
Maximum Likelihood Linear Dimension Reduction 
of Heteroscedastic Feature for Robust Speaker Recognition 

Suwon Shon!, Seongkyu Mun!, David K. Han2, Hanseok Ko! 
!School of Electrical Engineering, Korea University, Seoul, Korea 

20ffice of Naval Research, VA, USA 
swshon@ispl.korea.ac.kr, skmoon@ispl.korea.ac.kr, ctmkhan@gmail.com, hsko@korea.ac.kr 

Abstract 

This paper analyzes heteroscedasticity in i-vector for 

robust forensics and surveillance speaker recognition 

system. Linear Discriminant Analysis (LDA), a widely-used 

linear dimension reduction technique, assumes that classes 

are homoscedastic within a same covariance. In this paper 

it is assumed that general speech utterances contain both 

homoscedastic and heteroscedastic elements. We show the 

validity of this assumption by employing several analyses 

and also demonstrate that dimension reduction using 

principal components is feasible. To effectively handle the 

presence of heteroscedastic and homoscedastic elements, 

we propose a fusion approach of applying both LDA and 

Heteroscedastic-LDA (HLDA). The experiments are 

conducted to show its effectiveness and compare to other 

methods using the telephone database of National Institute 

of Standards and Technology (NIST) Speaker Recognition 

Evaluation (SRE) 2010 extended. 

1. Introduction 

In surveillance or forensic application, use of vocal 

information has been viewed as an effective way of personal 

identification. For a general setting and of recognizing a 

person without the person's knowledge, the recognition 

process cannot rely on predetermined keywords or the 

length of speech duration. Recently, accuracy of 

text-independent speaker recognition has been significantly 

improved by the i-vector extraction paradigm [1], [2]. The 

i-vector approach in total variability space was first 

introduced in [1] and since has been considered as the state 

of the art in speaker verification systems. It is originated in 

Joint Factor Analysis (JFA) framework that consists of 

defming two distinct spaces: speaker and channel. 

Many approaches to the subsequent step after extracting 

i-vector have been proposed in terms of modeling, scoring, 

and normalizing for reducing channel and noise effects. 

After the system maps the speaker utterance to an i-vector, 

which is a fixed length low dimensional vector, it is 

widely-accepted to apply i-vector length normalization [3], 

Linear Discriminant Analysis (LDA) [1] and Probabilistic 

Linear Discriminant Analysis (PLDA) [4] in sequence for 

improving performance. The length normalization performs 

centering and whitening of i-vector. Then, it scales the 

length of each i-vector to a unit length. It reduces any 

non-Gaussian behaviors of i-vector so that PLDA can use a 

simple Gaussian probabilistic model. For reducing 

computational complexity and for fmding axes for better 

discriminant analysis, techniques such as Linear Dimension 

Reduction (LDR) are typically applied at this point. Among 

many LDR techniques, LDA is the most popular algorithm 

since it is effective and simple to implement. LDA finds 

new axes that minimize the intra-class variance caused by 

channel effects while also maximizing the variance between 

speakers. Upon dimension reduction by LDA, Prince's 

proposed method of modeling i-vector by PLDA has shown 

to be successful in speaker recognition. His PLDA infers 

speaker's i-vector in probabilistic sense by regarding 

i-vector as an observation from a probabilistic generative 

model. It has shown more robust performance in scoring 

between the target speaker and test speaker compared to 

those with non-probabilistic approach like Cosine Distance 

Similarity (CDS). 

Although LDA is commonly used in many applications 

for LDR, it has some limitations. One such limitation is that 

LDA is a non-probabilistic approach. It is deterministic and 

thus cannot handle missing or unknown data. To deal with 

this problem, PLDA approach is used. The other limitation 

comes from the fact that the solution of LDA is optimal 

when classes are homoscedastic within-class covariance 

with the same Gaussian distribution. From this constraint of 

sharing the same covariance matrix, LDA fails when 

within-class covariance matrices are heteroscedastic. The 

homoscedastic assumption is too restrictive for general 

speech utterance because there are many discriminant 

information in each within-class covariance matrix. To 

overcome this difficulty, we propose an approach for 

improving speaker recognition by using a Heteroscedastic 

Linear Discriminant Analysis (HLDA) and its fusion. 

According to Kumar and Andreou [5] and Gales [6], 

HLDA provides a linear transformation that can decorrelate 

features and reduce dimensionality while it preserves 

discriminant information of features. For these reasons, it is 



common to use HLDA in speech recogmtlOn and its 

combination with LDA called Smoothed HLDA (SHLDA) 

[7]. In the speaker recognition, Burget [8] used HLDA in 

feature domain to find more discriminative Mel-Frequency 

Cepstral Coefficients (MFCC) feature subspaces and has 

shown the method's effectiveness. In model domain, 

Glembek [9] used HLDA for orthogonalization of total 

variability for simplifying the speaker recognition system 

and reducing computational complexity. 

In this paper, we explore the effect of relaxing 

homoscedasticity in the within covariance matrix using 

HLDA. Since general utterance may exhibit both 

homoscedastic and heteroscedastic characteristics, we 

propose an approach of fusing LDA and HLDA for overall 

performance improvement in speaker recognition. We 

analyze the National Institutes of Standards and Technology 

(NIST) Speaker Recognition Evaluation (SRE) 2010 

extended database and deduce the order of dimension that 

has heteroscedastic discriminant information for 

determining the parameters in HLDA algorithm. 

Experiments were conducted using i-vector extracted NIST 

SRE 2010 extended core task of telephone-telephone 

condition provided by Bmo University Technology (BUT) 

[3], [10]. 

The outline of the paper is as follows. First, we describe 

the baseline speaker recognition briefly in Section 2. 

Analyses in Section 3 show that the database contains 

heteroscedastical characteristics. Section 4 proposes an 

approach for linear transformation and dimensionality 

reduction of the database. Section 5 presents the 

experimental results and Section 6 concludes this paper. 

2. Speaker recognition system 

In classical JF A [11], a speaker utterance is represented 

by a supervector that consists of additive components from 

a speaker and a channel/session subspace. However, in total 

variability sense, a speaker utterance can be defined by both 

speaker and channel variability in a single space, i.e. total 

variability space [1] as in Eq. (1). 

ms=mo+Tros (1) 

where supervector ms represents the speaker utterance, 

mo denotes the speaker and channel independent 

supervector, i.e. UBM supervector, T is a total variability 

matrix which is rectangular with low rank, and (Os is total 

variability factor. We refer this total variability factor as 

i-vector. 

After extracting i-vector, length normalization and LDA 

are applied on it. Then, assuming the i-vector is observed 

from probabilistic generative model, it can be expressed as 

(2) 

where f1 is a speaker independent mean vector, V is basis 

matrix for the speaker-specific subspace, � is a latent 

identity vector having a standard normal distribution, I: is 

residual noise vector. The maximum likelihood point 

estimates of the model parameter {J!, V, �E} are obtained 

from a large collection of development data using an 

Expectation Maximum (EM) algorithm as in [4] where �E 
represents full covariance residual noise. 

3. Heteroscedasticity in i-vector 

For analyzing heteroscedasticity in speaker recognition, 

we use an i-vector extracted from NIST SRE 04, 05, 06 and 

Switchboard II phases 2 and 3, Switchboard cellular parts 1 

and 2 database provided by BUT [3, 10]. For 400 

dimensional i-vector extractions, a full-covariance 

gender-independent UBM with 2048 mixture was used. 

Then, NIST SRE 04 and 05 telephone data were used for 

training UBM using a 20ms short-time Gaussianized MFCC 

plus delta and double-delta features. A gender-dependent 

i-vector extractor was trained from the telephone data of the 

NIST SRE 04, 05, 06, Switchboard and Fisher. 

The covariance matrix for j-th speaker i-vector within 

class is 

N; is the total utterance number ofj-th speaker. LDA regard 

the speaker i-vector within class covariance matrix as same 

within class covariance matrix Sw. 

s =� � NI(j) 
IV NL.. J j=l 

N is the number of total utterance. 

(4) 

Figure 1. Variance matrix of each speaker class i-vector 

covariance in male telephone database of NIST SRE 04, 05, 

06 and switchboard 



For validating the heteroscedasticity, we obtain the 

variance matrix of speaker i-vector within class covariance 

matrix as 

Nj 1 
a = �- (L:(j) -S )(L:(j) -S )T (5) 

SlY L...J N W W 
j=1 j 

Figure 1 is developed using Eq. (5). As expected, it is 

clear from Figure 1 that each speaker i-vector within class 

covariance is not homoscedastic. Especially, the diagonal 

components have higher variance than the off-diagonal 

components. The variance has risen from many factors like 

noise or difference of vocal characteristics among speakers. 

Major contributing factor we discovered, however, was 

from the difference of database length. Hasan et. at. [12] 

found that the deviation of the i-vector depends on the 

utterance duration. 

They observed that as duration becomes shorter, the 

average deviation increases. Since there are many different 

durations in the development data (NIST SRE 04, 05, 06 

and switchboard), it cannot have equal covariance matrix. 

In statistical sense, this is reasonable since the longer 

duration equates to larger sample size, thus the smaller 

variance. 

From these analyses, speaker i-vector within class 

covariance contains relevant information regarding speaker 

recognition. Therefore, by using this variance matrix as .. , 

the order of dimension needed for covering the 

heteroscedastic discriminant information can be determined. 

We perform eigenvalue decomposition to variance matrix 

as .. for looking into eigenvalue energy distribution. Figure 2 

shows sorted eigenvalues of the variance matrix as ... 
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Figure 2. Sorted eigenvalue decomposed from variance 

matrix of speaker i-vector within class covariance and its 

cumulative energy 
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As shown, it is observed that almost 90% of the energy is 

concentrated on the first 200 dimensions. It tells us that only 

about half the dimension is needed for containing the 

heteroscedastic discriminant information. This analysis 

result will be shown validated in the experiments in Section 

5. 

4. HLDA Transform of i-vector and unified 

HLDA transform 

From the analysis in Section 3, it has been shown that 

homoscedastic assumption may not be effective in dealing 

with the utterances of heteroscedasticity. Therefore, HLDA 

is applied here for heteroscedastic speaker i-vector within 

class covariance [5]. Using the HLDA transformation 

matrix, we can obtain i-vector w as 

(6) 

where A is M-by-N matrix consisting of first p rows for the 

useful dimensions A[p] and remaining N-p rows for the 

nuisance dimensions A[N-p]. 

To find the optimal HLDA transformation matrix A, 

Kumar [5] used a standard nonlinear optimization technique. 

However, his technique required a high computational 

complexity and large memory capacity. Gales proposed a 

simple iterative optimization scheme that is based on the 

EM algorithm [6]. Hence, for the HLDA implementation, 

Gales' optimization approach was adopted in our method. 

Although the speaker i-vector within class covariance 

matrices are mostly heteroscedastic, from the analysis, it has 

also been shown that LDA with homoscedastic assumption 

may work in part [1], [10]. It can be inferred that general 

speech utterances may have both homoscedastic and 

heteroscedastic elements. Moreover, LDA reduces noise in 

the covariance matrix of each within class covariance as in 

Eq. (4). The reason is that higher the number of classes, 

fewer the available feature data for each class. Thus, its 

covariance becomes noisier [7]. From these reasons, we 

propose a fusion of LDA and HLDA by a transform matrix 

called Unified HLDA (UHLDA). The proposed fusion 

ensures the UHLDA to remain in the most principal 

subspace of LDA and HLDA as 

(7) 

where 



Note that q is the LDR dimension, C is M-by-q matrix 

and W is LDA transfonn matrix with M-by-N. Aq/2 and W q/2 

are each subspace of A and W respectively with q/2 rows. 

am.n and Wm.n are the components of A and W matrices at m 

row and n column. 

5. Experiments 

The experiments were conducted on the NIST SRE 2010 

extended core task and telephone-telephone condition (i.e. 

common evaluation condition 5). As mentioned in Section 3 

we use i-vector which is provided by BUT. All i-vectors are 

normalized by whitening and scaling the length of each 

i-vector to a unit length [3]. We reduced the i-vector from 

400 dimensions to q dimension using LDR technique such 

as LDA or HLDA. After dimensional reduction, the speaker 

and session dependent i-vector distribution is modeled 
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Figure 3. Performance evaluation using HLDA for LDR 

technique followed by PLDA corresponding useful 

dimension p and LDR dimension q with respect to (a) EER 

(b) DCF08 (c) DCFI0 

Table 1. Perfonnance evaluation when useful dimension p 

an d LDR d' 
. 

200 unensIOn q IS 

System Female 
EER name 
(%) 

deftJ8 

PLDA 5.28 0.2636 
LDA-PLDA 2.58 0.1254 
HLDA-PLDA 2.51 0.1220 
SHLDA-PLDA 2.35 0.1160 
UHLDA-PLDA 2.32 0.1125 

Male 
EER defiO 
(%) 

deftJ8 defiO 

0.6649 3.60 0.1897 0.5727 
0.4048 1.33 0.0782 0.2802 
0.4009 1.26 0.0721 0.2710 
0.3803 1.27 0.0740 0.2753 
0.3818 1.23 0.0693 0.2573 

Table 2. Perfonnance evaluation when useful dimension p 

an d LDR d' 
. 

400 unensIOn q IS 

System Female 
EER name 
(%) 

deftJ8 

PLDA 2.43 0.1165 

LDA-PLDA 2.39 0.1172 

HLDA-PLDA 2.37 0.1173 

SHLDA-PLDA 2.34 0.1189 

UHLDA-PLDA 2.32 0.1156 

Male 
EER defiO 
(%) 

deftJ8 defiO 

0.4019 1.19 0.0773 0.2854 

0.4028 1.23 0.0764 0.2889 

0.3846 1.13 0.0740 0.2760 

0.3854 1.14 0.0733 0.2870 

0.3723 1.14 0.0718 0.2612 

using PLDA with 150 dimension eigenvoices and a full 

covariance noise matrix. We measured the system 

perfonnance in terms of Equal Error Rate (EER), Decision 

Cost Function (DCF) defined in 2008 (DCF08) and 2010 

(DCFI0) in NIST SRE plan. 

The first experiment is a perfonnance evaluation of male 

gender trials using HLDA corresponding useful dimension 

p and LDR dimension q. The goal here is to determine the 

useful dimension p for the best performance. 

Figure 3 shows the performance of a speaker recognition 

system using HLDA for LDR technique. The three indices 

of performance were measured while useful dimension p 

and LDR dimension q were varied from 50 to 400 and 150 

to 400 respectively in 50 step increments as shown in Figure 

3 (a)-(c). The following observations can be drawn from 

these tests: 

1) Useful dimension p must be same or under LDR 

dimension q. 

2) Higher LDR dimension is better. 

3) The performance saturates when useful dimension p 

is higher than half dimension (=200). It validates 

that the analysis result at section 3 . 
Using these information, we can determine parameter p 

and q for the best performance in a certain recognition 

environment. 

In the second experiment, we compared the performance 

of various speaker recognition systems for both genders 

when the parameters, useful dimension p and LDR 

dimension q, were set at 200 as shown Table 1. Other 

settings are exactly the same with the first experiment. In 

addition, we obtained the performance when the parameters 



p and q are 400 for using all of the dimensions regardless of 

computational load as in Table 2. The eigenvoice dimension 

for PLDA is the same as the first experiment. The 

smoothing factor for SHLDA is 0.75 for the best result [7]. 

For the system name in Tables I and 2, PLDA means that 

the system does not use LDR technique and only uses first q 

dimension i-vector. From the two results, it is apparent that 

the system using HLDA demonstrated the best result. 

Compared to the LDA-PLDA system when the dimension is 

200, HLDA-PLDA system showed improved performance 

in all three metrics. The systems using SHLDA and the 

proposed UHLDA showed improvements in performance 

compared to that of the HLDA. Especially, SHLDA-PLDA 

shows better performance at EER, whereas UHLDA-PLDA 

shows better at DCF08 and DCF lO. 

6. Conclusion 

In this paper, we proposed to apply HLDA as an LDR 

technique and a fusion approach UHLDA. In-depth 

analyses of heteroscedasticity in i-vector were conducted 

for robust speaker recognition. Through the analyses in 

i-vector, we found performance improvement and validated 

it from the experiments. In addition, the fusion approach in 

UHLDA was verified. 

The reason for the heteroscedasticity in i-vector is the 

difference of database durations. Therefore, our future work 

will be to explore how heteroscedastic approach influences 

in speaker recognition system when the duration mismatch 

condition occurs. 
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