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Abstract. We propose a new approach to the construction of prov-
ably secure secret-key authentication protocols for lightweight pervasive
devices. We specify a flexible model that captures existing security def-
initions and can be extended modularly to capture additional protocol
features or adversarial capabilities for specific application requirements.
Our model allows for statefulness, which was not captured by standard
definitions in the literature, but is common (and often preferred, due to
leakage concerns) in practice. In addition, our model formalizes robust-
ness against memory erasure attacks, a type of tampering attack that is
not considered by existing theoretical models, yet has been shown to be
eminently feasible on many low-cost devices. We show that most existing
protocols based on the Learning Parity with Noise (LPN) problem are
very much susceptible to memory erasure attacks.
We then propose a two-message protocol in the prover-stateful model
which achieves provable concurrent man-in-the-middle security and asymp-
totically optimal efficiency. Our protocol can be instantiated based on
any secure pseudorandom generator (PRG). We also show a variant con-
struction which is resistant to erasure attacks by using a “reinforced”
PRG (that can be built from any PRG), at a cost in key size. Preliminary
analysis of our protocol’s expected performance when instantiated based
on a hardware-oriented stream cipher (Grain) shows that our prover com-
putation time compares favorably against a simple AES-based protocol.

1 Introduction

Secret-key authentication is one of the most basic cryptographic tasks. The set-
ting is that a prover, Peggy, and a verifier, Victor, share a secret key K, and the
aim is to design a protocol so that Peggy (and Peggy alone) can convince the
verifier that she indeed knows the key K. In this paper, we focus our attention
on one-sided authentication, as distinct from mutual authentication where both
parties must be convinced of each other’s identity.

Applications demanding efficient one-sided authentication have proliferated
in recent years, with the development of technology both affordable and lightweight
enough to embed in everyday devices and objects, e.g., in the so-called Internet
of Things (IoT). More often than not, such devices started off without sophis-
ticated authentication techniques – or indeed, without any authentication at



all3 – but attacks quickly emerged against these schemes: ranging from inade-
quately secured, ubiquitous RFID chips (e.g., building access badges or subway
tokens) [5,10,6], to common IoT protocols whose vulnerabilities allow for wire-
less hacking of “smart home” devices [39], and to remote hijacking of cars by
exploiting unsecured communications between car parts [26,31]. These are just
a few examples, and the literature contains many more.

Fortunately, this saga has led to a general recognition that having secure
authentication even for the smallest system components is important, by both
system/policy designers and the public. For example, the car hacking results
have led to draft legislation (e.g., in the US Senate [30]) on vehicular cyberse-
curity standards, as well as dramatic media coverage by a Wired reporter who
(consensually) had his car stopped remotely by researchers while he was on the
highway [18].

In a certain sense, cryptographers could consider secret-key authentication to
be a long solved problem. A simple two-round protocol where the verifier sends a
random challenge and the prover replies with a MAC on that challenge turns out
to achieve security against concurrent man-in-the-middle attacks, the strongest
security definition in the literature. However, authentication on lightweight de-
vices presents interesting challenges not addressed by classic solutions like the
above. Typically, the prover in these settings is a very resource-limited device
such as an RFID chip. Yet efficiency is often of critical importance, whether be-
cause busy people expect to speed through the subway turnstile or store check-
out without having to wait multiple seconds to authenticate, or because the
device in question is part of a pacemaker or automobile where small delays can
have devastating consequences.

Accordingly, lightweight authentication has lately been a subject of interest.
Provably secure lightweight protocols have garnered significant interest, and a
number of such protocols have been proposed, in a line of work starting with
the HB/HB+ protocols [21,23]. A series of security definitions ranging from
passive to concurrent man-in-the-middle security have become established, and
proposed protocols in the theoretical cryptography literature have variously been
proven to satisfy one or the other of these security notions. The first formal
treatment of secure authentication, due to [2], addressed the setting of mutual,
rather than one-sided, authentication; the security notions currently in the one-
sided authentication literature are closely inspired by their seminal definitions.

Now, with the combination of advances both in protocol proposals and the
capabilities of low-cost RFID chips, such provably secure protocols are now ef-
ficient enough to be within the range of possible to be run on existing RFID
devices (albeit still not in the lowest cost ranges). So, are we approaching an
idealistic union of theory and practice? Not quite. First, the protocols are still

3 Probably the most pervasive RFID devices are EPC tags, which serve as low-cost
electronic barcodes in supply chains and other applications. These often “promiscu-
ously broadcast a static identifier with no explicit authentication procedure” (quot-
ing [23]). The cheapest such tags cost less than $0.01 per unit, and may simply lack
adequate resources to do standard cryptographic operations.
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far from competitive with deployed solutions in terms of efficiency. This, we may
hope to improve over time. Second, and more fundamentally: although the se-
curity definitions in the literature protect against strong adversaries (e.g., which
can run man-in-the-middle attacks on polynomially many concurrent protocol
executions), the existing security notions are based on established adversarial
models dating back to the early years of cryptographic theory, which (though
they have proven robust and versatile in general) were not tailored for the setting
of low-cost ubiquitous computing.

As the IoT matures, and RFID and similar technologies permeate more and
more aspects of everyday life, a specific new set of requirements for “authenti-
cation in ubiquitous computing” is coming into definition. A theoretical model
and solutions that address these particular requirements are essential if provable
security is ultimately to have relevance to practice. We use the term ubiquitous
authentication to refer to the problem of one-sided authentication using low-cost
pervasive devices.

1.1 Secure authentication: more background and motivation

The very first solution to the authentication problem is due to Goldreich, Gold-
wasser, and Micali [16], as follows. Suppose we are given a pseudorandom func-
tion family (PRF) F whose functions fK have a key K and input/output size
n bits. The crucial property of a PRF is that even an adversary who chooses
the input (but does not know the key) cannot distinguish the output of fK from
random. Given a PRF, we can simply let the verifier send a random input x,
and have the prover respond with fK(x). This simple two-round protocol already
achieves concurrent MIM security4.

Asymptotic efficiency. From the perspective of efficiency, this simple solution is
problematic in general. The standard construction of a PRF (from [16]) is based
on a pseudorandom generator (PRG), which is a much simpler primitive that
expands a short key into a random-looking longer output. However, the GGM
construction does not yield a particularly efficient PRF: even assuming a very
efficient PRG that only requires a constant number of operations per output bit,
the PRF will have complexity Ω(n2).

There are in fact several very efficient and low-depth constructions of PRGs
from specific problems, such as Learning Parity with Noise (LPN); and further-
more, even linear-time computable PRGs with linear stretch are known to follow
from general and plausible assumptions5. Hence, it is compelling to try to de-

4 Note that for authentication, it is actually sufficient to have an unpredictable func-
tion, a computationally secure “MAC”, rather than a PRF. However, we do not
know of more efficient constructions of MACs either, so this does not help in terms
of efficiency. In [22], Ishai et al. construct constant-overhead PRFs and MACs, but
in their work the output size is much smaller than the input: in our context, this
would make the prover’s answer much easier to guess than the verifier’s challenge,
making the protocol insecure.

5 A number of different sufficient conditions for such PRGs are known. In [22] it is
observed that such PRGs follow from Alekhnovich’s variant of the Learning Parity
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sign authentication directly based on weaker pseudorandom primitives such as
PRGs, in such a way that the protocol inherits the efficiency. More specifically,
we direct our attention to the open question of designing a two-round protocol
to achieve (optimal) linear computational complexity.

Practical efficiency. In practice, a natural way to implement the simple PRF-
based authentication protocol described above would be to use a block cipher
such as AES in place of the PRF. While widely-used block ciphers such as AES
are highly streamlined, we observe that (synchronous) stream ciphers can be
used as PRGs and are often much faster than block ciphers. Thus, a natural
question arises: can we design authentication directly based on stream ciphers,
in such a way that the protocol inherits the efficiency? Efficiency gains at this
scale could be particularly significant in settings where the prover is a lightweight
device. Indeed, building authentication based on stream ciphers has been recog-
nised as a promising topic in the RFID authentication literature, for exactly
this reason [14]; however, to the best of our knowledge, concrete proposals so
far have required three or more rounds and have security which is (if proved at
all) based upon non-standard assumptions that are stronger than assuming the
stream cipher is a PRG (e.g. [27,4]).

The problem of optimally efficient two-round authentication has been long
open in the (standard) stateless model. This paper can be seen to ask, and
affirmatively answer, the following question: can we leverage a small amount of
state on the prover side to build far more efficient protocols?

1.2 Overview of contributions

In this paper, we propose a new, flexible theoretical model for ubiquitous au-
thentication. Our framework captures the full range of above-mentioned security
definitions that are already considered in the literature, and also incorporates
additional parameters that better capture realistic considerations when dealing
with low-cost devices, both in terms of the capabilities of the adversary and of
the lightweight prover device. Notably, our model allows for statefulness of the
prover and/or verifier, which was not captured by standard definitions in the
literature, but is common (and often preferred, due to leakage concerns) in prac-
tice. Our model incorporates the accompanying issues of synchronisation and
resetting which are not addressed by the existing stateless models.

Furthermore, we consider robustness against memory erasure attacks, a type
of realistic tampering attack that is not covered by the standard theoretical
models.6 Our definition formalizes the natural requirement that though an ad-

with Noise assumption. Applebaum [1] shows that such PRGs can be obtained from
the assumption that a natural variant of Goldreich’s candidate for a one-way function
in NC0 is indeed one-way. The improved HILL-style result of Vadhan and Zheng
[38] implies that such PRGs can be obtained from any exponentially strong one-way
function that can be computed by a linear-size circuit.

6 The memory on low-cost RFID tags is not well-protected, and the ubiquity of their
usage means that it is often relatively easy for an attacker to obtain (temporary)
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versary may disable a prover device by erasing its memory, the adversary must
not thereby learn secret information.

We then show that a number of existing protocols based on the Learning
Parity with Noise (LPN) problem – namely, [21,23,25] – which have been proven
secure under the traditional security definitions, are very much susceptible to
erasure attacks (we give attacks that allow complete recovery of the secret key).

Next, we construct a two-message protocol in the prover-stateful model,
called UbiAuth, which can be instantiated with any secure pseudorandom gen-
erator (PRG). We emphasize that in the prover-stateful model we do not have
to deal with synchrony issues between the prover and verifier as only the prover
needs to keep state. We prove that UbiAuth achieves concurrent man-in-the-
middle security. Moreover, a slight variant protocol instantiated with a “rein-
forced” PRG is robust against erasure attacks, at the cost of an n1+ε factor in-
crease in key size. We give a construction of such reinforced PRGs based on any
secure PRG. Additionally, we prove that a further variant protocol, UbiAuth+,
provides some (a priori bounded) resilience against resetting attacks. The two
variants can be combined to achieve security against both erasure attacks and
bounded resetting attacks.

A feature of interest from a theoretical standpoint is that our protocols are the
first concurrent man-in-the-middle secure protocols to achieve amortised linear
time complexity (concretely, less than 1.5 linear-time PRG calls per protocol
execution). A more detailed discussion of how our protocols relate to existing
protocols in the literature is given in Section 2.

Finally, returning to the motivation of theory in the context of practice, we
consider how UbiAuth would perform if instantiated with a stream cipher acting
as the PRG. Specifically, a preliminary analysis of expected performance of our
protocol instantiated with Grain-128 yields a favorable comparison with a simple
AES-based protocol7 in terms of prover computation time.

In summary, the rest of the paper is structured as follows.
– Flexible new model designed for ubiquitous authentication (subsuming prior

definitions), incorporating statefulness and erasure attacks, and allowing for
modular extension to model specific adversarial capabilities. (Section 3.)

– Erasure attacks against existing LPN-based lightweight authentication pro-
tocols. (Section 4.)

– Two-message protocols achieving linear time complexity and provable secu-
rity based on any PRG, in the prover-stateful model. (Section 5.)

– Preliminary performance analysis yields favorable comparison with simple
AES-based protocol. (Section 6.)

physical access to the device. A particular type of attack which has been shown to be
feasible at relatively low cost on the EPROM memory used in RFID tags is erasing
at specific locations using UV light: [37] describes a method using everyday supplies
such as an $8 laser pointer.

7 AES itself is too heavyweight for the very lightweight applications we are ultimately
targeting, so this is not intended to indicate that our protocol as is might be suitable
for low-cost EPC tags, but rather to indicate the reasonableness of our protocol as
a prototype to be improved upon.
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2 Related work

LPN-based protocols. The first and simplest authentication scheme based on
LPN was the HB scheme [21], which is secure against passive attacks (but easily
breakable by active attacks). Subsequently, [23] gave an actively secure8 variant
protocol called HB+ with an additional round (which requires the prover to
keep state between rounds). Then, [25] proposed the first two-round actively
secure protocol, whose security is based on the Subspace LPN problem;9 and
shortly thereafter, [20] proposed the “Lapin” protocol, a more efficient two-round
protocol whose security is based on another LPN variant called Ring LPN.

The preceding protocols are all vulnerable to man-in-the-middle attacks. [25]
shows how to generate a MAC based on their aforementioned actively secure
authentication protocol, and this yields the first somewhat efficient MIM secure
protocol based on LPN (using two rounds). More recently, [13] gave a more
efficient MIM secure (three-round) variant protocol using more efficient MACs
that make use of pairwise independent hashing. We note that both of these
constructions suffer from large (quadratic) MAC key-sizes.

Protocols from abstract primitives. Dodis et al. [13] construct a three-round
protocol based on any weak PRF. A weak PRF is a relaxed notion of PRF in
which outputs are only required to look random for random (rather than adver-
sarial) inputs. [13] achieves active security (a weaker notion than MIM security).
Subsequently, Lyubashevsky and Masny [28] proposed a three-message protocol
based on any weak PRF, which is secure against sequential MIM attacks10. In
addition, they give a variant three-message protocol that can be built from any
randomised weak PRF, a yet slightly weaker primitive. However, these protocols
are not concurrent MIM secure (in fact, [28] outlines an attack), and all require
three messages.

Recent work by Cash, Kiltz, and Tessaro [8] (which is subsequent to but inde-
pendent of our work) proposes sequential MIM secure two-round authentication
by a generic transformation from actively-secure protocols which satisfy certain
requirements. Their construction can be instantiated from a number of existing
protocols, including ones based on concrete assumptions such as LPN or the
decision Diffie-Hellman assumption, and also based on weak PRFs. However, [8]
do not show concurrent MIM security.

8 In fact, it was subsequently shown that HB+ is secure even against concurrent active
attacks where the adversary may interact with multiple provers concurrently [24].

9 Subspace LPN is a variant of the LPN problem that has been shown to be almost
as secure as standard LPN, under certain conditions [33].

10 Sequential MIM security is stronger than active security, but weaker than concurrent
MIM security. In a sequential MIM attack, the adversary can interact polynomially
many times with an honest prover and verifier, but the interactions cannot involve
multiple concurrent sessions with the prover (or the verifier). In contrast, an active
adversary can interact only with the prover.
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3 Defining security

A authentication protocol is an interactive two-party protocol (P,V) between a
prover P and a verifier V: these may be respectively thought of as a (lightweight)
tag, and a reader to which the tag is identifying itself. Both parties are ppt, and
hold a shared secret s generated according to some generation algorithm Gen(1κ)
(where κ denotes the security parameter) in an initial phase. After an execution
of the protocol, the verifier V outputs either acc or rej – this is also called the
output of the protocol execution.

The usual definition of a secret-key authentication, where the prover and
verifier are stateless (i.e., do not maintain state between protocol executions), is
given formally in Definition 1 below.

Notation. For a finite set B, we write b ← B to denote that b ∈ B is sampled
uniformly at random from B. For n ∈ N, [n] denotes the set {1, 2, . . . , n}. An
efficient algorithm is one which runs in probabilistic polynomial time (ppt).

Definition 1. A stateless secret-key authentication protocol is a tuple
(Gen,P,V) where:
– Gen is a ppt key-generation algorithm, which takes as input the security

parameter 1κ (in unary) and outputs a secret key s.
– P is an interactive Turing machine representing the prover, which takes as

input 1κ, a secret key s and outputs (interactively) the messages sent by the
prover.

– V is an interactive Turing machine representing the verifier, which takes as
input 1κ, a secret key s and outputs (interactively) the messages sent by the
verifier. On completion of a protocol execution, V outputs acc or rej.

Note that for brevity, we sometimes omit writing the security parameter 1κ

as input. For the standard security definitions, we refer to Appendix A; due to
space constraints, we give here detailed security definitions only for the new,
stateful case (below).

3.1 Fully stateful protocols

In Definition 2, we extend Definition 1 to allow for the prover and verifier keeping
persistent state between protocol executions.

Definition 2. A fully stateful secret-key authentication protocol is a tu-
ple (Gen,P,V) where:
– Gen is a ppt key-generation algorithm, which takes as input the security

parameter 1κ (in unary) and outputs a secret key s and an initial pair of
states (σ0, τ0).

– P is an interactive Turing machine representing the prover, which takes
as input 1κ, a secret key s and a state σ, and outputs (interactively) the
messages sent by the prover. Upon conclusion of a protocol execution, P
outputs an updated state σ′, denoted σ′ ← P(s, σ).
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– V is an interactive Turing machine representing the verifier, which takes
as input 1κ, a secret key s and a state τ , and outputs (interactively) the
messages sent by the verifier. Upon conclusion of a protocol execution, V
outputs (τ ′, b) where τ ′ is an updated state and b ∈ {acc,rej}.

For any i ∈ N, we define Pi(s, ·) to be the i-fold composition of P(s, ·) with
itself. We define Vi(s, ·) analogously.

Definition 3. A fully stateful authentication protocol is complete if there is a
negligible function ε such that for any polynomial p,

Pr
(s,σ0,τ0)←Gen(1κ)

[
(Pp(κ)(s, σ0),Vp(κ)(s, τ0)) = rej

]
≤ ε(κ) .

Active security. An authentication protocol is secure against active attacks if
for any adversary which first can interact arbitrarily polynomially many times
with an honest prover P (but cannot reset the prover’s state), and then after-
ward (now, without access to P) interacts once with an honest verifier V, the
probability that V accepts is negligible. This is formalized in Definition 4.

Definition 4. A fully stateful authentication protocol
(Gen,P,V) is secure against active attacks if there is a negligible function ε
such that for any (two-part) ppt adversary A = (A1,A2),

Pr

 (s, σ0, τ0)← Gen(1κ)

ω ← AP̂(s,σ0,·)
1 (1κ)

B ← (A2(ω),V(s, τ0))

: B = acc

 ≤ ε(κ) ,

where the stateful oracle P̂(s, σ0, ·) is an interactive Turing machine that runs
P on the state outputted by the previous invocation of P (or on σ0 for the first
invocation), and outputs the messages outputted by P.

Concurrent MIM security. An authentication protocol is secure against con-
current man-in-the-middle (MIM) attacks if for any adversary which first can
interact arbitrarily polynomially many times with an honest prover P and/or an
honest verifier V (the interactions may be concurrent, but the adversary cannot
reset the prover’s state), and then afterward (now, without access to P,V) inter-
acts once with an honest verifier V ′, the probability that V ′ accepts is negligible.
This is formalized in Definition 5.

Definition 5. A fully stateful authentication protocol
(Gen,P,V) is secure against concurrent MIM attacks if there is a negligible
function ε such that for any ppt adversary A = (A1,A2),

Pr

 (s, σ0, τ0)← Gen(1κ)

ω ← AP̂(s,σ0,·),V̂(s,τ0,·)
1 (1κ)

B ← (A2(ω),V(s, τ0))

: B = acc

 ≤ ε(κ) ,
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where the stateful oracles P̂(s, σ0, ·) and V̂(s, τ0, ·) are interactive Turing ma-
chines that run P and V on the state outputted by the previous invocation,
respectively (or on σ0, τ0 for the first invocations), and outputs the messages
outputted by P and V (including V’s acc/rej decision).

`-instance concurrent MIM security. Concurrent MIM security is the strongest
security definition in the literature for stateless protocols. We now define an even
stronger notion relevant to the stateful setting, where the adversary has access
to many copies or clones of the honest prover/verifier. Note that this definition
covers the case of an adversary who can reset the parties’ states: clearly, an
adversary who resets ` times can be emulated by an adversary having access to
` copies of the prover/verifier.

An authentication protocol is secure against unbounded-instance concurrent
man-in-the-middle attacks if for any adversary which first can interact arbitrarily
polynomially many times with polynomially many honest provers P1, . . . ,Pk
and/or honest verifiers V1, . . . ,Vk, and then afterward (now, without access to
the Pi,Vi) interacts once with an honest verifier V ′, the probability that V ′
accepts is negligible. This is formalized in Definition 6.

Definition 6. A fully stateful authentication protocol
(Gen,P,V) is secure against unbounded-instance concurrent MIM at-
tacks if there is a negligible function ε such that for any ppt adversary A =
(A1,A2), and any polynomial p = p(κ),

Pr

 (s, σ0, τ0)← Gen(1κ)

ω ← A{P̂(s,σ0,·)}p,{V̂(s,τ0,·)}p
1 (1κ)

B ← (A2(ω),V(s, τ0))

: B = acc

 ≤ ε(κ) ,

where the stateful oracles P̂(s, σ0, ·) and V̂(s, τ0, ·) are as in Definition 5, and

the notation A{O}
p

1 means that A1 has oracle access to p independent copies of
oracle O.

A natural relaxation of unbounded-instance concurrent MIM security ad-
dresses the case when the adversary has access to only ` provers and verifiers,
where ` = poly(n) is bounded in advance. We call this security notion `-instance
concurrent MIM security . This definition allows for constructions to take ad-
vantage of the fact that ` is chosen and fixed initially. We believe this would be
a more realistic attack model in many scenarios, since it may be practically in-
feasible for an adversary to obtain arbitrarily many clones, or to interact with
arbitrarily many provers concurrently: for example, with passive RFID tags, the
physical range of communication is very short, and limits the number of simul-
taneous interactions to a small radius per adversarial device; and the number of
possible resets to an RFID tag’s state is realistically very much bounded by the
number of writes that its memory can support.

Furthermore, we can define unbounded-instance active security and `-
instance active security to be the corresponding notions for active security:
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that is, where the adversary has access to polynomially many (or up to `, re-
spectively) honest provers.

Synchrony considerations. A potential drawback of stateful protocols is main-
taining synchronisation of the the prover’s and verifier’s states. First, we high-
light that this is not always necessary : for example, a protocol might work as long
as the prover and verifier each update their own state at every execution (e.g., in
order not reuse randomness), but not require any synchronisation between the
parties.

If there is a notion of synchrony between the two parties’ states, it is impor-
tant to note that their states may become out of sync very easily: whether by
accident, or adversarially engineered circumstances, or even in normal operation
if there are multiple provers/verifiers rather than just one pair. It is therefore
unacceptable if lack of synchrony causes
1. security vulnerabilities, or
2. substantial disruption to operation.

Bullet (1) is already addressed by the security definitions above, which guar-
antee that the adversary cannot falsely authenticate even when given access to
prover(s) and verifier(s) which are out of sync.11

Bullet (2) can be addressed by building into the protocol a resynchronisation
procedure to be performed if synchrony is lost. If the initial states σ0, τ0 are
stored by the prover and verifier (respectively), then “recovery” is always possible
by resetting the states to σ0, τ0. If the protocol is secure against unbounded-
instance concurrent MIM attacks, this could be an acceptable resynchronisation
method. In general, a fully stateful protocol where synchrony matters should
be equipped with an interactive resynchronisation protocol (ResyncP ,ResyncV)
using which the parties can regain synchrony if out of sync.

Definition 7. Let (Gen,P,V) be a fully stateful authentication protocol. A resyn-
chronisation protocol (ResyncP ,ResyncV) is a tuple of interactive Turing ma-
chines as follows.
– ResyncP takes as input 1κ, a secret key s, and a state σ, and outputs a new

state σ′.
– ResyncV takes as input 1κ, a secret key s, and a state τ , and outputs a new

state τ ′.
For a bit-string b = (b1, . . . , bp) ∈ {0, 1}p, define Pb(s, ·) as

P ′bp(s,P ′bp−1
(s, . . .P ′b1(s, ·) . . . )) , where

P ′b(s, ·) =

{
P(s, ·) if b = 0

ResyncP(s, ·) if b = 1
.

11 The oracles P̂ and V̂ are designed to make sure that the adversary only gets access
to P and V with properly updated state. However, the prover and verifier oracles are
not synchronised with each other, so the security definitions directly give the desired
guarantee that the adversary’s advantage is negligible even when given access to
unsynchronised prover(s) and verifier(s).
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Let Vb(s, ·) be defined analogously.
We say that (ResyncP ,ResyncV) is a complete resynchronisation proto-

col for (Gen,P,V) if there is a negligible function ε such that for any polynomial
p = p(κ) and any b ∈ {0, 1}p,

Pr
(s,σ0,τ0)←Gen(1κ)

[
(Pb(s, σ0),Vb(s, τ0)) = rej

]
≤ ε(κ) .

Of course, we need to impose some security requirements on the resynchroni-
sation protocol: resynchronising should not reveal any secret information to the
adversary. The security requirements are detailed in Section 3.2.

Prover-stateful protocols. We emphasise that for the constructions in this paper,
synchrony is not a problem, because our protocols will be in the prover-stateful
model where only the prover needs to maintain persistent state. In our construc-
tions, the verifier can optionally maintain state to improve its efficiency.

In general, we would advocate the prover-stateful model over the fully state-
ful model, as it allows to take advantage of statefulness for protocol design,
while straightforwardly avoiding synchrony problems. It is nonetheless valu-
able to have definitions covering relevant synchrony considerations for the fully
stateful model, both for completeness and because fully stateful variants of
prover-stateful protocols – like ours – may have efficiency advantages (while
still straightforwardly avoiding synchrony problems).

3.2 Extending the attack model

We have designed the security definitions to allow for easy extensions, in cases
where we want to model additional protocol features or adversarial capabilities.
We believe that this kind of extensible definitional design is particularly impor-
tant for “forward-compatibility” in settings where technology is fast-changing
and/or it may be desirable to optimise protocol designs for application-specific
security requirements. By using a unified language to express security require-
ments across different cases, comparisons between security notions can be more
easily and fairly done, and security proofs in one setting can be more readily
transferred to other settings (e.g., even if the security requirements in one set-
ting are more demanding than in another, a weaker security proof might be used
as a building block in a stronger one, if there is sufficient common ground be-
tween definitions). Moreover, features of definitions can be combined a modular
way, allowing mixing and matching of security requirements to target particular
applications.

We now give two examples of useful extensions to the definitions given in
Section 3.1. Both are implemented by changing the behaviour of the oracles
P̂ and V̂ used in the security definitions. The first is formalizing security for
an additional protocol feature, namely, the resynchronisation protocols discussed
above. The second is modeling an additional adversarial capability, namely, the
potential for “erasure attacks”, which will be described in detail in Section 3.2.

Resynchronisation protocols
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Resynchronisation protocols have already been defined in Section 3.1. We
now give a security definition which captures the requirement that an adversary
should not learn any secret information from the resynchronisation protocol.

Definition 8. Let (Gen,P,V) be an authentication protocol, and let (ResyncP ,ResyncV)

be a complete resynchronisation protocol for (Gen,P,V). Let P̂resync(s, ·) and

V̂resync(s, ·) be defined exactly like P̂(s, ·) and V̂(s, ·) from Definition 5, but with
the additional feature that on a special input resynchronise, they update the state
of the prover (or verifier) by running ResyncP(s, ·) (or ResyncV(s, ·), respec-
tively).

We say that (Gen,P,V,ResyncP ,ResyncV) is resynchronisable and secure
against concurrent MIM attacks if it satisfies concurrent MIM security
(Definition 5) with respect to newly defined oracles P̂resync and V̂resync.

Exactly analogous definitions can be made for active, `-instance, and unbounded-
instance variants of the security definition, by substituting the corresponding
definition into the statement of Definition 8.

Erasure attacks

The memory on low-cost RFID tags is not well-protected, and the ubiquity
of their usage means that it is often relatively easy for an attacker to obtain
(temporary) physical access to the device. A particular type of attack which has
been shown to be feasible at relatively low cost on the EPROM memory used in
RFID tags is erasing at specific locations using UV light: [37] describes a method
using everyday supplies such as an $8 laser pointer.

It may be inevitable that such attacks can disable a prover device, but a
desirable protocol feature would be that an adversary running erasure attacks
can only disable the prover, and cannot gain the ability to impersonate the
prover. This is captured in Definition 9.

Definition 9. Let (Gen,P,V) be an authentication protocol. Let P̂erase(s, ·) be

defined exactly like P̂(s, ·) in Definition 5, but with the additional feature that on
receiving a special type of input (erase, i) for i ∈ {1, . . . , |s|}, all future operations
are performed using a modified secret key š which is equal to s but with the ith
bit set to 0. (Note that the “erase” operation can be performed multiple times to
set multiple locations to 0.)

We say that (Gen,P,V) is secure against concurrent MIM attacks with era-
sures if it satisfies concurrent MIM security (Definition 5) with respect to verifier

oracle V̂ and newly defined prover oracle P̂erase.

Again, exactly analogous definitions can be made for active, `-instance, and
unbounded-instance variants of the security definition, by substituting the cor-
responding definition into the statement of Definition 9. Moreover, we remark
that Definitions 8 and 9 can be straightforwardly combined to yield a natural
definition of resynchronisable and secure against concurrent MIM attacks with
erasures.
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4 Attacks on LPN-based protocols

In this section, we show that a number of proposed protocols in the lightweight
authentication literature are vulnerable to erasure attacks: namely, the HB and
HB+ protocols [21,23] and the two-round protocol of [25] (henceforth, “the
KPCJV protocol”). The security of these protocols (passive, active, and ac-
tive, respectively) is proven in [21,23,24,25] by reduction to the hardness of the
Learning Parity with Noise (LPN) problem (or Subspace LPN, in the case of
[25]). However, all of these proofs are with respect to the traditional (stateless)
security definitions, which do not consider the possibility of erasure attacks.

4.1 Overview of HB and HB+

Notation. We denote vectors by bold lower-case letters, and matrices by bold
upper-case letters. For a vector v, we write vi to denote its ith coordinate.
Arithmetic operations on n-bit vectors are taken over the field of 2n elements.
Let Berτ denote the Bernoulli distribution with parameter τ , and let Bernτ denote
the distribution of vectors in {0, 1}n where each bit is independently distributed
as Berτ .

Protocol 1. The HB protocol [21]

Public parameters. Security parameter κ ∈ Z, n,m ∈ Z polynomial in κ, noise rate
τ ∈ (0, 1

2
), threshold τ ′ ∈ (τ, 1

2
).

Key generation. HB.Gen(1κ) samples secret key s← Zn2 .

P(s) V(s)

A←−−− A← Zn×m2

e← Bermτ
z := sA + e

z−−−→ acc iff ||z + sA||1 < τ ′ ·m

We omit the details of the HB+ and KPCJV protocol due to space con-
straints. That protocol follows a substantially similar structure to the HB and
HB+ protocols; in particular, the final message is a collection of LPN samples,
and the verifier’s decision is based on whether the last message is an LPN sam-
ple with below a certain threshold of noise. Due to this shared structure, the
KPCJV protocol yields quite straightforwardly to essentially the same attacks
we describe for HB and HB+ in the next subsection.

4.2 The erasure attack

We present the attack in the context of HB, since it is the simplest of the
protocols.
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High-level attack structure. Suppose for a moment that we have a procedure
RecoverBit that, for any i ∈ [n], erases the ith bit of s (on the prover), performs
some computations with oracle access to the (erased) prover and verifier, and
outputs the correct value of si with overwhelming probability. If we have a
“multi-instance” adversary which has access to ` ≥ n copies of the prover, then
we are already done, since the adversary can run RecoverBit independently on
different copies of the prover to recover all the bits of s with overwhelming
probability.

However, if the adversary has erasure access only to a single copy of the
prover, it is slightly more tricky to recover all the bits of s: once we have already
performed erasures on the prover, we cannot guarantee that RecoverBit will
continue to work for successive erasures. If the bit si was originally equal to
0, then there is no problem because the erasure did not change anything. To
address the case where si was originally equal to 1, we observe that it is possible
to simulate the original prover after performing RecoverBit, as follows.

Simulating the original prover. For j ∈ [m], let aj ∈ Zn2 be the jth column of
A ∈ Zn×m2 , and let aj,i ∈ {0, 1} be the ith bit of aj . Observe that in the HB
protocol, the jth bit zj of the second message z is equal to 〈s,aj〉 + ej . The
verifier accepts if and only if the number of bits ej which are nonzero is less than
τ ′ · n. The crucial property of the prover’s message z is that for each j ∈ [n],
Pr [zj = 〈s,aj〉] = τ .

Consider what happens after we erase the ith bit of s on the prover, changing
si from 1 to 0 (recall that we assumed si = 1 originally). Let s denote the original
secret key, and š denote the new secret key with the ith bit changed to 0. For
each j ∈ [m], we have that 〈s,aj〉 6= 〈š,aj〉 if and only if aj,i = 0. It follows that

Pr
ž←P(š,A)

[žj = 〈s,aj〉] =

{
τ if aj,i = 0

1− τ if aj,i = 1
.

Finally, note that the adversary knows the values aj,i (since A is sent publicly in
the protocol), so can perfectly simulate the distribution of the original prover’s
message z (in response to any first message A) by:

1. running the erased prover on A to obtain ž
2. for each j ∈ [m], flipping the bit žj if aj,i = 1.

Moreover, it is clear that this simulation technique can be applied indepen-
dently for multiple erased bit positions i ∈ [n]. We conclude that the procedure
RecoverBit can be used to recover every bit of s with overwhelming probability,
even by an adversary who has access to only one prover, since this simulation
technique allows the adversary to simulate a fresh prover even after RecoverBit
has been performed.

It now remains to describe the procedure RecoverBit.

Recovering the ith bit of the secret. Our basic strategy will be to erase the ith
bit of s on the prover, and see if the prover/verifier’s behaviour changes as a
result. If so, then we conclude that si was originally 1 and the erasure changed
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it to 0. If not, then we conclude that si was originally 0, so the erasure did not
change anything.

Case 1. Let us first consider the behaviour of the prover before any erasure
is performed. By completeness, the probability that the honest verifier accepts
the honest prover’s response z is overwhelming.

Case 2. Now let us consider the behaviour of the prover after an erasure
which changes si from 1 to 0. Let s denote the original secret key, and š denote the
new secret key with the ith bit changed to 0. As observed earlier, for each j ∈ [m],
〈s,aj〉 6= 〈š,aj〉 iff aj,i = 0. Since the honest verifier samples A randomly, this
means the distribution of ž is

sA + Bermτ + Berm1/2 = sA + Berm1/2 .

Then the probability that the honest verifier accepts ž as a response to a uni-
formly sampled A is

Pr
A←Zn×m2

ž←P(š,A)

[||ž + sA||1 < τ ′ ·m] = Pr
ě←Berm

1/2

[||ě||1 < τ ′ ·m]

≤ O(exp(−m)) ,

where the final inequality follows from a Chernoff bound.

Algorithm 1. RecoverBit

Input. i ∈ [n], the bit position to recover.

Oracles. P̂erase(s, ·) and V̂(s, ·).
1. Send (erase, i) to P̂erase.
2. Run a protocol execution between the honest verifier and modified prover.
3. If the verifier accepts, output 0. Else, output 1.

Our analyses of Case 1 and Case 2 imply that the algorithm RecoverBit,
specified below, outputs the correct value of si with overwhelming probability.
This is stated more formally in Theorem 1.

Theorem 1. There is a negligible function ε such that for all κ ∈ N, for all
i ∈ [n] where n = n(κ) is defined as in the HB protocol,

Pr
s←HB.Gen(1κ)

[RecoverBit(i) = si] ≥ 1− ε(κ) .

In summary: we have described and proven the efficacy of an adversary
against the HB protocol which, given erasure access to a single copy of the hon-
est prover and oracle access to the honest verifier, fully recovers the secret key
with overwhelming probability, by using RecoverBit on each bit position i ∈ [n]
and using the simulation procedure described earlier in this section to emulate
the original prover’s behaviour before erasure.
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Theorem 2. There is a ppt adversary against the HB protocol which, given
erasure access to a single copy of the honest prover and oracle access to the
honest verifier, outputs the secret key with overwhelming probability.

Discussion. The described attack can be straightforwardly extended for the
HB+ and KPCJV protocols. We emphasise that this attack lies outside the
model in which the security of these protocols was originally proven by their
authors.

Interestingly, of the LPN-based lightweight authentication protocols in the
literature, the Lapin protocol [20] is the notable one which does not obviously
succumb to our attack. The security of Lapin is proven based on the Ring-LPN
assumption, and the protocol actually has a relatively similar structure to HB,
HB+ and KPCJV. However, Lapin works over a ring R, and the protocol is
parametrised by a mapping π from bit-vectors to R. The mapping π is not
fully specified in their paper, except that it must have certain properties. It
seems somewhat likely that for arbitrary π satisfying the properties specified in
the Lapin paper, the Lapin protocol may succumb to a similar erasure attack;
however, it also seems possible that if π has additional stronger properties, the
Lapin protocol might be resilient at least to the specific erasure attacks we have
proposed here.

5 Our protocols

In this section, we describe and prove the security of our protocols UbiAuth and
UbiAuth+, which achieve concurrent MIM security and `-instance concurrent
MIM security (for any a priori bounded polynomial `), respectively. The proto-
cols can be instantiated using any secure PRG, and the security proofs are by
reduction to PRG security.12

The focus of this section is asymptotic analysis and provable security based on
abstract cryptographic primitives. We also give some discussion of (theoretical)
motivations behind the design of our protocols. In Section 6, we will switch
over to a more practical perspective, and consider the performance of UbiAuth
instantiated by a concrete stream cipher.

5.1 Ideas and techniques

Notation. For vectors v,w ∈ {0, 1}n, v∗w denotes the component-wise (Schur)
product, and v ·w is the field product (in F2n). For an error-correcting code C,
C.Enc and C.Dec denote the encoding and decoding functions.

The basic idea of our protocol is that the verifier sends an n-bit random
challenge a to the prover, who responds with an unconditionally secure MAC on
a computed from a secret key that he shares with the verifier.

12 The standard definitions of pseudorandom generators and pseudorandom function
families are given in Appendix A.
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The good news is that unconditionally secure MACs (in contrast to compu-
tationally secure ones) can give us the efficiency we are after. In particular we
will use a MAC of the form C(a) ∗ s ⊕ e where (s, e) is the key, and where C
is a linear-time encodable linear code that is good in the sense that both its
length and minimum distance are Θ(n). Then C(a) is the encoding of a and the
product C(a) ∗ s is the component-wise (Schur) product. This one-time MAC
is linear-time computable and was proven secure in a work of Damg̊ard and
Zakarias [12].

However, the bad news is that while s can be reused over several executions,
e cannot: it must be a fresh random value every time, or the key will be revealed.
An obvious solution is to choose e pseudorandomly using another shared key K.
Computing it as e = fK(a) where f is PRF may seem natural, but this would
be pointless, because then the simpler PRF-based protocol mentioned above
might as well be used, and we will again face the efficiency issues associated
with using a PRF in this way. To get around this, we propose to have the
prover keep a counter i that is incremented for each execution, and compute
e as e = fK(i). The point is that now the prover does not need to compute
the PRF on arbitrary unpredictable inputs, but only on values that arrive in a
particular order i = 1, 2, . . . . To see why this is an advantage, note that the GGM
construction forms a tree with exponentially many leaves, one for each possible
input. Computing an output requires computing the path to the relevant leaf,
calling the PRG once for each vertex. Now the idea is to save the last path we
computed and only recompute the part that changes for the next input. If the
inputs indeed arrive in order, it turns out that on average we will only need to
call the PRG twice per call to the PRF.

We also propose a variant of the GGM tree where every node delivers an
output value. This allows us to grow the tree as we go, so that the storage
requirement only depends (logarithmically) on how many times the protocol is
actually executed whereas using the original GGM tree would force us to decide
in advance on an upper bound for the number of executions. Goldreich [15]
suggested a somewhat related idea where the last leaf of the tree is used as the
root of a new one. In the most “extreme” variant of this technique we would
get a linear list instead of a tree. This would lead to similar time complexity for
the prover, but an adversary could force the verifier to spend much more time
than in normal operation, potentially Ω(nt), where t is the number of times the
protocol is executed. The worst case for our approach is O(n log t).

The construction we just sketched achieves concurrent MIM security: the
strongest security notion in the case where the adversary cannot clone or reset
the prover. If the adversary can clone or reset, then we need multi-instance
concurrent MIM security. We achieve this by modifying our protocol using an
additional technique based on universal hashing. In particular, we extend a result
of [22] to get a linear time computable `-wise independent hash function family
H for any constant ` (rather than pairwise independence as in [22]). If there
exists a linear time PRG G that is (H, `)-secure, then we get a protocol that is
multi-instance concurrent MIM secure and has amortised complexity O(n).
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Interestingly, the proof of security is not so straightforward as it may seem
at first sight. One naturally expects a simple two-step argument: first use the
security of the PRF to replace the pseudorandom e in the prover’s response
C(a) ∗ s⊕ e by a truly random value, and then use the unconditional security of
the MAC to conclude that the protocol is secure. However, while the first step is
fine, the second fails because an adversary against the protocol is more powerful
than an adversary against the MAC: he can arbitrarily schedule interactions with
the verifier as well as the prover, so we need first to argue that access to the
verifier is useless for the adversary. This requires an argument that is completely
different from the standard security proof for the MAC.

5.2 Tools for the protocol construction

“One-time” MACs Consider the following simple and unconditionally secure

MAC: for a message a ∈ {0, 1}n, the MAC on the message is a · s + e, where
(s, e) ∈ {0, 1}n×{0, 1}n is the secret key (which is chosen uniformly at random).
MACs of this form are well known, and it is also known that although a key for
an unconditionally secure MAC can usually be used only once, in this case the
multiplier (s) can be reused provided that e is freshly chosen for each message
(see e.g. [3]).

In this work, we focus on a slightly different MAC, which might be considered
a variant of the above. For a message a ∈ {0, 1}n, the MAC on the message is
C.Enc(a) ∗ s + e ∈ {0, 1}cn where C is an error-correcting code (with constant-
fraction distance) with expansion c, and (s, e) ∈ {0, 1}cn × {0, 1}cn is the secret
key. The security of this variant MAC is shown in [12].

In our protocols, we consider s to be the secret key, and generate e pseu-
dorandomly per execution. The man-in-the-middle security of our protocol does
not follow from MAC security, however: the standard security notion for MACs
simply requires that an adversary who observes a message and a valid MAC can-
not produce a different message and valid MAC. We consider a more complicated
game where the adversary interacts with prover and verifier concurrently.

Finally, we remark that although our protocols are presented in terms of the
variant MAC, the proofs of correctness and security all go through (with almost
no changes) also when using the “a · s + e” MAC. Which version is better in
a concrete application would be determined by the encoding efficiency of the
error-correcting code for the relevant parameters.

Pseudorandom look-up function

As a building block for our authentication protocols, we construct a logarithmic-
depth “look-up function” for efficient retrieval of pseudorandom values using the
PRG, and show that the look-up function is a PRF. Note that this technique may
be of independent interest towards generic constructions of low-depth PRFs.

Notation. Since a PRG G can be used to build a PRG of any stretch, we write
Gn→m to denote the PRG based on G which maps n bits to m bits. We write
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Gn→m(r)[i,j] to denote the substring of the PRG output Gn→m(r) ∈ {0, 1}m
ranging from the ith bit to the jth bit, inclusive.

Given a PRG G taking an n-bit input, our goal is to generate a series of
polynomially many pseudorandom values r1, r2, r3, . . . , such that each ri can
be looked up in time (poly-)logarithmic in i. This is achieved using the tree
structure shown in Figure 1.

ρ0

ρ1

ρ3

ρ7 r4 ρ8

r2 ρ4

ρ9 r5 ρ10

r1 ρ2

ρ5

ρ11 r6 ρ12

r3 ρ6

ρ13 r7 ρ14

Fig. 1. Pseudorandom lookup tree (first 4 levels)

In Figure 1, ρ0 ∈ {0, 1}n is the original (random) input to the PRGGn→m+2n.
The ρi ∈ {0, 1}n are values which are subsequently pseudorandomly generated,
which are used again as input to the PRG to produce more pseudorandom values:
in particular, if ρi is a child of ρj in the tree, then ρi = Gn→m+2n(ρj)

[m+1,m+n]

if i is even, and ρi = Gn→m+2n(ρj)
[m+n+1,m+2n] if i is odd. The boxed nodes

ri ∈ {0, 1}m are leaves that represent the output pseudorandom values which
we want to look up, and they are generated by ri = Gn(ρj)

[1,m] where ρj is the
parent of ri.

Let lookupGn,m(ρ0, i) ∈ {0, 1}m denote the ith output value, ri ∈ {0, 1}m,
obtained using the above tree method. It is clear that for any i of polynomial
size, the number of PRG evaluations required to look up ri is logarithmic. This
gives rise to a PRF family with logarithmic-depth evaluations, as proven in
Theorem 3 below. Before proving that the look-up function is a PRF, we give a
simple supporting lemma.

Lemma 1. Let G : {0, 1}n → {0, 1}m be a PRG. Then for any polynomial
q = q(n), it holds that there is no efficient distinguisher D for which it holds that

|Pr [D((r1, . . . , rq)) = 1]− Pr [D((G(s1), . . . , G(sq))) = 1]| ≥ ε(n)

for all negligible functions ε, where r1, . . . , rq ← {0, 1}m(n), s1, . . . , sq ← {0, 1}n.

Proof. Given in Appendix A.

Theorem 3. Let G be a PRG and n,m ∈ N be positive integers with m =

poly(n). Then the family of functions F (n,m) def
= {lookupGn,m(ρ, ·)}ρ∈{0,1}n is a

PRF with input size n′ bits and output size n bits, for any n′ = poly(n).

Proof. Given in Appendix C.
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Looking up random values in order. We would like to look up the random values
lookupGn,m(ρ0, ·) in order, that is, first r1, then r2, and so on. This can be done
more efficiently than by traversing the tree starting at the root for each new
value, essentially by storing the path to the most recently retrieved leaf, and
implementing a “next leaf” function which takes the stored path as an input.
Naturally, this incurs additional (logarithmic) storage cost, compared to looking
up each leaf starting afresh from the root.

In order to apply this method to our lookup tree, we observe that the non-leaf
nodes of the lookup tree constitute a binary tree (shown in blue in Figure 2).
Applying the path-based lookup algorithm to this binary tree allows in-order
retrieval of the first k leaf values in the look-up tree in time O(k), for any k ∈ N.
The storage requirement is log(k) · log(n) where n is the size of input to G.

ρ0

ρ1

ρ3

ρ7 r4 ρ8

r2 ρ4

ρ9 r5 ρ10

r1 ρ2

ρ5

ρ11 r6 ρ12

r3 ρ6

ρ13 r7 ρ14

Fig. 2. A binary tree within the lookup tree

Lemma 2. For any given depth d ≥ 1, when all the output values (boxed nodes)
at depth d of the lookup tree are computed in order (from left to right) by:

– first, computing the leftmost output value by traversing the tree downwards
from the root,

– then, computing each subsequent output value by applying the path-based
lookup algorithm to the binary tree of non-leaf nodes up to and including
depth d − 1, and calling the underlying PRG to obtain each actual (leaf)
output value,

the total number C of calls to the underlying PRG G that is required to compute
all the output values at depth d is exactly 2d + 2d−1 − 2.

Proof. Given in Appendix D due to space constraints.

Corollary 1. When computing the values lookupGn,m(ρ0, i) for i = 1, 2, . . . (in
order) by the method described in Lemma 2, the amortised number of calls to G
per output value looked up is constant. To be precise, it is less than 1.5.

Proof. For any given depth d > 1, there are 2d−1 output values at that depth.
By Lemma 2, all of these values can be looked up with a total of 2d + 2d−1 − 2
calls to G. Hence, the number of calls to G per output value (at depth d) is
2d+2d−1−2

2d
< 1.5.
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5.3 The UbiAuth protocol

Protocol 2. UbiAuth

Public parameters. PRG G, security parameter n ∈ Z, error-correcting code C with
constant-fraction distance and constant expansion factor c.
Key generation. Ubi.Gen(1n) samples s ← {0, 1}cn, s′ ← {0, 1}n and outputs secret
key (s, s′).
Initial state. Prover’s state consists of i ∈ N initialised to 1.

P(s, s′; i) V(s, s′)

a←−−− a← {0, 1}n

e := lookupGn,cn(s′, i)
z := C.Enc(a) ∗ s + e

i := i+ 1

z,i−−−−→ accept iff z + C.Enc(a) ∗ s =
lookupGn,cn(s′, i)

The magenta color in the protocol indicates (updating of) the prover’s state.

It is clear that UbiAuth is perfectly complete, since lookupGn,cn is deterministic.
We next prove that Protocol 2 is actively secure (Lemma 3) which serves as a
stepping-stone to proving concurrent MIM security (Theorem 4).

Lemma 3. UbiAuth is secure against active attacks.

Proof. Let ej denote the noise string for index j. Consider the following games:

Game 1. P,V and the adversary A play the active security game.

Game 2. P,V and A play the active security game as before, except that
P,V no longer know s′, but instead have oracle access to lookupGn,n(s′, ·).

Game 3. Like Game 2, but lookupGn,n(s′, ·) is replaced by a random oracle.

Games 1 and 2 are perfectly indistinguishable for the adversary, since the
messages sent by are distributed identically in the two games. Suppose, for con-
tradiction, that there exists an adversary A which can efficiently distinguish
between Games 2 and 3. Then, this adversary could be used to efficiently dis-
tinguish between (oracle access to) lookupGn,n(s′, ·) and a random oracle – this
contradicts Theorem 3. Therefore, Games 1, 2, and 3 are computationally indis-
tinguishable, and so the ej are indistinguishable from uniformly random noise.

We have established that the prover’s message z = C.Enc(a) ∗ s + ej is
indistinguishable from C.Enc(a)∗s+r for random r. Hence, z is indistinguishable
from random to any active adversary, regardless of the choice of a. It remains
only to consider the interaction of A with the honest verifier V. Given a challenge
a from V, A can have at most negligible advantage at guessing the (unique) value
of z that V will accept, as shown by considering the following two cases:
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1. A sends an index i that was not used when talking to the honest prover. In
this case, we could give the adversary the e values for this i for free (as it is
independent of the what happens for the other indices). Now the adversary’s
task is equivalent to guessing C.Enc(a) ∗ s, which he cannot do since he has
no information about s.

2. A sends an index i that was previously used in a query to the prover. Let
z, i be the response (to a) from the honest prover. Say the honest verifier
sends a′ and let z′, i be the adversary’s response. If there is a non-negligible
probability that z′ is accepted, then it follows that z − z′ = (C.Enc(a) −
C.Enc(a′))∗s. This happens with negligible probability since all of a, a′, z, z′

were chosen independently of s.

Theorem 4. UbiAuth is secure against concurrent MIM attacks.

Proof. We show that if there is an adversary A which achieves a certain advan-
tage when conducting a concurrent MIM attack, then there is another adversary
A′ that only talks to the prover in Protocol 2 and achieves essentially the same
advantage. First, we replace the honest verifier by a fake verifier V ′ who has no
access to s or the ej but still gives essentially the same answers as V. Then we
argue that for any concurrent MIM attack, there is an equally successful active
attack, and finally refer to Lemma 3 for the active security of the protocol.
V ′ works as follows: when queried by A, it chooses a random challenge a (just

like V does). When A returns an answer z, j, there are two cases to consider:
1. A previously received answer z′, j from P, where z′ = C.Enc(a′) ∗ s+ ej and
a′ is A’s query to P. Here we have two possibilities:
(a) a = a′ (which could be the case if A queried P during the current

protocol execution): in this case, if z = z′, V ′ accepts; else, it rejects.
(b) a 6= a′: V ′ always rejects.

2. A never previously received an answer of the form z′, j from P. In this case
V ′ always rejects.
Consider the first time A queries the verifier. V’s challenge is distributed

identically to that of V ′. In case 1a, V will accept if and only if z has the correct
value C.Enc(a) ∗ s+ ej : so V ′ always makes the same decision as V. In case 1b,
V only accepts if z = C.Enc(a) ∗ s + ej , but since z′ = C.Enc(a′) ∗ s + ej it
must be that (z− z′) = (C.Enc(a)−C.Enc(a′)) ∗ s. This happens with negligible
probability because s is random and z, z′, a, a′ are all independent of s: P’s
responses, including z′, are independent of s; and since this is the first query, V
has not seen s yet, so a, a′ and z must be independent of s too. Thus, V rejects
with overwhelming probability, so V ′ is statistically close to the right behavior.
Finally, in case 2, no one sees ej before A produces z, j. If V accepts, we have
z = C.Enc(a) ∗ s + ej , so ej = z − C.Enc(a) ∗ s, which happens with negligible
probability since z, a and s are independent of ej .

Therefore, we can replace V with V ′ for the first query, and A’s advan-
tage changes at most negligibly as a result. Repeating this argument for all the
queries, we reach the game where V is entirely replaced by V ′, and A’s advantage
is still at most negligibly different from in the original game. Since V ′ does not
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possess any secret information, an adversary can run V ′ “in his head”. So for any
adversary A which has non-negligible advantage in a man-in-the-middle attack,
we can construct an adversary A′ that emulates both A and V ′ “in his head”
and achieves the same advantage, but conducting an active attack (since he need
not interact with the real verifier V). The result then follows from Lemma 3.

Linear-time implementation. The prover in Protocol 2 can run in time O(n)
and space O(log(n) · log(k)), where k is the number of protocol executions run
so far13: this is possible by using the path-based lookup algorithm to compute
lookupGn,cn(·, ·) as described in Lemma 2. This follows from Corollary 1, and the
fact that there exist linear-time, linear-stretch PRGs and linear-time encodable
codes with constant-factor expansion and large constant-fraction distance (such
as those of Guruswami and Indyk [19]).

The verifier can also be implemented to run in linear time for honest ex-
ecutions, by using the same method as the prover to compute lookupGn,cn(·, ·).
Clearly, if the prover is honest, the verifier will run in linear time. If the prover
cheats and breaks the sequence, then the verifier can retrieve the required lookupGn,cn(·, ·)
value by the “backup method” of traversing the lookup tree downwards from
the root, which takes O(n · log(k)) time instead. This implementation requires
N · O(log(n) · log(k)) space, where N is the number of different provers with
which the verifier interacts. Note that since the multiplication can be done in
depth O(log(n)), if the PRG G is of poly-logarithmic depth, then the verifier
does only poly-logarithmic depth computation (even when the prover cheats).

5.4 Security against memory erasures

As presented in Section 5.3, UbiAuth is not necessarily secure against memory
erasure attacks, depending on the underlying PRG. In Appendix ??, we give
an example of a PRG G such that if UbiAuth were instantiated using G, the
resulting protocol would easily succumb to erasure attacks.

In this subsection, we describe a “reinforced” variant of UbiAuth, called r-
UbiAuth, which achieves security against concurrent MIM attacks with erasures.
In a nutshell, our method takes any PRG G and constructs a reinforced lookup
function r-lookup based on G, which maintains unpredictability even when ad-
versary can obtain outputs from a “partially erased” seed. Of course, unpre-
dictability is only maintained up to a point: if the adversary erases the entire
seed, then we clearly cannot hope for any unpredictability. We achieve this strong
unpredictability property at the cost of a factor-n2 increase in key size.14

13 In other words, k is the number of leaf values in the lookup tree that have been
retrieved so far. Note that if desired, the value of k can be upper-bounded by some
polynomial-size K, by “starting a new tree” after K values have been retrieved from
the initial tree: the (K + 1)th leaf value in the first tree serves as the root of a new
tree in which subsequent lookups are done. This technique was suggested in [15].

14 Actually, the construction could be made to work with a factor-nε increase in key
size for any ε > 1.
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We then modify the protocol description, so that seeds with “too many ze-
ros” are ignored: that is, the prover will refuse to output answers if its seed
contains too many zeros. Informally, our proof of security argues that either the
adversary has performed few enough erasures that unpredictability still holds,
or the prover will have stopped answering and so the adversary cannot obtain
further information.

Definition 10 (Reinforced lookup function). Let G be a PRG. Define Rn

to be the set of n3-bit strings of Hamming weight between b(n3 − n2)/2c and
b(n3 + n2)/2c (inclusive). We define the reinforced lookup function r-lookup,

which takes as input a n3-bit seed ρ ∈ {0, 1}n3

.

r-lookupGn,m((ρ1, . . . , ρn2), i)
def
=

{
lookupGn,m(ρw, i) if ρ ∈ Rn

0m otherwise
,

where ρi ∈ {0, 1}n for each j ∈ [n2], and the n3-bit seed is ρ = (ρ1, . . . , ρn2) and

w = w(ρ)
def
= ||ρ||1 mod n2 + 1 is the Hamming weight of the seed.

That the reinforced lookup function is a PRF (Theorem 5, below) can be
reduced to the fact that the original lookup function is a PRF (Theorem 3).

Theorem 5. Let G be a PRG and n,m ∈ N be positive integers with m =
poly(n). Let Sn denote the set of all n-bit strings of weight between b(n−

√
n)/2c

and d(n+
√
n)/2e (inclusive). Then for any n′ = poly(n), the family of functions

F ′(n,m) def
= {r-lookupGn,m(ρ, ·)}ρ∈Rn

is a PRF with input size n′ bits and output size n bits, where the seed ρ =
(ρ1, . . . , ρn) is sampled from the product distribution Dn where D is the uniform
distribution over Sn.

Proof. By a Chernoff bound, Prρ←Dn [ρ /∈ Rn] is negligible. We therefore disre-
gard this case (in which the function selected by the seed is the zero function).

Let F (n,m) def
= {lookupGn,m(ρ, ·)}ρ∈{0,1}n , i.e., the PRF defined by the original

lookup function. By definition of r-lookup, for any n3-bit seed ρ′ ∈ Rn of F ′(n,m),
there is an induced n-bit seed ρ ∈ {0, 1}n, which is a substring of ρ′, such that
r-lookupGn,m(ρ′, ·) = lookupGn,m(ρ, ·). Let D′ denote the distribution on n-bit seeds
which is thus induced by n3-bit seeds sampled according to Dn. The support of
D′ is the set Sn (defined in the theorem statement). By a Chernoff bound,
Sn has constant probability mass in the uniform distribution on n bits (i.e.,
the distribution of seeds for F (n,m)). It follows that if there is an algorithm A′
that distinguishes with non-negligible advantage ε between oracle access to a

random function in F ′(n,m)
and a truly random m-bit function, then A′ will

also distinguish with non-negligible advantage O(ε) between oracle access to
a random function in F (n,m) and a truly random function. This contradicts
Theorem 3 (i.e., that F (n,m) is a PRF).
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Now we define the protocol r-UbiAuth which makes use of the reinforced
lookup function. It is the same as UbiAuth, except that the reinforced lookup
function is used in place of the original lookup function, and if the prover finds
itself with an invalid seed (i.e., one which is not in Rn), it stops answering.

Protocol 3. r-UbiAuth

Public parameters. PRG G, security parameter n ∈ Z, error-correcting code C with
constant-fraction distance and constant expansion factor c.

Key generation. r-Ubi.Gen(1n) samples s← {0, 1}cn, s′ ← Rn ⊂ {0, 1}n
3

and outputs
secret key (s, s′).
Initial state. Prover’s state consists of i ∈ N initialised to 1.

P(s, s′; i) V(s, s′)

a←−−− a← {0, 1}n

if s′ /∈ Rn, abort
e := r-lookupGn,cn(s′, i)
z := C.Enc(a) ∗ s + e

i := i+ 1

z,i−−−−→ accept iff z + C.Enc(a) ∗ s =
r-lookupGn,cn(s′, i)

A theorem and detailed proof sketch for the security of r-UbiAuth against
concurrent MIM attacks with erasures is given in Appendix E.

5.5 The UbiAuth+ protocol

The UbiAuth+ protocol, shown in Protocol 4, achieves `-instance concurrent
MIM security for any polynomial `. Moreover, if ` is constant, we can still get
(amortised) linear time. UbiAuth+ makes use of `-wise independent hashing,
which is defined below.

Definition 11. A function family H of functions that map n bits to m bits is a
`-wise independent hash function family if for all y1, . . . , y` ∈ {0, 1}m and
for all distinct x1, . . . , x` ∈ {0, 1}n, it holds that

Pr
h←H

[h(x1) = y1 ∧ h(x2) = y2 ∧ · · · ∧ h(x`) = y`] = 2−`m .

Our security proofs follow a similar structure to those of Protocol 2: we first
prove `-instance active security, then use this to prove `-instance concurrent
MIM security. The proofs are deferred to Appendix D, due to space constraints.

Lemma 4. UbiAuth+ is secure against `-instance active attacks.

Theorem 6. UbiAuth+ is secure against `-instance concurrent MIM attacks.
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Protocol 4. UbiAuth+

Public parameters. PRG G, security parameter n ∈ Z, error-correcting code C
with constant-fraction distance and constant expansion factor cm function family H =
{hr}r∈{0,1}β of 2`-wise independent hash functions mapping (`+ 1) · n bits to n bits.

Key generation. Ubi+.Gen(1n) samples s← {0, 1}cn, s′ ← {0, 1}n and outputs secret
key (s, s′).
Initial state. Prover’s state consists of i ∈ N initialised to 1.

P(s, s′; i) V(s, s′)

a←−−− a← {0, 1}n

ri := lookupGn,(`+1)·n+β(s′, i)
e :=

h
r
[1,β]
i

(
a + r

[β+1,(`+1)·n+β]
i

)
z := C.Enc(a) ∗ s + e

i := i+ 1

z,i−−−−→

ri := lookupGn,(`+1)·n+β(s′, i)
accept iff z + C.Enc(a) ∗ s =

h
r
[1,β]
i

(
a + r

[β+1,(`+1)·n+β]
i

)

Security against erasures. A variant of UbiAuth+ can moreover be secure against
concurrent MIM attacks with erasures, using a construction based on “rein-
forced” PRGs which is exactly analogous to that described in Section 5.4.

Linear-time implementation. If ` is constant, then the prover in Protocol 4
can run in (amortised) time O(n) and space O(log(n) · log(k)), where k is the
number of protocol executions run so far: as with Protocol 2, this requires the
use of the path-based lookup algorithm to compute lookupGn,cn(·, ·), and the use
of a linear-time PRG and linear-time encodable code. In addition, we require
an `-wise independent hash function family whose functions can be sampled and
computed in linear time. A construction of a hash function family satisfying these
properties for constant ` is given in Appendix F. As in the case of Protocol 2,
the verifier in Protocol 4 can also be implemented to run in linear time when
the prover is honest.

6 Instantiating with Grain-128

Returning to a more practical perspective, we consider how UbiAuth would per-
form when instantiated with a stream cipher acting as the PRG. Given the
motivation of lightweight hardware devices, we focus on a hardware-oriented
cipher and compare performance at the relatively low 100kHz clock frequency
which is common in low-end devices. By the same reasoning, we analyse the
prover’s performance which is the bottleneck in these applications.
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Our analysis considers our protocol instantiated with the Grain-128 stream
cipher as the PRG. We selected Grain-128 from the eSTREAM (Profile 2)15 port-
folio because it is optimised for hardware implementation with high throughput,
and it has a mode with 128 bits of security which is good for comparison to
AES with 128-bit keys. Moreover, Grain has the advantage of a relatively fast
initialization time compared to other Profile 2 candidates such as Trivium [14].
Specifically, our benchmarks are based on the performance of Grain128x32 and
a comparable hardware implementation of AES (by [35]), as documented in [17,
Table 4].

Simple PRF-based protocol Our protocol

AES Grain (+GGM) Grain (32-bit state) Grain (2048-bit state)

0.54 10.24 3.84 0.18

Table 1. Amortised prover computation time (in ms) in two-round authentication

An interesting initial observation is that if one uses Grain128x32 in the GGM
construction of a PRF, then the speed of a Grain-based PRF evaluation is “only”
about 20 times slower than an AES evaluation, as shown in the second column
of Table 1. We have included the second column to highlight that the efficiency
advantage of stream ciphers over block ciphers is a major factor that counter-
balances the relative inefficiency of the GGM-style construction that is inherent
in our protocols, and not to suggest that GGM might be a reasonable solution
in practice!

Indeed, as shown in Table 1, our protocol outperforms the simple AES-based
protocol) in terms of prover computation time by a factor of three when instan-
tiated with 2048 bits of prover state. Our figures do not account for write time
to update state, in order to have a fairer comparison of the computation times,
since write times vary greatly across different chips / types of memory.16

Size of the prover’s state. In Table 1, “32-bit state” refers to the scenario when
the prover stores only a (32-bit) counter value, whereas “4096-bit state” refers
to the variant when the prover stores partial paths in the lookup tree.

Remarks on protocol implementation. Note that in software, using a more stan-
dard MAC of form a · s+ e, where the product is in the field with 2n elements,
may be an advantage (even if it is not preferable asymptotically). For instance,
for n = 64, we can multiply by a fixed element s using 8 table look-ups in 16
KB of precomputed tables. However, if the prover is a small hardware device,
whereas the verifier has more power, then using the MAC C(a) ∗ s + e that we

15 Profile 2 ciphers are described as “Stream ciphers for hardware applications with
restricted resources such as limited storage, gate count, or power consumption.”

16 To give a very rough estimate: based on the specifications of common RFID manu-
facturers, the write time to non-volatile memory is likely to range between less than
millisecond to a few milliseconds, but varies depending on the exact hardware.
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suggest may be even better, since we can ask the verifier to send the encoding
C(a) rather than a. Our proof of security still applies if the prover checks that
he receives a codeword, and this can be extremely fast in hardware if we use
an LDPC (low-density parity check) code: the codeword check consists of com-
puting parity functions of a small constant (say, 3 or 4) number of bits, and all
the parity functions could be computed in parallel. This reduces the prover’s
computation essentially to the cost of running the stream cipher (and we have
assumed that this is the case, in computing the figures in Table 1).

Remark on counter mode. The use of a counter in our protocol may prompt the
question: if we use a stream cipher with a nonce in counter mode, then could we
run the stream cipher on consecutive counter values instead of evaluating the
lookup function? The answer is that such a scheme would only be secure if the
stream cipher were secure against adversarially chosen nonces. The standard
assumption about stream ciphers is that nonces need not be kept secret, but
are chosen honestly (rather than adversarially) by the party in possession of the
key [36]. The use of the lookup function allows us to base our protocol on any
PRG, or any stream cipher. The behaviour of stream ciphers under adversarially
chosen nonces seems to be little studied/understood: for example, the eSTREAM
cipher candidates do not discuss the possibility of adversarial nonces. Assuming
security under adversarial nonces is equivalent to assuming “PRF security” of
a stream cipher, rather than “PRG security”. The only instance of such an
assumption being used in the literature, of which we are aware, is [4] which
proposes a (three-round) authentication protocol based on “PRF security of
a stream cipher”, but gives no discussion of why such an assumption may be
reasonable. Indeed, the literature on the effects of nonce misuse in the context of
authenticated encryption (a line of work started by [34]) would seem to suggest
that one should be very wary of this sort of assumption.
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A Pseudorandom primitives

In this section we give the standard definitions of pseudorandom generators
(PRGs) and pseudorandom function families (PRFs), and prove a small lemma.

Definition 12 (Pseudorandom generator). Let G : {0, 1}n → {0, 1}m(n)

be a deterministic polynomial-time algorithm. G is a pseudorandom genera-
tor (PRG) if m(n) > n and for any efficient distinguisher D that outputs a
single bit, it holds that |Pr[D(r) = 1] − Pr[D(G(s)) = 1]| ≤ negl(n), where
r ← {0, 1}m(n), s ← {0, 1}n are chosen uniformly at random, and the probabili-
ties are taken over r, s, and the random coins of D.

It is well known that any pseudorandom generator implies pseudorandom
generation with any polynomial expansion factor m(n), by applying the PRG to
its own output repeatedly.

Definition 13 (Pseudorandom function family (PRF)). Let F = {FK}
be family of deterministic polynomial-time keyed algorithms mapping n bits to
m bits. F is a pseudorandom function family (PRF), if for any efficient distin-
guisher D that outputs a single bit, it holds that |Pr[DFK = 1] − Pr[DRn→m =
1]| ≤ negl(n), where Rn→m is a random oracle mapping n bits to m bits, and
the probabilities are taken over the random coins of D and the key K which is
randomly chosen.

Lemma 1 Let G : {0, 1}n → {0, 1}m be a PRG. Then for any polynomial q =
q(n), it holds that there is no efficient distinguisher D for which it holds that

|Pr [D((r1, . . . , rq)) = 1]− Pr [D((G(s1), . . . , G(sq))) = 1]| ≥ ε(n)

for all negligible functions ε, where r1, . . . , rq ← {0, 1}m(n), s1, . . . , sq ← {0, 1}n.
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Proof. Suppose, for contradiction, that there is a distinguisher D̂ for which∣∣∣Pr
[
D̂((r1, . . . , rq)) = 1

]
− Pr

[
D̂((G(s1), . . . , G(sq))) = 1

]∣∣∣ ≥ 1

P (n)

where P is a polynomial. For i ∈ [q], define tupi to be the distribution of tuples
whose first i elements are uniformly random in {0, 1}m and whose remaining
elements are sampled as G(si+1), . . . , G(sq) for si+1, . . . , sq ← {0, 1}n. Let pi =

Pr[D̂(tupi) = 1] denote the probability that D̂ outputs 1 on input from tupi.
By our supposition, we know |p0 − pq| ≥ P (n). Then, since p0 − pq =∑
i∈[q](pi−1−pi), there must exist i∗ ∈ [q] such that |pi∗−1−pi∗ | ≥ 1

q·P (n) , which

is non-negligible. Then there exists a distinguisher D̂′ which can distinguish a
single output of the PRG from random, as follows: on input r ∈ {0, 1}m, D̂′ gen-
erates a tuple t whose first i∗ − 1 elements are random in {0, 1}m, whose (i∗)th

element is r, and whose remaining elements are generated as G(si∗+1), . . . , G(sq)
for si+1, . . . , sq ← {0, 1}n. If r is truly random then t ← tupi∗ ; otherwise,

t ← tupi∗−1. Hence, running D̂ on input t will distinguish with non-negligible
probability between these cases. This contradicts that G is a PRG.

B Formal specification of hybrid H̃k∗

In this section we give a formal description of the algorithm H̃k∗ used in the
proof of Theorem 3. H̃k∗ takes as input (r̃1, . . . , r̃T ), and then behaves exactly
like Hk∗ , except in the following aspects:
– when H̃k∗ is initialised, it sets a variable next := 0; and
– if blog2(i)c+ 1 ≥ k∗ (that is, the depth of the output node for query i is at

least k∗) then H̃k∗ first stores the three tuples

(leaf, `, (r̃next)
[1,m]),

(root, α0, (r̃next)
[m+1,m+n]),

(root, α0 + 1, (r̃next)
[m+n+1,m+2n]),

where α0, ` are defined by

α0 =

{
2 · (i− 2blog2(i)c − 1) if blog2(i)c+ 1 = k∗

2 · bα(i,k∗)/2c otherwise
,

` =

{
i if blog2(i)c+ 1 = k∗

2(k∗−1) + (α0/2) otherwise
;

then H̃k∗ increments next by 1, and outputs ρi, defined by:

ρi =


(r̃next)

[1,m] if blog2(i)c+ 1 = k∗

lookupGn,m

(
(r̃next)

[m+1,m+n], γ(i,j∗)

)
if α(i,k∗) = α0

lookupGn,m

(
(r̃next)

[m+n+1,m+2n], γ(i,j∗)

)
if α(i,k∗) = α0 + 1

.
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In terms of the tree representation of the pseudorandom look-up function:
H̃k∗ behaves exactly like Hk∗ , except that the values associated with nodes at
depth k∗ are taken from the input values r̃1, . . . , r̃T . Note that although the
number of nodes at depth k∗ may be greater than T , next can never become
greater than T during an execution of D̂PRG, because D̂ cannot make more than
T queries: therefore, r̃next is always well-defined.

C Ordered traversal of leaves of a binary tree

Theorem 3 Let G be a PRG and n,m ∈ N be positive integers with m =

poly(n). Then the family of functions F (n,m) def
= {lookupGn,m(ρ, ·)}ρ∈{0,1}n is a

PRF with input size n′ bits and output size n bits, for any n′ = poly(n).

Proof.

Algorithm 2. Binary tree traversal

1 Path pathToNextLeaf(int depth ,

2 Path currentPath , int currentLeafNum) {

3 if (depth = 1) {

4 Leaf nextLeaf = currentPath.root.rightChild ();

5 return currentPath.removeEndNode (). append(nextLeaf );

6 } else if (depth > 1) {

7 if (currentLeafNum is even) {

8 Leaf nextLeaf = currentPath.endNode.rightChild ();

9 return currentPath.removeEndNode (). append(nextLeaf );

10 } else {

11 Path pathToParent = currentPath.removeEndNode ();

12 int parentLeafNum = floor(currentLeafNum /2);

13 Path pathToNextParent =

14 pathToNextLeaf(depth -1, pathToParent , parentLeafNum );

15 return pathToNextParent.append(

16 pathToNextParent.endNode.leftChild ());

17 }

18 }

19 }

Lemma 5. For any given depth d, when Algorithm 2 is used to compute all
the leaves of a complete binary tree (of depth d) in order, the leftChild() and
rightChild() methods are called exactly once for each non-leaf node in the
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tree. More precisely, the method employed is the following: in order to obtain
the first leaf, the standard method traversing the tree downwards from the root is
used; and then subsequent leaves are obtained in order by calling pathToLeaf1 =

nextLeafPath(d, pathToLeaf0, 0), then pathToLeaf2 = nextLeafPath(d,

pathToLeaf1, 1), etc.

Proof. In order to obtain the the first leaf node (and the path thereto), we need
to call leftChild() exactly once on all nodes along that path. When d = 1,
this means that leftChild() is called on the root node when obtaining the first
leaf node. Moreover, when d = 1, it is clear (from lines 2-4) that rightChild()
is called on the root node exactly once (when obtaining the second leaf node).
Hence, the lemma holds for d = 1.

For d > 1, we argue by induction. It is sufficient to prove that for any d > 1:

1. pathToNextLeaf is called17 exactly once for every node at depth d−1, except
the final node at depth d− 1 (since for that node, there is no next leaf); and

2. leftChild() and rightChild() are called exactly once on each node at
depth d− 1.

We call nextLeafPath() once for each currentLeafNum ∈ {0, . . . , 2depth−2}
(from the statement of the lemma). In particular, nextLeafPath() is called once
for the left child of each node at depth depth−1 (these nodes are exactly those
for which currentLeafNum is even). From lines 6-8, it follows that for every node
at depth depth−1, the rightChild() method is called exactly once at line 7.

The recursive call to pathToNextLeaf() occurs on line 12, and is only ex-
ecuted when currentLeafNum is odd (by the if-clause on lines 6-14). To be
precise, the odd values of currentLeafNum for which we run pathToNextLeaf()

are {1, 3, . . . , 2depth − 3}. This corresponds exactly to the set of right-children
of nodes at depth depth−1, except the last one. We see on line 12 that the
path passed into the recursive call is pathToParent, the path to the parent of
the current node. Thus, pathToNextLeaf() is recursively called exactly once for
each node at depth depth−1, except the last one. This satisfies condition 1.

Finally, for each path (of depth depth−1) which is returned by a recursive call
to pathToNextLeaf(), leftChild() is called on the end node of the path (on
line 13). Since we have already established that pathToNextLeaf() is recursively
called exactly once for each node at depth depth−1, except the last node, and the
functionality of pathToNextLeaf() is to return the next node at a given depth,
it follows that the paths returned by such recursive calls to pathToNextLeaf()

lead to each node at depth depth−1, except the first node. We conclude that
leftChild() is called exactly once for each node at depth depth−1, except the
first node. Moreover, leftChild() is called on the first node at depth depth−1
when we initially retrieve the first leaf. So, leftChild() is called exactly once
on each node at depth depth−1. In conjunction with our earlier observatiosn

17 To be precise, when we write “pathToNextLeaf is called for a given node” we mean
that pathToNextLeaf(depth, path, leafNum) is called, where depth is the depth
of the node in the tree, path is the path from the root to that node, and leafNum is
the number of the node when counting the nodes at depth depth from left to right.
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about calls to rightChild(), this means that condition 2 is satisfied. The result
follows.

D Security proofs

Lemma 2 For any given depth d ≥ 1, when all the output values (boxed nodes)
at depth d of the lookup tree are computed in order (from left to right) by:
– first, computing the leftmost output value by traversing the tree downwards

from the root,
– then, computing each subsequent output value by applying the path-based

lookup algorithm to the binary tree of non-leaf nodes up to and including
depth d − 1, and calling the underlying PRG to obtain each actual (leaf)
output value,

the total number C of calls to the underlying PRG G that is required to compute
all the output values at depth d is exactly 2d + 2d−1 − 2.

Proof. By the construction of the lookup tree, leftChild() and rightChild()

can each be implemented by a single invocation of the PRG G. When the path-
based lookup algorithm is used to look up all nodes at a particular depth d− 1
in a binary tree (in order), the leftChild() and rightChild() methods will
each be called exactly once for every node at depth less than d − 1 in the tree.
Thus, G will be called twice for every node at depth less than d−1 in the binary
tree. There are 2d−1 − 1 such nodes, so G will be called a total of 2d − 2 times
while traversing the tree. In addition, there is one invocation of G per output
value, which we have not counted in the above analysis, because it is not within
the binary tree. There are 2d−1 output values at depth d of the lookup tree, so
this adds 2d−1 invocations to our total. Hence, the total number of calls of G
required to compute all the output values at depth d (in order) is 2d + 2d−1− 2.

Now, we show the `-instance concurrent MIM security of Protocol 4. We
require the following technical lemma, which can be seen as a generalization of
the leftover hash lemma and has a similar proof.

Lemma 6 ([11]). Let (X1, X2, . . . , X`) ∈ X ` be ` (possibly dependent) random
variables such that H∞(Xi) ≥ γ and (X1, . . . , X`) are pairwise different. Let
H = {h : X → Y} be a family of 2`-wise independent hash functions, with
|Y| = 2k. Then for random h← H we have that the statistical distance satisfies

∆((h, h(X1), h(X2), . . . , h(X`)); (h, U1
Y , . . . , U

`
Y)) ≤ `

2
· 2(`·k−γ)/2,

where U1
Y , . . . , U

`
Y are ` independent and uniformly distributed variables.

We now prove two supporting lemmas, before the main theorem.

Lemma 7. Protocol 4 is secure against `-instance active attacks.
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Proof. Recall that an `-instance active adversary may have concurrent access to
up to ` honest provers, but as usual, he cannot reset the provers. The updating
of the prover’s state in Protocol 4 ensures that for any given prover, the value ri
is freshly pseudorandomly sampled for each execution (that is, each value of the

counter i). In particular, the hash function seed r
[1,β]
i is freshly pseudorandomly

sampled for each value of i, and this means that for any polynomial number
of executions, with overwhelming probablity, all the hash function seeds will be
distinct. Therefore, an `-instance active adversary can obtain at most ` outputs

of the hash function hs for any given seed s. For any i ∈ N, let s
def
= r

[1,β]
i be

the corresponding seed, and let x
def
= r

[β+1,(`+1)·n+β]
i be the summand inside the

hash function argument. Suppose that the adversary obtains samples hs(a1 +
x), . . . , hs(a` + x) from the honest provers. If the adversary chooses some ai, aj
to be equal, then the samples hs(ai + x), hs(aj + x) will also be equal, so the
adversary will not gain more information than if he made just one query ai.
Hence, we assume without loss of generality that the a1, . . . , a` are distinct.

Since G is a PRG, we can replace s and x with uniformly randomly cho-
sen s′ ← {0, 1}β and x′ ← {0, 1}(`+1)·n, and the adversary’s advantage will
change at most negligibly. Let U(`+1)·n be a random variable that is uniformly
distributed over the set of ((`+1) ·n)-bit strings. Consider the random variables
U(`+1)·n + a1, U(`+1)·n + a2, . . . , U(`+1)·n + a`. Each variable U(`+1)·n + ai has
entropy H(U(`+1)·n + ai) = H∞(U(`+1)·n + ai) = (`+ 1) · n. They are not inde-
pendent, but they are pairwise different because the ai’s are distinct. Therefore,
by Lemma 6,

{hs, hs(U(`+1)·n + a1), . . . , hS(U(`+1)·n + a`)}
s
≈ {hs, U1

n, . . . U
`
n}.

(In the notation of the lemma: we have k = n and γ = (`+ 1) ·n, so the distance
is `

22−n, which is negligible given that ` = poly(n).)

Finally, since the seeds si
def
= r

[1,β]
i are freshly pseudorandomly sampled for

each value of i, the hash functions hs1 , hs2 , . . . used in the protocol are indis-
tinguishable from independent random hash functions. Therefore, the output of
any hash function hsi is indistinguishable from random even given the outputs of
the other hash functions hsi′ , hsi′′ , . . . from different executions of the protocol.

Lemma 8. For any two-round authentication protocol in which the verifier sends
the first message, and where the verifier’s accept/reject decision is a determinis-
tic function of the secret key, the initial message of the verifier, and the prover’s
response: it holds that any adversary A with access to multiple honest verifiers
V1, . . . ,V` can be perfectly simulated by another adversary A′ with access to only
one honest verifier V

Proof. The simulation works as follows: A′ runs A, and for every protocol session
that A begins with honest verifier Vj , A′ starts a new session with verifier V and
forwards the initial message a of V to A. Then, when A returns to the open
session with Vj and sends a response b, A′ returns to the corresponding session
with V and forwards b to V; and finally, A′ returns to A the accept/reject
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decision of V. This is a perfect simulation since for any session, the verifier’s
decision is a deterministic function of the secret key, the initial message a and
the (adversarial) prover’s response b.

Theorem 6 Protocol 4 is secure against `-instance concurrent MIM attacks.

Proof. We show that given an adversary A which achieves a certain advantage
when conducting an `-instance concurrent MIM attack, it is possible to build a
new adversary A′′ that only talks to the ` provers and achieves essentially the
same advantage.

By Lemma 8, A can be perfectly simulated with access to just one honest
verifier, so we assume henceforth that there is only one honest verifier V. Next,
we replace the single honest verifier V by a fake verifier V ′ who has no access
to s or the e values, but still gives essentially the same answers as V. Then we
argue that for any `-instance concurrent man-in-the-middle attack, there is an
equally successful `-instance active attack, and finally refer to Lemma 7 for the
`-instance active security of the protocol.
V ′ works as follows: when queried by A, it chooses a random challenge a (just

like V does). When A returns an answer z, j (i.e. the second protocol message),
there are two cases to consider:
1. A previously received answer z′, j from P, where z′ = a′ · s + ej and a′ is
A’s query to P. Here we have two possibilities:
(a) a = a′ (which could be the case if A queried P during the current

protocol execution): in this case, if z = z′, V ′ accepts; else, it rejects.
(b) a 6= a′: V ′ always rejects.

2. A never previously received an answer of the form z′, j from P. In this case
V ′ always rejects.
Consider the first time A queries the verifier. The challenge produced by

V has exactly the same distribution as the one V ′ outputs. Now, in case 1a,
notice that V will accept if and only if z has the correct value a · s + ej : so V ′
always makes the same decision as V. In case 1b, V rejects except with negligible
probability, so V ′ is statistically close to the right behavior. This is because
accepting would imply that z = a · s + ej , but we also have z′ = a′ · s + ej so
then s = (z − z′)(a− a′)−1. This happens with negligible probability because s
is random and z, z′, a, a′ are all independent of s. This holds because all of P’s
responses (including z′) are independent of s. Moreover, since this is the first
query, V has not even looked at s yet, so a, a′ and z must be independent of s
too. Finally, in case 2, note that no one sees ej before the adversary produces
z, j. If V accepts, we have z = a · s + ej , so ej = z − a · s, which happens with
negligible probability since z, a and s are independent of ej .

Therefore, we can modify V so that it behaves like V ′ for the first query,
and the adversary’s advantage changes at most negligibly as a result. Repeating
the same argument for all the queries, we reach the game where V is entirely
replaced by V ′, and the adversary’s advantage is still at most negligibly different
from in the original game.

Since V ′ does not possess any secret information, an adversary can run V ′
“in his head”. So for any adversary A which has non-negligible advantage in
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a `-instance concurrent MIM attack, we can construct an adversary A′′ that
emulates both A and V ′ “in his head” and achieves the same advantage, but
conducting an `-instance active attack (since he need not interact with the real
verifier V).

Finally, the security of the protocol against `-instance concurrent man-in-
the-middle attacks follows from the security against `-instance concurrent active
attacks, which was shown in Lemma 7.

E r-UbiAuth is secure against erasures

Theorem 7. r-UbiAuth is secure against concurrent MIM attacks with erasures.

Proof (sketch). The security of r-UbiAuth against concurrent MIM attacks with-
out erasures is essentially identical to the proof of concurrent MIM security of
UbiAuth (Theorem 4). We now sketch why the reinforced lookup function and
modified protocol protect against erasures.

First, notice that answers given by an “erased” prover whose secret key has
been modified are always rejected. Therefore, the adversary can initially check
whether an erasure operation has modified the secret key (with overwhelming
probability, this will happen within a constant number of erasure operations),
by seeing if the prover’s answers continue to be accepted by the verifier after
the erasure. However, once an erasure operation has modified the secret key, the
verifier will always reject, so the adversary cannot get information about the
effectiveness of further erasures from the verifier’s decisions. It then remains to
argue that the adversary cannot learn to answer correctly by using the prover’s
answers after performing erasure attacks.

By definition of Rn, after at most n2 successful erasures (which will happen
over O(n2) attempted erasures with overwhelming probability), the resulting
seed will lie outside Rn and so the prover will stop answering. Note that this
is irreversible: once this happens, the adversary has no way to cause the prover
to start answering again. When the adversary attempts an erasure, one of two
possible things will happen:
– The erasure will target a bit of the seed which is already 0, so the seed (and

induced n-bit seed) will remain unchanged.
– The erasure will change a bit of the seed from 1 to 0. In this case, the

induced n-bit seed will change, by definition of r-lookup. More specifically,
over the course of n2 successful erasures, each successful erasure will cause a
completely new n-bit substring of the n3-bit seed to be used as the induced
n-bit seed. Note that the induced n-bit seeds may have been altered by
erasures. However, the important observation is that each “slightly-erased”
induced n-bit seed used over the course of n successful erasures is independent
of every other such slightly-erased induced n-bit seed, since prior to being
subjected to erasures, they were independent strings (recall that seeds are
sampled from a product distribution Dn). That is, the prover uses outputs
of lookupGn,cn from up to n2 slightly faulty but independent n-bit seeds.
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The proof is completed by arguing that an adversary who sees PRF output
from a series of independent “slightly erased” seeds (but not the corresponding
original seeds before erasing) cannot thereby predict PRF outputs on new inputs
w.r.t. the original seed.

F Linear-time `-independent hashing

Mansour, Nisan, and Tiwari [29] conjectured that pairwise-independent hash
functions cannot be computed in linear time – in particular, that computing them
requires Ω(n log(n)) time. Recently, Ishai et al. [22] disproved this conjecture,
and gave a construction of a linear-time computable pairwise-independent hash
function. In this section, we show that the [22] construction can be extended to
achieve `-wise independence for constant ` ∈ N.

Notation. For a vector v ∈ {0, 1}n and a subset of indices S ⊆ [n], we write
v[S] to denote the |S|-bit vector obtained by restricting v to the coordinates in

S. For a tuple of indices t = (t1, . . . , td) ∈ [n]d, we write v[t] to denote the d-bit
vector (vt1 , . . . , vtd). We write || for vector concatenation.

Exposure resilient functions [7] (also known as deterministic bit-fixing ex-
tractors [9]), are used as a building block in the construction. The definition is
given below.

Definition 14. A function f : {0, 1}n → {0, 1}m is an λ-exposure resilient
function if for any L ⊂ [n] of size |L| = n − λ, and for r ← {0, 1}n and R ←
{0, 1}m chosen uniformly at random, the distributions (r[L], f(r)) and (r[L], R)
are identical.

Our construction works as follows. For n ∈ N, there is an `-wise independent
hash function family HC,G,En of functions mapping n bits to n bits. Each family
is parametrized by the following:

– C : {0, 1}n → Σm is the encoding algorithm of an error-correcting code with
a constant-size alphabet Σ. The code has minimum distance c = Θ(n) and
constant expansion factor (that is, m = Θ(n)).

– G is a `-wise independent hash function family mapping Σ to Σ.
– E : Σm → {0, 1}n is an λ-exposure resilient function where λ = Θ(n).

Each function in the family HC,G,En = {hg}g∈Gm is indexed by a vector of
hash functions g = (g1, . . . , gm), where each gi is a member of the (smaller) `-wise
independent hash function family G. To sample a hash function in hg ← Hn,
simply sample M small hash functions g1, . . . , gm ← G.

Each hash function hg is computed as follows.

1. Encode the input x ∈ {0, 1}n to obtain codeword y = C(x) ∈ Σm.
2. For each i ∈ [m], let zi = gi(yi) ∈ Σ.
3. Let z ∈ Σm denote the concatenation of all zi, that is, z = z1||z2|| . . . ||zm.

The output of the hash function is E(z).
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We remark that this procedure for computing the hash function is the same
as in the [22] construction, except that in their work, G is a family of pairwise
(rather than `-wise) independent hash functions.

Theorem 8 (`-wise independence of HC,G,En ). Let ` ≥ 2 be any constant.
For any m = Θ(n), there exist λ, c = Θ(n) such that if C is an error-correcting
code with minimum distance c and codeword length m, and E is a λ-exposure
resilient function, then HC,G,En is a family of `-wise independent hash functions.

Proof. Let c = Θ(n) be the following:

c = m− 2m

`(`− 1) + 1
. (1)

Note that the right-hand side is Θ(n), because m = Θ(n) and ` = O(1). More-
over, since ` > 2, inequality 1 implies that 0 < c < m as required.

Let x1, . . . , x` be any distinct vectors in {0, 1}n, and let hg ← Hn be a
hash function sampled from the family HC,G,En . Let the set of corresponding
codewords be denoted by Y = {C(x1), . . . , C(x`)}.

Define the overlap of two codewords y, y′ ∈ Σm as the set of positions k ∈ [m]
for which the kth elements are equal: that is, where yk = y′k. Formally,

Overlap(y, y′) = {k ∈ [m] : yk = y′k} .

Building on this, we define the set L to be:

[m] \
⋃

y,y′∈Y,y 6=y′
Overlap(y, y′) = {k ∈ [m] : ∀y, y′ ∈ Y, yk 6= y′k} .

In other words, L is the set of positions k for which the kth elements of of the
codewords in Y are pairwise distinct.

Due to the minimum distance of the error-correcting code,

|Overlap(C(x), C(x′))| ≤ m− c

for all distinct x, x′ ∈ {0, 1}n. Then, since |Y | = `:∣∣∣∣∣∣
⋃

y,y′∈Y,y 6=y′
Overlap(y, y′)

∣∣∣∣∣∣ ≤ (m− c) · ` · (`− 1)

2
(2)

≤ m. (3)

Inequality 3 follows by substituting equation 1 into inequality 2. Moreover, the
right-hand side of inequality 2 is clearly Θ(m) since c = Θ(m) and ` is constant.
From this, it follows that

∣∣L∣∣ = m−

∣∣∣∣∣∣
⋃

y,y′∈Y,y 6=y′
Overlap(y, y′)

∣∣∣∣∣∣ = Θ(m) and
∣∣L∣∣ > 0. (4)
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Recall that for each position k ∈ L, it holds that the kth elements of of
the codewords in Y are pairwise distinct. Then, since gk is an `-wise indepen-
dent hash function, the ` hash function outputs gk(C(x1)), . . . , gk(C(x`)) will
be independent and uniformly distributed. Moreover, since the hash function
g1, . . . , gk are chosen independently, the following set consists of independent
and uniformly distributed elements:{

gk(C(x1)), . . . , gk(C(x`)) : k ∈ L
}
. (5)

Recall that when computing hg(xi) (in step 3 of the description above), the
input to E is the concatenation of them “small hashes”, g1(C(xi))|| . . . ||gm(C(xi)).
Let zi denote g1(C(xi))|| . . . ||gm(C(xi)). Define L = [m]\L and λ = |L| = Θ(m).
For each input xi ∈ {0, 1}n to the hash function hg, E is evaluated on an input
zi for which (zi)[L] is distributed independently at random (this follows from

5). Hence, by the λ-exposure resilience of E, the outputs E(z1), . . . , E(z`) are
distributed independently and randomly. The theorem follows.

Finally, we show that the hash functions in HC,T,G,En can be computed and
sampled in linear time.

Theorem 9. If C and E are computable in linear time, then each hash function
hg ∈ HC,G,En can be computed in linear time. Moreover, sampling a hash function
hg ← HC,G,En can be done in linear time.

Proof. Since C is linear-time computable, step 1 is computable in linear time,
and has a linear-size output y ∈ {0, 1}m. In step 2, many small hashes of the
form gi(yi) are computed, where gi ← G. Since the input to the hash function gi
is of constant size, each such evaluation of gi will take constant time. The total
number of small hashes computed is m = Θ(n) which is linear, so step 2 takes
linear time. Finally, since E is computable in linear time, and is evaluated on a
linear-size input z ∈ {0, 1}M , step 3 also takes linear time.

The sampling of a hash function hg ← HC,G,En consists of sampling m hash
functions g1, . . . , gm ← G. Since the family G is of constant size, each gi can
be sampled in constant time, and there are linearly many of them, so the whole
sampling process takes linear time.

There are known constructions of linear-time computable functions that sat-
isfy the properties required by C and E (for any constant `):
– Guruswami and Indyk [19] construct error correcting codes which have linear-

time encoding (and decoding) algorithms, and for any positive constant
ε < 1, their construction can achieve minimum distance c such that c/m = ε
with a constant-factor expansion. The encoding function of these codes would
be suitable for use as C.

– Ishai et al. [22] give a construction of an infinite family of λ-exposure resilient
functions mapping n bits to m bits, where λ = Θ(n) and m = Θ(n).
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