
Abstract 

In this paper, a method for source localization for 

surveillance system is presented. In particular, we propose 

an algorithm for abnormal acoustic event localization 

based on a novel approach of relevant frequency bin 

selections by statistical analyses. By means of selective 

frequency bin, it becomes possible to localize the event 

more accurately in high noise environment with low 

computational complexity. The effectiveness is verified 

through the experimental results in varied noise 

environments with different levels of Signal to Noise Ratio 

(SNR). 

1. Introduction

Source localization has been an active research area and 

its techniques have been applied in many fields and 

applications [1]. In recent years, it became an important 

topic in surveillance systems related to acoustic processing 

such as sudden noise detection and localization in car, 

gunshot or scream detection [2], [3]. For practical 

applications, however, the technique has to be able to 

handle wideband signals, and yet is robust to highly noisy 

environment while the computational complexity is low. 

 Source localization is categorized into two classes. One 

of them is based on Direction Of Arrival (DOA) estimation. 

For high-resolution DOA estimation, many algorithms 

such as Maximum Likelihood (ML) method, ESPRIT have 

been developed [4], [5]. These methods have shown to be 

effective in simultaneous localization of multiple sources. 

However, they require high computational load and are not 

applicable to wideband sources [6], [7]. Other approaches 

such as the Multiple SIgnal Classification (MUSIC) 

method [8] developed for handling wideband sources, have 

limitations such as the number of sources has to be strictly 

less than the number of sensors [9]. They also exhibit 

difficulties in low SNR situation. 

The other class is the Time Delay Estimation (TDE). For 

TDE, Generalized Cross Correlation (GCC) and Steered 

Response Power - PHAse Transform (SRP-PHAT) 

algorithms are developed [10–13]. Their time delay of 

arrival estimation is generally in low-resolution, but the 

method is robust against noise and reverberation compared 

to the DOA estimation and has low computational 

complexity. For these reasons, they are generally easier to 

implement to actual acoustic processing applications. More 

importantly, since it is suitable to wideband sources, a 

number of variations of the approach have been explored 

[14–18]. 

Denda et al. proposed weighted - Cross-power Spectrum 

Phase (CSP) coefficients based on an average speech 

spectrum [19]. Ichikawa et al. proposed a harmonic 

structure based weighting method for robust speech source 

localization [20]. Both of these methods have shown 

success in source localization for speech sources. Since 

they are designed for speech sources, however, they are not 

suitable for non-speech acoustic events such as breaking 

glass or alarm sounds. 

Nakano proposed a Cross-Power Spectrum (CPS) 

method for improved GCC-PHAT by comparing a CPS of 

each frame with threshold and sub-band selection [21]. 

However, the CPS method required additional 

computational load due to the CPS computation. The 

method involves a threshold determined by three 

components: average noise level of input signal, highest 

CPS peak value in the input signal frame, and empirical 

gain factor G. With an initially determined average noise 

level, the performance may not be guaranteed because the 

CPS method not only selects the signal dominant sub-band, 

but also selects noise dominant sub-band when the SNR is 

lowered. This potential sensitivity to noise level hasn’t 

been fully explored in this work. For robust performance, 

analyses of estimating average noise level of input frame 

and optimizing G value have to be explored. 

To address these issues of wideband input signal of 

non-speech acoustic events in noisy environment, we 

propose a robust abnormal acoustic event localization 

algorithm using Selective Frequency Bin (SFB) method in 

wideband signal. The frequency bin group of each 

abnormal event class is determined by statistical analyzing 

of database. Using the selected frequency bin group, the 

proposed method achieves low computation complexity 

and remains robust in high noise environment by 

considering frequency bins that are closely associated with 
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abnormal acoustic events. For validating low 

computational requirement and robustness in noise, we 

selected six abnormal events representative in surveillance 

situations. Performance of the proposed method was 

evaluated by localizing 9 abnormal events with 

corresponding SNR and reverberation variations. 

2. Abnormal Acoustic Event Localization

An overview of the proposed approach is sketched in

Figure 1. First, an abnormal acoustic event recognition step 

is needed. A hierarchical structure based abnormal acoustic 

event recognition approach, developed by Choi, is adopted 

in this study [22].  After recognizing the acoustic event into 

one of the pre-defined abnormal events, k - SFB was 

determined based on the active frequency bin histogram 

corresponding to the abnormal event. Finally, source 

localization is performed based on the SFB, which 

eventually leads to the direction of an abnormal acoustic 

event. 

For source localization, we use the TDE based algorithm. 

As we pointed out in the previous section, DOA estimation 

based algorithms generally has high angular resolution. But 

its implementation is too complex for wideband signals. 

TDE, such as GCC, SRP-PHAT, has lower angular 

resolution than DOA estimation based algorithms, but it 

has the advantage of reduced computational load. Although 

higher directional resolution is desirable for multiple 

sources in most cases, for abnormal events, it is safe to 

assume that high directional resolution is not required. 

2.1. Signal model 

Consider the general situation in which there are 

M-channel microphone signals at a discrete time t that can 

be represented by 

)()(*)()( tnτtsthtx mmmm         (1)

where s(t) is a sound source, hm(t) is the impulse response 

from the sound source to the m-th microphone, n(t) is the 

addictive white Gaussian noise and τm is propagation delay 

from source to m-th microphone. 

2.2. Conventional Source localization algorithm 

A brief description of TDE based SRP-PHAT algorithm 

follows. The GCC-PHAT of l-th and q-th microphone 

signals is  
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where τlq is Time Delay Of Arrival(TDOA) of l-th 

microphone and q-th microphone, n is the frame index, Xl is 

the Short Time Fourier Transform (STFT) of the l-th 

microphone, and Ψlq denotes a weight function that 

performs well under realistic acoustical conditions. The 

PHAse Transform (PHAT) function is defined as 

|),( ),(|1),(Ψ
*
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algorithm output can be expressed using GCC-PHAT as: 
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where τlq,θ is the TDOA between l-th and q-th microphones 

when the source is at θ degree. The θ that has maximum 

amplitude of the SRP-PHAT determines the location of the 

sound source.  

2.3. Proposed algorithm - SFB based abnormal 

acoustic event localization 

For SFB based abnormal acoustic event localization, we 

must group the frequency bins by analyzing each event 

class. For grouping, a histogram of frequency bins was 

obtained by the frequency bins with power in excess of the 

average power of corresponding frame in frequency 

domain. Then, the k largest frequency bins of histogram 

were grouped for the SFB based source localization. 

Index 

(i) 
Event (si) 

Total 

Number 

Total 

Duration 

(sec) 

1 Scream(female) 243 572 

2 Scream(male) 171 316 

3 Barking 719 349 

4 
Breakage of 

Glass 
127 112 

5 Siren 786 610 

6 Impact sound 229 194 

7 Gunshot 139 31 

8 Crying 258 114 

9 Skidding sound 100 201 

Table 1.  Abnormal acoustic event database information 
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Figure 1: Block diagram of the proposed abnormal acoustic 

event localization system 
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Recently, abnormal event detection was studied in [22–

24]. In particular, the earlier study for abnormal acoustic 

events recognition by Choi [22] considered some 

representative acoustic events in scenes such as streets, 

subway platform and etc. We set the same 9 abnormal 

events and the database from Choi [22] as shown in Table 

1 . Half was used for SFB and the other half was used for 

performance evaluation at Section 3. It is assumed that the 

abnormal event detection was done accurately prior to the 

source localization, thus the event class of input signals is 

known in advance. 

The energy information of each frequency bin is used for 

finding the SFB of abnormal events. The STFT of an event 

source signal si(t) can be expressed as     ,   The active 

frequency information     ,   corresponding each event 

class is 
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where   denotes the frequency index and n is the frame 

index. The active frequency bin histogram of event class i is 
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Finally, we express SFB group into a vector by sorting top k 

bins from ai 
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where argmaxn returns argument of the n-th largest value. 

Finally, the source localization algorithm based on SFB is 
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3. Experiments

We conducted experiments in two distinct setups for

performance evaluation. One is done in a controlled 

environment with additive white Gaussian noise with 

varying levels of SNR and reverberation time (RT60) interval. 

The other one is in a real background noise environment. 

The simulated room is 3.5x4.5x2.5m
3
 and a Uniform 

Linear Array (ULA) consisting of 4 microphones with 

inter-spacing distance of 10cm to each other is located at 

the center of the room. In this environment, the database 

was created with an abnormal source at DOA of 30˚ (θs) at 

1.2m from the ULA using half of abnormal acoustic event 

database as Table 1 that is not used for determining SFB at 

Section 2.3. The database was composed with a white 

Gaussian noise corresponding to SNR -5dB ~ 30dB in 

16kHz sampling rate at 16-bit. For applying the room 

reverberation effect (RT60 = 100ms and 300ms), we 

generated the room impulse response from Lehmann and 

Johansson's image-source method [25]. The length of STFT 

is 1024 and the Hamming window is adopted. 

The performance evaluated with two metrics, namely 

Root Mean Squared Error (RMSE) and Probability Of 

Success (POS). Each trial was considered a success if the 

estimated DOA is within the angular tolerance. In this 

paper, we set the angular tolerance of 30˚, so a trial was 

deemed successful when the estimated DOA is between the 

θs -30 and θs +30. 

3.1. Under white Gaussian noise 

Figure 2 (a) and (b) shows RMSE and POS under 

additive white Gaussian noise with no reverberation. As 

shown from the figures, performance of the proposed 

approach (SFB) at k = 100 is much higher than that of the 

other algorithms in low SNR conditions. In high SNR, the 

performance was almost similar. However, in low SNR, the 

proposed approach only deals with the frequency bins 

wherein the abnormal sound source is dominant. The CPS 

method shows good performance in high SNR, but the 

approach shows performance degradation when SNR is 

lowered because sub-band selection based on CPS selects 

not only signal dominant sub-band but also selects noise 

concentrated sub-band. 

Figure 2 (c) ~ (f) shows RMSE and POS evaluation 

result with 100ms and 300ms reverberation respectively. In 

both reverberation environments, POS of proposed 

algorithm has much higher probability than others. The 

RMSE evaluation also shows high accuracy of the 

proposed algorithm. If we select 100 frequency bins with a 

long reverberation such as at RT60 = 300ms, the RMSE is 

worse in high SNR. Nevertheless, it shows more accurate 

performance in low SNR. 

Average processing time per frame for each algorithm is 

compared with the conventional algorithm. The result in 

Table 2 shows the relative processing time between the 

proposed algorithms and the conventional with the 

processing time for conventional algorithm set as the 

baseline (100%). The SFB when k=200 and 100 has lower 

computational load than the CPS based algorithm while 

delivering high performance in high noise environment as 

shown Figure 2. Although it is not shown here, processing 

time for the SFB based algorithm remained mostly constant 

while that of the CPS based algorithm increased in high 

noise environment. 

CPS 
SFB, 

k=400 

SFB, 

k=200 

SFB, 

k=100 
Relative 

processing 

time 
86.3% 90.6% 72.2% 62.5% 

Table 2. Processing time of source localization 
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Figure 2: RMSE and POS of conventional, CPS and proposed algorithms corresponding reverberation under white Gaussian 

noise. (a) (b) : RMSE and POS with no reverberation, (c)(d) : RMSE and POS with RT60 =100ms, (e)(f) : RMSE and POS with 

RT60 =300ms 

(a) no reverberation (b) no reverberation 

(c) RT60 = 100ms 

(e) RT60 = 300ms 

(d) RT60 = 100ms 

(f) RT60 = 300ms 
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SNR Background Noise Conventional CPS based Proposed(SFB, k =200) 

RMSE POS RMSE POS RMSE POS 

5dB Silent 

Street 

Babble 

Music 

Subway 

Water 

5.74 
9.11 
7.85 
5.88 
8.48 

10.77 

86.8 % 

79.5 % 

81.7 % 

86.6 % 

83.9 % 

80.7 % 

4.34 
5.64 
5.10 
4.92 
5.20 

10.45 

87.9 % 

83.9 % 

83.3 % 

86.9 % 

84.9 % 

79.7 % 

3.45 
5.49 
4.26 
3.97 
3.87 
8.75 

91.2 % 

83.8 % 

85.8 % 

88.6 % 

86.7 % 

83.6 % 

15dB Silent 

Street 

Babble 

Music 

Subway 

Water 

3.99 
6.99 
6.13 
3.99 
6.37 
8.20 

93.4 % 

84.1 % 

85.5 % 

90.1 % 

86.5 % 

84.7 % 

3.69 
4.45 
4.08 
3.74 
4.28 
7.02 

93.2 % 

85.6 % 

85.8 % 

89.6 % 

87.2 % 

85.0 % 

1.74 
4.02 
2.69 
1.70 
2.50 
5.53 

96.7 % 

87.3 % 

87.8 % 

95.8 % 

90.4 % 

85.9 % 

25dB Silent 

Street 

Babble 

Music 

Subway 

Water 

1.03 
4.88 
4.76 
1.61 
5.11 
5.98 

97.2 % 

87.1 % 

87.9 % 

97.1 % 

90.3 % 

86.8 % 

0.61 
3.55 
3.30 
1.42 
2.61 
5.12 

98.9 % 

88.0 % 

89.6 % 

99.0 % 

92.9 % 

87.3 % 

0.81 
2.82 
1.67 
0.99 
1.27 
4.13 

99.9 % 

89.9 % 

92.5 % 

99.8 % 

96.7 % 

88.9 % 

Table 3.RMSE and POS of conventional, CPS and proposed algorithms corresponding reverberation under white Gaussian noise 

under real noisy Environment with RT60 = 100ms 

3.2. Under Real Background Noise 

For validating the proposed algorithm, we conduct a 

feasibility test under a real background noise environment  

with the same database as [22] shown in Table 4. Using 6 

different real background classes, we created multichannel 

abnormal acoustic event sources with remaining conditions 

identical to the ones in Section 3.1 including SNR at 5dB, 

15dB and 25dB with RT60 = 100ms. Table 3 shows the 

average RMSE and POS in three SNR levels under 6 

background noises. It shows that the proposed method 

performed the worst under water noise. This is due to the 

fact that water noise has flat frequency characteristics, e. g. 

uniformly distributed white noise, and it corrupts the entire 

frequency band. Considering the average of the 6 

background noises, the RMSE shows similar performance 

compared to the one with white Gaussian noise. But it also 

shows about 8% decline in the POS compared to the case 

with white Gaussian noise. 

Comparing the performance of the algorithms, the 

proposed algorithm, SFB with k = 200, seems to improve 

performance better than the other algorithms in both RMSE 

and POS. For RMSE, the proposed algorithm has 40% 

improvement compared to the conventional algorithm, and 

25% improvement compared to the CPS algorithm. In POS, 

it shows 5% and 3% improvement compared to the 

conventional and CPS algorithms respectively. In 

particular, there is a significant performance improvement 

when SNR got worse. From these results, the proposed 

method seems quite feasible for practical applications in 

real environment. 

Background 

Noise 

Total 

Number 

Total 

Duration 

(sec) 

Silent place 750 2,556 

Street 1,532 4,563 

Babble place 2,990 7,968 

Music 790 2,371 

Subway 1,326 4,334 

Water 1,741 5,221 

Table 4. Background noise database information 

4. Conclusions

Our proposed approach sets frequency bin groups that

contain key acoustic features of the abnormal event. Then, 

we proposed SFB based source localization for acoustic 

event localization. Based on the set of experiments 

conducted, it demonstrated lower computational load while 

exhibiting more robust performance against noise than 

other conventional algorithms. Considering various 

performance evaluation, the SFB based source localization 

with k = 200 (about half of the frequency bins in a frame) is 

optimal solution for estimating DOA of abnormal sources 

in high noise environment. Its performance under real noise 

environment further validated that the abnormal acoustic 

event localization based on SFB is feasible in high noise 

environment for audio surveillance. 
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