

Exploiting convolution neural networks for phonotactic based dialect identification Maryam Nafian¹, Sameer Khurana¹, Suwon Shon¹, Ahmed Ali², James Glass¹ MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Cambridge, MA, USA¹ Qatar Computing Research Institute, HBKU, Doha, Qatar²

Introduction

 One of the challenges of processing real-world spoken content, such as media broadcasts, is the potential presence of different dialects of a language in the material.

• Dialect identification can be a useful capability to identify which dialect is being spoken during a recording.

 Classify additional phone level statistics to model dialect variability

Speech Corpora

• 5 Dialects : Modern Standard Arabic, Egyptian, Levantine, Gulf, North African

• Test dataset domain is different from Training dataset

• Development dataset is relatively small compare to training set, however, it is matched with the test set channel domain

[I
Dataset	Training	Development	Test
category	(TRN)	(DEV)	(TST)
Size	53.6 hrs	10 hrs	10.1 hrs
Genre	News Broadcasts		
Channel	Carried out	Downloaded d	irectly from
(recording)	at 16kHz	a high-quality video server	
Availability			
for system	Ο	0	X
development			

Features for ADI

Proposed approach

- Additional phone level statistics - Using additional phone level statistics such as phone
- duration and posterior probability - This enables Discrimination among different occurrences of the same phone sequences with different phone duration
- Phone duration representation : classify phoneme into 4 sub-level considering the phone duration

Algorithm 1 Phone representation with phone duration index

Phone probability representation: classify phoneme into 4 sub-level considering the occurrence in a utterance

> Algorithm 2 Phone representation with phone probability index for c in utterance's phone trasciption do if P(c) < M - 0.5S then $c \leftarrow c1$ else {M - 0.5S < P(c) < M} else {M < P(c) < M + 0.5S} $c \leftarrow c3$ $c \leftarrow c4$ end if end for

- Fusion of classifier's score from parallel phonotactic DID system

Experimental result

• SVM vs. CNN based classifier

Language	(%) Phone n-gram	(%) Phone n-gram
	seq. Acc. SVM	seq. Acc. CNN
Arabic	56.82	57.91
English	56.03	56.88
Russian	56.25	57.12
Czech	56.64	57.62
Hungarian	56.71	57.85
Fusion	62.12	64.50

Table 2: Employing language-dependent parallel PRLMS in a conventional versus an attention-based context for DID

• Proposed Multi-lingual phonotactic system

Language	System	(%) Acc.
Arabic	Phone n-gram sequence with CNN	57.91
	Phone n-gram (duration relabeled) with CNN	59.55
	Phone n-gram (probability relabeled) with CNN	59.72
	LLR fusion of 3 systems	68.95
English	Phone n-gram sequence with CNN	56.88
	Phone n-gram (duration relabeled) with CNN	56.30
	Phone n-gram (probability relabeled) with CNN	56.24
	LLR fusion of 3 systems	63.70
Russian	Phone n-gram sequence with CNN	57.12
	Phone n-gram (duration relabeled) with CNN	57.59
	Phone n-gram (probability relabeled) with CNN	57.29
	LLR fusion of 3 systems	65.10
Czech	Phone n-gram sequence with CNN	57.62
	Phone n-gram (duration relabeled) with CNN	57.71
	Phone n-gram (probability relabeled) with CNN	57.37
	LLR fusion of 3 systems	67.85
Hungarian	Phone n-gram sequence with CNN	57.85
	Phone n-gram (duration relabeled) with CNN	58.74
	Phone n-gram (probability relabeled) with CNN	58.90
	LLR fusion of 3 systems	68.31
Fusion	LLR fusion of all systems	71.60
	LLR fusion of Arabic, Hungarian, and Czech systems	73.27

conventional versus an attention-based context for DID

Real-time Arabic Dialect Identification (Demo session, Friday 13:30)

 Real-time online Arabic dialect identification and recognition system* April 20 (Friday) 13:30 – 15:30 @Exhibit Hall Foyer Demo-4.1: QCRI-MIT LIVE ARABIC DIALECT IDENTIFICATION SYSTEM

* Applied algorithms are based on the paper below

S. Shon, A. Ali, and J. Glass, "Convolutional Neural Networks and Language Embeddings for End-to-End Dialect Recognition," to be appeared on Odyssey 2018

Acknowledgements: This research was carried out in collaboration between the HBKU Qatar Computing Research Institute (QCRI) and the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).

Experimental result

 Confusion matrix of final fusion system Arabic Dialect ID EGY 75.5 4.6 10.9 5.9 2.9 GLF 9.6 46.3 21.6 21.2 Ċ LAV 17.4 11.4 57.5 8.6 5.0 <u>ם</u>. 1.5 89.3 1.5 MSA 4.5 3.1 NOR 15.6 7.5 18.6 14.5 43. e NSA 408 GIF JA 40 σ

Predicted Dialects

Conclusion

- Arabic dialect identification system using phonotactic feature
- Direct acoustic and mapping of phonotactic feature to one of five dialects
- New phone level statistics based dialect phonotactic feature based identification with 73% accuracy
- For future work, we would explore long short-term memory RNN using raw acoustic waveform to make dialect prediction per frame

Our demo is also publicly available at https:/dialectid.qcri.org