

when the input comes from an **unknown domain**

Domain Attentive Fusion for End-to-end Dialect Identification with Unknown Target domain Suwon Shon¹, Ahmed Ali², James Glass¹

MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Cambridge, MA, USA¹ Qatar Computing Research Institute, HBKU, Doha, Qatar²

- Using both domains for training performs
- with an individually trained network on a single domain gives better performance than training with
- However, fusion gives the best performance when

	Training data	System	DID Accuracy (%)				
	framing data	ID	MGB-3 Test	VarDial 2018 Test			
Single domain	MGB-3 Train + MGB-3 Dev	${\cal A}$	65.82	48.87			
Single domain	VarDial 2018 Train	${\mathcal B}$	51.27	86.40 81.53			
Multi	MGB-3 Train + MGB-3 Dev + VarDial 2018 Train	$\mathcal{A} + \mathcal{B}$	61.86				
	Fusion of \mathcal{A} and \mathcal{B} (optimized for \mathcal{A})	-	68.63	77.57			
	Fusion of \mathcal{A} and \mathcal{B} (optimized for \mathcal{B})	-	57.84	86.94			
	Raceline nerforma	nco an	d its fusion	n			

Baseline performance and its fusion

	Experim	enta	al re	sul	ts						
		Test on									
	Training data	MGB-3 Test			VarDial 2018 Test			Averaged			
Charles		Acc.	EER	Cavg	Acc.	EER	Cavg	Acc.	EER	Cav	
Single domain	MGB-3 Train + MGB-3 Dev (\mathcal{A})	65.82	20.43	19.60	48.87	28.39	28.50	58.35	24.41	24.0	
Single domain	VarDial 2018 Train (\mathcal{B})	51.27	28.37	27.41	86.40	9.57	9.96	68.84	18.97	18.	
	MGB-3 Train + MGB-3 Dev + VarDial 2018 Train $(A+B)$	61.86	22.92	21.41	81.53	11.13	11.76	71.70	17.03	16.	
-	Logistic regression fusion of \mathcal{A} and \mathcal{B} (optimized for \mathcal{A})	68.63	19.05	18.04	77.57	13.78	14.16	73.10	16.42	16.	
Multi	Logistic regression fusion of \mathcal{A} and \mathcal{B} (optimized for \mathcal{B})	57.84	24.36	23.35	86.94	9.23	9.56	72.39	16.80	16.	
domain	Using fusion layer on \mathcal{A} and \mathcal{B} (Figure 1)	67.69	19.30	18.39	82.86	11.19	11.58	75.28	15.25	14.	
-	Domain Attentive fusion of \mathcal{A} and \mathcal{B} (Figure 2 (a))	67.49	18.52	18.01	83.93	10.03	10.22	75.71	14.28	14	
-	Domain Attentive fusion of A and B (Figure 2 (b))	68.23	18.30	17.69	85.01	9.13	9.40	76.62	13.72	13.	

Domain Attentive Fusion

- Self attention based fusion
- Learning scalar score e_d for the language ID output \mathbf{h}_d where $d \in \{D_1, D_2\}$ as

$$e_d = f(\mathbf{0}_d).$$

Scoring function

$$f(\mathbf{o}_d) = \mathbf{v}_d^T \tanh(\mathbf{W}_d \mathbf{o}_d + \mathbf{b}_d)$$

• Normalized weights α_d is

$$\alpha_d = \frac{exp(e_d)}{(exp(e_A) + exp(e_B))}$$

Domain attentive output is

$$\mathbf{o} = [\alpha_{\mathcal{D}_1} * \mathbf{o}_{\mathcal{D}_1}, \alpha_{\mathcal{D}_2} * \mathbf{o}_{\mathcal{D}_2}]$$

- Fusion structures
- 1. Logistic regression
- 2. Adding fully connected layer
- 3. Domain attentive fusion using output
- 4. Domain attentive fusion using hidden layer activation

reijonnunce evaluation on maitiple aomans

- The proposed approach was verified in conditions where the test set domain was seen and unseen when training a network
- The traditional approach shows reasonable performance only if the input domain is known a priori
- Neural network based fusion approaches learn how to fuse networks from the training set and automatically calculate the weight of the network to contribute optimally for the random test input
- The proposed approach performs consistently on inputs from unknown domains better compared to the traditional fusion approach
- Improved **16%** in EER for seen domain input
- Improved 4% in EER for unseen domain input

Conclusion

- The traditional fusion strategy performs optimally when the input domain is known
- Training single network with multiple domain does not show best result on each domain
- We propose a neural network based self-attention fusion approach
- A domain attentive layer automatically decides the weights of multiple dialect ID systems by looking at the output or the embedding layer of each system
- The performance on each test set from different domains is even better than the single domain optimized fusion approach