
• Dataset	augmentation

Ø Perturb slightly original dataset attributes
Ø Speed factor of 0.9 and 1.1, Volume factor of 0.25

and 2.0

Ø Spectrogram is worst, but gain from increasing
dataset size is much higher than MFCC, FBANK
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Fusion result
• Fusion between end-to-end system and
language embeddings shows better
efficiency than between end-to-end
system such as MFCC and FBANK

• Spectrograms achieve slightly better
results than MFCCs

Motivation
• One of the challenges of processing real-world
spoken content, such as media broadcasts, is
the potential presence of different dialects of a
language in the material.

• Dialect identification (DID) can be a useful
capability to identify which dialect is being
spoken during a recording.

• The Arabic Multi-Genre Broadcast (MGB)
Challenge tasks have provided a valuable
resource for re- searchers interested in
processing multi-dialectal Arabic speech.

• Investigation of end-to-end DID approach with
dataset augmentation for acoustic feature and
language embeddings for linguistic feature

Language embedding**
•Siamese neural network to learn dis-similarity
and similarity between dialects.
ØFC layer has
1500-600-200 neurons
ØDistance metric
is Cosine similarity

• Result
Ø Words feature shows best improvement among three

features
Ø Another benefit is that the linguistic feature dimension can

be significantly reduced
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Discussion
• Data augmentation by perturbing speed gives
impressive gain on performance

• If we have large dataset, we can use raw
signals as input features

• At the same time, however, it is difficult to
determine how much training data is
required for training raw features

• Fusion with different features such as
between acoustic and linguistic gives great
effectiveness

Conclusion
• We present end-to-end dialect identification
system using acoustic and linguistic features

• We investigated several techniques for end-
to-end DID on acoustic features and language
embeddings of linguistic features

• Using a limited dataset, we can increase
diversity by perturbing the attribute of
speech audio and random segmentation

• The end-to-end DID system has a simplified
topology and training methodology
compared to conventional bottleneck feature
based i-vector extraction

* https://github.com/swshon/dialectID_e2e
**https://github.com/swshon/dialectID_siam
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• CNN	based	End-to-end	model	structure

• Performance	by	input	feature

Ø The maximum condition: the network
achieves the best accuracy

Ø The converged condition: the average loss of
100 mini-batches < 1e-5.

Ø Theoretically, spectrograms have more
information than MFCC or FBANKS, but it
seems hard to optimize the network using the
limited dataset

• Random Segmentation (RS)

Ø Segmentation of the training dataset into small
chunks randomly between 2 to 10 seconds

Ø Since random segmentation provides diversity
given a limited dataset, the performance is
improved on short utterance

• Final	result	with	augmented	dataset
Ø End-to-end system outperforms other

conventional i-vector approaches.
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MGB-3 Dataset
• 5 Dialects : Modern Standard Arabic, Egyptian
Levantine, Gulf, North African

• Test dataset domain is different from Training
dataset

• Feature extraction
• Acoustic feature : MFCC, FBANK, Spectrogram
• Linguistic feature : phoneme, word, character
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