
 48 computer Published by the IEEE Computer Society 0018-9162/13/$31.00 © 2013 IEEE

Cover Fe ature

Tushar Krishna, Chia-Hsin Owen Chen, Sunghyun Park, Woo-Cheol Kwon, Suvinay Subramanian, 
Anantha P. Chandrakasan, and Li-Shiuan Peh, MIT

Future scalability for kilo-core archi-
tectures requires solutions beyond the 
capabilities of protocol and software de-
sign. Single-cycle multihop asynchronous 
repeated traversal (SMART) creates virtual 
single-cycle paths across the shared net-
work between cores, potentially offering 
significant reductions in runtime latency 
and energy expenditure.

T oday’s multicore chip architectures require 
scalable network topologies, such as meshes, 
that facilitate communication between cores. 
A scalable on-chip network connects cores by 

means of a wire grid, or mesh, with crosspoint routers 
that orchestrate this communication flow, arbitrating the 
sharing of link segments and buffering messages upon 
contention. The smallest unit of a network message, or 
flit, traverses a series of router and link segments, or 
hops, from its source to its destination. The length of 
each of a flit’s hops is the tile width, the distance between 
two routers.

The equation for the network latency (T) of a flit is1

T = H(tr + tw) + Tc,

where H is the number of hops; tr is the router pipeline 
delay; tw is the wire (the link between two routers) delay, 
which is typically a single cycle; and Tc is the network 
contention delay. Microarchitecture research over the last 
decade has lowered tr from five cycles to a single cycle2 so 
that the low-load network latency between a source core 
and a destination core is equal to the number of routers 
plus the number of link segments (that is, the number of 
hops times 2) between the two cores.

As the number of cores increases, however, H inevita-
bly increases, increasing T proportionately. Higher on-chip 
latency not only delays initial request and response time, 
but because of dependencies also bottlenecks additional 
requests and responses, which leads to poorer throughput 
and overall system slowdown. For this reason—that is, 
in order to minimize average network hops—coherence 
protocol designers prefer private L2 architectures, and 
programmers and compiler/operating system designers 
try to map data close to sharers. But protocol and soft-
ware design can go only so far: ultimately, each core has 
a limited number of single-hop neighbors, and the more 
cores, the more hops required for message traversal across 

Single-Cycle  
Multihop 
Asynchronous 
Repeated Traversal: 
A SMART Future 
for Reconfigurable 
On-Chip Networks



 octoBer 2013 49

the chip network. Based on current limitations, designing 
for an exascale goal of 1,024 cores per chip will result in 
horrendous levels of on-chip network latency and energy 
expenditure, slowing the whole system.

To mitigate this problem, we propose single-cycle multi-
hop asynchronous repeated traversal (SMART), a paradigm 
that removes the dependence of T on H by creating vir-
tual single-cycle multihop routes—paths constituting a 
single cycle across the network, from source to destina-
tion, irrespective of the physical number of hops between 
cores. The fundamental methodology is to drive signals 
through multiple routers and links asynchronously, with-
out latching. Our evaluations show that SMART can reduce 
application runtime by 61 percent for system-on-chip (SoC) 
traffic and 50 to 57 percent across private and shared L2 
cache coherence traffic.

FUNDAMENTALS OF SMART
Conventionally, on-chip latency depends on H because 

messages are latched at every router. Router logic delay 
limits network frequency to between 1 and 2 GHz at 45 
nm.2,3 Link drivers are sized accordingly, to drive signals 
one hop (assumed here to be 1 mm) in 0.5 to 1 ns before 
the signal is latched at the next router.

However, as the sidebar “Clockless Repeated Signaling” 
demonstrates, wires themselves can potentially traverse 
multiple millimeters within the same frequency (1-2 GHz). 
SMART decouples wires from routers by replacing the 
clocked link drivers at each router with clockless repeat-
ers. As our previous research shows, this allows flits to 
traverse multiple hops—from 1 hop to HPCmax (maximum 
hops per cycle) hops—within a single cycle before getting 
latched, where HPCmax is 16 for a network data path with 
1-mm tiles at 1 GHz.4 Effectively, we reduce the value of H 
in the equation T = H(tr + tw) + Tc 

 to ⎡(H/HPCmax)⎤.
The network we propose can reconfigure and create 

virtual single-cycle paths across multiple hops for any traf-
fic pattern as shown in Figure 1, where three sets of traffic 

flows incur single-cycle paths, as long as no contention 
occurs for the same links. This reconfiguration involves 
presetting the routers along each route at runtime. We 
analyzed reconfigurations at two time granularities: 
SMARTapp, which reconfigures SMART on an application-
by-application time granularity, keeping settings static 
during each application’s runtime; and SMARTcycle, which 
reconfigures SMART on a cycle-by-cycle time granularity, 
altering settings during each cycle to adapt to actual traffic.

SMART ROUTERS
Figure 2a shows the microarchitecture of a SMART 

router. For simplicity, we show only the core-in (Cin), west-in 
(Win), and east-out (Eout) ports. All other input ports (north-
in and south-in) are identical to Win, and all other output 
ports are identical to Eout.

The three primary components of the design are the 
buffer write enable (BWena) at the input flip-flop, which de-
termines whether the input signal is latched or not; the 
bypass multiplexer select (BMsel) at the input of the cross-
bar switch, which chooses between the local (buffered) flit 
and the bypassing flit on the input link; and the crossbar 
select (XBsel), which connects an input port to an output 
port. These are the SMART control signals. If BWena is set 
to 0 and BMsel is set to bypass, the bypass path is enabled; 
therefore, the incoming flit moves directly to the crossbar 
and through the repeater to the output link, without being 
buffered (that is, latched) at the router. If BWena is set to 1, 
on the other hand, the input flit is latched and buffered; it 
now needs to compete with other buffered flits within the 
router to gain access to the crossbar switch, called switch 
arbitration local (SA-L). 

Figure 2b shows an example of a multihop traversal: 
a flit from router R0 traverses three hops within a single 
cycle, eventually latching at router R3. In R0, BMsel is preset 
to local. The crossbars at R1 and R2 are preset to connect 
Win to Eout, with their BMsel preset to bypass, and BWena 
preset to 0. In R3, BWena is preset to 1. Each single-cycle 

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Recon�gure Recon�gure

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Application A(a) (b) (c)Application B Application C        

Figure 1. Example of single-cycle multihop asynchronous repeated traversal (SMART) across three traffic scenarios, A, B, and 
C. All the multihop paths in boldface are traversed in one cycle. For application C, the flows are colorized to show that the red 
and green flows contend for the shared link between routers 5 and 9.



 50 computer

Cover Fe ature

multihop path, or SMART path, can be created 
by appropriately setting BWena, BMsel, and XBsel 
at the intermediate routers. The SMART control 
signals are preset before the actual message ar-
rives, and this presetting can be accomplished 
at different time granularities, either prior to ap-
plication runtime (SMARTapp) or cycle-by-cycle 
(SMARTcycle), as mentioned earlier. 

SMARTapp: application-by-application 
reconfiguration

Tr a f f i c  f low s  i n  s p e c i a l -pu r p o s e 
multiprocessor on-chip systems (MPSoCs), 
such as the chips that run smartphones, and 
those in heterogeneous multicores with general 
purpose accelerators are well established. 
Because we know these flows in advance, we 
can reconfigure the network before running 
the application, creating single-cycle SMART 
paths between nodes that communicate 
regularly and are physically far apart, based 
on an application’s task communication graph. 
We discuss the details of this reconfiguration 
stage elsewhere.5

In these cases, BWena, BMsel, and XBsel are set 
according to the existence of any overlapping, 
or conflicting, flows through an output link. For 
example, in Figure 1c the orange, blue, and purple 
flows do not conflict at any link, so the routers on 
these flows are preset to bypass (BWena = 0 and 
BMsel = bypass), and XBsel is appropriately preset, 
thus creating a single-cycle path all the way from 
the source to the destination throughout the 
runtime of the application. The red and green 
flows, on the other hand, overlap at the link 
between routers 5 and 9, and so need to stop at 
both these routers (that is, BWena = 1), arbitrate 
for the crossbar’s south output port at router 5 
and north input port at router 9, and set XBsel 
accordingly. The remaining segments of their 
traversal consist of a single cycle.

SMARTcycle: cycle-by-cycle 
reconfiguration

While appropriate for MPSoCs, SMARTapp will 
not work in general-purpose multicore chips 
because precise prediction of each application’s 
traffic flow is not possible; any core could po-
tentially communicate with any other core via 
cache coherence memory traffic. SMARTcycle 
addresses such contingencies by allowing the 
creation of different SMART paths on a cycle-
by-cycle basis. Here, the method is first to set 
up a multihop path and then traverse it; setting 

Clockless Repeated 
Signaling

A standard means of reducing delay of long wires is to insert repeaters (that 
is, a pair of inverters) in the wire at regular intervals.1 We performed an 

experiment to measure the maximum length a signal can traverse on such a 
repeated wire. We laid out parallel repeated wires in 45 nm, with a repeater 
spacing of 1 mm (our assumed tile size) and wire spacing of three times the 
minimum possible wire spacing allowed by the technology (to reduce coupling 
capacitance and thereby increase speed). We then increased the length of the 
wire incrementally, using a commercial place-and-route tool to size the 
repeaters so as to achieve 1-ns timing at each data point. Figure A plots the 
energy consumed at each data point. We can see that a signal on the repeated 
wire can traverse a length of up to 16 mm within a nanosecond at 45 nm. We 
translate this distance to a network microarchitectural parameter maximum 
hops per cycle (HPCmax), defined as

HPCmax = (maximum mm per ns × clock period in ns)/(tile width in mm).  

At 45 nm, assuming a tile size of 1 mm × 1 mm and a target clock period of 1 
ns (or 1 GHz), 16 mm/ns (Figure A) translates to an HPCmax of 16. We replace con-
ventional clocked drivers with repeaters at every router, thus allowing flits to 
traverse up to HPCmax hops within a 1-GHz clock. Moreover, we can see that 
clockless repeated wires consume 14.3 percent lower energy/bit/mm than 
clocked repeated wires consume.

As technology scales, repeated wire delay is expected to remain relatively 
constant.2,3 It makes sense intuitively that as feature size decreases, wires will 
become thinner, causing resistance to go up and capacitance-to-ground to go 
down, thus keeping wire delay approximately the same. Moreover, chip 
dimensions should remain essentially the same (~20 mm × 20 mm) due to 
yield, and clock frequencies will almost certainly remain constant to stay 
within the chip’s fixed power budget. These two projections, coupled with 
expected projections of relatively constant wire delay and the smaller tile size 
resulting from scaling, suggest that HPCmax will likely increase with future 
technologies.

References
 1. J. Rabaey and A.P. Chandrakasan, Digital Integrated Circuits: A Design Perspective, 

Prentice Hall, 2002.
 2. T. Krishna et al., “Breaking the On-chip Latency Barrier Using SMART,” Proc. 19th Int’l 

Symp. High-Performance Computer Architecture (HPCA 13), IEEE, 2013, pp. 378-389.
 3. R. Ho, K.W. Mai, and M.A. Horowitz, “The Future of Wires,” Proc. IEEE, vol. 89, no. 4, 

2001, pp. 490-504.

Figure A. Energy consumed by clockless repeated links as a function of 
distance traversed (mm) per nanosecond at 45 nm.

15
18
21
24
27
30
33
36
39
42
45
48
51

0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 182

En
er

gy
 (f

J/b
it/

m
m

)

Length/period (mm/ns)

Clocked
driver

Clockless repeated link



 octoBer 2013 51

up the path takes one cycle, and traversing it takes an-
other cycle.

SMARTcycle network traversal. The first cycle comprises 
SA-L arbitration, as each router chooses a winner from 
among its buffered local flits for each output port. The 
next cycle sets up the multihop route: the winner at each 
output port broadcasts a SMART-hop setup request (SSR) 
of up to HPCmax hops from that output port. These SSRs—
dedicated repeated wires that connect every router to a 
neighborhood of up to the HPCmax—help preset the SMART 
control signals at all intermediate routers. SSRs are  
log2 (1 + HPCmax) bits wide, and carry the number of hops 
the flit wishes to traverse. For example, SSR = 2 indicates 
a 2-hop path request. Each flit sends out an SSR that is as 
close as possible to its final destination.

Following the initial SSR broadcast, every router 
performs a second round of arbitration, switch allocation 
global (SA-G), to arbitrate among the SSRs they have 
received from the routers in their HPCmax neighborhood 
and to set the SMART control signals accordingly. The SA-G 
arbiters guarantee that only one flit will be allowed access 
to any particular input/output port of a router crossbar; any 
conflicting flits will be stopped. Every router prioritizes 
SSR requests according to a fixed priority based on flit 
distance, where the local flit has highest priority, followed 
by the flit from the closest neighboring router, followed by 
the flit from the router two hops away, and so on.

In the ensuing cycle, SA-L winners traverse crossbars 
and links for multiple hops until they are stopped at a 
router where BW

ena = 1. Thus, flits spend two cycles (SA-L 
arbitration, followed by SSR + SA-G arbitration) at a router 
before they traverse a single-cycle multihop path.

Figure 3 provides an illustration. Here, router R2 has 
FlitA and FlitB buffered at Cin, and FlitC and FlitD buffered at 
Win, all requesting Eout. Suppose FlitD wins SA-L arbitration 
during Cycle 0. In Cycle 1, it sends out SSRD = 2 (that is, a 
request to stop at R4) out of Eout to routers R3, R4, and R5. 
Each of these routers then performs SA-G arbitration. At 
R2, which is 0 hops away (<SSRD), BMsel = local, and XBsel 
= Win→Eout. At R3, which is 1 hop away (<SSRD), BMsel = 
bypass, and XBsel = Win→Eout. At R4, which is the requested 
2 hops away (=SSRD), BWena = 1. At R5, which is 3 hops 
away (>SSRD), SSRD is ignored. In Cycle 2, FlitD traverses 
the crossbars and links at R2 and R3, and is stopped and 
buffered at R4.

Competing SSRs. Using the same example, suppose 
router R0 simultaneously wants to send FlitE three hops 
away to R3 (SSRE = 3), as shown in Figure 4. In Cycle 1, 
router R2 sends out SSRD as before, and in addition R0 
sends SSRE out of Eout to R1, R2, and R3. At R2 a conflict 
now occurs between SSRD and SSRE for the Win and Eout 
ports of the crossbar. Using our priority scheme, FlitE loses 
to FlitD because local flits have the highest priority within 
a router. In Cycle 2, FlitE traverses the crossbar and link 

Win

C in

Eout

BMsel

BWena

XBsel

0bypass

local W in_xb

C in_xb

Eout_xb

Asynchronous 
repeater

Xbar free_vc

Figure 2. SMART router microarchitecture, with an example of single-cycle, multihop traversal. (a) The three primary compo-
nents of the SMART router design are the buffer write enable (BWena), the bypass multiplexer select (BMsel), and the crossbar 
select (XBsel). (b) A flit from router R0 traverses R1 and R2 before latching at R3, according to each router’s BWena, BMsel, and 
XBsel settings. Cin: core-in port; Win: west-in port; Eout: east-out port; vc: virtual channel.

R0 R1 R2 R3
BWena

BM sel

XBsel

0
0

C in >Eout

BWena

BM sel

XBsel

0
bypass

Win >Eout

BWena

BM sel

XBsel

0
bypass

Win >Eout

BWena

BM sel

XBsel

1
0
X

Cin

Win

(a)

(b)



 52 computer

Cover Fe ature

at R0 and R1, but is stopped and buffered at R2. FlitD tra-
verses the crossbars and links at R2 and R3 and is stopped 
and buffered at R4. FlitE now goes through SA-L arbitra-
tion at R2 before it can send a new SSR and continue its 
network traversal. 

It is clear, then, that all paths in SMARTcycle are 
opportunistic. Barring any contention for a set of links 
during a cycle, a flit can create and traverse single-
cycle paths all the way to its destination, regardless of 
the physical number of hops (as long as this number is 
within HPCmax), just as with SMARTapp paths. But if there is 
contention for a link or for multiple links, flits must stop 
and serialize over them. In other words, in the worst-case 
patterns, SMARTcycle behaves in the same manner as a 
conventional baseline network. The same is true if traffic is 
always sent to the nearest one-hop neighbor and multihop 
paths are not required.

Implementation and overheads. In contrast to  
SMARTapp, where an offline computation offers more 
flexibility for creating contention-free routes between 
routers, in SMARTcycle, the physical layout of the SSR wires 
from each router determines route flexibility and HPCmax. 
We saw in the “Clockless Repeated Signaling” sidebar 
that repeated wires have an HPCmax of 16. However, the 
critical path of the design is min{TSSR+SA-G, TST+LT} where 
SSR + SA-G refers to the path setup stage, while ST + LT  
refers to the switch + link traversal stage. SSR and LT 
are pure repeated wire traversals, whereas SA-G and 
ST involve logic computation. We observe that ST + LT 

lowers HPCmax to 11. The delay of SA-G depends on the 
number of SSRs entering the router. SSRs spanning a 
single dimension (that is, X+, X−, Y+, and Y−) restrict 
flits from bypassing turning routers and lower HPCmax to 
13. SSRs that span both dimensions allow flits to bypass 
at turns, but at the cost of a more complex SA-G lower-
ing HPCmax to 9.

The SSR bits and clockless repeaters add negligible area 
overhead because router area is determined by the wire-
dominated crossbar.2

EVALUATION
Here, we evaluate SMART using two traffic scenarios: 

SoC application traffic and chip-level multiprocessing 
(CMP) cache coherence traffic. (Elsewhere, we have 
described evaluations across additional traffic scenarios.4) 
In this discussion, SMART is compared against two 
yardsticks:

 • Our baseline is a router where tr = 1; in other words, 
each flit spends one cycle in the router (although more 
in case of contention), followed by one cycle in the 
link, yielding two cycles per hop. This is currently the 
best available network design.

 • Our ideal is an imagined network where every flit trav-
els from the source router to the destination router 
(that is, across the network) within one cycle, with no 
contention at all along the route. This is the best that 
SMART can potentially accomplish.

R0 R1 R2 R3 R4 R5
=

SSR D  = 2Flit D

Flit C

Flit B

FlitA

BWena

BM sel

XBsel

0
local

Win ->E out

BWena

BM sel

XBsel

0
bypass

Win ->E out

BWena

BMsel

XBsel

1
0
X

BWena

BMsel

XBsel

0
0
X

BWena

BM sel

XBsel

0
0
X

BWena

BMsel

XBsel

0
0
X

Cycle 1
Cycle 2

Cin

Win

Figure 3. SMARTcycle example with no SMART-hop setup request (SSR) conflicts among flits for the same path. 

R0 R1 R2 R3 R4 R5

BWena

BMsel

XBsel

1
local

Win ->Eout

BWena

BMsel

XBsel

0
bypass
Win ->Eout

BWena

BMsel

XBsel

1
0
X

BWena

BM sel

XB sel

0
0
X

BWena

BMsel

XBsel

0
bypass

Win ->Eout

BWena

BM sel

XBsel

0
0

C in ->Eout

Cycle 1
Cycle 2

Cin

Win

Flit E

SSRE  = 3
=

SSRD  = 2FlitD

FlitC

FlitB

FlitA

Figure 4. SMARTcycle example with SSR conflicts among flits.



 octoBer 2013 53

All designs are modeled in the Wisconsin Multifacet 
General Execution-driven Multiprocessor Simulator 
(GEMS)6 within the Garnet network model.7 We target a 
45-nm technology node and 1-GHz clock frequency. (For 
purposes of comparison, the sidebar “Related Work” 
surveys other proposed methodologies with goals similar 
to those of SMART.)

SoC application traffic
To test the impact of SMARTapp, we ran traces from 

eight SoC applications individually through a 4 × 4 
mesh network. Our reconfiguration algorithm uses 
the task communication graph for each application as 
input, and creates a virtual topology overlaid over the 
mesh, optimizing for as many contention-free routes as 
possible4 to minimize stopping. For example, Figure 1a 
shows the topology mapping for the vopd benchmark. 
The graph in Figure 5 compares the performance 
of SMARTapp with our established baseline and ideal 
systems. Compared to the baseline, SMARTapp reduced 
network latency by 60.1 percent on average. The average 
network latency using SMARTapp was 3.8 cycles, only 
1.5 cycles higher than that of the ideal single-cycle 
topology; for pip, vopd, and wlan, the latencies achieved 
by SMARTapp were almost identical to those of the 
ideal (latency here is more than one cycle because of 
serialization among flows at the link from the destination 
router to the core). 

In h264 and mms_mp3, however, where one core acts 
as a sink for most flows while another acts as the source 
for most flows, heavy contention results in multiplexing of 
different flows on the shared links in SMARTapp; our ideal, 
on the other hand, has no bandwidth limitation, and so 
performs between two and four cycles faster.

In our test runs, we changed the task-to-core mapping 
for every application. In an actual SoC, this mapping may 
not be able to change drastically across applications, as 
cores are often heterogeneous and certain tasks are tied 
to specific cores. This results in longer paths, which would 
magnify the benefits of SMARTapp.

Full-system cache coherence traffic
To study the impact of SMART in a many-core cache 

coherence traffic environment, we ran full-system 
64-threaded SPLASH-2 and PARSEC applications on an 
8 × 8 mesh. We used 32-kB instruction and data (I & D) 
private L1 caches per core, and distributed an aggregate 
L2 capacity of 16 MB (comparable to the last-level cache 
capacities of commercial Intel/AMD chips currently 
available) across the 64 tiles.

Because any core can communicate with any other core, 
SMARTapp is not useful in these environments; it cannot 
find any contention-free routes during the reconfiguration 
phase, forcing flits to stop and arbitrate at every hop, which 

leads to performance identical to that of the baseline. Thus 
we evaluate SMARTcycle in these environments.

We compare both a private and a shared L2 design, run-
ning a MOESI directory protocol. In private L2 designs, a 
copy of the data is retained in the local L2 within the tile for 
fast access upon future L1 misses. However, replication of 

Related Work

p hysical express topologies such as clos1 and flattened butterfly,2 
among others, advocate adding physical express links 

between distant routers to reduce average hops. These express 
point-to-point links can be further engineered for lower delay 
using repeaters. Each router now has >5 ports, and channel 
bandwidth is often reduced proportionally to offer buffer and 
crossbar area/power similar to a mesh (radix-5) router. 

More ports, however, imply a complicated routing and arbiter 
mechanism, with a hierarchical arbiter and crossbar,3 increasing 
router delay tr to between 4 and 5 cycles at the routers where flits 
do need to stop. These designs also complicate layout because 
multiple point-to-point global wires must span the chip. Moreover, 
a topology solution works only for certain traffic and incurs higher 
latencies for adversarial traffic (such as near-neighbor traffic) 
because of higher serialization delay.

In contrast, SMART provides the illusion of dedicated physical 
express channels, embedded within a regular mesh network, with-
out having to lower the channel bandwidth or increase the number 
of router ports.

Virtual express topologies are similar to SMART in that they 
preset a router’s input port and crossbar such that an incoming flit 
can bypass buffering and proceed straight to the crossbar and on 
to the link. However, most prior proposals—both in the SoC 
domain, such as VIP4  and ReNoC,5 and in the CMP domain, such as 
EVC6 and TFC7—have focused on realizing a single cycle per hop, 
rather than a single cycle across multiple hops. SMART, on the 
other hand, is designed for single-cycle network traversals, and is 
the first work to perform reconfiguration across multiple hops 
within the same cycle.

References
 1. Y.H. Kao et al., “CNoC: High-Radix Clos Network-on-Chip,” IEEE Trans. 

Computer-Aided Design Integrated Circuits and Systems (TCAD 11),  
vol. 30, no. 12, 2011, pp. 1897-1910.

 2.  J. Kim, J. Balfour, and W.J. Dally, “Flattened Butterfly Topology for On-
Chip Networks,” Proc. 40th IEEE/ACM Int’l Symp. Microarchitecture 
(MICRO 07), IEEE, 2007, pp. 172-182.

 3. J. Kim et al., “Microarchitecture of a High-Radix Router,” Proc. 32nd IEEE/
ACM Int’l Symp. Computer Architecture (ISCA 05), IEEE, 2005, pp. 420-431.

 4. M. Modarressi, A. Tavakkol, and H. Sarbazi-Azad, “Virtual Point-to-Point 
Connections for NoCs,” IEEE Trans. Computer-Aided Design Integrated 
Circuits and Systems (TCAD), vol. 29, no. 6, 2010, pp. 855-868.

  5. M.B. Stensgaard and J. Sparsø, “ReNoC: A Network-on-Chip Architec-
ture with Reconfigurable Topology,” Proc. 2nd ACM/IEEE Int’l Symp. 
Networks-on-Chip (NOCS 08), IEEE, 2008, pp. 55-64.

 6. A. Kumar et al., “Express Virtual Channels: Towards the Ideal Intercon-
nection Fabric,” Proc. 34th IEEE/ACM Int’l Symp. Computer Architecture 
(ISCA 07), IEEE, 2007, pp. 150-161.

 7. A. Kumar, L.-S. Peh, and N.K. Jha, “Token Flow Control,” Proc. 41st IEEE/
ACM Int’l Symp. Microarchitecture (MICRO 08), IEEE, 2008, pp. 342-353.



 54 computer

Cover Fe ature

data across tiles lowers the effective on-chip cache capac-
ity. In shared L2 designs, there is only one copy of the data 
on-chip, increasing cache capacity. However, L1 misses 
always involve a network traversal to access data at a 
remote L2, making on-chip latency critical to performance.

Figure 6 plots the application runtime (normalized to the 
shared L2 with a baseline network). In our imagined ideal 
network (with constant one-cycle network delay), a private 
L2 is 50.4 percent slower than a shared L2 on average as 
a result of reduced cache capacity. However, in an actual 
baseline network, remote accesses become costly, making  

a private L2 27.8 percent faster on 
average than a shared L2 and thus 
more favorable, despite the reduction 
in overall cache capacity. 

SMART completely reverses these 
tradeoffs. SMART

cycle lowers appli-
cation runtime by 57.5 percent in 
a shared L2 and by 49.5 percent in 
a private L2 design compared with 
the respective baseline networks. 
For almost all benchmarks, a shared 
L2 design with a SMARTcycle network 
matches or even betters performance 
(lu, nlu, radix, water-nsq, swaptions) 
when compared to the private L2 
design running on the baseline 
network, because the necessarily 
frequent remote accesses of shared 
caches are no longer as expensive. 
These results suggest that SMART can 
potentially enable a hybrid private/ 
shared L2 design that can both avoid 
unnecessary replication and lower 
the remote access time, thereby pro-
viding scalability.

A s core counts increase, on-chip 
network latency inevitably 
plays a crucially important 

role in determining the performance 
of shared memory systems. Tradi-
tionally, on-chip latency has been 
proportionate to the number of hops 
in a traversal. Research in efficient 
network design has helped lower 
per-hop latency to between one and 
two cycles, but this will not suffice as 
we scale toward chips of 1,000 cores 
and higher. SMART addresses on-chip 
latency by proposing a technique for 
traversing multiple hops within a 
single cycle, driving links by asyn-

chronous repeaters at every hop and reconfiguring the 
switches connecting these links, either before the applica-
tion is run or while the application is running, depending 
on the target traffic domain. 

Today, repeated wires can transmit signals up to  
16 mm within 1 ns. With maximum chip sizes of ~20 mm 
× 20 mm due to yield and cost, this means that SMART 
can enable single-cycle traversals across the chip. As tech-
nology scales, tile sizes will go down, while global wire 
delay will likely remain the same, meaning that we can 
potentially cross even more hops within a single cycle. 

Baseline12
11
10

9
8
7
6
5
4

3
2

1
0

SMARTapp Ideal
Av

er
ag

e n
et

wo
rk

 la
te

nc
y (

cy
cle

s)

Average
wlan

vopdpip
mwd

mms_mp3

mms_enc

mms_dec
h264

Figure 5. Performance evaluations comparing SMARTapp with a baseline (two-cycle 
per hop) network and an ideal (one-cycle across the network) network for a suite of 
eight SoC applications. 

L2 = shared Net = baseline
L2 = shared Net = SMARTcycle 
L2 = shared Net = ideal
L2 = private Net = baseline 
L2 = private Net = SMARTcycle

L2 = private Net = ideal

2.38
2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2
0

No
rm

ali
ze

d a
pp

lic
at

ion
 ru

nt
im

e

ba
rn

es �t lu nl
u

ra
dix

wa
te

r-n
sq

wa
te

r-s
pa

tia
l

bla
ck

sh
ole

s

ca
nn

ea
l

�u
ida

nim
at

e

sw
ap

tio
ns

x2
64

av
er

ag
e

SPLASH-2 PARSEC

Figure 6. Full-system runtime comparisons of SMARTcycle with baseline and ideal net-
works in shared L2 and private L2 environments. Seven applications from SPLASH-2 
and five applications from PARSEC are shown. 



 octoBer 2013 55

 Selected CS articles and columns are available  
 for free at http://ComputingNow.computer.org.

A SMART network not only reduces on-chip latency but 
also reopens the debate concerning private versus shared 
L2 cache capacity. Thus, SMART can potentially pave the 
way for locality-oblivious multicore architectures, ease the 
burden on OS/compiler and protocol designers, and help 
usher in the era of kilo-core chips. 

References
 1. W. Dally and B. Towles. Principles and Practices of Intercon-

nection Networks, Morgan Kaufmann, 2003.
 2. S. Park et al., “Approaching the Theoretical Limits of a 

Mesh NoC with a 16-Node Chip Prototype in 45-nm SOI,” 
Proc. 49th Design Automation Conf. (DAC 12), IEEE, 2012,  
pp. 398-405.

 3. J. Howard et al., “A 48-Core IA-32 Message-passing Pro-
cessor with DVFS in 45-nm CMOS,” Proc. Int’l Solid State 
Circuits Conf. (ISSCC 10), IEEE, 2010, pp. 108-109.

 4. T. Krishna et al., “Breaking the On-chip Latency Barrier 
Using SMART,” Proc. 19th Int’l Symp. High-Performance 
Computer Architecture (HPCA 13), IEEE, 2013, pp. 378-389.

 5. C.H.O. Chen et al., “SMART: A Single-Cycle Reconfigurable 
NoC for SoC Applications,” Proc. Design Automation and 
Test in Europe (DATE 13), 2013, pp. 338-343.

 6. M.M.K. Martin et al., “Multifacet’s General Execution-
Driven Multiprocessor Simulator (GEMS) Toolset,” ACM 
SIGARCH Computer Architecture News, vol. 33, no. 4, 2005, 
pp. 92-99.

 7. N. Agarwal et al., “GARNET: A Detailed On-Chip Net-
work Model inside a Full-System Simulator,” Proc. IEEE 
Int’l Symp. Performance Analysis of Systems and Software 
(ISPASS 09), IEEE, 2009, pp. 33-42.

Tushar Krishna is a doctoral candidate in the Department 
of Electrical Engineering and Computer Science at MIT. His 
research interests include on-chip interconnection networks 
for parallel many-core systems. He received a BTech from 
the Indian Institute of Technology, Delhi, and an MSE from 
Princeton University. Krishna is a student member of IEEE. 
Contact him at tushar@csail.mit.edu.

Chia-Hsin Owen Chen is a doctoral candidate in the  
Department of Electrical Engineering and Computer Science  
at MIT. His research interests include system-level power 
and performance modeling and analysis in on-chip net-
works. He received a BS from National Taiwan University 
and an SM from MIT. Contact him at owenhsin@csail.
mit.edu.

Sunghyun Park is a doctoral candidate in the Department 
of Electrical Engineering and Computer Science at MIT. His 
research interests include energy-scalable network-on-chip 
design at circuit, VLSI-CAD, and architecture levels. He  
received a BS from the Korea Advanced Institute of Science 
and Technology and an SM from MIT. Park is a recipient of 
the Samsung Scholarship. Contact him at pshking@mit.edu.

Woo-Cheol Kwon is a doctoral candidate in the Department 
of Electrical Engineering and Computer Science at MIT. His 
research interests include multicore processor architec-
ture and network on chip. He received a BS and MS from 

the Korea Advanced Institute of Science and Technology. 
Before joining MIT, he worked for Samsung Electronics; 
where he conducted system interconnect design, perfor-
mance analysis, and functional verification. Contact him 
at wckwon@mit.edu.

Suvinay Subramanian is a doctoral candidate in the  
Department of Electrical Engineering and Computer Science 
at MIT. His research interests include on-chip interconnec-
tion networks and computer architecture. He received a 
BTech from the Indian Institute of Technology, Madras, and 
an SM from MIT.  Contact him at suvinay@csail.mit.edu.

Anantha P. Chandrakasan is the Joseph F. and Nancy P. 
Keithley Professor of Electrical Engineering at MIT. His research  
interests include micropower digital and mixed-signal  
integrated circuit design, wireless microsensor system 
design, portable multimedia devices, energy-efficient  
radios, and emerging technologies. Chandrakasan holds 
a PhD from the University of California, Berkeley. His nu-
merous awards include the 2009 Semiconductor Industry 
Association (SIA) University Researcher Award and the 
2013 IEEE Donald O. Pederson Award in Solid-State Cir-
cuits. Contact him at anantha@mtl.mit.edu.

Li-Shiuan Peh is a professor in the Department of Electri-
cal Engineering and Computer Science at MIT. Her research  
focuses on networked computing in many-core chips as well 
as mobile wireless systems. Peh received a PhD in computer 
science from Stanford University. She was awarded the 
ACM Distinguished Scientist Award in 2011, the CRA Anita 
Borg Early Career Award in 2007, and the Sloan Research 
Fellowship in 2006. She is a member of IEEE and ACM. Con-
tact her at peh@csail.mit.edu.

stay connected.stay connected.

|  IEEE Computer Society
|  Computing Now

|  youtube.com/ieeecomputersociety

|  facebook.com/IEEE ComputerSociety
|  facebook.com/ComputingNow

|  @ComputerSociety 
|  @ComputingNow


