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Abstract

Bitcoin has become the most successful cryptocur-
rency ever deployed, and its most distinctive feature
is that it is decentralized. Its underlying protocol
(Nakamoto consensus) achieves this by using proof
of work, which has the drawback that it causes the
consumption of vast amounts of energy to maintain
the ledger. Moreover, Bitcoin mining dynamics have
become less distributed over time.

Towards addressing these issues, we propose
SpaceMint, a cryptocurrency based on proofs of space
instead of proofs of work. Miners in SpaceMint ded-
icate disk space rather than computation. We argue
that SpaceMint’s design solves or alleviates several of
Bitcoin’s issues: most notably, its large energy con-
sumption. SpaceMint also rewards smaller miners
fairly according to their contribution to the network,
thus incentivizing more distributed participation.

This paper adapts proof of space to enable its use
in cryptocurrency, studies the attacks that can arise
against a Bitcoin-like blockchain that uses proof of
space, and proposes a new blockchain format and
transaction types to address these attacks. Our pro-
totype shows that initializing 1 TB for mining takes
about a day (a one-off setup cost), and miners spend
on average just a fraction of a second per block mined.
Finally, we provide a game-theoretic analysis mod-

∗In an early version, our proposal was called “Spacecoin.”
We changed it to “SpaceMint” due to name conflicts.

eling SpaceMint as an extensive game (the canoni-
cal game-theoretic notion for games that take place
over time) and show that this stylized game satis-
fies a strong equilibrium notion, thereby arguing for
SpaceMint’s stability and consensus.

1 Introduction

E-cash was first proposed by Chaum [8] in 1983, but
did not see mainstream interest and deployment until
the advent of Bitcoin [28] in 2009. With a market
cap of over 300 trillion US dollars by December 2017,
Bitcoin has given an unprecedented demonstration
that the time was ripe for digital currencies.

On the flip side, Bitcoin’s dramatic expansion has
provoked serious questions about the currency’s long-
term sustainability. Bitcoin miners produce proofs of
work (PoW) to add blocks to the blockchain, the pub-
lic ledger of all transactions. For each block added,
there is a reward of newly minted coins. One con-
cern is that proofs of work deplete large amounts
of natural resources: by some estimates from De-
cember 2017, the Bitcoin network consumed over 30
terawatt-hours per year, which exceeds Denmark’s
energy consumption. Moreover, most mining is cur-
rently done by specialized ASICs, which have no use
beyond Bitcoin mining.

A related concern is the emergence of a “mining oli-
garchy” controlled by a handful of powerful entities.

1



One of the original ideas behind basing Bitcoin min-
ing on computing power was that anyone could par-
ticipate in the network by dedicating their spare CPU
cycles, incurring little cost as they would be repur-
posing idle time of already-existing personal comput-
ers. However, modern Bitcoin mining dynamics have
become starkly different [37]: the network’s mining
clout is overwhelmingly concentrated in large-scale
mining farms using special-purpose hardware for Bit-
coin mining, often in collaboration with electricity
producers. As a result, mining with one’s spare CPU
cycles today would result in net loss due to electric-
ity costs. This phenomenon undermines the stability
and security intended by the original decentralized
design.

In light of these issues, there has been increas-
ing interest in cryptocurrencies based on alterna-
tives to proofs of work. The most explored alterna-
tive is proofs of stake (PoStake), in which a miner’s
probability of successfully creating a block increases
with the amount of currency he holds, rather than
the amount of computation he performs. This con-
cept has several incarnations, from ad-hoc implemen-
tations in existing cryptocurrencies [22, 36] to de-
signs with rigorous security proofs in various mod-
els [23, 21, 9, 10]. While these are innovative propos-
als, the early constructions have variously suffered
from attacks that arise due to the inexpensive na-
ture of mining. On the other hand, the more re-
cent proposals are fairly complex, usually running
some kind of Byzantine agreement protocol among
a sufficiently large subset of stakeholders, and thus
diverge substantially from the simplicity of the orig-
inal Nakamoto design. Such schemes also typically
fail in case of low participation (i.e., if stakeholders
are not mostly online).

In this paper, we propose SpaceMint, a cryptocur-
rency that uses proofs of space (PoSpace) [14, 34, 4]
to address the aforementioned issues that occur in
Bitcoin and alternatives such as PoSpace-based cur-
rencies. To mine blocks in SpaceMint, miners invest
disk space instead of computing power, and dedicat-
ing more disk space yields a proportionally higher ex-
pectation of successfully mining a block. SpaceMint
has several advantages compared to a PoW-based
blockchain like Bitcoin, summarized below.

• Ecological: Once the dedicated space for mining
is initialized, the cost of mining is marginal: a
few disk accesses with minimal computation.

• Economical: Unused disk space is readily avail-
able on many personal computers today, and the
marginal cost of dedicating it to SpaceMint min-
ing would be small (by the previous point).1 We
thus expect that space will be dedicated towards
mining even if the reward is much smaller than
the cost of buying disk space for mining. In con-
trast, in PoW-based blockchains rational miners
will stop mining if the reward does not cover the
energy cost.

• Egalitarian: Bitcoin mining is done almost en-
tirely on application-specific integrated circuits
(ASIC) and by large “mining farms,” to the
point that small-scale participation (e.g., based
on general-purpose hardware) is impossible. We
believe SpaceMint to be less susceptible to spe-
cialized hardware than Bitcoin, as discussed in
§6.
Another cause of centralization of mining power
in Bitcoin is mining pools. This paper does
not address that problem directly, but an ele-
gant and simple idea [26] to discourage mining
pools in PoW-based blockchains — namely, hav-
ing the mining process require the secret key to
redeem the block reward – can be straightfor-
wardly adapted for SpaceMint.2

1.1 Challenges and Our Contributions

In order to “replace” PoW by PoSpace to achieve
consensus on the blockchain, the following problems
must be addressed.

• Interactivity: PoSpace, as originally defined [14],
is an interactive protocol. Although the same
is true for the original definition of PoW [13],
there the interaction was very simple (i.e., a
two-message, public-coin protocol). PoSpace re-

1By marginal cost we mean the cost of using disk space that
otherwise would just sit around unused.

2In a PoW this can be achieved by, e.g., not applying the
hash function to a nonce directly, but to its signature. In the
PoS [14] used for SpaceMint, this can be achieved by augment-
ing each “label” that is stored with its signature.
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quires more interaction, thus it is more challeng-
ing to adapt PoSpace to the blockchain setting.
• Determine the winner: In a PoW-based

blockchain like Bitcoin, the probability of a
miner being the first to find an eligible next
block increases with its hashing power. The
Bitcoin protocol prescribes that once an eligible
next block is announced, all miners should ap-
pend that block to the blockchain and continue
mining on the new longest chain. Generating a
PoSpace, on the other hand, is deliberately com-
putationally cheap. We thus need some way to
determine which of many different proofs “wins”.
Moreover, the probability of any miner winning
should be proportional to the space it dedicates,
and we want a miner to learn if he is a likely
winner without any interaction.
• “Nothing-at-stake” problems: When replacing

PoW by proofs that are computationally easy
to generate (such as PoStake or PoSpace), a se-
ries of problems arise known as nothing-at-stake
problems [16].3 The computation-intensive na-
ture of Bitcoin mining is a key property that, in-
formally, ensures that all miners are incentivized
to concentrate their mining efforts on a single
chain, which leads to consensus. When mining
is computationally cheap however, miners can
intuitively (1) mine on multiple chains simulta-
neously, not just the one the protocol specifies,
and (2) try creating many different blocks with
a single proof (of space or of stake) by altering
the block contents slightly (e.g., by using differ-
ent transaction sets) before choosing the most
favorable one to announce. The latter behavior
is known as “(block) grinding”. Those issues are
undesirable as

1. they slow down consensus;
2. they potentially allocate a greater reward

to cheating miners
3. they potentially enable double-spending at-

tacks by an adversary controlling much less
than 50% of the space.

3Although PoSpace-based currencies share some of the is-
sues PoStake-based currencies have, they are robust to others,
in particular, PoSpace does not share the tricky participation
problem of PoStake.

• Challenge grinding: Yet another issue arises
when the content of past blocks can influence
which blocks are added to the blockchain in fu-
ture. Then it may be possible for a miner to
generate a long sequence of blocks whose ear-
lier blocks might have proofs of low quality, but
are generated in a biased way (by “grinding”
through all the possible proofs) so that the miner
can create high quality proofs later in the se-
quence. The problem arises when the overall se-
quence is of higher quality than would be ex-
pected from the miner’s disk space size, due
to the disproportionately high quality of later
blocks. Challenge grinding may be considered a
nothing-at-stake problem, but we state it sepa-
rately as, unlike the other nothing-at-stake prob-
lems, we have not encountered it in other con-
texts.

To tackle the interactivity problem, SpaceMint uses
the Fiat-Shamir paradigm (a standard technique to
replace a public-coin challenge with a hash of the
previous message, already used to adapt PoW for
Bitcoin); additionally, we leverage the blockchain it-
self to record messages of the PoSpace protocol (con-
cretely, we use a special type of transaction to record
the commitment to its space a prover needs to send to
the verifier in the initialization phase of the PoSpace).

To determine the winner, we define a quality func-
tion, which assigns a quality value to a PoSpace proof.
This function can be computed by the miner locally,
and is designed such that the probability of a miner
having the highest-quality proof in the network is
proportional to the space it dedicates.

The nothing-at-stake problems are more challeng-
ing to solve. To tackle these, we introduce several
new ideas and leverage existing approaches. To dis-
incentivize miners from extending multiple chains we
ensure such behavior is detected and penalize it. To
prevent block grinding, SpaceMint ensures that the
PoSpace is “unique”, i.e., a miner can generate ex-
actly one valid proof for every given challenge, and
this challenge itself is uniquely determined by the
proofs that were used to mine a previous block. This
is done by basically running two chains in parallel, a
“proof chain” that contains the proofs, and a “signa-
ture chain” that contains the transactions.
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Finally, to address challenge grinding, SpaceMint
prescribes that past blocks influence the quality of
short sequences of future blocks, thus exponentially
driving down the probability that a miner could gen-
erate a sequence of blocks of disproportionately high
quality by exploiting the relationship between past
and future blocks.

The idea of making the challenge for a block a de-
terministic function of a unique credential of the re-
source that “won” a previous block – in combination
with having a quality function by which miners can
locally decide if they are likely winners – has been
used in subsequent blockchain proposals like Algo-
rand [23] or the Chia Network [3].

We also implement and evaluate the modified
PoSpace to demonstrate the effectiveness of our
scheme. Even for space larger than 1 TB, we show
that (1) miners need less than a second to check if
they are likely to “win” and therefore should gener-
ate a candidate next block, (2) block generation takes
less than 30 seconds, and (3) verifying the validity of
a block takes a fraction of a second. Moreover, these
numbers grow logarithmically with larger space.

Finally, we provide a game-theoretic analysis of
SpaceMint modeled as an extensive game. To do this,
we formally specify a stylized model of SpaceMint
mining and show that adhering to the protocol is
a sequential equilibrium for rational miners in this
game (i.e., deviating from the protocol does not pay
off). Our analysis works in a simplified model that
serves to rule out certain classes of attacks (i.e., prof-
itable deviations based on a simplistic set of possible
actions), but does not capture all possible attack vec-
tors by real miners.4 To our knowledge, this is the
first analysis of a cryptocurrency mining as an ex-
tensive game with the corresponding game-theoretic
equilibrium concepts; though the model is simplistic,
we hope that this framework for rigorously ruling out
certain classes of attacks will serve as a useful base
upon which to build more nuanced game-theoretic
models to rule out larger classes of attacks, in this
and other similar cryptocurrencies.

4For example, “selfish mining” [17] or block withholding is
not captured by our simplified model, and SpaceMint is in fact
susceptible to block withholding attacks to a similar extent to
Bitcoin.

1.2 Related Work

We have already discussed proofs of stake above.
Here, we briefly mention other related proposals. A
more detailed discussion can be found in the full ver-
sion [31].

Proof of storage/retrievability [18, 7, 6, 19, 12, and
many more] are proof systems where a verifier sends
a file to a prover and later requests a proof that the
prover really stored the file. Proving storage of a
(random) file does show that one dedicated space,
but the verifier must send the entire file first. In
contrast, PoSpace requires verifier computation and
communication to be polylogarithmic in the prover’s
storage size.

Proof of secure erasure (PoSE), one-time com-
putable functions [33, 15, 20, 5] are proof systems
where a prover convinces the verifier that is has access
to some space. Additionally one can require that the
proof implies that the space also was erased [33, 20],
or some function can only be computed in forward
direction [15]. Those protocols have only one phase,
and thus cannot be used as a PoSpace, i.e., to effi-
ciently prove space usage over time.

Permacoin [25] is a cryptocurrency proposal that
uses proofs of retrievability with a novel variant of
PoW. While solutions to Bitcoin’s PoW puzzles carry
no intrinsic value, Permacoin makes proof-of-work
mining serve a useful purpose: miners are incen-
tivized to store useful data and thus the network
serves as a data archive. Permacoin is however still
fundamentally a PoW-based scheme. In contrast, in
SpaceMint the dedicated storage does not store any-
thing useful, but we completely avoid PoW and the
associated perpetual computation.

Burstcoin [1] is the only cryptocurrency we are
aware of in which disk space is the primary min-
ing resource. However, Burstcoin’s design allows
time/memory trade-offs: i.e., a miner doing a little
extra computation can mine at the same rate as an
honest miner, while using just a small fraction (e.g.,
10%) of the space. Moreover, Burstcoin requires a
constant (albeit small) fraction (0.024%) of dedicated
disk space to be read every time a block is mined,
while SpaceMint requires only a logarithmic fraction.
Finally, verification in Burstcoin is problematic: min-
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ers must hash over 8 million blocks to verify another
miner’s claim. The details on this attacks can be
found in Appendix B of the full version [31].

Chia Network [3] is a very recent proposal of a
blockchain based on PoSpace in combination with
proofs of sequential work. In a nutshell, the better
the quality of the PoSpace, the faster the block can
be “finalized” by a proof of sequential work, and this
proof tuple then can be used to create a block. By us-
ing proofs of sequential work on top of PoSpace, Chia
is even more similar to Bitcoin than SpaceMint in
several respects: for example, it requires no synchro-
nization/clocks (except, as in Bitcoin, time-stamped
blocks for the occasional re-calculation of the min-
ing difficulty), while retaining the efficiency of a pure
PoSpace-based currency. The PoSpace that was de-
veloped for Chia [4] is based on ideas completely dif-
ferent from the PoSpace [14] we use. It has worse
asymptotic security guarantees, but unlike [14], it has
a non-interactive initialization phase and extremely
short and efficient proofs.

Outline.

• Cryptocurrency from proofs of space: In (§§2–3)
we modify PoSpace [14] for the blockchain set-
ting and present SpaceMint, a cryptocurrency
based purely on proofs of space.
• Addressing the “nothing-at-stake” problems: Af-

ter describing attacks that arise from nothing-
at-stake problems and challenge grinding, we
describe how our design uses novel approaches
to overcome them (§4). Our solutions extend
to other blockchain designs based on easy-to-
generate proofs.
• Evaluation of proof of space: We evaluate our

modified PoSpace in terms of time to initialize
the space, to generate and verify blocks, and
block size (§6).
• Game theory of SpaceMint: We model

SpaceMint as an extensive game, and show that
adhering to the protocol is an ε-sequential Nash
equilibrium (§7).

2 Proof of Space in SpaceMint

A PoSpace [14] is a two-phase protocol between a
prover P and a verifier V. After an initialization
phase, P stores some data Sγ of size N , and V stores
a short commitment γ to Sγ . Then, in the execution
phase, V sends a challenge c to P, who returns a short
answer a after reading a small fraction of Sγ .

The PoSpace from [14, 34] are specified a family of
“hard-to-pebble” directed acyclic graphs of increas-
ing size. The prover picks a graph G = (V,E) from
this family depending on the amount of space it wants
to dedicate. P then stores a label li for each node
i ∈ V , which is computed as

li := hash(µ, i, lp1 , . . . , lpt) , (1)

where p1, . . . , pt are the parents of node i and hash
is a hash function (sampled by V). In [14] two graph
families are suggested, one for which any success-
ful cheating prover must either use Ω(|V |/ log(|V |))
space between the initialization and execution phase,
or use Ω(|V |/ log(|V |)) space during execution. The
other graph family enforces either Θ(|V |) space be-
tween the phases (i.e., the same as the honest prover,
up to a constant), or Θ(|V |) time during execution.

Formally, [14] specifies a PoSpace by a tuple of al-
gorithms {Init,Chal,Ans,Vrfy}, which specify a two-
phase protocol between a verifier V and a prover P.
Init is used to initialize the space, Chal generates
a challenge, Ans computes the response to a chal-
lenge and Vrfy verifies the response. The initializa-
tion phase consists of running Algorithm 1, where
P commits to its space, followed by Algorithm 2,
where P proves that the commitment is computed
“mostly correct”. In the execution phase, given by
Algorithm 3, V simply opens some of the committed
labels to prove it has stored them.

The algorithms we give here are already made par-
tially non-interactive for our blockchain application –
in the actual PoSpace the challenges in Algorithm 2
and 3, as well as µ in Algorithm 1 are sampled by V
and sent to P.

5The nonce just ensures that the same space cannot be used
for two different proofs [14]; thus in a single-verifier setting, P
can generate the nonce.
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Algorithm 1 Space commit

Common input: A hard-to-pebble graph G with n
nodes and a function hash : {0, 1}∗ → {0, 1}L.

1. P generates a unique nonce µ and then com-
putes and stores (γ, Sγ) := Init(µ, n), and sends
the nonce5 µ and the commitment γ to V. Sγ
contains the labels of all the nodes of G com-
puted using Eq. (1) and γ is a Merkle-tree com-
mitment to these n labels. The total size of Sγ
is N = 2 · n · L (graph + Merkle tree).

Algorithm 2 Prove commit

Initial state: V holds commitment γ and nonce µ;
P stores Sγ and µ. Both are given the challenges
c = (c1, . . . , ckv ) to be used.

1. P computes openings b := (b1, b2, . . .) of all the
labels of the nodes {ci}i∈[kv] and of all their par-
ents and sends them to V. This is done using Ans
where Ans(µ, Sγ , c) returns the Merkle inclusion
proof of label lc w.r.t. γ.

2. V verifies these openings using Vrfy, where
Vrfy(µ, γ, c, a) = 1 iff a is a correct opening for
c. It then checks for all i = 1, . . . , kv if the label
lci is correctly computed as in Eq. (1).

3 SpaceMint Protocol

3.1 Mining

The mining process consists of two phases: initializa-
tion and mining.

Initialization. When a miner first joins the
SpaceMint network and wants to contribute N bits
of space to the mining effort, it first generates a pub-
lic/secret key pair (pk, sk) and runs Algorithm 1 as
P, with nonce µ set to pk, to generate

(γ, Sγ) := Init(pk,N) .

The miner stores (Sγ , sk) and announces its space
commitment (pk, γ) via a special transaction. We
require miners to commit (pk, γ) to prevent a type
of grinding attack: the problem is that the PoSpace
we use [14] have the property that by making minor
changes one can turn (pk, γ) into many other space
commitments that re-use most of the space.

Algorithm 3 Prove space

Initial state: V holds commitment γ and nonce µ;
P stores Sγ and µ. Both are given the challenges
c = (c1, . . . , ckp) to be used.

1. P computes openings {ai := Ans(µ, Sγ , ci)}i∈[kp]

and sends them to V.
2. V verifies these openings by executing

Vrfy(µ, γ, ci, ai).

Once this transaction is in the blockchain, the
miner can start mining.

Mining. Similar to Bitcoin, SpaceMint incentivizes
mining (adding new blocks) through block rewards
(freshly minted coins per block) and transaction fees.
Once initialized, each miner attempts to add a block
to the blockchain every time period. For time period
i, a miner proceeds as follows:

1. Retrieve the hash value of the last block in the
best chain so far, and a challenge c (we dis-
cuss how c is derived in §3.4), which serves as
a short seed from which we derive two long ran-
dom strings $p, $v.

2. Compute challenges (c1, . . . , ckp) :=
Chal(n, kp, $p) for use in Algorithm 3.

3. Compute the proof of space a = {a1, . . . , akp}
using Algorithm 3.

4. Compute the quality Quality(pk, γ, c, a) of the
proof (details of the quality function are given
in §3.5).

5. If the quality is high enough, so that there is
a realistic chance of being the best answer in
period i, compute the proof of correct commit-
ment b = {b1, . . . , bkv} using Algorithm 2; then
create a block and send it to the network in an
attempt to add it to the chain. This block con-
tains the proofs a and b computed above and a
set of transactions; the exact specification is in
given §3.2 below.

Remark (Postponing Algorithm 2). Note that un-
like in the interactive PoSpace where one runs Al-
gorithms 1 and 2 during initialization, we only re-
quire miners to execute Algorithm 2 if they want
to add a block. This is done for efficiency reasons.
For one thing, this way, the proof b (which is sig-
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nificantly larger than a or γ) must only be recorded
in the blockchain once the corresponding space has
actually been used to mine a block. Another more
subtle advantage is that now the challenge for Algo-
rithm 2 changes with every block; thus a cheating
miner (who computed some of the labels incorrectly)
will only know if he was caught cheating at the same
time when he generates a potentially winning proof a
(and if b does not pass, he cannot use a). This allow
us to tolerate a much larger soundness error in Al-
gorithm 2, which means we can choose a smaller kv
(concretely, it’s ok if he passes the proof with large
probability p, as long as this requires using at least a
p times the space an honest miner would use).

3.2 Blockchain Format

A blockchain in SpaceMint is a sequence of blocks
β0, β1, . . . which serve as a public ledger of all trans-
actions. Each block βi = (ϕi, σi, τi) consists of
three parts, called “sub-blocks”, which contain the
index i that specifies the position of the block in the
blockchain. The structures of sub-blocks are as fol-
lows:

• The hash sub-block ϕi contains

– the current block index i,
– the miner’s signature ζϕ on ϕi−1, the (i − 1)th
hash sub-block, and

– a “space proof” containing the miner’s pk.

• The transaction sub-block τi contains

– the current block index i and
– a list of transactions (§3.3).

• The signature sub-block σi contains

– the current block index i,
– the miner’s signature ζτ on τi, the ith transac-
tion sub-block, and

– the miner’s signature ζσ on σi−1, the (i − 1)th
signature sub-block.

The links between blocks in a blockchain are illus-
trated in Fig. 1. We will refer to the hash sub-blocks
as the proof chain, and the signature sub-blocks with
the transactions as the signature chain. While the
signature and transaction sub-blocks are all linked,

...

...

Block i βi

hash ϕi

signature σi

transactionτi

Block i+1

hash

signature

transaction

PC

SC

Figure 1: Our blockchain consists of a proof chain
PC that does not allow for grinding, and a signature
chain SC that binds transactions to the proof chain.

the hash sub-blocks are only linked to each other and
not to any signature or transaction sub-blocks.

This design may seem to prevent any kind of con-
sensus, as now we can have arbitrary many signa-
ture chains containing different transactions consis-
tent with the same proof chain. The key observa-
tion is that once an honest miner adds the ith block
(honest in the sense that he will only sign one block
and keep its secret key secret), the transactions cor-
responding to this proof chain up to block i cannot
be changed any more even by an adversary who con-
trols all secret keys from miners that added the first
i− 1 blocks.

3.3 Transactions in SpaceMint

There are three types of transactions in SpaceMint:
(1) payments, (2) space commitments, and (3) penal-
ties. Every transaction is signed by the user gener-
ating the transaction, and sent to the miners to be
added to the blockchain. Here, we specify the three
types of transactions.

Payments. Coins in SpaceMint are held and trans-
ferred by parties identified by public keys. A payment
transaction transfers coins from m benefactors to n
beneficiaries and has the form

ctx = (payment, txId , ~in, ~out) .

• txId : A unique, arbitrary transaction identifier.
That is, no two transactions in a blockchain can
have the same identifier.

• ~in: A list of input coins to the transaction.
Specifically, ~in = (in1, . . . , inn), a list of n
benefactors, each comprised of a triple: inj =
(txId j , kj , sigj), where:

– txId j is the identifier of a past transaction,
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– kj is an index that specifies a beneficiary
pkkj of the transaction txId j ,

– sigj is a signature of (txId , txId j , kj , ~out),
which verifies under key pkkj proving own-
ership of the the kjth beneficiary of transac-
tion txId j and binding the coin to the ben-
eficiaries.

• ~out: A list of beneficiaries and the amount they
receive. Specifically, ~out = (out1, . . . , outm) with
outi = (pki, vi), where:

– pki specifies a beneficiary, and
– vi is the number of coins that pki is to be

paid.
For a transaction to be valid, we require that (1) all

signatures in ~in verify correctly; (2) no benefactor is
referenced by more than one subsequent transaction
in the blockchain (to prevent double-spending); (3)
the sum of the input values to the transaction is at
least the sum of the amounts paid to beneficiaries.

Space commitments. A space-commitment
transaction

ctx = (commit, txId , (pk, γ))

consists of pk, a public key, and γ which was com-
puted as (γ, Sγ) := Init(pk,N). Thus, ctx is a space
commitment to a space of size N .

Penalties. A penalty transaction

ctx = (penalty, txId , pk, prf )

consists of pk, the public key of the transaction cre-
ator, and prf, a proof of penalty-worthy behavior by
another miner. These transactions serve to penal-
ize miners that engage in malicious behavior. The
primary usage of penalties in SpaceMint is to disin-
centivize mining on multiple chains (e.g., the proof
would contain two blocks of the same index signed
by the same miner), but penalty transactions can be
used to discourage other types of (detectable) behav-
ior in blockchain-based currencies.

3.4 Where the Challenge Comes From

In Bitcoin, the PoW challenge for block i is sim-
ply the hash of block i − 1. For SpaceMint, using
block i − 1 for the challenge can slow down consen-
sus: If there are many different chains, miners can

get different challenges for different chains. A ra-
tional miner would thus compute answers for many
different chains (since it is easy to do), and if one of
them is very good, try to add a block to the corre-
sponding chain, even if this chain is not the best chain
seen so far. If all miners behave rationally, this will
considerably slow down consensus, as bad chains get
extended with blocks of quality similar to the current
best chain, and it will take longer for lower-quality
chains to die off.

Instead, we derive the challenge for block i from
the hash of block i − ∆, for a reasonably large ∆:
the probability of multiple chains surviving for more
than ∆ blocks decreases exponentially as ∆ increases.
Moreover, in contrast to Bitcoin, we only hash the
block from the proof chain, but not the signature
chain (Fig. 1): this serves to prevent block-grinding
attacks, since there is nothing to grind on (the proof
chain is fixed regardless of the set of transactions in
the block). Finally, we will use the same challenge
not just for one, but for δ consecutive blocks. This
is done to prevent challenge-grinding attacks, as we
explain in §4.

3.5 Quality of Proofs and Chains

Quality of a proof. The block to be added to
the chain at each time step is decided by a qual-
ity measure on the PoSpace proof included in each
proposed block. For a set of valid proofs π1 =
(pk1, γ1, c1, a1), . . . , πm = (pkm, γm, cm, am), we re-
quire Quality(πi) to be such that the probability that
πi has the best quality among π1, . . . , πm corresponds
to the ith miner’s fraction of the total space in the
network. The probability is over the choice of the
random oracle hash, which we use to hash answer a.
We require:

Pr
hash

[
∀j 6= i : Quality(πi) > Quality(πj)

]
=

Nγi∑m
j=1Nγj

,

where Nγi is the space committed to by γi.

Let DN be a distribution that samples N values in
[0, 1] at random and outputs the largest of them:

DN ∼ max
{
r1, . . . , rN : ri ← [0, 1], i ∈ [N ]

}
. (2)

Let DN (τ) denote a sample from DN with sampling
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randomness τ . For valid proofs we now define

Quality(pk, γ, c, a) := DNγ (hash(a)) . (3)

The Quality of an invalid proof is set to 0.

It remains to show how to efficiently sample from
the distribution DN for a given N . Recall that
if FX denotes the cumulative distribution function
(CDF) of some random variable X over [0, 1]. If
the inverse F−1

X exists, then F−1
X (U) for U uniform

over [0, 1] is distributed as X. The random variable
X sampled according to distribution DN has CDF
FX(z) = Pr[X ≤ z] = zN , since this is the probabil-
ity that all N values ri considered in (2) are below
z. Therefore, if we want to sample from DN , we
can simply sample F−1

X (U) for U uniform over [0, 1],
which is U1/N . In (3) we want to sample DNγi

us-
ing randomness hash(ai). To do so, we normalize the
hash outputs in {0, 1}L to a value in [0, 1], and get

DNγi
(hash(ai)) :=

(
hash(ai)/2

L
)1/N

.

Quality of a chain. In order to decide which
of two given proof-chain branches is the “bet-
ter” one, we also need to define the quality of
a proof chain (ϕ0, . . . , ϕi), which we denote by
QualityPC(ϕ0, . . . , ϕi). Each hash sub-block ϕj con-
tains a proof (pkj , γj , cj , aj), and the quality of the
block is vj = DNj (hash(aj)). For any quality v ∈
[0, 1], we define

N(v) = min
{
N ∈ N : Prw←DN [v < w] ≥ 1/2

}
,

the space required to obtain a proof with quality bet-
ter than v on a random challenge with probability 1/2.
This quantity captures the amount of space required
to generate a proof of this quality.

In order to prevent challenge-grinding attacks, it
is desirable for the chain quality to depend multi-
plicatively on constituent block qualities (described
in more detail in §4), and moreover it is useful to
weight the contribution of the jth block for a chain
of length i by a discount factor Λi−j . From these
motivations we derive the following quality function.
Note that we have used a sum of logarithms, rather
than a product, to achieve the multiplicativity.

QualityPC(ϕ0, . . . , ϕi) =
∑i
j=1 log(N(vj)) · Λi−j .

(4)

4 Nothing-at-Stake Problems
and Solutions

In this section we discuss the “nothing-at-stake” is-
sues, which were already mentioned in the introduc-
tion. We describe them here in more detail, and out-
line how SpaceMint defends against them.

Recall that the difficulty arises due to the ease of
computing multiple candidate blocks: in a PoSpace
(or PoStake) based currency, a miner can compute
many proofs (either extending different chains, or
computing different proofs for the same chain) at lit-
tle extra cost. Deviating from the protocol like this
can be rational for a miner as it might lead to higher
expected rewards. PoW-based blockchains also suffer
from such “selfish mining” attacks [17], and basing
the blockchain on efficiently computable proofs like
PoSpace or PoStake can further aggravate this prob-
lem. Such behavior can significantly slow down con-
sensus as well as push the scheme to follow energy
expenditure trends similar to PoW-based schemes,
which arise whenever there is an advantage to be
gained by doing extra computation.

An even more serious issue is double-spending at-
tacks, which become possible if a miner can create
a sufficiently long chain in private which has better
quality than the honestly mined chain. In all known
blockchain proposals, a miner controlling more than
half of the mining resources (hashing power, stake
or space) can do this. But it is considered problem-
atic if a blockchain is susceptible to double spending
by adversaries with significantly less than half of the
network resources.

I. Grinding blocks. The problem: In Nakamoto-
style blockchains, the challenge for the proof com-
puted by the miners (like PoW in Bitcoin or PoSpace
in SpaceMint) is somehow derived from previous
blocks. If it is computationally easy to generate
proofs, a miner can try out many different blocks (for
example by including different transactions) until it
finds an advantageous one that will allow him to gen-
erate good proofs for future blocks. This is an issue
for selfish-mining and double-spending attacks.

The solution: We decouple proofs from transactions
as shown in Fig. 1. This eliminates the problem of
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block grinding, as now challenges depend only on the
proof chain. Moreover, our PoSpace are “unique” in
that a prover can generate at most one valid proof per
challenge. Hence, the only degree of freedom that a
miner has in influencing future challenges is to either
publish its proof (so it might end up in the chain), or
to withhold it.

II. Mining on multiple chains. The problem:
In Bitcoin, rational miners will always work towards
extending the longest known chain. However, when
mining is computationally easy, it can be rational to
mine on all (or at least many) known chains in paral-
lel, to “hedge one’s bets” across all chains that might
eventually become part of the public ledger. Again,
this is an issue for selfish-mining and double-spending
attacks.

The solution: To address this problem in the context
of selfish-mining attacks (we discuss double-spending
later), we derive the challenge for block i from block
i−∆ for some parameter ∆ (§3.4). Note that for any
given challenge, there is a single proof (i.e., the proof
is deterministic given the challenge). Then, we im-
pose a penalty, via the penalty transactions of §3.3,
for any pair of identical proofs published in two can-
didate blocks: half of the block reward for such a
“misbehaving” block is allocated to the creator of
the penalty transaction, and the other half simply
disappears.6 Let us consider two cases, depending on
whether mining is done on two or more chains that
forked more or less than ∆ blocks in the past.

Case 1: chains forked less than ∆ ago. In this
case, the miner will get the same challenge for both
chains. SpaceMint uses penalties (§3.3) to disincen-
tivize miners from extending multiple chains in this
case; without the penalties, a rational miner with a
good-quality PoSpace proof could announce blocks on
multiple chains to maximize his chances of winning.
Concretely, suppose a miner pk′ attempts to mine
concurrently on two chains whose most recent blocks
are βj and β′j , by announcing βj+1 and β′j+1 (which
have the same quality and were mined using the same
space). Then anyone who observes this can generate
a transaction (penalty, txId, pk, {pk′, βj+1, β

′
j+1}) to

6This is to disincentivize penalizing oneself.

penalize pk′. This transaction can be added to a
chain extending βj+1 (or β′j+1), and its meaning is
that half of the reward (block reward and transac-
tion fees) that should go to the miner who announced
βj+1, is now going to pk (the “accuser”) instead, and
the other half of the reward is destroyed, i.e., cannot
be redeemed by any party. We destroy half of the re-
ward so the penalty hurts even if the cheating miner
can be reasonably sure to be able to accuse itself. For
this to work, mining rewards can only be transferred
by a miner some time after the block was added, so
that there is enough time for other miners to claim
the penalty.7

Case 2: chains forked more than ∆ ago. In this
case the miner receives different challenges for differ-
ent chains, leading to proofs of different quality for
the two chains. In this case, even with our penalty
scheme in place, a rational miner can still get an ad-
vantage by deviating: instead of only trying to ex-
tending the highest-quality chain, it also generates
proofs for the lesser chain. As the challenges differ,
so will the two proofs, and if the proof on the lesser
chain has very high quality, the rational miner would
publish it, hoping that this chain will become the best
chain and survive.

We address this problem by arguing that it is
extremely unlikely (the probability is exponentially
small in ∆) that this case occurs, as a weaker branch
of the chain would have to “survive” for ∆ blocks de-
spite a strong incentive (via our punishment scheme)
for miners to only extend the chain of highest quality.

III. Grinding challenges. The problem: Chal-
lenge grinding is a type of attack that can be used for
double-spending, by generating a long chain in pri-
vate that is of higher quality than what would result
when using one’s resources honestly. It arises from
the fact that an adversary can split its space into m
smaller chunks. As discussed in §3.5, the quality of a
block is purposely designed such that splitting a fixed
amount of space into smaller chunks and choosing the

7The idea of penalizing miners for extending multiple chains
goes back at least to slasher https://blog.ethereum.org/2014/
01/15/slasher-a-punitive-proof-of-stake-algorithm.
Unlike previous penalty-based proposals, we do not need the
miners to make a deposit up-front; instead, they will simply
lose their mining reward if they cheat.
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highest-quality block among them does not affect the
expected quality of the block generated. However, a
miner can examine all possible chains of some given
length, and then pick the chain that gives it the most
favorable challenges for future blocks.

Concretely, consider our setting, where the chal-
lenge for block i is determined by block i − ∆. An
adversary can generate a sequence of length 2∆ where
the first half of the blocks is chosen to provide the
most favorable challenges for the later half of the se-
quence.8 Note that the first half of this sequence
would be of even poorer quality than the expected
quality from honest mining given the adversary’s to-
tal amount of space; however, the benefit gained in
the second half of the sequence can outweigh this loss
in quality in the first half. The adversary can then
release this high-quality chain (all at once) in an at-
tempt to overtake the current best chain.

Note that in this attack the adversary explores
multiple chains in parallel, which we have addressed
already using a penalizing scheme. But penalizing
does not protect against double-spending attacks in
which the adversary never actually published two
proofs for the same slot. And even he would, a
double-spending attack can be profitable even if one
loses some mining rewards due to the penalizing
scheme.

The solution: As mentioned in §3.5, the problem with
this attack is exacerbated if the metric for determin-
ing the quality of a chain is a sum or any other linear
function. Thus, to prevent this attack, (1) we define
the quality of a chain as the product of the amounts
of space needed for the proofs in it, rather than their
sum; and (2) we use the same block to derive chal-
lenges for δ future blocks (i.e., use hash(βi, nonce) for
nonce ∈ [1, δ] as challenges for time i + ∆ through
i+ ∆ + δ).

Intuitively, (1) makes it harder for the adversary to
find a good chain of length 2∆, as worse blocks are
weighted more; and (2) is helpful because it means
that a challenge-grinding adversary would have to

8As for each of the ∆ blocks there are m distinct challenges,
the search space here is of huge size m∆. Consequently, this
attack might seem artificial, but by pruning and just consid-
ering the most promising sub-chains at every level, one will
probably not miss the best one.

choose “early” blocks to optimize their chances over
sequences of δ future challenges rather than just a
single future challenge, thus making it exponentially
harder (in δ) to find a “good” challenge that will
yield δ high-quality blocks at once. Another way to
see this is that by the Chernoff bound, the average of
δ independent random variables deviates less from its
expectation as δ grows. So for large δ, even the abil-
ity to select between multiple challenges (each giving
a sample of the average of δ i.i.d. variables) is not
very useful to find one where this value deviates by
a lot from its expectation. A more detailed discus-
sion of this attack and our defense is given in the full
version [31].

5 Parametrization

We now discuss and justify some suggested param-
eter choices for SpaceMint. A more detailed discus-
sion on parameters, their interplay, and their impact
on various attacks is given in §D due to space con-
straints.

Determining challenges. To minimize the prob-
ability of forks surviving for more than ∆ blocks
(which is necessary to prevent the “mining on multi-
ple chains” issue described in §4), we should choose
a large ∆. On the other hand, a smaller ∆ increases
other security features of SpaceMint (detailed in §D).
We suggest ∆ = 50, which makes it highly unlikely
that a fork survives for ∆ steps (since the probability
of a fork surviving is exponentially small in ∆), and
yet the value is not large enough to introduce signif-
icant negative impacts to other aspects (see §D for
further discussion).

Frequency of block generation. The challenge
for block i is available at least ∆ blocks (which cor-
responds to ∆ · time minutes) before block i is added.
In terms of computation, since it takes less than 30
seconds to generate a block (§6) and we set ∆ = 50,
we could generate blocks every few seconds given that
one miner is unlikely to mine more than a few good
blocks within the ∆ blocks. However, we only want
to generate the blocks as fast as they can propagate
through the network, since the miners need to gener-
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ate the signature chains using the previous block. In
Bitcoin, blocks propagate to over 95% of the miners
within 40 seconds [11], so we believe that time = 1
minute would be a reasonable frequency of block gen-
eration for SpaceMint.

Quality discount factor. As discussed in §3.5,
we use a discount factor Λ to define each block’s con-
tribution to overall chain quality. The value of Λ is
determined by the pace at which the total storage
in the network increases. For instance, if we assume
that storage stays roughly in the same order of mag-
nitude for two-month periods, we can set Λ as large
as 0.99999.9 Such a high Λ is helpful when we argue
about the hardness of generating long forks. Detailed
analysis is given in §D.

Confirmation time. To confirm a transaction, we
must be sure that there is consensus regarding the
transaction being on the chain, in order to prevent
double spending. Bitcoin, to this end, only confirms
transactions after 6 blocks are added, at which point
users are reasonably confident of consensus. Their
analysis [35] assumes the adversary has less than 10%
of total hashing power and gives an upper-bound of
0.001 on the probability of double-spending. Assum-
ing a 10% adversary as in the Bitcoin analysis (with
Λ = 0.99999 as discussed above), in SpaceMint after
6 blocks we have on upper-bound of 2−16 ≈ 0.000015
on the probability that a block will remain in the
chain. This also takes only 6 minutes compared
to the 1 hour of Bitcoin. This analysis only applies
to the proof chain, but to avoid double spending we
must be sure that the transaction also remains in the
signature chain, for this reason one should wait for a
few extra blocks, so one can be reasonably sure that
at least one of those blocks was added by an honest
miner (who will not sign another list of transactions
for this block).

Even assuming a stronger adversary who controls
33% of the total space (and Λ = 0.99999 as before),
after 93 blocks a block in the proof chain will be safe
with failure probability bounded by 2−32. For further
details see §D.

9In this case, the contribution of a block decreases by a
factor 1/e ≈ 0.37 every 1/(1− Λ) = 100.000 blocks, which for
time = 1 minute is roughly 69 days.

6 Evaluation

To evaluate SpaceMint, we have implemented a
prototype in Go, using SHA3 in 256-bit mode as
the hash function. The prototype uses the graphs
from [32], and forces a cheating prover to store at
least Ω(N/ log(N)) bits in order to efficiently gener-
ate proofs. Given that the network infrastructure is
very similar to Bitcoin, we are mainly interested in
three quantities: time to initialize the space (graph),
size of the proof, and time to generate and verify the
proof. The experiments were conducted on a desk-
top equipped with an Intel i5-4690K Haswell CPU
and 8 GB of memory. We used an off-the-shelf hard
disk drive with 2 TB of capacity and 64 MB of cache.

Time to initialize. To start mining SpaceMint,
the clients must first initialize their space, as de-
scribed in §3.1. Concretely, this involves computing
all the hashes of the nodes, and computing the Merkle
tree over the hashes. In Figure 2a, we show the ini-
tialization time for spaces of size 8 KB to 1.3 TB. As
expected, the time to initialize grows linearly with the
size of the space; at 1.3 TB, it takes approximately
41 hours to generate and commit the space. While
expensive, this procedure is done only once when a
miner first joins the SpaceMint network, and the ini-
tialized space will be used over and over again. In
fact, space initialization should take non-trivial time
because an extremely fast space initialization would
make re-using the same space for different commit-
ments a viable strategy.

Size of the proof. A proof in SpaceMint consists
of the Merkle inclusion proof for a set of node labels.
For the PoSpace that we implemented, the number
of nodes we have to open is λ · log(n) + 1 (as kv =
λ·log(n) in Algorithm 2 and kp � kv in Algorithm 3),
where λ is a statistical security parameter. Every
node in this graph has at most two parents, and each
opening of a node is log(n) ·32 bytes. Thus, the over-
all proof size is upper-bounded 3 ·λ · log2(n) ·32 bytes.
Though opening fewer than λ log(n) nodes is not
shown to be secure, we are unaware of any concrete
attacks even for opening λ nodes. We believe that
the size of a sufficiently secure proof will lie some-
where in between, closer to opening λ nodes. Fig-
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Figure 2: Results of evaluation

ure 2b demonstrates the size of the proof when we
open λ log(n) nodes vs. just λ nodes for λ = 30.

Time to generate/verify the proof. In
SpaceMint, assuming a miner is storing the space cor-
rectly, the miner needs to only open a small kp num-
ber of nodes in the Merkle tree to check the quality
of its solution (§3.1), which takes just a fraction of a
second; it takes < 1 ms to read a single hash from the
disk. Only in the rare case where the miner believes
its answer is of very good quality will it generate the
full proof, which still takes less than 30 seconds. As
for every space-commitment, a miner must open kp
nodes for every time-slot, we want this value to be
as small as possible, in practice kp = 1 seems secure,
though one might set it to some small constant to be
on the safe side.

Our proofs are substantially bigger than Bitcoin’s
and require more than just one hash evaluation to
verify. However, for an active currency, we still ex-
pect the size and verification time for the proofs
added with every block to be marginal compared to
the size of the transactions added with every block or
the time required to verify that the transactions are
consistent. Figure 2c indeed shows that even though
it takes seconds to generate the proof, verification
takes only a fraction of a second.

Energy estimates. Though our prototype was
evaluated using a full CPU which wastes a lot of en-
ergy, a cost-conscious miner could mine on a much
more energy-efficient device (e.g., Raspberry Pi [2]).
An efficient microcontroller consumes less than 10 W
of power, and most miners will only open a few nodes
per time step since the quality of their answers will

usually be bad. To get an upper bound on the power
requirement, suppose there are 100 000 miners, each
with 1 TB of space, and about 1% of the miners mine
“good” answers for which they will generate a full an-
swer. Then we have

10W · 100 000 · 0.01s+ 10W · 1000 · 20s

= 210 000J/block

which translates to 210 kJ/min if we add one block
every minute. In contrast, Bitcoin on average uses
100 MW, so it consumes 6 GJ/min, which is several
orders of magnitude larger. We note that the 1%
figure is a very conservative bound, so the difference
could be even larger in practice.

Impact of storage medium. Almost all mod-
ern Bitcoin mining is done by clusters of application-
specific integrated circuits (ASICs), which can com-
pute hashes for a tiny fraction of the hardware and
energy cost of a general-purpose processor. We be-
lieve that SpaceMint mining would not be as suscep-
tible to advantages from specialized hardware as Bit-
coin, and that regular hard disk drives are well-suited
to serve as SpaceMint mining equipment. Let us con-
sider existing categories of storage devices. Although
hard disks are expensive compared to other storage
devices, most notably tapes, devices like tapes are
not adequate for mining as we require frequent ran-
dom accesses to answer the PoSpace challenges. Solid
state drives do allow for (fast) random accesses, but
are more expensive than hard disks and do not pro-
vide any benefit since the rate of lookups required
for mining is very low. Notably, SpaceMint mining
hinges on doing a few random lookups every minute.
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The required frequency is so low that speed is a non-
issue: cheap, slow random access is what SpaceMint
miners are after.

7 Game Theory of SpaceMint

Intuitively, SpaceMint mining is modeled by the fol-
lowing n-player strategic game. Game-play occurs
over a series of discrete time steps, in each of which a
block is added to the blockchain. At each time step,
each player (miner) must choose a strategy, specified
by: (1) which blocks to extend (if any), and (2) which
extended blocks to publish (if any).

Showing that adhering to the protocol is an equilib-
rium of such a game means that rational miners are
not incentivized to deviate from the protocol when
playing the game. From this, it follows that rational
miners will reach consensus on a single chain, and will
not be able to get an advantage by using a “cheating”
strategy.

We remark that game-theoretic analyses inherently
start by defining a game which models reality, and
prove properties of the game in this model. It is al-
most never possible for a model to capture all aspects
of a real-world situation, and it is moreover desirable
to have a model which is simple enough to allow for a
rigorous analysis of incentives, while still being close
to reality.

Let us stress that our analysis herein is intended as
a basic framework to model blockchain-based cryp-
tocurrencies using the standard game-theoretic no-
tion of an extended game, and does not claim to com-
prise an exhaustive modeling of all possible attack
vectors. In particular, our stylized model does not
capture some important aspects, most notably block
withholding, which is used in “selfish mining.” Nev-
ertheless, we believe that our simple modeling frame-
work for cryptocurrency as an extended game may be
of value as a base upon which to build more nuanced
game-theoretic models, and thus we have chosen to
include it in this exposition.

7.1 Informal overview of results

The standard game-theoretic notion for a strategic
game which occurs over multiple time steps (rather
than in “one shot”) is the extensive game. An ex-
tensive game takes place over discrete time steps. In
each time step, one or more players take an action
from a well-defined set of possible “moves”. At any
point, the sequence of all moves made by all play-
ers so far is called a history. In some games, players
do not necessarily know all the moves made by other
players. For any history, an extensive game defines
a set of possible actions that each player can take at
that history. If all of these sets are empty, then the
game is considered to have ended, and such a history
is called a terminal history.

Each player has a utility function that assigns real-
valued utilities to each terminal history. For example,
in a simple two-player game like rock-paper-scissors,
each player’s utility function might assign utility 1 to
histories in which they won, and utility −1 to histo-
ries in which they lost. When modeling SpaceMint,
the utility that a player (i.e., a miner) assigns to a
history depends on the amount of currency he has
earned by successfully adding blocks to the chain.

In order to model the probabilistic aspects of
the SpaceMint protocol (e.g. the unpredictable bea-
con), we consider extensive games with chance moves,
which is the standard game-theoretic notion to cap-
ture extensive games which involve exogenous uncer-
tainty. Essentially, we model the beacon as an ad-
ditional player, called Chance, which makes random
moves.

Equilibrium concepts. The most widely known
equilibrium concept for a strategic game is the Nash
equilibrium [29]. Intuitively, in a Nash equilibrium,
each player’s strategy is a best response to the strate-
gies of the other players.

The Nash equilibrium concept was originally for-
mulated for one-shot games (in which all players
make a move simultaneously, then the game is over),
and it is known to have some shortcomings in the set-
ting of extensive games. Informally, the Nash equi-
librium does not account for the possibility of play-
ers adaptively changing strategy partway through a
game: in particular, there exist Nash equilibria that
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are not “stable” in the sense that given the ability
to adaptively switch strategies during the game, no
rational player would stick with his Nash-equilibrium
strategy all the way to the end of the game.

Thus, for extensive games, the alternative
(stronger) notion of sequential equilibrium is the
standard equilibrium notion in game theory. This
stronger concept ensures players are making the best
decision possible at each history during game-play.

We remark that while informal analyses have been
presented that argue that Bitcoin mining constitutes
a Nash equilibrium, we are not aware of any prior
analyses that model a cryptocurrency as an exten-
sive game or consider sequential equilibria. Since
protocols inherently occur over time, we strongly be-
lieve that extensive games are the appropriate game-
theoretic formalism for analyzing stability of cryp-
tocurrencies, and accordingly that sequential equilib-
rium is the right equilibrium concept for cryptocur-
rencies.

7.1.1 SpaceMint as an extensive game

In the “SpaceMint Game”, every player (including
Chance) makes an action at every time step. A
player’s action consists of choosing whether and how
to extend the blockchain, and the action of Chance
determines the value of the unpredictable beacon for
the next time step. Players do not necessarily know
all actions taken by other players: the information
known to each player at any point comprises all the
moves that he himself has taken, together with the
information in the blockchain. Based on this infor-
mation, each player decides his action in each time
step, aiming to maximize his utility, i.e., his expected
reward from adding blocks to the chain.

Due to the rather extensive definitional preliminar-
ies required to state our results formally, we now give
an informal theorem statement together with a proof
sketch. Rigorous theorems and proofs are given in
§7.2.

Theorem 7.1. It is a sequential equilibrium of the
SpaceMint game (Definition 7.2, §7.2) for all com-
putationally bounded players to adhere to the mining
protocol, provided that no player holds more than 50%
of all space.

Proof sketch. Our proof proceeds in two main steps,
showing the following.

1. Adhering to the protocol is a Nash equilibrium
of the SpaceMint game.

2. Adhering to the protocol is moreover sequentially
rational at each history during game-play.

To prove item 1, we consider the information avail-
able to an arbitrary player at any given time step. At
the start of his turn, the player has an expected util-
ity based on all the information he knows (e.g., if
he has mined some blocks that have been added to
the blockchain, his utility is high). Since a miner’s
utility function is simply his expectation of reward
from adding blocks to the chain, a utility-maximizing
miner can choose an action to take in each time step
as a function just of the blockchain (i.e., he need
not separately take into account the full sequence
of moves he has made in the past, as these only af-
fect his expected utility if they have impacted the
blockchain). In a given turn, the player will choose
the action that yields the highest expectation of fu-
ture reward: his action consists of mining a set of
blocks (locally), and then announcing a set of blocks
to the network. Based on SpaceMint’s penalty trans-
actions and the fact that any given miner’s block
quality is fixed in each time step, we are able to argue
that mining and announcing exactly one block is an
optimal strategy. Moreover, this strategy adheres to
the protocol.

To prove item 2, it is necessary to show that there
exist a system of consistent beliefs of the players over
the entire duration of the game, under which each
player is not incentivized to deviate from the protocol
at any point during game-play. We show that such a
belief system can be derived by applying Bayes’ rule
to the Nash equilibrium strategy which consists of
adhering to the protocol. This concludes the proof
sketch; for the full proof see §7.2.

7.2 Formally modeling SpaceMint
mining as an extensive game

For standard game-theoretic terminology and prelim-
inaries (such as definitions of extensive games, Nash
equilibria, and sequential equilibria), we refer the
reader to a standard textbook such as [30].
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In order to analyze the game-theoretic properties
of SpaceMint mining, we define an extensive game,
SpaceMint, which models the actions that miners can
take, and the associated payoffs.

The SpaceMint mining game. Let Π =
{Init,Chal,Ans,Vrfy} be a proof of space. Let B de-
note set of all blocks as defined in §3.2, and for any
` ∈ N, let B` denote the set of all blocks with index
`.10 Let B` denote the set of blocks with index at
most `, i.e. B` =

⋃`
`′=0 B`′ . Let Bgen be the genesis

block; note that B0 = {Bgen}.
For a block B ∈ B and a challenge c ← Chal, we

define Exti(B, c) to be the block generated by player
i when mining the next block after B using PoSpace
challenge c (see §3.2 for exact block format). For
` ∈ N and challenge c, define:

B̃`,i,c =
{

(B,B′) ∈ B`−1 × B` : B′ = Exti(B, c)
}

and let B̃`,i,c =
⋃
`′∈{0,...,`} B̃`′,i,c.

Remark. To simplify exposition, we do not explic-
itly model the amount of the space that each player
has in the game defined below. A standard way to
model this would be to assign each player a type ti,
representing player i’s amount of space. Our expo-
sition keeps the types implicit; our theorems require
that no player has more than 50% of the space com-
mitted by active miners.

Definition 7.2 (The SpaceMint Game). Let Π =
{Init,Chal,Ans,Vrfy} be a proof of space. For any
number of players N ∈ N, any number of time steps
K ∈ N, any consensus-delay Ψ ∈ N, and any reward
function ρ : N→ N, we define the extensive game

SpaceMintΠ,K,ρ = 〈N,H, fC , ~I, ~u 〉
as follows:

• The set H of histories is defined inductively.

◦ The action set of the Chance player AC(h) =
{0, 1}m is the same for every history h.
◦ The empty sequence () is in H, and Ai(()) =
{(∅,∅)} for each i ∈ [N ].

10The index denotes the block’s position in the blockchain.
In §3.2, i is used to refer to the block index, but in this section
we use ` to avoid confusion with the player indices.

◦ For any non-terminal history h and any i ∈ [N ],
the action set Ai(h) of player i at h is:

Ai(h) = P
(
B|h| × B|h|+1

)
× P

(
B|h| × B|h|+1

)
.

An action ai ∈ Ai(h) is a pair of sets ai =
(T,A). T is the set of blocks that player i tries
extending in this time step, and A ⊆ T is the
set of blocks that player i announces in this time
step. An element in T (or A) is a pair of blocks
(B′, B) ∈ B|h| × B|h|+1 where B′ is the existing
block which player i wishes to extend, and B ∈ B
is the extended block.

The probability measure f(·, h) is uniform on {0, 1}m.

• For each i ∈ [N ], we define the partition Ii by
an equivalence relation ∼i. The equivalence relation
∼i is defined inductively as follows (we write [h]i to
denote the equivalence class of h under ∼i):

◦ [()]i = {()}, that is, the empty sequence is equiv-
alent only to itself.
◦ [(h, ((T1,A1), . . . , (TN ,AN ), aC))]i =

{(h′, ((T′1,A′1), . . . , (T′N ,A
′
N ), a′C)) ∈ H :

h ∼i h′ ∧ Ti = T′i ∧Ai = A′i ∧ aC = a′C

∧∀i′ 6= i, Ai′ = A′i′} ,
where h and h′ are histories of equal length, and
the pairs (Ti′ ,Ai′) and (T′i′ ,A

′
i′) are actions of

player i′. That is, two histories are equivalent
under ∼i if they are identical except in the “first
components” Ti′ of the actions (Ti′ ,Ai′) taken by
players other than i.

• ~u = (u1, . . . , uN ), where each ui : Z → R is defined
as described below. For a history h, let C(h) denote
the sequence of actions taken by the Chance player
in h. Let B.chal denote the challenge c within the
proof of space of a block B. Recall that the functions
Quality(B) and QualityPC( ~B) were defined in §3.5.
We define a new function

Quality(B, c) =

{
Quality(B) if B.chal = c

0 otherwise .

Also, let QualityPC((B1, . . . , BL), (c1, . . . , cL)) be
equal to
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QualityPC((B1, . . . , BL)) whenever

∀` ∈ [L], B`.chal = c` and B` ∈ B` and

∀` ∈ [L], ∃i ∈ [N ] s.t. (B`−1, B`) ∈ B̃`,i,c`
and equal to 0 otherwise. For any history h, let A(h)
be the set of all blocks announced by any player in
history h:

A(h) =

{
B :
∃i ∈ [N ],A′ s.t. (·, B) ∈ A′ and
player i took action (·,A′) in h

}
.

Let blocks(h) be the “winning block sequence” at any
h ∈ H:

blocks(h) = arg max
~B∈(A(h))|h|

(
QualityPC( ~B,C(h))

)
.

Let blocks`(h) denote the `th block in the chain. Let
win`(h) be the player who announced the winning
block blocks`(h) for index `.11 Recall that a history
h = (~a1, . . . ,~aJ) is a sequence of J ≤ K action pro-
files. For j ∈ [J ], let (Ti,j ,Ai,j) be the action of
player i in ~aj. Let one`(i, h) be an indicator variable
for the event that player i announces at most one
block with index `, i.e.∣∣∣{B : B ∈ B` and (·, B) ∈

⋃
j∈[J] Ai,j

}∣∣∣ ≤ 1 .

Finally, the players’ utility functions are defined as
follows: for a terminal history h of length K,

ui(h) =
∑

`∈[K−Ψ]

δi,win`(h) · one`(i, h) · ρ
(
blocks`(h)

)
,

where δi,j is the Kronecker delta function.That is, a
player’s utility is the sum of the rewards he has re-
ceived for announcing a winning block, up to index
K −Ψ.

By Definition 7.2, for any i ∈ [N ], for any histories
h, h′ in the same information set I ∈ Ii, it holds
that blocks(h) = blocks(h′). Thus, we can associate
a unique blockchain with each information set: we
define blocks(I) to be equal to blocks(h) for any h ∈ I.
Similarly, C(h) = C(h′) for any h, h′ ∈ I in the same
information set I, so we define C(I) to be equal to
C(h) for any h ∈ I.

For a block B ∈ B and a challenge c ← Chal,
we define Exti(B, c) to be the block generated by
player i when mining the next block after B using

11We can assume that the winning block is unique at each
time step, and Quality imposes a total order on blocks.

the PoSpace challenge c (see §3.2 for exact block for-
mat).

Theorem 7.3. Let

Π = {Init,Chal,Ans,Vrfy}
be a proof of space. For any number of players N ,
any number of time steps K ∈ N, and any reward
function ρ : N → N, let ~α = (α1, . . . , αn) be a pure
strategy profile of SpaceMintΠ,K,ρ, defined as follows:
for each i ∈ [N ], for any information set I ∈ Ii such
that I 6= {()},
αi(I)

(
({blocksj(I)} , {Exti(blocksj(I),Cj(I))})

)
= 1,

where j ≥ 1 is the length of the histories in infor-
mation set I12. That is, player i’s next action at
information set I is

α̂i =
(
{blocksj(I)} , {Exti(blocksj(I),Cj(I))}

)
.

Then ~α is a Nash equilibrium of SpaceMintΠ,K,ρ.

Proof. Take any player i ∈ [N ]. By the definition of
Ext, for any information set I ∈ Ii with I 6= {()}, the
quality v of the extended blockchain

v = QualityPC
(
(blocks(I),Exti(B,Cj(I))),C(I)

)
is the same for any block B which was announced
at time step j. Therefore, no utility can be gained
by choosing any block B over any other block B′ to
extend: that is, ui(~α) ≥ ui(α

′
i, ~α−i) for any strategy

α′i which distributes probability over actions of the
form (S, T ) where |S| = 1.

Moreover, not extending any block or extending
multiple blocks precludes a player from being the
“winner” and receiving the reward in this time step,
so extending a block is preferable to not extending
any block. That is, ui(~α) ≥ ui(α′i, ~α−i) for any strat-
egy α′i which assigns non-zero probability to any ac-
tion of the form (S, T ) where |S| 6= 1.

We have shown that ui(~α) ≥ ui(α
′
i, ~α−i) for all

strategies α′i of player i. The theorem follows.

7.3 Analyzing the SpaceMint game

In this section, we prove that honest mining is an ε-
sequential Nash equilibrium of the SpaceMint game.

12All histories in an information set are the same length.
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By Definition 7.2, for any i ∈ [N ], for any histories
h, h′ in the same information set I ∈ Ii, it holds
that blocks(h) = blocks(h′). Thus, we can associate
a unique blockchain with each information set: we
define blocks(I) to be equal to blocks(h) for any h ∈ I.
Similarly, C(h) = C(h′) for any h, h′ ∈ I in the same
information set I, so we define C(I) to be equal to
C(h) for any h ∈ I.

First, Theorem 7.4 defines an ε-Nash equilib-
rium of the SpaceMint game, and then Theorem 7.5
shows that this Nash equilibrium is, moreover, an ε-
sequential equilibrium.

Theorem 7.4. Let Π = {Init,Chal,Ans,Vrfy} be a
proof of space. For any number of players N , any
number of time steps K ∈ N, and any reward function
ρ : N → N, let ~α = (α1, . . . , αn) be a pure strategy
profile of SpaceMintΠ,K,ρ, defined as follows: for each
i ∈ [N ], for any information set I ∈ Ii such that
I 6= {()},
αi(I)

(
({blocks`(I)} , {Exti(blocks`(I),C`(I))})

)
= 1,

where ` ≥ 1 is the length of the histories in informa-
tion set I. That is, player i’s next action at informa-
tion set I is

α̂i =
(
{blocks`(I)}, {Exti(blocks`(I),C`(I))}

)
.

Let

ξ =
maxi∈[N ] ti∑

i∈[N ] ti

be the maximum fraction of space possessed by a sin-
gle player,13 and suppose ξ < 0.5. Then ~α is an
ε-Nash equilibrium of SpaceMintΠ,K,ρ, where

ε = exp

(
− 1

2K
· E [diff1]

2 ·
(K−1∑
j=0

Λ2j
)2
)
,

Λ is the discount factor defined in §3.5 and diff1 is
defined as in §D.

Proof. Fix any player i ∈ [N ]. By the definition of
Ext, for any information set I ∈ Ii with I 6= {()}, the
quality v of the extended blockchain

v = QualityPC
(
(blocks(I),Exti(B,C`(I))),C(I)

)
is the same for any block B which was announced
for block index `. Therefore, no utility is gained

13Recall that ti is the amount of space that player i has
(defined in the remark just before Definition 7.2).

by choosing any block B over any other block B′

to extend: i.e., ui(~α) ≥ ui(α
′
i, ~α−i) for any strategy

α′i which distributes probability only over action se-
quences ((Ti,1,Ai,1), . . . , (Ti,K ,Ai,K)) such that

∀` ∈ [K −Ψ], |Ai ∩ B`| = 1 ,

where Ai =
⋃
j∈[K] Ai,j .

Moreover, for any given block index `, not an-
nouncing any block or announcing multiple blocks
precludes a player from being the “winner” and
receiving the reward at index `, so announcing
exactly one block per index is preferable to an-
nouncing any other number of blocks. Hence, for
any strategies α′′i , α

′
i such that α′′i announces ex-

actly one block per index with probability 1, and
α′i assigns non-zero probability to action sequences
((Ti,1,Ai,1), . . . , (Ti,K ,Ai,K)) such that

∀` ∈ [K −Ψ], |Ai ∩ B`| 6= 1 ,

(where Ai =
⋃
j∈[K] Ai,j as above), it holds that

ui(ui(α
′′
i , ~α−i)) ≥ ui(α′i, ~α−i) .

We can now restrict our attention to strategies
which announce exactly one block per index. Fix any
time step j ∈ [K]. Let α′i be any strategy in which the
probability that player i announces a block Bj ∈ Bj
at time step j is less than 1.

Suppose player i does not announce a block B ∈ Bj
at time step j. Since we are assuming that i an-
nounces exactly one block per index, we know i
announces a block Bi,j ∈ Bj at some time step
j′ > j. If the other players use strategies ~α−i
(i.e. they announce exactly one block with index
j at each time step j), then no player (other than

i) will extend player i’s block Bi,j . Let ~B′ =
(Bgen, B

′
1, . . . , B

′
j−1, Bi,j) be the unique (length-j)

blockchain induced by Bi,j . If player i does not ex-
tend his own block Bi,j , then he will gain no utility
after time step j. Thus, the only way player i can
gain any utility in time steps after j is if he extends
his own blocks all the way up to time step K:

Bi,j+1 = Exti(Bi,j ,Cj(Ii,j))

. . .

Bi,K = Exti(Bi,K−1,Cj(Ii,K−1))

where Ii,j denotes player i’s information set at time
step j, and moreover his self-extended chain has
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higher quality than any chain produced by others:
i.e., at the terminal history h,

QualityPC
(
( ~B′, Bi,j+1, . . . , Bi,K),C(Ii,K)

)
= arg max

~B∈(A(h))|h|

(
QualityPC( ~B,C(h))

)
. (5)

By Theorem D.2, the probability that (5) holds is at
most

exp

(
− 1

2K
· E [diff1]

2 ·
(K−1∑
j=0

Λ2j
)2
)
.

We conclude that ui(~α) ≥ ui(α
′
i, ~α−i) − ε for all

strategies α′i of player i. The theorem follows.

We now show that honestly following the
SpaceMint protocol is an ε-sequential equilibrium of
the SpaceMint game.

Theorem 7.5 (formal version of Theorem 7.1, §7.1).
Let Π = {Init,Chal,Ans,Vrfy} be a proof of space. For
any number of players N , any number of time steps
K ∈ N, and any reward function ρ : N→ N, let (~α, ~µ)
be an assessment of SpaceMintΠ,K,ρ where:
• ~α and α̂i are defined as in Theorem 7.4, and for

each n ∈ N, we define ~αn to be the completely
mixed strategy profile which (at history h) as-
signs probability 1/|Ai(h)|n to every action ex-
cept α̂i, and assigns all remaining probability to
α̂i.

• ~µ is derived from ~α using Bayes’ rule in the fol-
lowing way: ~µ = limn→∞ ~µn, where for each
n ∈ N, ~µn is derived from ~αn using Bayes’ rule.

Let

ξ =
maxi∈[N ] ti∑

i∈[N ] ti

be the maximum fraction of space possessed by a sin-
gle player, and suppose ξ < 0.5. Then (~α, ~µ) is an ε-
sequential Nash equilibrium of SpaceMintΠ,K,ρ where

ε = exp

(
− 1

2K
· E [diff1]

2 ·
(K−1∑
j=0

Λ2j
)2
)
,

Λ is the discount factor (§3.5) and diff1 is defined as
in §D.

Proof. Fix any player i ∈ [N ]. Let I ∈ Ii be any
information set of player i in SpaceMintΠ,K,ρ, and let

L be the length of histories in I. It follows from
Definition 7.2 that the expected utility of player i at
I is ui((~α, ~µ)|I) =∑
j∈[L]

δi,winj(h) · onej(i, h) · ρ
(
blocksj(h)

)
+ u′i

(
(~α, ~µ)

)
,

where u′i is the utility function of player i in the
game SpaceMintΠ,K−L,ρ. Since win, one, and blocks
are invariant over histories within any given infor-
mation set, the summation term can be computed
explicitly by player i at I. Hence, in order to maxi-
mize his expected utility at I, the player needs sim-
ply to maximize u′i((~α, ~µ)). Let (~α|K−L, ~µ|K−L) de-
note the assessment (~α, ~µ) for the first K − L time
steps of the game. By Theorem 7.4, ~α|K−L is an
ε-Nash equilibrium of SpaceMintΠ,K−L,ρ. Since ~µ
is derived from ~α by Bayes’ rule, it follows that
ui((~α, ~µ)|I) ≥ ui(((α

′
i, ~α−i), ~µ)|I) for any strategy

α′i of player i. Applying this argument for every I,
we conclude that (~α, ~µ) is ε-sequentially rational in
SpaceMintΠ,K,ρ.

By construction, limn→∞ ~αn = ~α and ~µ =
limn→∞ ~µn. Hence, (~α, ~µ) is consistent. The theo-
rem follows.
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(ANR-16-CE39-0002). Joël and Krzysztof are sup-
ported by the European Research Council (ERC)
consolidator grant 682815 - TOCNeT.

References

[1] Burstcoin. http://burstcoin.info.

[2] Raspberry Pi. www.raspberrypi.org.

19

http://burstcoin.info
www.raspberrypi.org


[3] Chia Network. https://chia.network/, 2017.

[4] H. Abusalah, J. Alwen, B. Cohen, D. Khilko,
K. Pietrzak, and L. Reyzin. Beyond Hell-
man’s time-memory trade-offs with applications
to proofs of space. In ASIACRYPT (2), volume
10625 of LNCS, pages 357–379. Springer, 2017.

[5] G. Ateniese, I. Bonacina, A. Faonio, and
N. Galesi. Proofs of space: When space is of
the essence. In M. Abdalla and R. D. Prisco,
editors, SCN 14, volume 8642 of LNCS, pages
538–557. Springer, Heidelberg, Sept. 2014.

[6] G. Ateniese, R. C. Burns, R. Curtmola, J. Her-
ring, L. Kissner, Z. N. J. Peterson, and D. Song.
Provable data possession at untrusted stores. In
P. Ning, S. D. C. di Vimercati, and P. F. Syver-
son, editors, ACM CCS 07, pages 598–609. ACM
Press, Oct. 2007.

[7] K. D. Bowers, A. Juels, and A. Oprea. Proofs
of retrievability: theory and implementation. In
CCSW, pages 43–54, 2009.

[8] D. Chaum. Blind signatures for untraceable pay-
ments. In D. Chaum, R. L. Rivest, and A. T.
Sherman, editors, CRYPTO 82, pages 199–203.
Springer US, 1983.

[9] P. Daian, R. Pass, and E. Shi. Snow white:
Provably secure proofs of stake. Cryptology
ePrint Archive, Report 2016/919, 2016. http:

//eprint.iacr.org/2016/919.
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A Proof-of-Space Parameters

The two PoSpace constructed in [14] have the fol-
lowing efficiency/security properties. Below, thash de-
notes the time required to evaluate the underlying
hash function hash : {0, 1}∗ → {0, 1}L on inputs of
length 2L (to hash an input of length m · L takes
time m · thash by using Merkle-Damg̊ard), For a given
number n of nodes of the underlying graph, an honest
prover P must dedicate

N = 2 · n · L
bits of storage (n · L for the labels, and almost the
same for the values required to efficiently open the
Merkle tree commitment). A typical value for L is
256, then N = 512 · n.

Proposition A.1 ([14] first construction). There ex-
ists a PoSpace in the random oracle model with the
following properties:
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• Efficiency: The verifier runs in time O(L) dur-
ing initialization (it just has to send a nonce
and store a commitment) and O(k · log(n) ·
log log(n) · thash) during execution (it must check
O(k · log log(n)) openings of the Merkle tree com-
mitment; the parameter k is discussed below).
The (honest) prover runs in time O(n·log log(n)·
thash) during initialization and in O(k · log(n) ·
log log(n) · thash) during execution.
• Security: Let kv, kp denote the parameter k

we set for the commitment verification and the
proof execution phase. If a (potentially cheat-
ing) prover P passes the commitment verifica-
tion phase, then with probability 1 − 2Θ(kv) the
following holds: If P can make V accept in the
proof execution phase with probability ≥ 2−Θ(kp),
then P either stores Θ(N) bits (i.e., almost
as much as an honest prover) or runs in time
Θ(n · log log(n) · thash) (i.e., the time required for
initialization).

To use the above PoSpace in our construction, we
must set kv = λ, where λ is a statistical security
parameter, and kp = Θ(1) can be a constant.

Proposition A.2 ([14] second construction). There
exists a PoSpace in the random oracle model with the
following properties:

• Efficiency: The verifier runs in time O(L) dur-
ing initialization and in O(k · log(n) · thash) dur-
ing execution. The (honest) prover runs in time
O(n · thash) during initialization and in O(k ·
log(n) · thash) during execution.
• Security: Let kv, kp be as above. If a (po-

tentially cheating) prover passes the commit-
ment verification phase, then with probability
1 − 2Θ(−kv/ log(n)) the following holds: If P can
make V accept in in the proof execution phase
with probability ≥ 2−Θ(kp), then P either stores
Ω(nL/ log(n)) = Ω(N/ log(n)) bits or requires
Ω(N/ log(n)) space and Ω(thash · n/ log(n)) time
during execution.

To use the above PoSpace in our construction, we
must set kv = λ · log(n), where λ is a statistical se-
curity parameter, and kp = Θ(1) can be a constant.

B Burstcoin

Here we give some more details on the efficiency and
security issues of Burstcoin as outlined in §1.2.

The only specification of the Burstcoin mining pro-
cess that we were able to find is the webpage (http:
//burstcoin.info/intro), which unfortunately is
rather informal. The description below is thus only
our best guess on how exactly the mining process
in Burstcoin works, mostly based on the follow-
ing figure: http://burstcoin.info/assets/img/
flow.png.

Burstcoin uses the Shabal256 hash function, which
below we will denote with H(·). To mine Burstcoin,
a miner first initializes his disk space as follows: he
picks a nonce µ and an account identifier (which is
a hash of a public key) Id, and then computes 4097
values x0, x1, . . . ∈ {0, 1}256 as

x0 = H(Id, µ) and (6)

xi+1 = H(xi‖xi−1‖ . . . ‖x0) for i = 0, . . . , 4095 .

The miner then stores s0, . . . , s4095 where si = xi ⊕
x4096. Each block si is called a “scoop”, and the
4096 scoops together are called a “plot”. The miner
is supposed to store as many plots as he can (using
different nonces) until all the dedicated space is filled.
To compute a plot, one must hash 4096 · 1+4096

2 ≈ 8
million 256-bit blocks14. In the following we assume
for simplicity that there is just one plot s0, . . . , s4095.

Efficiency. Once every few minutes, a new block
gets added to the hash chain. (How this is done is
irrelevant for this discussion, so we omit it.) At this
point the miner can compute a designated (public)
index i ∈ {0, . . . , 4095} and must look up the value
si. This si then determines if the miner “wins” and
thus can add the next block to the blockchain. Note
that this requires accessing a constant fraction of the
entire dedicated disk space (i.e. one block per plot,
or 0.024%) every time a new block gets mined. More-

14Note that in equation (6), a freshly computed block xi is
prepended to the previous input. This is because Shabal256
is an iterated hash function: appending instead of prepending
would bring the number of hashes required to compute a plot
down to linear (instead of quadratic) in the length of the plot,
but at the same time would allow for much more dramatic
time/memory trade-offs than the ones outlined below.
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over, in order to verify that a miner “won” and can
add a block, it is necessary to recompute the entire
plot from the initial inputs (Id, µ), which, as men-
tioned above, involves hashing over 8 · 106 blocks. In
comparison, in SpaceMint, the number of bits read
from the disk is only logarithmic in the size of the
dedicated space, and verification also just requires a
logarithmic number of hashes. (In Bitcoin, verifica-
tion requires just a single hash.)

Time/memory trade-offs. We observe that
Burstcoin allows for a simple time/memory trade-
off: instead of storing an entire plot s0, . . . , s4095,
a miner can initially compute and store only the
value x4096. The miner then re-computes the re-
quired scoop si at a given time step, but only if i
is sufficiently small (say, i ≤ 10). This would re-
quire hashing only at most 50 blocks (as the miner
computes x0, . . . , xi and sets si = xi ⊕ x4096). Thus,
the miner will get a shot at adding a block only at
10/4095 ≈ 0.25% of the time slots, but now also only
requires a 1/4095 ≈ 0.025% fraction of the space that
would be needed to store an entire plot. Using this
strategy, given some fixed amount of disk space, it is
possible to mine 0.25/0.025 = 10 times faster than
the honest mining algorithm, at the price of having
to compute a modest number of extra hashes. More
generally, using this type of mining strategy, it is pos-
sible to mine t times faster at the price of having to
hash t2/2 blocks with every block read from disk.

Given that application-specific integrated circuits
(ASICs) can compute in the order of millions
of hashes per second per dollar invested15, such
time/memory trade-offs seem practical16. We remark
that the creators of Burstcoin discuss the possibility
of mining their currency in a pure proof-of-work style,
though they come to a different conclusion from ours:

Technically, this mining process can be mined
POW-style, however mining it as intended will
yield thousands of times the hashrate, and your
hardware will sit idle most of the time. Contin-

15https://en.bitcoin.it/wiki/
Mining hardware comparison

16However, we remark that currently, ASICs exist primarily
for the SHA256 hash function used in Bitcoin (and not for the
more unconventional Shabal256 used in Burstcoin).

uously hashing until a block is found is unnec-
essary, as waiting long enough will cause any
nonce to eventually become valid.

—http://burstcoin.info/intro

Block grinding and extending multiple chains.
The two main challenges we had to overcome when
designing SpaceMint were attacks based on grind-
ing and mining multiple chains. (The problem with
time/memory trade-offs was solved in the Proofs of
Space paper [14] upon which this work builds.)

Due to lack of documentation of the Burstcoin min-
ing process, we do not know to what extent Burst-
coin can be attacked using grinding or by extend-
ing multiple chains. From our understanding of the
Burstcoin mining process, it seems especially cru-
cial to avoid grinding of the index of the scoop to
be used in a given round: otherwise, a malicious
miner could “hijack” the chain forever (i.e. mine
all future blocks) using only a very small fraction
of the total dedicated space, as follows. The fig-
ure http://burstcoin.info/assets/img/flow.png
indicates that this scoop index is computed from
two values PrevGenSig and PrevBlkGenerator. The
naming indicates that PrevGenSig corresponds to the
value NewGenSig used in the previous block. This
value is computed deterministically and is thus “un-
grindable”. We were not able to find details on the
functionality of PrevBlkGenerator, so we do not know
whether it can be grinded; however, it seems possible
that this value serves to bind transactions to proofs
within a given block, and thus can be grinded (by
trying different sets of transactions to be included in
a block).

C Challenge-grinding attacks

In this section we describe the challenge-grinding at-
tack (which was communicated to us by Andrew
Miller [24]), and our solution. Recall (from §3.5) that
the quality of a blockchain in SpaceMint is defined by:

QualityPC(ϕ0, . . . , ϕi) =

i∑
j=1

log(N(vj)) · Λi−j , (7)
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where vj is the quality of the proof in ϕj and N(vj) is
the space required for a proof of quality vj . The dis-
count factor Λ ensures that more-recent blocks weigh
slightly more. For the purpose of this section, the fac-
tor Λ is not important, so we omit it. Then, notice
that an equivalent measure is the product of block
qualities:

QualityPC×(ϕ0, . . . , ϕi) =
∏i
j=1 N(vj) . (8)

A natural question is: why take the product, rather
than the sum? It turns out that there is a possible
attack in the case that QualityPC takes a sum, i.e.

QualityPC+(ϕ0, . . . , ϕi) =
∑i
j=1 N(vj) , (9)

which is mitigated by instead taking a product. The
basic intuition for this is that the geometric mean
is more robust against outliers than the arithmetic
mean. We now describe the attack against the sum-
based quality function.

Challenge-grinding attack. When using a space
commitment (pk, γ) to compute a proof for block i,
we must use the challenge computed as a hash of
block i − ∆ as c := hash(pk, ϕi−∆). It is important
that ∆ is at least the number of time steps required
to reach consensus with overwhelming probability, so
that each miner (i.e., each public key) gets exactly
one chance at mining a block at time step i. Thus, it
is not possible to get an unfair advantage by spend-
ing computational power to “try many different chal-
lenges and pick the best one”. In a challenge-grinding
attack, the adversary does exactly this, by producing
long enough (> ∆) sequences of blocks so that he
controls his own future challenges.

Let A be a challenge-grinding adversary who con-
trols space of size N . A splits up his space into as
many separate space commitments as possible (sub-
ject to the minimum size allowed for space com-
mitments): let (pk1, γ1), . . . , (pkm, γm) be his space
commitments, which together comprise space N =∑m
j=1Nγj . If this adversary “honestly” mined t con-

secutive blocks (by taking the highest-quality proof
ϕi among all his m space commitments, at each time
step i), then the expected quality of the resulting
chain is

E[QualityPC+(ϕ0, . . . , ϕt)] =

t∑
i=1

E[N(vi)] = t ·N

according to the sum-based quality function (9). (Re-
call that by construction, the expectation of N(vi) is
N , where vi is the quality of proof ϕi.)

In fact, for a sum-based quality function, A can
do significantly better than this for all sufficiently
long chains. First, he partitions the block indices
{1, . . . , t} into disjoint pairs (i, i+∆). For simplicity,
suppose t = 2∆ and let the pairs be

(1, 1 + ∆), . . . , (∆, 2∆) .

Then, for each pair (i, i + ∆) and every space com-
mitment (pkj , γj), A computes a challenge ci,j :=
hash(pkj , ϕ

′
i,j), where ϕ′i,j is the proof corresponding

to commitment (pkj , γj) at time step i. At this point,
A has computed m possible challenges ci,1, . . . , ci,m
for each time step i + ∆. He can choose the best,
c∗i ∈ {ci,1, . . . , ci,m}, such that the quality of his block
at position i+∆ is maximized. Informally, this is like
having just one challenge, but m times more space.

Now, for a pair (i, i + ∆), the expected quality of
A’s proof in time step i + ∆ is increased to N · m.
This strategy actually decreases the expected qual-
ity in the earlier time step i compared to the honest
strategy, since instead of optimizing for quality at po-
sition i, A optimizes for position i+ ∆: the expected
quality of A’s proof in time step i is only N/m.

With this approach, A generates a chain where half
the blocks have quality around N ·m and the other
half N/m, so the expected chain quality is

E[QualityPC+(ϕ′0, . . . , ϕ
′
t)] =

t∑
i=1

E[N(vi)]

≈ t · (N/m) +N ·m
2

> tmN/2 .

Summing up, A, using space N that was initialized
once, generated a chain of quality that would require
total space over mN/2 if generated by honest min-
ing. This m/2 factor can be even further improved
by optimizing over blocks separated not just by ∆
positions, but by k · ∆ positions: e.g. blocks i and
i+ ∆ can be used to generate t2 challenges and pick
the best proof for block i+2∆, yielding a factor m2/3
improvement. (More generally, we can get mk/(k+1)
for any k ∈ N; the computational cost of the attack
grows as tk.)
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If the QualityPC function is product-based (or
equivalently, based on the sum of logarithms), as in
(7), the attack outlined above no longer works. The
reason is that the (expected) quality of our two blocks
j and j + ∆ is N/t and N · t, respectively, and thus
the product is N2 (which is the same as obtained by
honest mining, where each block has expected quality
N).

Although we have eliminated the specific space-
grinding attack described above, we remark that it
is still possible to get some minor advantage by chal-
lenge grinding even with a product-based measure
of quality. Recall that the attack generated m chal-
lenges at block i (using the m space commitments),
and then picked the challenge which gave the best
quality for block i + ∆. Instead of only doing this,
an adversary could check which challenge (among the
m candidates) gives the highest value for the prod-
uct of block qualities at position j and j + ∆. Using
this strategy, the expected quality of these blocks is
N2 · log(m), which is a factor log(m) higher than the
N2 we get by honest mining (but still much smaller
than the m/2 factor in the original attack).

Before we explain how to counter this attack, let us
observe that what makes challenge grinding possible
in the first place is the variance in the quality of a
proof: for a space commitment (pk, γ), the expected
quality of a proof is Nγ , but for any α > 1, the qual-
ity will be higher than α·Nγ with probability roughly
1/α. This variance is necessary as we need the ex-
pected quality of the best proof found amongst many
commitments (pk1, γ1), . . . , (pkm, γm) to be the sum∑m
i=1Nγi of all the spaces.

We can decrease the advantage of challenge grind-
ing over honestly mining by lowering the variance of
the quality of proofs. As mentioned above, this vari-
ance is an important feature that we cannot simply
remove; however, we can cluster proofs together so
that the advantage from challenge grinding “amor-
tizes” over many proofs. One way is to use the same
challenge for several consecutive blocks. Concretely,
we introduce a new parameter δ which specifies how
many blocks are generated using the same challenge.
The challenge for block i is no longer computed as

c := hash(pk, ϕi−∆)

but as

c := hash(pk, ϕi−∆−(i mod δ)) .

Now a challenge-grinding adversary must try to “op-
timize” δ proofs at once, which will give a much lower
advantage than when able to “grind” the proof for
every block individually. We suggest to set δ = 10,
which seems more than sufficient to prevent challenge
grinding (we do not recommend using much larger δ,
since that can make generating long forks easier, as
we discuss in §D).

D Parameter setting and inter-
play

We have defined several parameters which control the
efficiency and security of SpaceMint. Some of those
parameters cannot simply be seen as security param-
eters (where increasing the parameter leads to more
security but less efficiency) as there is a delicate inter-
play between them, where changing some parameter
increases one security property at the price of de-
creasing another. We discuss the importance of the
most important parameters on the most relevant at-
tacks below; a summarized view is given in Table 1.
The parameters are the following, where the number
in [·] brackets indicates the parameter value in our
suggested instantiation.

time [1] which specifies the time (in minutes) between
blocks.

δ [10] which specifies for how many blocks the same
challenge is used.

∆ [50] which specifies that the challenge for a block
is computed as the hash of the block at least ∆
blocks in the past (and at most ∆ + δ).

Λ [0.99999] specifies how the weight of blocks – when
computing the quality of a chain – degrades for
older blocks.17

minspace [100] specifies (in GB) the minimal size of
space one must dedicate to start mining.

17With this Λ the weight drops by 50% every 69314 blocks,
or 48 days (as Λ69314 ≈ 0.5).
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Table 1: A summary on how different parameters influence different security properties of SpaceMint as
discussed in Appendix D. An arrow ↑ (↓) means increasing (decreasing) this parameter will increase the
security against the corresponding attack, ⇑ means that increasing this parameter has a major influence
on the security against this attack. The ↑’ arrows do not refer directly to minspace, but rather the time
required to initialize the minimal allowed space, which scales linear in minspace as shown in Figure 2a.
Decreasing time makes the scheme only more secure, but setting it very low will force miners to dedicate
more computation. Also setting minspace high will make the scheme more secure, but a high minspace will
lower its usability, as parties with small space will not be able to participate.

Parameters time ∆ δ Λ minspace

Range/unit N+/min N+ N+ [0, 1] N+/GB

Suggested 1 50 10 0.99999 100

Attacks

Challenge Grinding - - ⇑ - ↑
Extending Multiple Chains - ⇑ - - -
Short Forks by Space Reuse ↓ ↓ ↓ - ↑’
Long Forks by Space Reuse ↓ ↓ ↓ ⇑ ↑’
Long Forks by Space Decrease - - - ⇓ -

Challenge grinding. We discussed challenge
grinding in detail in §C and how setting the param-
eter δ sufficiently high prevents this attack. We also
discussed how challenge grinding becomes more suc-
cessful the more space commitments one can generate
given some fixed space, thus increasing minspace also
makes the attack harder.

Extending multiple chains. We must ensure
that for a miner it is rational to only announce blocks
extending one chain, and this chain should be the
chain of highest quality known to the miner. Ensur-
ing that a miner only announces one block is done by
penalizing miners otherwise (§4). If there is a fork,
we assume that with high probability this penaliz-
ing is sufficient to ensure that one branch will “die”
within at most ∆ blocks. Otherwise, miners will get
different challenges for the two chains, which (assum-
ing the miners are rational) will slow down consensus.
Clearly, increasing ∆ makes this event less likely (at
an exponential rate).

Short forks by space reuse. The security of
SpaceMint relies on the assumption that it is not pos-
sible to reuse space for mining. As we can compute

the challenges for up to ∆ + δ blocks in advance, for
reusing space even just twice, one would have to ini-
tialize the space in less than

time(∆ + δ) = 1(50 + 10)/2 = 30 minutes .

This is far from the ≈ 200 minutes required to in-
stantiate 100 GB of space, which is the minimum we
suggest (Figure 2c on p. 13).

A promising approach to further harden Spacemint
against space reuse is to use “proofs of space-time” as
suggested in [27], which will make the initialisation of
the space more expensive, but as a consequence also
reusing the space comes at a much higher cost.

Long forks by space reuse. The situation is dif-
ferent if we consider an adversary who tries to create
a long-range fork (and not extend the current chain)
because (as specified in Eq. (4), p. 9) more recent
blocks contribute more to the quality of a chain. We
shortly sketch how this attacks works: Let cur denote
the index of the current block. An adversary first ex-
tends the current chain up to some block cur + low
by simply using the space he has available (so, the
low new blocks will be of low quality compared to
the actual chain). Then the adversary extends this
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chain to block cur + low + high with high quality
blocks, i.e., somewhat better than the blocks of the
actual chain. As the adversary has less space than
the total space contributed by all miners, he must
re-instantiate the space many times while generating
these blocks. This will take a lot of time, but the
adversary has time(low + high) minutes to generate
these high blocks, so it will be possible by setting low
high enough.

How large high must be depends on how fast the in-
fluence of blocks degrades as specified by the param-
eter Λ: concretely, it will be in the order of 1/(1−Λ)
(as the contribution of blocks from far in the past
is just a small fraction (≈ 1/e) of the most recent
blocks.)

Every time the adversary re-initalizes its space, it
can generate challenges for the next ∆ + δ blocks.
Let Tinit denote the time in minutes required for re-
initialization. Consider an adversary that generates
a chain while re-sampling even only once for every
block, which will allow to generate blocks that look
as if they had been mined with twice the space that
is available to the adversary. (This will only be suf-
ficient if the adversary has more than half the space
of the honest miners available.) Then the adversary
is by a factor

β =
Tinit

(∆ + δ)time

slower than the speed at which the actual chain
grows. This means it must set

low ≈ high/β ≈ 1

(1− Λ)
· Tinit

(∆ + δ)time

to finish the fork on time.

For minspace = 100(GB) we have Tinit ≈ 200 so
low ≈ 100 000 · 200/60 minutes. Thus, even with
our rough analysis, this implies that a fork would
have to go back at the very least half a year. Of
course even such a long fork constitutes an attack,
and thus some mechanisms to handle very long forks
must be in place. This could either be some type of
checkpoints, but we believe that for such long forks
relying on weak subjectivity18 should be sufficient.

18https://blog.ethereum.org/2014/11/25/proof-stake-
learned-love-weak-subjectivity/

Long forks by space decrease. The above attack
assumes Λ < 1. If Λ = 1 then there is no degradation
of the contribution to chain quality of blocks further
in the past. This is problematic as it allows to gen-
erate a chain, stating from the genesis block, using
space that is only as large as the average amount of
space that has been available by the miners over the
entire lifetime of the currency, which can be much
lower than the currently used space. But then, also
in this case we could rely on weak subjectivity.

Overtaking the chain. Another attack involves
the adversary extending only his own blocks, and at-
tempting to overtake the main chain. In this case, the
adversary will only get rewarded for those blocks if
the quality of his chain eventually exceeds that of the
chain mined by the rest of the network. We say that
the attack is successful if the blocks thus mined by
the adversary eventually become part of the highest-
quality chain.

A successful overtake would enable an adversary
to do a double-spending attack by putting a transac-
tion transferring money to someone in the “main”
blockchain, and later overwriting the transaction
when his self-mined blockchain overtakes the main
one.

Recall the quality of a block (from §3.5):

Quality(pk, γ, c, a) = DNγ (hash(a)) ,

where DN (hash(a)) is defined as

DN (hash(a)) :=
(
hash(a)/2L

)1/N
.

We model the hash function as a random ora-
cle, so hash(a)/2L is distributed as r′/2L for random
r′ ← {0, 1}L. This distribution is statistically close
to randomly sampling r ← [0, 1], that is,

∆
(
{r′/2L}r′←{0,1}L , {r}r←[0,1]

)
= 2−L ,

where ∆ denotes statistical distance. Henceforth, our
analysis considers only the latter distribution, which
we denote by D∗N :

D∗N ∼
{
r1/N

}
r←[0,1]

.

Let (ϕ0, . . . , ϕM ) be a proof chain, where each
proof sub-block ϕj contains a proof (pkj , γj , cj , aj)
and the quality of the jth block is vj ← D∗Nj . The
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Table 2: Bounding the probability of a successful overtake of the chain:
p is the probability of a successful overtake, ξ is the adversary’s proportion of the network disk space, and
the tabulated values are fork length (in blocks).

Λ = 0.99999 Λ = 0.99998 Λ = 0.99997

ξ \ p 2−8 2−16 2−32 2−64 2−128 2−8 2−16 2−32 2−64 2−128 2−8 2−16 2−32 2−64 2−128

0.1 3 5 10 19 37 3 5 10 19 37 3 5 10 19 37

0.25 10 19 37 74 148 10 19 37 74 148 10 19 37 74 148

0.33 24 47 93 186 371 24 47 93 186 373 24 47 93 186 374

0.4 68 136 271 543 1092 68 136 272 546 1104 68 136 273 549 1116

0.45 277 554 1114 2254 4614 277 557 1127 2307 4852 278 561 1140 2365 5130

quality of a blockchain (cf. §3.5) is given by

QualityPC(ϕ0, . . . , ϕM ) =

M∑
j=1

log(N∗(vj)) · ΛM−j

where Λ ∈ [0, 1] and N∗ is defined as

N∗(v) = min{N ∈ N : Pr
w←D∗N

[v < w] ≥ 1/2}. (10)

Lemma D.1. N∗(v) = −1/ log(v).

Proof. By definition of D∗N , increasing N means
Prw←D∗N [v < w] increases. Therefore, (10) implies

N∗(v) = N s.t. Pr
w←D∗N

[v < w] = 1/2.

Also by definition of D∗N , it holds that

Pr
w←D∗N

[v < w] = Pr
r←[0,1]

[v < r1/N ]

= Pr
r←[0,1]

[vN < r]

Setting the above probability to 1/2 and solving for
N gives N = −1/ log(v). The claim follows.

Suppose, without loss of generality, that the adver-
sary begins his long-fork attack at time 0. Let Nadv

be the amount of space the adversary has, and let
Nhonest be that of the rest of the network. For any
M ∈ N, let EM denote the event that after M blocks,
the adversary’s blockchain is of higher quality than
the honest miners’ blockchain. Then, by definition of
QualityPC, Pr[EM ] equals

Pr
[ M∑
j=1

(
log
(
N∗(v̂j)

)
− log

(
N∗(vj)

))
· ΛM−j > 0

]
,

(11)
where v̂j , vj are random variables representing the
quality of the jth block of the adversary and the net-

work respectively, and the probability is taken over
v̂j and vj . Using Claim D.1 to substitute for N∗(·)
and rearranging, we find that Pr[EM ] =

Pr
[ M∑
j=1

(log(− log(vj))− log(− log(v̂j)))·ΛM−j > 0
]
.

(12)
For j ∈ [M ], we define new random variables diffj

and diffΛ,M
j as follows:

diffj := log(− log(vj))− log(− log v̂j)) ,

diffΛ,M
j := diffj · ΛM−j .

Both diffj and diffΛ,M
j have support [−1, 1]. We can

now write

Pr[EM ] = Pr
[∑M

j=1 diffΛ,M
j > 0

]
. (13)

Theorem D.2.

Pr[EM ] ≤ exp

(
− 1

2M
· E [diff1]

2 ·
(M−1∑
j=0

Λ2j
)2
)
.

Proof. Applying a Hoeffding bound to the right-hand
side of (13), we obtain:

Pr[EM ] ≤ exp

(
− 1

2M
·
( M∑
j=1

E
[
diffΛ,M

j

])2
)
. (14)

By definition of diffj and diffΛ,M
j ,

E
[
diffΛ,M

j

]
= ΛM−j · E [diffj ]

= ΛM−j · E [diff1] ,

where the second equality follows from the fact that
the diffj are identically distributed for all j. Substi-
tuting this expression in Eq. (14) and using linearity
of expectation, we obtain the inequality given in the
theorem statement.
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The values in Table 2 were calculated by using
Mathematica to solve (for M) the expression given
in Theorem D.2.

Remark. The dynamics of long-fork attacks change
slightly if there is more than one (independent) ad-
versarial party. In this case, the probabilities shown
in Table 2 are still accurate as long as no adversar-
ial party owns more space than all the honest parties
combined, even if the sum of the space owned by ad-
versarial parties is more than 50% of total space.
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