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UNLOCKING ORDERED PARALLELISM
WITH THE SWARM ARCHITECTURE

..................................................................................................................................................................................................................

SWARM IS A PARALLEL ARCHITECTURE THAT EXPLOITS ORDERED PARALLELISM. IT

EXECUTES TASKS SPECULATIVELY AND OUT OF ORDER AND CAN SCALE TO LARGE CORE

COUNTS AND SPECULATION WINDOWS. THE AUTHORS EVALUATE SWARM ON GRAPH

ANALYTICS, SIMULATION, AND DATABASE BENCHMARKS. AT 64 CORES, SWARM

OUTPERFORMS SEQUENTIAL IMPLEMENTATIONS OF THESE ALGORITHMS BY 43 TO 117

TIMES AND STATE-OF-THE-ART SOFTWARE-ONLY PARALLEL ALGORITHMS BY 3 TO 18

TIMES.

......Multicores are now pervasive, but
they still provide limited architectural support
for parallelization, constraining the range of
applications that can exploit them. Thus, it is
crucial to explore new architectural mecha-
nisms to efficiently exploit as many types of
parallelism as possible. Doing so makes paral-
lel systems more versatile and easier to pro-
gram and, for many applications, it is the only
way to improve performance.

Fundamentally, parallelizing a program
comprises two main steps: dividing work into
tasks and enforcing synchronization among
tasks with potential data dependences to
ensure correct behavior. Tasks might be cre-
ated dynamically at runtime. Broadly, we can
distinguish two classes of parallelism, unor-
dered and ordered, that place different
demands on the system.

In unordered parallel programs, available
tasks can execute and complete in any order.
Tasks can have data dependences that are not
known a priori. In this case, the programmer
must use some form of explicit synchroniza-
tion, such as locks or transactions, to arbitrate

accesses to shared data. Unordered parallelism
incurs small overheads in current multicores as
long as tasks synchronize infrequently and are
large enough to amortize task-management
costs in software (such as scheduling and load
balancing).

By contrast, ordered parallel programs con-
sist of tasks that must follow a total or partial
order. Tasks can have data dependences that
are unknown a priori, but synchronization is
implicit, determined by their order con-
straints. When tasks create new children tasks,
they schedule them to run at a specific future
time. The combination of order constraints
and unknown data dependences makes
ordered parallelism hard to exploit in current
multicores,1 because runtime overheads neg-
ate parallelism’s benefits.

The goal of this work is to design efficient
architectural support for ordered parallelism.
This brings two main benefits. First, many
key algorithms have plentiful ordered parallel-
ism but little unordered parallelism, so they
scale poorly. Second, although ordered paral-
lelism is more demanding on the system, it is
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simpler and more general than unordered par-
allelism. Thus, efficient support for order also
eases parallel programming, because applica-
tions with unordered parallelism often have
simpler ordered implementations.

In our paper presented at the 48th Interna-
tional Symposium on Microarchitecture,2 we
introduced Swarm, an architecture that
exploits ordered parallelism efficiently. Swarm
relies on a co-designed execution model and
microarchitecture to scale. Specifically, we
contribute four novel techniques:

� an execution model based on tasks with
programmer-specified time stamps
that conveys order constraints to
hardware;

� a hardware task-management scheme
that features speculative task creation
and dispatch, drastically reducing task
management overheads, and imple-
ments a large speculation window;

� a scalable conflict-detection scheme
that leverages eager versioning to, upon
mispeculation, selectively abort the
mispeculated task and its dependents;
and

� a distributed commit protocol that
allows ordered commits without serial-
ization, supporting multiple commits
per cycle with modest communication.

We evaluated Swarm on six graph analytics,
simulation, and database benchmarks. At 64
cores, Swarm outperformed sequential imple-
mentations of these algorithms by 43 to 117
times, and it outperformed state-of-the-art par-
allel implementations on conventional multi-
cores by 2.7 to 18 times. Besides achieving
near-linear scalability on algorithms that are
often considered sequential, the resulting
Swarm programs are almost as simple as their
sequential counterparts, because they do not
use explicit synchronization.

Understanding Ordered Parallelism
Applications with ordered parallelism have
three key features.3 First, they comprise tasks
that must execute in some total or partial
order. Second, tasks are not known in advance.
Instead, tasks dynamically create children tasks
and schedule them to run at a future time,
resulting in different task creation and execu-

tion orders. Third, tasks can have data depend-
ences that are not known a priori.

Example: Dijkstra’s Algorithm
To illustrate the challenges in parallelizing
these applications, consider Dijkstra’s single-
source shortest paths (sssp) algorithm.4

sssp finds the shortest distance between
some source node and all other nodes in a
graph with weighted edges. Figure 1a shows
the sequential code for sssp, which uses a
priority queue to store tasks. Each task oper-
ates on a single node and is ordered by its
projected distance to the source node. sssp
relies on task order to guarantee that the first
task to visit each node comes from a shortest
path. This task sets the node’s distance and
enqueues tasks to visit each neighbor. Later
tasks visiting the same node do nothing.

Figure 1b shows an example graph, and
Figure 1c shows the tasks that sssp executes
to process this graph. Figure 1c also shows the
execution order of each task (projected dis-
tance to source node) in the x-axis and out-
lines both parent-child relationships and data
dependences. For example, task A at distance
0, denoted ðA; 0Þ, creates children tasks
ðC ; 2Þ and ðB; 3Þ; task ðB; 3Þ writes to node
B and ðB; 4Þ reads it, so they have a data
dependence.

A distinctive feature of many programs with
ordered parallelism is that task creation and
execution orders are different: children tasks are
not immediately runnable, but are subject to a
global order influenced by all other tasks in the
program. For example, in Figure 1c, ðC ; 2Þ
creates ðB; 4Þ, but running ðB; 4Þ immedi-
ately would produce the wrong result, because
ðB; 3Þ, created by a different parent, must run
first. Sequential implementations of these pro-
grams use scheduling data structures, such as
priority queues or first-in, first-out queues, to
process tasks in the right order. This is a key
reason why thread-level speculation (TLS),5–8

which speculatively parallelizes sequential pro-
grams, cannot exploit ordered parallelism: the
scheduling data structures introduce false data
dependences among otherwise independent
tasks. For further information, see the “Related
Work in Thread-Level Speculation” sidebar.

Given these order constraints, where is the
parallelism? The key insight is that independ-
ent tasks (for example, those visiting different
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nodes in sssp) can execute concurrently
and out of order without violating correct-
ness. For example, Figure 1d shows a correct
parallel schedule for sssp tasks. Tasks in the
same x-axis position execute concurrently.
This schedule achieves twice the parallelism
of a serial schedule in this small graph, and
larger graphs permit even more parallelism.
The parallel schedule produces the correct
result because, although it elides order con-
straints among independent tasks, it respects
data dependences.

Unfortunately, tasks and their data depend-
ences are not known in advance. Therefore, to
elide unnecessary order constraints, we must
resort to speculative execution. Specifically, for
every task other than the earliest active task,
Swarm speculates that there are no earlier data-
dependent tasks, and it executes the task any-
way. If this guess is wrong, Swarm detects
dependence violations and aborts offending
tasks to preserve correctness.

Opportunities and Challenges
To motivate and guide Swarm’s design, we
characterized six applications, ranging from

graph analytics to simulation and databases.
Our full paper contains a detailed limit study,
from which we gleaned three key insights:
speculative parallelism is plentiful, tasks are
tiny, and a large speculative window is
needed.2

Speculative parallelism is plentiful. Just as
Figure 1d is a valid schedule with twice the
parallelism for sssp on a small graph, we
determine the shortest possible schedule that
respects data dependences for each bench-
mark when using large, representative inputs.
All applications exhibit more than 100 times
maximum parallelism. For example, sssp
reached 793 times on a large road graph.
Thus, most order constraints are superfluous,
making speculative execution attractive.

Tasks are tiny. Across the benchmark suite,
tasks are very short, ranging from a few tens
of instructions (sssp) to a few thousand.
Tasks also have small read and write sets. For
example, sssp tasks read 5.8 64-bit words
and write 0.4 words on average. Task-sched-
uling overheads in software overwhelm the
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prioQueue.enqueue(source, 0)
while prioQueue not empty:
    (node, dist) = prioQueue.dequeueMin()
    if node.distance not set:
        node.distance = dist
        for nbr in node.neighbors:
            d = dist + edgeWeight(node, nbr)
            prioQueue.enqueue(nbr, d)
    else: // node already visited, skip

Figure 1. Dijkstra’s single-source shortest paths (sssp) algorithm has plentiful ordered

parallelism. (a) Dijkstra’s sssp code, highlighting the unvisited and visited paths that each

task can follow. (b) Example graph and resulting shortest-path distances (underlined). (c)

Tasks executed by sssp. Each task shows the node it visits. Tasks that visit the same node

have a data dependence. (d) A correct speculative schedule that achieves twice the

parallelism.
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Related Work in Thread-Level Speculation
Prior work has investigated thread-level speculation (TLS) schemes to

parallelize sequential programs.1–5 TLS schemes ship tasks from func-

tion calls or loop iterations to different cores, run them speculatively,

and commit them in program order. Although TLS schemes can elide

order constraints, we find that two key problems prevent them from

exploiting ordered parallelism: their execution model limits application

parallelism and prior implementations suffer from scalability

bottlenecks.

The TLS Execution Model Limits Parallelism
To run under TLS, ordered algorithms must be expressed as sequential

programs, but sequential implementations often limit parallelism.

Consider the code in Figure 1a in the main article, in which each itera-

tion dequeues a task from the priority queue and runs it, potentially

enqueuing more tasks. Data dependences in the priority queue, not

among tasks themselves, cause frequent conflicts and aborts. For

example, iterations that enqueue high-priority tasks often abort all

future iterations.

Through a limit study, we have shown that TLS parallelism is mea-

ger in most of our benchmarks, even with idealizations such as perfect

speculation, an infinite task window, and no communication delays.6

For example, because of frequent dependences on the priority queue,

the sequential sssp implementation has only 1.1 times parallelism.

The root problem is that loops and method calls, the control-flow

constructs of TLS schemes, are insufficient to express the order con-

straints among these tasks. By contrast, Swarm implements a more

general execution model with time-stamp-ordered tasks to avoid soft-

ware queues, and implements hardware priority queues integrated

with speculation mechanisms, avoiding spurious aborts due to queue-

related references.

TLS Scalability Bottlenecks
Although prior work has developed scalable versioning and conflict-

detection schemes, two challenges limit TLS performance with large

speculation windows and small tasks: unselective aborts and limited

commit throughput.

Forwarding Versus Selective Aborts
Most TLS schemes find it desirable to forward data written by an ear-

lier, still-speculative task to later reader tasks. This prevents later

tasks from reading stale data, reducing mispeculations on tight data

dependences. However, it creates complex chains of dependences

among speculative tasks. Thus, upon detecting mispeculation, most

TLS schemes abort the task that caused the violation and all later

speculative tasks.1–3,5,7

We similarly find that forwarding speculative data is crucial for

Swarm. However, although it is reasonable to abort all later tasks

with small speculative windows (2 to 16 tasks are typical in prior

work), Swarm has a 1,024-task window, which makes unselective

aborts unreasonable. To address this, our novel conflict-detection

scheme forwards speculative data and selectively aborts only depend-

ent tasks upon mispeculation.

Commit Serialization
Prior TLS schemes enforce in-order commits by passing a token among

ready-to-commit tasks.1–3,7 Each task can commit only when it has

the token, and passes the token to its immediate successor when it

finishes committing. This approach cannot scale to the commit

throughput that Swarm needs. For example, with 64-cycle tasks, a 64-

core system should commit one task per cycle on average. Even if

commits were instantaneous, the token-passing latency makes this

throughput unachievable.

Instead, we adapt techniques from distributed systems to achieve

in-order commits without serialization, token-passing, or building suc-

cessor lists.
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useful work of short tasks.1 Moreover, order
constraints prevent runtimes from grouping
tasks into coarser-grained units to amortize
overheads. Hardware support for task man-
agement is needed to reduce these overheads.

A large speculative window is needed. To find
how far ahead of the earliest active task
Swarm needs to execute, we studied how
the maximum parallelism changes with a
limited task window. With a T -task win-
dow, when finding the shortest schedule, we
do not schedule an independent task until
all work more than T tasks behind has fin-
ished. In five out of the six applications,
small windows severely limited parallelism.
For example, parallelism in sssp dropped
from 793 times with an infinite window to
178 times with a 1,024-task window to 26
times with a 64-task window. Therefore,
the architecture must support many more
speculative tasks than cores to uncover
enough parallelism.

Swarm Execution Model
Swarm programs consist of time-stamped
tasks. Each task can access arbitrary data and
create children tasks with any time stamp
greater than or equal to its own. Swarm guar-
antees that tasks appear to execute in time-
stamp order. If multiple tasks have the same
time stamp, Swarm chooses an order among
them.

Using time stamps decouples task creation
and execution orders: software conveys new
work to hardware as soon as it is discovered
rather than in the order it needs to run,
exposing a large amount of parallelism.

Programs leverage the Swarm execution
model through a simple API. Figure 2 shows
the Swarm implementation of sssp and illus-
trates the execution model and API. The code
closely resembles the sequential implementa-
tion from Figure 1a—there is no explicit syn-
chronization or thread management.

In our API, each task executes a function
that takes a time stamp and an arbitrary
number of additional arguments. Figure 2
defines a single task function, ssspTask.
Because sssp tasks are ordered by their
node’s projected distance to the source, that
distance is used directly as a task time stamp.

In our API, tasks can create children tasks
by calling swarm::enqueue with the
appropriate task function, time stamp, and
arguments. For example, if its own node is
unvisited, ssspTask creates one child task
for each neighbor, with the neighbor’s pro-
jected distance as the time stamp. Because
tasks appear to execute in time-stamp order,
the first task to visit each node will come
from a shortest path.

Finally, a program invokes Swarm by
enqueuing some initial tasks with swar-
m::enqueue and calling swarm::run,
which returns control when all tasks finish.
Figure 2 enqueues one initial task that visits
the source node before initiating speculative
execution.

Swarm Microarchitecture
The Swarm microarchitecture exploits
ordered parallelism by executing tasks specula-
tively and out of order. Swarm introduces
modest changes to a tiled, cache-coherent
multicore, shown in Figure 3. Each tile has a
group of simple cores, each with its own pri-
vate L1 cache. All cores in a tile share an L2
cache, and each tile has a slice of a fully shared
L3 cache. Every tile is augmented with a task
unit that queues, dispatches, and commits
tasks.

Swarm is carefully designed to support tiny
tasks and a large speculation window efficiently.
Four key ingredients make this possible: low-
overhead hardware task management, large
task queues, scalable speculation mechanisms,
and high-throughput ordered commits.

void ssspTask(Timestamp dist, Node& n) {
if (n.distance == UNSET) {
n.distance = dist; 
for (Node& m: n.neighbors) {

Timestamp mDist = dist + edgeWeight(n, m) 
swarm::enqueue(&ssspTask, mDist, m) 

}
} else {} // node n already visited, skip

}

swarm::enqueue(&ssspTask, 0, sourceNode)
swarm::run(); 

;
;

;

Figure 2. Swarm implementation of Dijkstra’s sssp algorithm. The code is

similar to the sequential implementation (see Figure 1a). Parallelism and

synchronization are implicit.

.............................................................

MAY/JUNE 2016 109



Hardware Task Management
Each tile’s task unit queues runnable tasks and
maintains the speculative state of finished
tasks that cannot yet commit. Task units com-
municate only to send new tasks to each other
to maintain load balance and, infrequently, to
determine which finished tasks can be com-
mitted. Swarm executes every task except the
earliest active task speculatively. To uncover
enough parallelism, task units can dispatch
any available task to cores, no matter how dis-
tant in program order. Tasks also can run even
if their parent is still speculative.

Each task is represented by a task descrip-
tor that contains its function pointer, 64-bit
time stamp, and arguments. Cores interact
with task units using enqueue and dequeue
instructions. Cores enqueue each task descrip-
tor to a randomly chosen tile and dequeue
tasks for execution from the local task unit.
Successful dequeues initiate speculative execu-
tion at the task’s function pointer and make
the task’s time stamp and arguments available
in registers. Dequeues block until a task is
available or all tasks have committed.

Task Unit Queues
The task unit has two main structures: a task
queue that holds task descriptors for every
task in the tile, and a commit queue that
holds the speculative state of tasks that have
finished execution but cannot yet commit.

Together, these queues implement a task-
level reorder buffer. Figure 4 shows how these
queues are used throughout a task’s lifetime.
Each new task allocates a task queue entry and

holds it until commit time. Tasks do not nec-
essarily arrive in priority order. For example,
Figure 4a shows an arriving task with time
stamp 7, while tasks with time stamps 8 and
higher had previously been enqueued. Tasks
are dispatched in time-stamp order: the task
queue fulfills each dequeue request by dis-
patching its lowest-time-stamp idle task. For
example, in Figure 4b, the task queue dis-
patches the task with time stamp 7. Each task
allocates a commit queue entry when it fin-
ishes execution, as Figure 4c shows. Commit
queue entries are deallocated when the task
commits or aborts.

Both queues allocate entries independ-
ently of task priority order, as Figure 4 shows;
they manage their free space with free lists.
To find the highest-priority idle task in the
task unit, Swarm uses ternary content-
addressable memories.9 (See our full paper
for details.2)

Because programs can enqueue tasks with
arbitrary time stamps, task and commit
queues can fill up. This requires some simple
actions to ensure correct behavior. Specifically,
idle tasks whose parents are nonspeculative
can be spilled to memory to free task queue
entries. For all other tasks, queue resource
exhaustion is handled either by stalling the
enqueuer or aborting higher-time-stamp tasks
to free space. Again, our full paper contains
more details.2

Ordered Speculation
The key requirements for speculative execu-
tion in Swarm are fast commits and a large
speculation window. To this end, we adopt
eager versioning, which stores speculative data
in place and logs old values. Eager versioning
makes commits fast and requires a minimal
amount of state per task, but aborts are slow.
However, Swarm’s execution model makes
conflicts rare, so eager versioning is the right
tradeoff.

Swarm’s speculative execution borrows from
Log-based Transitional Memory (LogTM).10

The per-task speculative state includes read-set
and write-set Bloom-filter signatures, an undo
log pointer, and child pointers. Because specu-
lation happens at the task level, there are no
register checkpoints, unlike in Hardware TM
and TLS. Each core and commit queue entry
holds this state. Swarm offers the following key
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contributions over these and other speculation
schemes that enable it to scale to large specula-
tive windows: conflict detection that forwards
data from still-speculative tasks, new techniques
to reduce the cost and frequency of conflict
checks, and conflict resolution that selectively
aborts only a violating task’s dependents.

As in LogTM-SE, as a task executes, hard-
ware automatically performs conflict detection
on every read and write. Then it inserts the
read and written addresses into the Bloom fil-
ters, and, for every write, it saves the old mem-
ory value in a memory-resident undo log.

Enforcing a total order. The execution model
permits tasks with the same programmer-
assigned time stamp. To enforce atomicity, the
hardware chooses a total order among same-
time-stamp tasks. Task units assign each
dispatched task a unique virtual time, the con-
catenation of the task’s time stamp and a
unique tiebreaker. Tasks retain their virtual
time until they commit. Tiebreakers ensure
that even if a child task has the same time
stamp as its parent, the child’s virtual time is
higher.

Conflict detection with forwarding. Conflicts
can arise when a task uses a line that was pre-
viously used by a later-virtual-time task. Con-
flicts are detected at cache-line granularity.
Suppose two tasks, t1 and t2, are running or
finished, and t2 has a later virtual time. A
read of t1 to a line written by t2 or a write to
a line read or written by t2 causes t2 to abort.

However, t2 can access data written by t1

even if t1 is still speculative. Thanks to eager
versioning, t2 automatically uses the latest
copy of the data—there is no need for specu-
lative data-forwarding logic.11

Memory requests for conflict-checked
addresses contain the requester’s virtual time.
When a tile receives an invalidation request,
it checks for the address in all local read sets
and write sets and detects any order-violating
conflicts. To make conflict detection efficient,
we must reduce the number of tile-wide con-
flict checks and the cost of each tile-wide con-
flict check.

Using caches to filter conflict checks. Swarm
exploits the cache hierarchy to filter conflict
checks at each level by using a key invariant:
when a task with virtual time T installs a line
in the (L1 or L2) cache, that line has no con-
flicts with tasks of virtual time greater than
T . As long as the line stays cached with the
right coherence permissions, it stays conflict-
free. Because conflicts arise only when tasks
access lines out of virtual time order, if
another task with virtual time U > T
accesses the line, it is also guaranteed to have
no conflicts. However, an access from a task
with virtual time U < T must trigger a con-
flict check in the next cache level. Swarm
maintains the invariant above by modifying
each cache level. First, when a core dequeues
a task with a lower virtual time than the one
it just finished, the L1 flushes lines that were
previously accessed speculatively. Second,
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each L2 set has an associated canary virtual
time. This canary stores the lowest virtual
time an accessing task can have that does not
require a global conflict check. Finally,
exactly as in LogTM,10 the L3 directory uses
memory-backed sticky bits to check only
those tiles whose tasks might have accessed
the line.

Our full paper shows that this invariant is
safe and further illustrates hierarchical con-
flict checks.2

Efficient commit-queue conflict checks. On
every L2 access, and on some global conflict
checks, all speculative tasks in a tile’s commit
queue are checked. To enable large commit
queues (for example, 64 tasks per queue),
these commit queue checks must be efficient.
To this end, we leverage the fact that querying
a K -way Bloom filter requires reading only
one bit from each way, as shown in Figure 5.
Bloom filter ways are stored in columns, so a
single 64-bit (row) access per way reads all the
necessary bits. Reading and ANDing all ways
yields a word that indicates potential conflicts.
For each queue entry whose position in this
word is set, its virtual time is checked; those
with virtual time higher than the issuing task’s
must be aborted.

Selective aborts. Prior TLS schemes that for-
ward speculative data perform unselective
aborts, aborting the task that caused the viola-
tion and all later speculative tasks. This would

waste too much work in Swarm. Instead,
Swarm uses a novel conflict-resolution scheme
that performs selective aborts, aborting only
dependents of the order-violating task: its chil-
dren and other tasks that have accessed data in
its write set. This technique reuses the con-
flict-detection machinery to discover and
abort dependent tasks as needed. This avoids
explicitly tracking intertask dependences,
which would require space that grows quad-
ratically with the number of speculative tasks.

Hardware aborts a task t in three steps:

1. Notify t’s children to abort and be
removed from their task queues.

2. Walk t’s undo log in last-in, first-out
order, restoring old values. If one of
these writes conflicts with a later-
virtual-time task, wait for it to abort
and continue t’s rollback.

3. Clear t’s read and write sets and free
its commit queue entry.

Applied recursively, this procedure selec-
tively aborts all dependent tasks, as shown in
Figure 6. Undo-log writes (for example, A’s
second “wr 0x10” in Figure 6) are normal con-
flict-checked writes, issued with the task’s time
stamp to detect all later readers and writers.

High-Throughput Ordered Commits
A key requirement for scalable speculative
execution with tiny tasks is enabling high-
throughput ordered commits. For example,
with 64-cycle tasks, a 64-core system should
commit one task per cycle on average. Prior
techniques from TLS rely on serial token-
passing and are far below this throughput.

Swarm adapts the virtual-time algo-
rithm,12 common in parallel discrete event
simulation,13 for this purpose. Figure 7 illus-
trates the protocol: tiles communicate to dis-
cover which is the earliest active task in the
system. They periodically send the smallest
virtual time of any unfinished (idle or run-
ning) task to an arbiter. The arbiter computes
the minimum virtual time of all unfinished
tasks, called the global virtual time (GVT),
and broadcasts it to all tiles. Any task with
virtual time less than the GVT commits: it
precedes the earliest active task, so it cannot
have violated the task total priority order.

The key insight is that, by combining the
virtual time algorithm with Swarm’s large

0 1 0 1 0 0 1 0 

1 0 0 1 1 0 1 0 

…  

Read- or write-set Bloom filter for i th commit queue entry

hash1 hashk 

0 i C–1 C–1 0 i 

0 0 0 1 0 0 1 0 

…  

Entries with
potential conflicts

Figure 5. Commit queues store read- and write-set Bloom filters by

columns, so a single access reads one bit from all entries. All entries are

checked in parallel.
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commit queues, commit costs are amortized
over many tasks. A single arbiter update often
causes many finished tasks to commit. This
means GVT updates can be done sparingly
(for example, every 200 cycles), requiring
minimal bandwidth. Finally, eager versioning
makes commits fast: a task is committed by
freeing its task and commit queue entries,
which is a single-cycle operation. Thus, when
many tasks commit at once, queue space
becomes available quickly.

Putting It All Together
Figure 8 summarizes Swarm’s hardware
changes. Swarm adds task units and a GVT
arbiter and modifies cores and caches. For a
16-tile, 64-core system with 2,048-bit Bloom
filters, Swarm’s structures consume 0:55 mm2

per four-core tile, or 8:8 mm2 per chip, a
modest cost. See our full paper for detailed
cost breakdowns.2

In summary, Swarm’s costs are moderate,
and, in return, confer significant speedups.

Swarm Evaluation
We use six challenging workloads to evaluate
Swarm:

� bfs finds the breadth-first tree of an
arbitrary graph.

� sssp is Dijkstra’s algorithm (see Figure
2).

� astar uses the A* pathfinding algo-
rithm to find the shortest route
between two points in a road map.

� msf is Kruskal’s minimum-spanning
forest algorithm.

� des is a discrete-event simulator for
digital circuits. Each task represents a
signal toggle at a gate input.

� silo is an in-memory online trans-
action processing database.14

For most benchmarks, we use tuned serial
and state-of-the-art parallel versions from exist-
ing suites (detailed in our full paper2). We then
port each serial implementation to Swarm.
Swarm versions use fine-grained tasks, but they
use the same data structures and perform the
same work as the serial version, so differences
between serial and Swarm versions stem from
parallelism, not other optimizations.

We wrote our own serial and Swarm
astar implementations. astar is notori-

ously difficult to parallelize—to scale, prior
work in parallel pathfinding sacrifices solution
quality for speed.15 Thus, we do not have a
software-only parallel implementation.

We port silo to show that Swarm can
extract ordered parallelism from applications
that are typically considered unordered.
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Database transactions are unordered in
silo. We decompose each transaction into
many small ordered tasks to exploit intratran-
saction parallelism. Tasks from different
transactions use disjoint time-stamp ranges
to preserve atomicity. This exposes significant
fine-grained parallelism within and across
transactions.

We choose representative inputs for each
algorithm.2 All benchmarks have serial run-
times of more than two billion cycles. Note
that some inputs can offer plentiful trivial par-
allelism to a software algorithm. Specifically,
on large, shallow graphs (for example, 10 mil-
lion nodes and 10 levels), a simple bulk-
synchronous bfs that operates on one level at
a time scales well.16 But we use a graph with
7.1 million nodes and 2,799 levels, so bfs
must speculate across levels to uncover enough
parallelism. Our full paper reports silo
results when running the TPC-C benchmark
with 1 to 64 warehouses. Here, we show the
one-warehouse results only.

We simulate systems with up to 64 cores.
The 64-core chip has 16 tiles, as shown in
Figure 8. Each core has 16-Kbyte private L1
caches, each tile has a 256-Kbyte L2 cache,
and all tiles share a 16-Mbyte L3 cache dis-
tributed across tiles. Swarm uses 64 task
queue entries per core (4,096 total), 16 com-
mit queue entries per core (1,024 total), and
2,048-bit, eight-way Bloom filters for conflict
checks. Our full paper contains the complete
description of our methodology.2

Swarm versus Software Implementations
Figure 9 compares the performance of the
Swarm and software-only versions of each
benchmark. Each graph shows the speedup of
the Swarm and software-parallel versions over
the tuned serial version running on a system of
the same size, from 1 to 64 cores. In this experi-
ment, per-core queue and L2 and L3 capacities
are kept constant as the system grows, so systems
with more cores have higher queue and cache
capacities. At 64 cores, Swarm outperforms the
serial versions by 43 to 117 times and the soft-
ware-parallel versions by 2.7 to 18.2 times.

Swarm Resource Utilization
Swarm uses resources efficiently: it mispecu-
lates rarely, keeps its large task and commit
queues highly utilized, and adds moderate
traffic and energy overheads.

Cycle breakdowns. Figure 10 shows the
breakdown of core cycles for a 64-core
Swarm system. Most cycles are spent execut-
ing tasks that later commit, while aborted
work consumes between 1 percent (bfs) and
27 percent (des) of cycles. Finally, cores
rarely stall due to full or empty queues.

Queue occupancies. Figure 11 shows the aver-
age number of task queue and commit queue
entries used across the 64-core system. Both
queues are often highly utilized. Commit
queues can hold up to 1,024 finished tasks (64
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per tile). On average, they hold from 216 in
des to 821 in astar. This shows that Swarm
speculates far ahead of the earliest active task,
as required to extract enough parallelism. The
4,096-entry task queues are also well utilized,
with average occupancies between 1,060
(silo) and 2,712 (msf) entries.

Network traffic breakdowns. Figure 12 shows
the network traffic breakdown at 64 cores
(16 tiles). The cumulative injection rate per
tile remains well below the saturation injec-
tion rate (64 Gbytes per second). Each bar
shows the contributions of memory accesses
(between the L2s and L3) issued during nor-

mal execution, tasks enqueued to other tiles,
traffic caused by aborts (including child abort
messages and rollback memory accesses), and
GVT updates sent. Task enqueues, aborts,
and GVT updates increase network traffic by
15 percent on average.

S warm’s design challenges conventional
wisdom in two ways. First, conventional

wisdom says that order constraints limit par-
allelism. However, we have shown that it is
possible to maintain a large speculation win-
dow efficiently, so that only true data
dependences limit parallelism. Second, con-
ventional wisdom says that speculation is
wasteful, and designers should instead build
nonspeculative parallel systems. However, we
have shown that, for a broad class of applica-
tions, speculation unlocks abundant
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parallelism for moderate costs. Designers can
trade this additional parallelism for efficiency
in many ways (for example, through simpler
cores or slower clocks), more than offsetting
the costs of speculation. In other words, spec-
ulation can yield a net efficiency gain.

Swarm opens exciting research avenues
beyond ordered irregular parallelism. For
example, Swarm’s techniques could be useful
in making automatic or semiautomatic paral-
lelization practical. Prior limit studies on
instruction-level parallelism have shown that
parallelism is plentiful in most serial applica-
tions, but exploiting it often requires
extremely large speculation windows17 (for
example, more than 100,000 instructions).
These speculation windows are impractical in
conventional out-of-order processors. How-
ever, with 100-instruction tasks, Swarm does
speculate over a window of 100,000 instruc-
tions. Can Swarm be combined with existing
autoparallelization techniques to approach
these large speedups? If not, can these speed-
ups be realized with novel programming
models, compiler techniques, and architec-
tural support?

Finally, although Swarm scales well to sys-
tems with tens of cores, a key question is how
much further it can scale. Although Swarm’s
out-of-order task execution techniques scale
well, poor locality will eventually limit scal-
ing: our current implementation spreads
tasks across tiles randomly, which will cause
too much data movement to be practical at
higher core counts. However, we believe

Swarm’s techniques can help improve local-
ity: by supporting many more tasks than
cores, Swarm lets the system choose when
and where to execute tasks. We could use this
flexibility to map tasks across the system in a
locality-aware fashion, relying on deep
queues to absorb short-term load imbalance.
We believe this would allow Swarm to scale
much further, perhaps to multichip and mul-
tiboard implementations. We leave this and
other endeavors to future work. MICRO
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