

Convolutional Neural Networks and Language Embeddings for End-to-End dialect Recognition

```
Suwon Shon<sup>1</sup>, Ahmed Ali<sup>2</sup>, James Glass<sup>1</sup>
```

MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Cambridge, MA, USA¹ Qatar Computing Research Institute, HBKU, Doha, Qatar²

Motivation

- One of the challenges of processing real-world spoken content, such as media broadcasts, is the potential presence of different dialects of a language in the material.
- Dialect identification (DID) can be a useful capability to identify which dialect is being spoken during a recording.
- Arabic Multi-Genre (MGB) Broadcast • The Challenge tasks have provided a valuable for re- searchers interested resource in

End-to-end DID with Acoustic features*

• CNN based End-to-end model structure

Dataset augmentation

Augmentation method	Maximum			Co	nverged	
(feature = MFCC)	Accuracy	EER	C_{avg}	Accuracy	EER	C_{avg}
Volume	67.49	20.37	20.00	62.47	21.55	21.08
Speed	70.51	17.54	17.39	65.42	19.87	19.19
Volume and speed	70.91	17.79	17.93	67.02	19.37	19.01

<Performance evaluation by augmentation method>

- Perturb slightly original dataset attributes
- > Speed factor of 0.9 and 1.1, Volume factor of 0.25 and 2.0

Feature (on augmented dataset)	Accuracy	EER	C_{avg}
MFCC	70.91	17.79	17.93
FBANK	71.92	18.01	17.63
Spectrogram	68.83	18.70	18.69

processing multi-dialectal Arabic speech.

 Investigation of end-to-end DID approach with dataset augmentation for acoustic feature and language embeddings for linguistic feature

MGB-3 Dataset

- 5 Dialects : Modern Standard Arabic, Egyptian Levantine, Gulf, North African
- Test dataset domain is different from Training dataset

Dataset	Training	Development	Test	
category	(TRN)	(DEV)	(TST)	
Size	53.6 hrs	10 hrs	10.1 hrs	
Genre	1	News Broadcasts		
Channel	Carried out	Downloaded directly from		
(recording)	at 16kHz	a high-quality video server		
Availability				
for system	Ο	Ο	Х	
development				

No. of filters : 500-500-500-3000

<Network structure>

• Performance by input feature

Feature	Maximum			Converged		
reature	Accuracy	EER	C_{avg}	Accuracy	EER	C_{avg}
MFCC	65.55	20.24	19.92	61.33	21.95	21.53
FBANK	64.81	20.22	19.91	61.26	22.12	21.79
Spectrogram	57.57	24.48	24.49	54.22	25.90	25.09

<Performance evaluation by features>

- The maximum condition: the network achieves the best accuracy
- > The converged condition: the average loss of 100 mini-batches < 1e-5.
- > Theoretically, spectrograms have more information than MFCC or FBANKS, but it seems hard to optimize the network using the limited dataset

<Performance evaluation by features on augmented dataset >

- > Spectrogram is worst, but gain from increasing dataset size is much higher than MFCC, FBANK
- Random Segmentation (RS)

- Segmentation of the training dataset into small chunks randomly between 2 to 10 seconds
- > Since random segmentation provides diversity given a limited dataset, the performance is improved on short utterance

• Final result with augmented dataset

outperforms system other conventional i-vector approaches.

System	Accuracy	EER	C_{avg}
i-vector	60.32	26.98	26.35
i-vector-LDA	62.60	21.05	20.12
End-to-End (MFCC)	71.05	18.01	17.97
End-to-End (FBANK)	73.39	16.30	15.96
End-to-End (Spectrogram)	70.17	17.64	17.27

<Performance comparison with conventional i-vector approach >

• Result

<Network structure>

- > Words feature shows best improvement among three features
- > Another benefit is that the linguistic feature dimension can be significantly reduced

Phoneme Recognizer	System	Accuracy	EER	Cavg
Uungarian	Baseline	48.86	29.94	29.16
nungartan	Embedding	54.49	28.69	27.77

<Phoneme feature>

Feature	System	Accuracy	EER	C_{avg}
Character	Baseline	51.34	30.03	30.17
Character	Embedding	58.18	25.48	25.68
Word	Baseline	50.00	30.73	30.41
word	Embedding	58.51	24.87	24.99

<Character and word feature>

* https://github.com/swshon/dialectID_e2e

******https://github.com/swshon/dialectID_siam

Acknowledgements:	This research w	as carried out	in collaboration k	between the HE	3KU Qatar	Computing
Research Institute (QC	CRI) and the MI	Computer Sc	ience and Artificia	al Intelligence L	aboratory	(CSAIL).

<i>italic</i> : language embedding)			
FBANK + word	76.94	13.66	13.57
FBANK + $char$	76.61	13.89	13.87
FBANK + phoneme	75.13	14.95	14.79
FBANK + MFCC	74.40	15.63	15.50
MFCC + word + char + phoneme	77.48	14.02	14.00
FBANK + word + char + phoneme	78.15	12.77	12.51
Spectrogram + <i>word</i> + <i>char</i> + <i>phoneme</i>	77.88	13.34	13.24
i-vector + FBANK + word + char + phoneme	81.36	11.03	10.90

<Performance of score fusion systems with endto-end system and language embeddings>

Systems	Accuracy(%)			
Systems	Single System	Fusion System		
Khurana et al. [5]	67	73		
Shon et al. [9]	69.97	75.00		
Najafian et al. [7]	59.72	73.27		
Bulut et al. [10]	-	79.76		
Our approach	73.39	81.36		

<Comparison with recent studies>

between acoustic and linguistic gives great effectiveness

data is

as

such

Conclusion

- We present end-to-end dialect identification system using acoustic and linguistic features
- We investigated several techniques for endto-end DID on acoustic features and language embeddings of linguistic features
- Using a limited dataset, we can increase diversity by perturbing the attribute of speech audio and random segmentation
- The end-to-end DID system has a simplified and training methodology topology compared to conventional bottleneck feature based i-vector extraction