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PY Modern Standard Arabicl Egyptian Leva ntine’ Tralnlng data MGB-3 Test VarDial 2018 Test Averaged
-> one of the challenges in real-world spoken language _ Acc. | EER | Cavg | Acc. | EER | Cavg | Acc. | EER | Cavg
. Gulf, North African e MGB-3 Train + MGB-3 Dev (A) 65.82 | 2043 | 19.60 | 48.87 | 28.39 | 28.50 | 58.35 | 24.41 | 24.05
Processing ole Doma — VarDial 2018 Train (B) 5127 | 2837 | 2741 | 8640 | 957 | 9.96 | 68.84 | 1897 | 18.69
. . ‘ . . s
e |deally we have domain matched result if we have Multiple Domains MGB-3 Train + MGB-3 Dev + VarDial 2018 Train (A+B) | 61.86 | 22.92 | 2141 | 8153 | 1113 | 11.76 | 71.70 | 17.03 | 16.59
, , e MGB-3 : Collected from broadcast svstem Logistic regression fusion of A and B (optimized for A) | 68.63 | 19.05 | 18.04 | 77.57 | 13.78 | 14.16 | 73.10 | 16.42 | 16.10
enough data on multiple domains and know about the - Y " Logistic regression fusion of A and B (optimized for B) | 57.84 | 24.36 | 2335 | 86.94 | 9.23 | 9.56 | 7239 | 16.80 | 1646
input data e 53.6 hours (recorded), 10.0 hours( high qual.) domain Using fusion layer on .4 and B (Figure 1) 67.69 | 1930 | 18.39 | 82.86 | 11.19 | 11.58 | 75.28 | 15.25 | 14.99
: : : . Domain Attentive fusion of A and B (Figure 2 (a)) 67.49 | 18.52 | 18.01 | 83.93 | 10.03 | 10.22 | 75.71 | 14.28 | 14.12
* Proposed domain attentive fusion network to deal e VarDial 2018 : Collected from YouTube Domain Attentive fusion of .4 and B (Figure 2 (b)) 6823 | 18.30 | 17.69 | 85.01 | 9.13 | 9.40 | 76.62 | 13.72 | 13.55
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e The proposed approach was verified in conditions
where the test set domain was seen and unseen
when training a network

Domain Attentive Fusion

e Self attention based fusion

End-to-end Dialect ID

e CNN based End-to-end neural network structure
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e Neural network based fusion approaches learn
how to fuse networks from the training set and
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e Domain attentive output is

Acoustic features

Network structure No. of filters : 500-500-500-3000

-> does not show best performance on each domain * Improved 16% in EER for seen domain input
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e Performance based on the training data

* Proposed system
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