SCORPIO: 36-Core Shared Memory Processor Demonstrating Snoopy Coherence on a Mesh Interconnect

Chia-Hsin Owen Chen

Collaborators: Sunghyun Park, Suvinay Subramanian, Tushar Krishna, Bhavya Daya, Woo Cheol Kwon, Brett Wilkerson, John Arends, Anantha Chandrakasan, Li-Shiuan Peh

Contributions:

Core integration (Bhavya and Owen), Cache coherence protocol design (Bhavya and Woo Cheol) L2 cache controller implementation (Bhavya) Memory interface controller implementation (Owen) High-level idea of notification network (Woo-Cheol) Network architecture (Woo-Cheol, Bhavya, Owen, Tushar, Suvinay) Network implementation (Suvinay)

DDR2 and PHY integration (Sunghyun and Owen) Backend of entire chip (Owen) FPGA interfaces, on-chip testers and scan chains (Tushar) RTL functional simulations (Bhavya, Owen, Suvinay) Full-system GEMS simulations (Woo-Cheol) Board Design (Sunghyun) Software Stack (Bhavya and Owen) Package Design (Freescale)

IBM 45nm SOI, 143mm² 600M transistors

IBM 45nm SOI, 143mm² 600M transistors

36 cores with total 4.5MB L2

IBM 45nm SOI, 143mm² 600M transistors

36 cores with total 4.5MB L2

6×6 mesh on-chip network supporting snoopy coherence

IBM 45nm SOI, 143mm² 600M transistors

36 cores with total 4.5MB L2

6×6 mesh on-chip network supporting snoopy coherence

Dual channel DDR2 memory controller

Tile Architecture

Core

- Freescale e200 z760n3
- In-order
- Dual-issue

Private L1 cache

- Split 16KB for Inst / Data
- 4-way set associative

Private L2 cache

- 128KB
- 4-way set associative
- Inclusive

Tile Architecture

Snoopy Coherence

6×6 mesh interconnect

- 137b wide data-path
- One network node / tile

Problem: Broadcast Messages delivered to different nodes in different orders on unordered networks

Problem: Broadcast Messages delivered to different nodes in different orders on unordered networks
 We want: Every node to see all messages in the same global order

Problem: Broadcast Mossages delivered to different podes in Solution: Decouple message delivery from ordering We want: Every node to see all messages in the same global order

Notification Network

Bounded latency (≤ 12 cycle)

- Non-blocking
- 1 cycle / hop broadcast mesh
- Dedicated 1 bit / tile

Notification Network

Bounded latency (≤ 12 cycle)

- Non-blocking
- 1 cycle / hop broadcast mesh
- Dedicated 1 bit / tile

Low cost

• Only DFF + ORs

Notification Network

Synchronization Primitives

lwarx, stwcx

- Link in L2 cacheline granularity
- Detect modifications after load-link using coherence protocol

msync

- Broadcast sync requests
- Gather acks from all cores when they complete the sync request

Evaluation Setup

Simulator	GEMS + GARNET		
Access times	L1 – 1 cycle; L2 – 10 cycles; DRAM 90 cycles		
LPD	Limited Pointer Directory Coherence		
HT	AMD HyperTransport Coherence		
SCORPIO	Snoopy Coherence: MOSI		

Evaluation Setup

Simulator	GEMS + GARNET		
Access times	L1 – 1 cycle; L2 – 10 cycles; DRAM 90 cycles		
LPD	Limited Pointer Directory Coherence		
HT	AMD HyperTransport Coherence		
SCORPIO	Snoopy Coherence: MOSI		

	LPD	нт	SCORPIO	Isolate
What is tracked?	Few sharers	Presence of owner	Presence of owner	Storage overhead
Who orders requests?	Directory	Directory	Network	Indirection latency

Runtime Comparison

LPD HT SCORPIO

→ 24% better than Limited Pointer Directory

→ 13% better than Hyper-Transport

Requests served by other caches

🔳 Network: Req to Dir 🔳 Dir Access 🔳 Network: Dir to Sharer 🔳 Network: Bcast Req 🔳 Req Ordering 📕 Sharer Access 🔳 Network: Resp

Requests served by other caches

120 100 80 Soldes Cycles 40 20 0 SCORPIO SCORPIO LPD 노 SCORPIO LPD HT SCORPIO 노 SCORPIO LPD SCORPIO 노 SCORPIO LPD 노 LPD 보 LPD 보 LPD barnes fft lu blackscholes fluidanimate average canneal

Network: Req to Dir 📕 Dir Access 📓 Network: Dir to Sharer 🔳 Network: Bcast Req 📕 Req Ordering 📕 Sharer Access 🔳 Network: Resp

→ 19% lower than LPD → 18% lower than HT

Requests served by other caches

■ Network: Reg to Dir ■ Dir Access ■ Network: Dir to Sharer ■ Network: Bcast Reg ■ Reg Ordering ■ Sharer Access ■ Network: Resp 120 100 80 Cycles 0900 40 20 0 SCORPIO SCORPIO LPD SCORPIO SCORPIO SCORPIO SCORPIO SCORPIO LPD 노 LPD 노 보 LPD 노 LPD 보 LPD 보 LPD 노 fft lu blackscholes fluidanimate barnes canneal average

→ 19% lower than LPD
→ 18% lower than HT

Requests served by directory -- MC

Owen Chen / MIT

Requests served by other caches

■ Network: Reg to Dir ■ Dir Access ■ Network: Dir to Sharer ■ Network: Bcast Reg ■ Reg Ordering ■ Sharer Access ■ Network: Resp 120 100 80 Cycles 0900 40 20 ٥ SCORPIO SCORPIO LPD SCORPIO SCORPIO SCORPIO SCORPIO SCORPIO LPD 노 LPD 노 보 LPD 노 LPD 보 LPD 보 LPD 노 fft lu blackscholes fluidanimate barnes canneal average

→ 19% lower than LPD
→ 18% lower than HT

Requests served by directory -- MC

→ 7.5% lower than LPD → 4.2% higher than HT

Owen Chen / MIT

Requests served by other caches

■ Network: Reg to Dir ■ Dir Access ■ Network: Dir to Sharer ■ Network: Bcast Reg ■ Reg Ordering ■ Sharer Access ■ Network: Resp 120 100 80 Cycles 0900 40 20 ٥ SCORPIO 노 SCORPIO LPD HT SCORPIO SCORPIO SCORPIO SCORPIO SCORPIO LPD 노 LPD LPD 노 LPD 보 LPD 보 LPD 보 fft lu blackscholes fluidanimate barnes canneal average

→ 19% lower than LPD
→ 18% lower than HT

90% requests served by other caches

Requests served by directory -- MC

→ 7.5% lower than LPD → 4.2% higher than HT

Owen Chen / MIT

Requests served by other caches

🔳 Network: Req to Dir 📕 Dir Access 📕 Network: Dir to Sharer 🔳 Network: Bcast Req 📕 Req Ordering 📕 Sharer Access 📕 Network: Resp

Network Cost

Network Cost

Contributions

- SCORPIO: A 36-core shared-memory processor Snoopy coherency on a mesh interconnect:
 - Runtime: 24% better than LPD, 13% better than HT
 - Cost: 28.8W @ 833MHz
- Novel network-on-chip for scalable snoopy coherence New ideas:
 - Distributed in-network ordering mechanism
 - Decouple message delivery from message ordering

Ongoing Work

Software stack development

- Boot Linux
- Run PARSEC, SPLASH, ..., etc

Chip measurement

- Power, timing
- Performance

