
6.864 Advanced Natural Language Processing1
1 Instructors: Prof. Regina Barzilay, and
Prof. Tommi Jaakkola.
TAs: Franck Dernoncourt, Karthik Ra-
jagopal Narasimhan, Tianheng Wang.
Scribes: Clare Liu, Evan Pu, Kalki Sek-
saria

Lecture 9: Parsing and Probabilistic Context Free Grammar
8 October 2015

This lecture first discusses the evaluation of and the limitations of
Hidden Markov Models for unsupervised part-of-speech (POS) tag-
ging. The lecture then introduces the concepts of parse trees, context-
free grammars (CFGs), and probabilistic context-free grammars (PCFGs).
The CYK algorithm is then presented as an efficient method that uses
dynamic programming to find the best parse tree for a sentence with
a PCFG. Finally, the limitations of probabilistic context-free grammars
are discussed and evaluated.

Evaluation of Unsupervised POS tagging

In the previous lecture we have shown how to solve the part-of-speech
(POS) tagging problem by using a Hidden Markov Model (HMM).
The hidden states of the HMM are supposed to correspond to parts
of speech. However, the model is not given any linguistic informa-
tion. Furthermore, we do not have the correspondence between nu-
meric hidden states and actual POS tags, such as "noun" or "verb". To
evaluate the accuracy of the HMM, we can use a matching algorithm,
which attempts to construct a correspondence between hidden states
and POS tags that maximizes the POS tagging accuracy. The goal of
this matching is to see what POS each hidden state corresponds to. Figure 1: Here are two example sen-

tences annotated with the hidden states
generated by an HMM above and the
gold-standard POS tags below. We want
to find a matching between the hidden
states and POS tags to maximize the
number of words tagged correctly.

Let’s assume that the HMM has two possible hidden states, y1 and
y2, and that there are three possible POS tags, N, V, and ADJ. Consider
the two example sentences "Strong stocks are good" and "Big weak
stocks are bad" (Figure 1). The HMM has assigned a hidden state (y1

or y2) to each word. In addition, we also know the correct POS tag
for each word. Our goal is to use a matching algorithm to match each
hidden state to the POS tag that would give us the highest score.

Matching

A matching is a bipartite graph between part-of-speech tags and hid-
den states. Two types of matchings can be performed: a 1-to-many
matching or a 1-to-1 matching. The definitions of 1-to-many and 1-to-
1 matchings are given below. Both types of matchings have different
advantages and disadvantages when they are used to evaluate the per-
formance of an unsupervised model.

Figure 2: Example of a 1-to-many match-
ing. Multiple hidden states are matched
to the ADJ tag.

1-to-Many Matching In a 1-to-many matching, each hidden state is
assigned to with the POS tag that gives the most correct matches. Each

6.864 advanced natural language processing 2

POS tag can be matched to multiple hidden states, hence the name "1-
to-many".

Figure 3: Example of a 1-to-1 matching.
Each part-of-speech tag has a maximum
of one hidden state that is matched with
it.

1-to-1 Matching In contrast, in a 1-to-1 matching, each POS tag can
only be matched to a maximum of one hidden state. In this case, if
the number of hidden states is greater than the number of tags, then
some hidden states will not correspond to any tag. This will decrease
the reported accuracy.

Evaluation

Given a matching, the accuracy of the HMM tagging can be computed
against a gold-standard corpus, where each word has been assigned
the correct POS tag (based on the Penn WSJ Treebank). The correct tag
for a word is compared with the tag that is matched with the word’s
hidden state. If these two tags match, this means that the tagging is
correct for this word.

To find a matching, we can create a table that contains the counts
of each correct POS tag for each hidden state. Here is an example
evaluation table for the example sentences from Figure 1.

Hidden State POS Tag Count
y1 N 2

y1 V 1

y1 ADJ 3

y2 N 0

y2 V 1

y2 ADJ 2

Figure 4: An example evaluation table
for the sentences from Figure 1. State
y1 has been matched with 2 nouns, 1

verb, and 3 adjectives. State y2 has been
matched with 0 nouns, 1 verb, and 2 ad-
jectives.

The matching between hidden states and POS tags can then be found
based on this table for both 1-to-many and 1-to-1 matchings.

Finding a good matching

As we can see, the accuracy of the HMM depends on the type of
matching that is chosen (1-to-many or 1-to-1). To find a good match-
ing, we can use a greedy algorithm that chooses individual state to tag
matchings one at a time and picks the new matching that maximally
increases the accuracy at each step. The algorithm terminates when
no more matchings can be made. In a 1-to-1 matching, the algorithm
terminates when either each POS tag has been assigned a hidden state
or each hidden state has received a POS tag (whichever happens first).
In a 1-to-many matching, the algorithm terminates when each hidden
state has received a POS tag.

Figure 5: The matching that we get from
maximizing the scores from the one-to-
many evaluation table.

6.864 advanced natural language processing 3

Example: 1-to-many Matching Consider the table from Figure 4. The
highest count we see in the table is 3, which corresponds to y1 being
assigned the ADJ tag. Thus, we greedily assign state y1 to ADJ. Since
the highest count for y2 is also ADJ, state y2 is also assigned to the ADJ
tag. y1 tags 3 words correctly, y2 tags 2 words correctly, and there are
9 words in total, so the best score from a 1-to-many matching is 5

9 . The
bipartite matching is illustrated in Figure 5.

Hidden State POS Tag Count
y1 N 2

y1 V 1

y1 ADJ 3
y2 N 0

y2 V 1

y2 ADJ 2

Figure 6: This table corresponds to a 1-
to-many matching. As we can see, ADJ
is assigned to multiple hidden states be-
cause it leads to the highest score for
both states

Example: 1-to-1 Matching We know that the highest count for y1 is 3,
which corresponds to an adjective, so we again greedily assign state y1

to ADJ. Even though state y2 also has the highest count for adjectives,
ADJ has already been matched to state y1 so we cannot use it again.
Thus, y2 must be assigned to V, which has the highest count that is not
yet assigned to any state. y1 tags 3 words correctly and y2 tags 1 word
correctly, so the total score for a 1-to-1 matching is 4

9 . See Figure 8 for
the matching.

Hidden State POS Tag Count
y1 N 2

y1 V 1

y1 ADJ 3
y2 N 0

y2 V 1
y2 ADJ 2

Figure 7: This table corresponds to a 1-
to-1 matching. Even though choosing
ADJ would give the highest score for
state y2, we cannot repeat POS tags, so
it must be assigned to V instead.

Pitfalls of the HMM

Figure 8: The matching that we get from
maximizing the scores from the 1-to-one
evaluation table.

Fully unsupervised tagging models generally perform very poorly.
The HMM computed with the EM algorithm tends to give a relatively
uniform distribution of hidden states, while the empirical distribution
for POS tags is highly skewed since some tags are much more com-
mon than others. As a result, any 1-to-1 matching will give a POS tag
distribution that is relatively uniform, which results in a low accuracy
score.

A 1-to-many matching can create a non-uniform distribution by
matching a single POS tag with many hidden states. However, as the

6.864 advanced natural language processing 4

number of hidden states increases, the model could overfit by giving
each word in the vocabulary its own hidden state. If each word has
its own hidden state, we would achieve 100 percent accuracy, but the
model would not give us any useful information. For more details on
the evaluation of HMM for POS tagging, see "Why doesn’t EM find
good HMM POS-taggers?" (hyperlinked) by Mark Johnson.

Improving Unsupervised Models

There are several modifications we can make to improve the accuracy
of unsupervised models:

1. Supply the model with a dictionary and limit possibilities for each
word: For example, we know that the word "train" can only be a
verb or a noun. This limits the set of possible tags for each word,
which will push the model in the correct direction.

2. Prototypes: Provide each POS tag with several representative words
for the tag. Even just a few words for each tag will help push the
model in the right direction.

Parse Trees

We now move from POS tagging to sentence parsing. A parse tree
is a rooted tree that represents the syntactic structure of a sentence
according a grammar. In syntactic parsing, each word in a sentence
is tagged with a POS tag, and groups of POS tags and/or phrases
are labeled with a single phrase tag. For example, the root of a parse
tree is the tag "S", describing the whole sentence. The sentence "S" is
commonly broken into an "NP" (noun phrase) and "VP" (verb phrase).
The lowest level of the parse tree consists of the words of the sentence.
We will now informally describe several applications of parse trees in
NLP. Figure 9 gives an example of a syntactic parse tree.

S

NP

D

the

N

burgular

VP

V

robbed

D

the

N

apartment
Figure 9: An example of a parse tree for
the sentence "The burgular robbed the
apartment"

Applications of Parse Trees

Grammar Checking Syntactic parse trees can be used for grammar
checking/correction. If a sentence cannot be parsed against a given
grammar, this could indicate a grammar error. Grammar suggestions
can also be generated by comparing the sentence against the given
grammar.

Machine Translation Parse trees can also be used in machine transla-
tion, where a source language is first parsed against the source lan-

http://www.ark.cs.cmu.edu/LS2/images/4/48/Johnson07.pdf
http://www.ark.cs.cmu.edu/LS2/images/4/48/Johnson07.pdf

6.864 advanced natural language processing 5

guage’s grammar, and the resulting tree is transformed to produce a
sentence in the target language.

Semantic Role Labeling In semantic role labeling, a sentence is decom-
posed into a predicate, which represents a key concept of a sentence,
and arguments, which take on different roles according to the predi-
cate. For example, in the sentence "Mary sold the book to John", the
verb "sold" is the predicate. The arguments are as follows: "Mary" is
the seller, "the book" is the good, and "John" is the recipient. Note the
sentence "The book was sold by Mary to John", while syntactically dif-
ferent, has the same semantic role labeling as before. Figure 10 shows
another example tree for semantic role labeling.

Figure 10: An example of Semantic Role
Labeling, where the word "opened" is la-
beled as the predicate.

Discourse Parsing In discourse parsing, groups of related sentences,
which are called discourses, are parsed as a group. This reveals the
structure of a piece of text, and also shows us the relationships between
the different sentences. The techniques used for discourse parsing are
similar to those used for syntactic parsing. While words form the
leaves of a syntactic tree, whole phrases or sentences form the leaves
of a rhetorical structure tree. Figure 11 shows an example rhetorical
structure tree for discourse parsing.

Figure 11: An example of Discourse
Parsing that explains the structure of
the given text. Sentence 2 acts as back-
ground for sentence 3, and sentences 4-9
serve as evidence for sentences 2-3.

6.864 advanced natural language processing 6

Information Extraction In information extraction, structured informa-
tion is extracted from a sentence. Information extraction can be used
to populate a database directly from sentences instead of having to
manually fill in the required fields. Information extraction is used to
produce calendar notifications and contact cards directly from email
text. Figure 12 shows an example tree for information extraction.

Figure 12: An example of information
extraction where in a), the parse tree an-
notates that cytoplasm and nucleus are
possible locations for the protein p65.

Datasets for Training Syntactic Parse Trees

In order to train a syntactic parser, annotated training data is required.
Datasets for training parse trees include:

1. The Penn WSJ (Wall Street Journal) Treebank is a collection of 50,000

sentences with their associated trees. It is commonly used in train-
ing and test sets for parsing. However, the Penn WSJ Treebank only
contains English sentences, so it cannot be used for other languages.
Furthermore, the WSJ does not contain the full range of possible En-
glish sentences, as it is a newspaper focused on business. There is
some overfitting in training and testing a parser on WSJ data only.

2. Universal Dependencies is a more recent data source for multi-
language parsing. It is available at https://universaldependencies.
github.io/docs/.

https://universaldependencies.github.io/docs/
https://universaldependencies.github.io/docs/

6.864 advanced natural language processing 7

Context-Free Grammar

In order to generate a parse tree, a grammar is required. In order to
reduce the problem complexity and save computation time, We will
make the assumption that the grammar is context-free. This assump-
tion is very good for English, as no counter-examples have been found.
In addition, across languages, only a few rare constructions violate this
assumption. A context-free grammar (CFG) contains a set of symbols
and rules. Each symbol can be either terminal or nonterminal. Termi-
nal symbols correspond to words in the vocabulary and nonterminal
symbols correspond either to parts of speech or to groupings of words,
such as noun phrases and verb phrases. Each rule maps a nonterminal
symbol to a set of nonterminal or terminal symbols. A CFG formal-
izes how a string (sentence) may be generated from its rules. The
application of these rules forms a tree structure, which is the syntax
tree (parse tree) for the string. In this section we will only discuss the
generation of strings for a given CFG. The inverse operation, parsing,
which takes in a string and produces a parse tree for the string, will
be discussed later.

Formal Definition

A context-free grammar is defined by G = (N , Σ, R, S) where:

N = set of nonterminal symbols

Σ = set of terminal symbols

R = set of production rules of the form X → Y1...Yn, where X is a
nonterminal symbol and each Yi can be a terminal or a nonterminal
symbol.

S = starting symbol

Example Context-Free Grammar

N = {S, NP, VP, PP, DT, VI, VT, NN, IN}

S = S

Σ = {sleeps, saw, man, woman, telescope, the, with, in}

Generation of Strings with a CFG

We can generate strings with symbols in the terminal set Σ from a
CFG by using a left-most derivation strategy. Here is a non-deterministic
algorithm describing the left-most derivation strategy, where the input
A is a symbol, and the output is a string:

6.864 advanced natural language processing 8

R =

S⇒ NP VP
VP⇒ VI

VP⇒ VT NP
VP⇒ VP PP

NP⇒ DT NN
NP⇒ NP PP
PP⇒ IN NP

VI⇒ sleeps
VT⇒ saw

NN⇒ man
NN⇒ woman

NN⇒ telescope
DT⇒ the
IN⇒ with

IN⇒ in

Figure 13: The rules for the example
context-free grammar

left_most_derivation(A):

if terminal(A):

return A

rule = choose (rules(A))

rhs = right_hand_side(rule)

return concatenate([left_most_derivation(A’) for A’ in rhs])

If the symbol is a terminal, the algorithm terminates. If the symbol
is non-terminal, the non-deterministic operator chooses one rule where
the left-hand-side is A. The algorithm then recursively expands the list
of symbols on the right-hand-side, starting with the left-most symbol
and concatenates the result. //

To generate a string from a CFG, we call this algorithm on the
starting symbol S, which represents an entire sentence. The non-
deterministic derivations used in generating the string will form the
parse tree of the string.

Language of a CFG

Given a CFG, one can define the language generated by the CFG as
follows: L = {s ∈ Σ∗|s = le f t_most_derivation(S)} where Σ∗ is the
set of strings formed by terminals in Σ. In other words, a string be-
longs to the language of a CFG if there exists a sequence of left-most
derivations that can generate the string.

Example of left-most derivation

We can visualize how the grammar defined earlier generates the sen-
tence "The woman saw the man with the telescope." in Figures 14-16,
along with their parse trees.

S

NP VP

Figure 14: First, the starting symbol S is
expanded into NP and VP.

6.864 advanced natural language processing 9

S

NP

DT NN

VP

Figure 15: Next, S’s left child, NP, is ex-
panded into DT and NN.

S

NP

DT

the

NN

VP

S

NP

DT

the

NN

woman

VP

Figure 16: Next, the left child, DT, is ex-
panded into "the", which is a terminal.
Then we recursively go back to NP and
expand its right child (NN), which gives
us the terminal symbol "woman". Since
the right side of NP has reached a ter-
minal, we have now completed the left-
most derivation for the symbol NP. The
next step is to expand the right child of
S.

S

NP

DT

the

NN

woman

VP

VT

saw

NP

NP

DT

the

NN

man

PP

IN

with

NP

DT

the

NN

telescope

Figure 17: By completing this process
of left-most derivation, we obtain a full
parse tree. This tree shows one possi-
ble derivation and the resulting parse
tree for the sentence "The woman saw
the man with the telescope". Under
this parsing, we interpret the sentence as
stating that the man who the woman saw
had a telescope.

6.864 advanced natural language processing 10

Ambiguities

Given a CFG, there may be multiple possible derivations using the
left-most-derivation strategy that generate the same string, but give
different parse trees. These sentences have an ambiguous meaning,
as each parse tree represents a different meaning. Figure 18 shows
another way of parsing the example sentence "The woman saw the
man with the telescope". Ambiguities are troublesome because

S

NP

DT

the

NN

woman

VP

VP

VT

saw

NP

the man

PP

with the telescope

Figure 18: Another possible parse tree.
Under this parsing, the woman is using
a telescope to see the man.

one would like to have a way of preferring one parse tree over another.
We can partially address this issue by augmenting the rules in R with
probabilities, making certain derivations more likely than others.

Probabilistic Context-Free Grammar

A Probablistic Context Free Grammar (PCFG) is a CFG where each
rule is augmented with a conditional probability of using that rule
given the left-hand-side non-terminal. The conditional probabilities
are written as P(α → β|α), where α is a non-terminal, and β is the
right-hand-side derivation of the rule. Given a non-terminal, all the
probabilities of the rules that apply to this non-terminal must add up
to 1, i.e. ∑β P(α→ β|α) = 1. This forms a probability distribution over
the possible derivations.

Estimating Probabilities in PCFG

One way of learning these probabilities is to use a gold-standard cor-
pus such as the Penn Treebank, and use the empirical distributions of
the derivations. For example, if we have the rule S → NP VP, the
estimated conditional probability is equal to:

P(S→ NP VP|S) = count(S→ NP VP)
count(S)

.

6.864 advanced natural language processing 11

PCFG as a Language Model

The probability that a particular tree T (representing sentence s) is
generated from the PCFG can be calculated by finding the product of
the probabilities of all of the rules used in the tree:

P(T, s) = ΠiP(αi → βi|αi)

Furthermore, the probability of the sentence s being generated is
equal to the sum of the probabilities of all of its possible parse trees:

P(s) = ∑
T∈T(s)

P(T, s)

where T(s) is the set of all parse trees that can generate s.

PCFG Example:

Here is a PCFG where we augmented the CFG of the previous example
with conditional probabilities.

S⇒ NP VP 1.0
VP⇒ VI 0.4

VP⇒ VT NP 0.4
VP⇒ VP PP 0.2

NP⇒ DT NN 0.3
NP⇒ NP PP 0.7
PP⇒ IN NP 1.0

VI⇒ sleeps 1.0
VT⇒ saw 1.0

NN⇒ man 0.7
NN⇒ woman 0.2

NN⇒ telescope 0.1
DT⇒ the 1.0
IN⇒ with 0.5

IN⇒ in 0.5

Figure 19: The rules for the context-free
grammar from Figure 13, with added
conditional probabilities

We can now determine the probabilities of the two ambiguous
parse trees for the sentence "The woman saw the man with the tele-
scope".

6.864 advanced natural language processing 12

Tree 1: S

NP

DT

the

NN

woman

VP

VT

saw

NP

NP

DT

the

NN

man

PP

IN

with

NP

DT

the

NN

telescope

P(T1, S) = 1 · 0.3 · 1 · 0.2 · 0.4 · 1 · 0.7 · 0.3 · 1 · 0.7 · 1 · 1 · 0.3 · 1 · 0.1 ≈ 1× 10−4

Figure 20: The parse tree from Figure 17

with probabilities for the derivations.

Tree 2: S

NP

DT

the

NN

woman

VP

VP

VT

saw

NP

DT

the

NN

man

PP

IN

with

NP

DT

the

NN

telescope

P(T2, S) = 1 · 0.3 · 1 · 0.2 · 0.2 · 0.4 · 1 · 0.3 · 1 · 0.7 · 1 · 1 · 0.3 · 1 · 0.1 ≈ 3× 10−5

Figure 21: The parse tree from Figure 18

with probabilities for the derivations.

6.864 advanced natural language processing 13

We see that the first parse tree is more likely under this PCFG.
However, to compute the probability of the sentence "The woman saw
the man with the telescope", we need to sum over all the possible
parses of it, which can quickly become intractable as there can be an
exponential number of parses. In the next section we resolve this issue
with the CYK algorithm.

The CYK Algorithm

In this section, we explain the CYK parsing algorithm, that can achieve
the following tasks:

1. Language modeling: Given a sentence s, find the probability of the
PCFG generating the sentence. Formally:

P(s) = ∑
T∈T(s)

P(T, s)

2. Syntactic parsing: Given a sentence s, find the parse tree T that
derives the sentence with the highest probability. Formally:

T∗ = argmaxT∈T(s)P(T, s)

We will describe the CYK algorithm that solves the first task in de-
tail, and show a simple modification that allows it to solve the second
task.

To find the probability of generating a particular sentence s given
the PCFG, we calculate the probability of every possible derivation
T ∈ T(s), and sum them:

P(s) = ∑
T∈T(s)

P(T, s)

The CYK algorithm solves this summation over a set of exponential
size using Dynamic Programming. However, it requires the CFG to be
in Chomsky Normal Form (CNF).

Chomsky Normal Form

Chomsky Normal Form restricts the set of allowable rules. A grammar
is in Chomsky Normal Form if each rule either converts a nonterminal
symbol into two nonterminal symbols or a single terminal symbol:

X → Y1Y2

X → y

6.864 advanced natural language processing 14

where X, Y1, Y2 ∈ N and y ∈ Σ.

It can be shown that every CFG can be converted to CNF. See http:

//www.cs.nyu.edu/courses/fall07/V22.0453-001/cnf.pdf for the de-
tails. For example, the rule NP→ DT ADJ NN can be converted into
the following two rules that satisfy CNF:

NP→ DT ADJP

ADJP→ ADJ NN

The Algorithm

The CYK algorithm is a dynamic programming algorithm. Like any
other dynamic programming algorithm, it has 2 components: The sub-
problems, and the recurrence relation between the sub-problems.

Given a sentence s, let s[i, j] denote the sub-sentence starting at the
ith word and ending at the jth word, inclusive.

Sub-problems

The sub-problems of the CYK algorithm are of the form:

π(i, j, N)

Where i and j are the indexes of the words in the sentence, given
i ≤ j, and N is a non-terminal. The value of π(i, j, N) corresponds to
the probability that s[i, j] can be generated by the non-terminal N.

Recurrence Relations

The recurrence relations of the CYK algorithm are defined by the base
case and the inductive case.

Base Case: π(i, i, N) = P(N → wi|N)

Inductive Case:

π(i, j, N) = ∑
k,P,Q

P(N → P Q|N) · π(i, k, P) · π(k + 1, j, Q)

where k ∈ {i, . . . , j− 1}, P ∈ N , and Q ∈ N .

The base case gives the probability where a non-terminal N would
generate the word wi, which forms the sub-sentence s[i, i].

To understand the recurrence, notice we’re trying to find the value
for π(i, j, N), i.e. the probability which s[i, j] can be generated by N.

http://www.cs.nyu.edu/courses/fall07/V22.0453-001/cnf.pdf
http://www.cs.nyu.edu/courses/fall07/V22.0453-001/cnf.pdf

6.864 advanced natural language processing 15

We can find this probability by sub-dividing s[i, j] at index k into two
pieces: s[i, k] and s[k + 1, j], and pick two non-terminals, P and Q to
generate each piece. Notice the importance of Chomsky Normal Form,
because each rule has to produce exactly 2 non-terminals, this is the
only form of decomposition we have to consider. The probability of P
generating s[i, k] is π(i, k, P), and the probability of Q to generate s[k +
1, j] is π(k+ 1, j, Q). Therefore, given a particular index k to split, and a
particular P and Q to generate each split sub-sentence, the probability
of this particular derivation for s[i, j] is P(N → P Q|N) · π(i, k, P) ·
π(k + 1, j, Q). This decomposition can be visualized in Figure 22.

N

P

i ... k

Q

k+1 ... j
Figure 22: N generates two other non-
terminals, P and Q. P spans words
i through k and Q spans words k + 1
through j. At this point, the CYK al-
gorithm has already calculated the to-
tal probability of the trees generated by
P and Q covering their respective sub-
sentences. We can use these values to
find the total probability of the tree gen-
erated by N.

By summing k, P, and Q over their respective domains, we obtain
the total probability of generating s[i, j] by non-terminal N.

The result of the CYK parser is π[1, n, S], which is the probability
that the start symbol S generates the whole sentence s. This value will
be 0 if the sentence cannot be generated by our PCFG.

All that’s left is to define an ordering to compute the sub-problems,
for the CYK algorithm, we can order it by sub-sentence length, r.

base case

for i in 1..n:

for N in N :

pi[i,i,N] = Pr(N->w_i|N)

induction

for r in 2..n:

for i in 1..(n-r):

for N in N :

j = i + r - 1

pi[i,j,N] = 0

over all possible decompositions

for k in i..j-1:

for P in N :

for Q in N :

pi[i,j,N] += Pr(N->PQ|N)*pi[i,k,P]*pi[k+1,j,Q]

return pi[1,n,S]

We can also use the CYK algorithm to find the most probable parse
tree for a given string. This is the syntactic parsing problem and can
be solved by replacing the sum operator in the inductive case of the
CYK algorithm with the max operator.

π(i, j, N) = max
k,P,Q

Pr(N → P Q|N) · π(i, k, P) · π(k + 1, j, Q)

6.864 advanced natural language processing 16

where k ∈ {i, . . . , j− 1}, P ∈ N , and Q ∈ N . The reasoning for cor-
rectness is analogous.

Example: Running CYK with a simple PCFG

To illustrate the computation steps for CYK, let’s consider a simple
artificial PCFG. Consider the following example PCFG:

N = {A, B}

Σ = {a, b, c}

S = {A}

R =

A→ AB 0.8
A→ a 0.2

B→ BB 0.7
B→ b 0.1
B→ c 0.2

Figure 23: The grammar rules of the ex-
ample PCFG.

Now we will compute the probability that the string abc is gener-
ated by the given grammar:

Base Case:
π[1, 1, A] = P(A→ a|A) = 0.2

π[1, 1, B] = P(B→ a|B) = 0

π[2, 2, A] = P(A→ b|A) = 0

π[2, 2, B] = P(B→ b|A) = 0.1

π[3, 3, A] = P(A→ c|A) = 0

π[3, 3, B] = P(B→ c|A) = 0.2

Recursive Case:

π[1, 2, A] =P(A→ AA) · P(A→ a|A) · P(A→ b|A)

+P(A→ AB) · P(A→ a|A) · P(B→ b|B)
+P(A→ BA) · P(B→ a|B) · P(A→ b|A)

+P(A→ BB) · P(B→ a|B) · P(B→ b|B)
=0 + P(A→ AB) · π[1, 1, A] · π[2, 2, B] + 0 + 0

=0.8 · 0.2 · 0.1 = 0.016

Using similar calculations, we obtain:

π[1, 2, B] = 0

6.864 advanced natural language processing 17

π[2, 3, A] = 0

π[2, 3, B] = 0.014

Solution:

π[1, 3, A] =P(A→ AB) · P(A→ a|A) · P(B→ bc|B)
+P(A→ AB) · P(A→ ab|A) · P(B→ c|B)
=P(A→ AB) · π[1, 1, A] · π[2, 3, B] + P(A→ AB) · π[1, 2, A] · π[3, 3, B]

=(0.8 · 0.2 · 0.014) + (0.8 · 0.016 · 0.2)

=0.0048

Some components of the sum are omitted as they must be 0 since
A can only go to AB or a.

Weaknesses of PCFGs

PCFGs do not always provide accurate probability estimates for sen-
tences. Two major weaknesses are:

1. Lack of sensitivity to lexical information

2. Lack of sensitivity to structural frequency

Lack of Sensitivity to Lexical Information

Consider the verb phrase: "drove down the street in the car". Below
are two possible parse trees for this phrase:

a) VP

VP

Vt

drove

PP

down the street

PP

in the car

Figure 24: Parse tree a) for the verb
phrase "drove down the street in the car".
Here, the car is (logically) driving down
the street.

A human can easily see that the phrase groupings in parse tree
a) make much more sense than those in parse tree b). However, a
PCFG considers each nonterminal expansion independently without
taking into account the positions and semantics of other words and
phrases in the sentence. Therefore, if P(NP→ NP PP|NP) > P(VP→
VP PP|VP), then the second tree will have a higher probability ac-
cording to the PCFG. The PCFG does not know that cars move on
streets and streets should not be inside cars. This type of information
is termed lexical information.

6.864 advanced natural language processing 18

b) VP

Vt

drove

PP

down NP

the N

street PP

in the car

Figure 25: Parse tree b) for the verb
phrase "drove down the street in the car".
Here, the street is somehow inside the
car.

Lack of Sensitivity to Structural Frequency

Another problem of PCFGs is the lack of sensitivity to structural fre-
quency. Consider the following parse trees for the noun phrase "pres-
ident of a company in Africa":

a) NP

NP

NN

president

PP

IN

of

NP

NP

DT

a

NN

company

PP

IN

in

NP

NN

Africa

Figure 26: This parse tree has close at-
tachment because "in Africa" describes
the company and not the president.

6.864 advanced natural language processing 19

b) NP

NP

NP

NN

president

PP

IN

of

NP

DT

a

NN

company

PP

IN

in

NP

NN

Africa

Figure 27: This parse tree does not have
close attachment because "in Africa" de-
scribes the president and not the com-
pany.

Rules
NP→ NP PP

NP→ NN
NP→ DT NN
PP→ IN NP

NN→ president
NN→ company

NN→ Africa
IN→ of
IN→ in
DT→ a

Figure 28: The rules used in trees a) and
b). Both trees use the same rules. There-
fore, they have the same probability un-
der a PCFG.

As both parse trees use the same rules, they have the same probabil-
ity under a PCFG. However, it has been shown that the "close attach-
ment" interpretation occurs more often in Wall Street Journal (WSJ)
texts. Therefore, the PCFG incorrectly assigns the same probabilities
to both trees, even though tree a) should be assigned a higher proba-
bility. This error is also due to the PCFG’s decisions to optimize at the
edge-level rather than at the tree-level. In the next lecture, we will see
how to construct better parsers that correct the errors made by PCFGs.

	Evaluation of Unsupervised POS tagging
	Parse Trees
	Context-Free Grammar
	Probabilistic Context-Free Grammar
	The CYK Algorithm
	Weaknesses of PCFGs

