is
given by

Keff = F

v(l)
=

{
6

aEH 3
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+ ln(−p)l + p(1 − ln(−p))]

}−1

. (12)

To study the influence of the mass on the resonant frequency,
the calculation of the effective mass is essential. Effective mass
will also provide an alternative method to compute the resonant
frequency since the equivalent stiffness is already known.

The total kinetic energy of elements of the vibrating
cantilever are equated to the kinetic energy of a system with
its mass equivalent to the effective mass and amplitude equal
to the deflection at the cantilever tip. The energy equation is
given by

Ecant = 1

2

∫ l

0
v(x)2ω2dm = Emass = 1

2
meffv(l)2ω2. (13)

The value of meff is calculated from (13) and it is normalized
with respect to the actual mass to make it a dimensionless
quantity called the effective mass coefficient, NEM, which is
defined as

NEM = meff

ρAnlH
, (14)

where Anl is the top surface area of the cantilever and H is the
cantilever thickness. NEM is a fraction that decides exactly
the effect of the mass on dynamic properties. Therefore the
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Figure 5. Resonant frequency curve for varying profiles decided by
the total length of the nonlinear cantilever.

resonant frequency of the system can be calculated by using
the following relation:

f0 = 1

2π

√
Keff

meff
. (15)

3. Results and discussion

Using (1) to (6), the resonant frequency is calculated as a
function of l. In figure 5, the resonant frequency is plotted as
a function of the changes in profile decided by the parameter
l, keeping the active area for binding a constant. From (6),
it is seen that for l = 100 µm the coefficient a = 0 in (3)
and the cantilever has a triangular profile as shown in figure 4,
which results in a resonant frequency of 32.95 KHz seen in
figure 5. The resonant frequency corresponding to the optimal
value of l = 76 µm is f = 48.36 KHz, an improvement of
46.77%. The trend in figure 5 indicates that a decrease in the
length of the cantilever leads to an increase in the resonant
frequency. However, it is not advantageous to make extremely
small cantilevers as it reduces the area available for sensing
and the deflection reduces very markedly. Higher resonant
frequency restricts the amplitude of the effects of external noise
and short cantilevers also show more resistance to thermal
noise making our proposed model more insensitive to noise.

In [6], variation in the thickness profile has been proposed
as a method to improve the cantilever performance parameters.
Despite the improvements, it is practically very difficult
to produce cantilevers with continuously varying thickness
profiles such as triangular or quadratic profiles. In our
proposed model, the profile variation suggested is only for
the width and is decided by the design of the mask used in the
photolithography step of the fabrication process.

The variation of the equivalent spring constant with
changes in the profile is shown in figure 6. It is seen that
the stiffness reduces as the length of the cantilever increases.

Figure 6. Effective spring constant of the structure as a function of
the cantilever length.

Figure 7. Effective mass coefficient of the structure as a function of
the cantilever length.

The proposed optimum nonlinear profiles cantilever has a
spring constant of ∼0.39 µN µm−1. The variation of the
effective mass coefficient is shown as a function of the length
of the cantilever in figure 7. It is seen that the effective mass
coefficient decreases almost linearly with the increase in the
length. This is used to further calculate the resonant frequency
of the improved V-shaped microcantilever as a function of its
length.

Figure 8 shows the variation between the angle subtended
at the tip of the V-shaped microcantilever as a function of its
length. It is observed that the angle subtended at the tip of the
linear V-shaped cantilever is 43.6◦. As we know, sharp corners
are very prone to overetching during the process of fabrication.
After photolithography and development, the patterned layer
with openings is used to differentially etch the underlying layer
where the actual cantilever will be formed. At this stage,
the presence of sharp corners leads to excessive undercutting.
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Figure 8. Variation of the angle subtended at the tip of the V-shaped
microcantilever as a function of its length.

Convex corners are sites of preferential etching, undercutting
and get rounded very easily [9]. Convex corner compensation
is essential for structures with very sharp features. For
V-shaped microcantilevers, the final length is very sensitive
to overetching because of the sharp corner at the free end
of the cantilever. In many applications of cantilevers such
as in AFMs, the structure of the cantilever tip is extremely
important. From figure 8 it is observed that for the optimized
nonlinear profile, the angle subtended by the tangents at the
tip is 91.41◦, more than twice the angle at the tip of the
linear profile cantilever. Compared with the linear cantilever
the proposed profile has larger resistance to convex corner
undercutting resulting from the larger angle tip.

The resonant frequency has been modelled using two
different approaches. In order to verify these results, the
simulation of the proposed nonlinear cantilever is done for
varying profiles using the SUGAR simulator. The nonlinear
width profile of the cantilever was obtained by merging 100
rectangular beams of different widths. Figure 9 shows a
comparison of the resonant frequency values obtained from the
RR method, the deflection model in (15) and using the SUGAR
simulations. The result of the RR method is shown by a dashed
curve, values obtained from (15) are plotted as a continuous
curve and the SUGAR simulation results are indicated by
circular points. It is observed that the three results show a
common trend. The governing equations of the finite element
method and the RR method are similar and the results obtained
from the SUGAR simulations and the RR method also show
close resemblance. The effective mass and effective spring
constants obtained for the calculation of resonant frequency
using the deflection method are obtained after assuming linear
behaviour and small displacements. The assumption of
linear spring stiffness and the use of numerical methods for
calculating the effective mass may be responsible for the slight
deviation of the resonant frequency values obtained using
the deflection method shown in figure 9, but this method is
important as it also involves two other parameters, effective

Figure 9. Comparison of the resonant frequency of the V-shaped
microcantilever as a function of its length obtained from different
methods.

mass and stiffness, that provide a qualitative understanding
on the influence of the cantilever profile on the resonance
frequency. The calculation of the effective mass coefficient
will also be applicable while considering the response to mass
addition over the complete top surface. The results of the
three methods shown in figure 9 confirm the improvement in
the resonant frequency with reducing length and increasing
nonlinearity.

4. Conclusion

We have proposed an optimized nonlinear width profile with
improved performance parameters. Keeping the maximum
sensing area and width at the fixed end constant, the proposed
profile has greater resonant frequency and reduction in convex
corner undercutting compared with the linear V-shaped profile.
The final length of the cantilever is less sensitive to process
variations such as overetching and undercutting because of
the intrinsic large angle tip of the proposed profile. Thus the
variation in the width profile provides a new potential method
for improving the performance of microcantilevers.
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