

Unsupervised Representation Learning of Speech for Dialect Identification

Suwon Shon, Wei-Ning Hsu, James Glass

MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Cambridge, MA, USA

Motivation

- One of the challenges of processing real-world spoken content, such as media broadcasts, is the potential presence of different dialects of a language in the material
- Dialect identification (DID) can be a useful capability to identify which dialect is being spoken during a recording
- Since DID tasks are data dependent, unsupervised learning from unlabeled datasets is much more important than for other resource-rich tasks
- The Factorized Hierarchical Variational Autoencoder (FHVAE) model can represent static and dynamic generating factors within an utterance
- We argue that language related information like accent, tone, rhythm are mostly encoded in the dynamic generating factors

Experiments

< Dialectal Speech Dataset>

- 5 dialects : Modern Standard Arabic, Egyptian, Levantine, Gulf, North African
- The test domain is different from the training dataset

Table 1. MGB-3 Dialectal Arabic Speech Dataset Properties.

Dataset	Training	Development	Test
Utterances	13,825	1,524	1,492
Size	53.6 hrs	10 hrs	10.1 hrs
Channel	Carried out	Downloaded d	irectly from
(recording)	at 16kHz	a high-quality	video server

<Resource Limitation Impact on Domain Mismatch>

Language/Dialect Identification System

- i-vector system
 - Used with MFCCs or Stacked Bottleneck (SBN) Features
 - i-vector extractor generally trained without any supervision
- End-to-End system using CNN/DNN
 - Using MFCCs, logmel-filterbanks or spectrograms
 - Multiple layers of CNNs and a dense layer
 - > Global (average) pooling layer to convert the frame level representation to utterance level

- With a target domain label, the end-to-end system shows impressive performance compared to the i-vector system
- Without a target domain label, both the i-vector and end-to-end discriminative model show similar performance

System	Accuracy	Accuracy on Test set		
System	If Dev. set is labeled	If Dev. set is unlabeled		
I-vector	+14% - 57.44 -19	46.11 - +5%		
End-to-End (MFCC)	65.55 -25	48.86		
End-to-End (FBANK)	64.81	47.11		

<Baseline accuracy on MGB-3 Test set>

<Resource-Rich Condition>

- Trained FHAVE model with both train and development set
- z_1 learns dynamic factors from input segment and the effectively dialectal learns information from speech

	Accuracy	EER	C _{avg} *100
i-vector +14%	57.44	24.43	23.79
End-to-end (MFCC)	65.55	20.24	19.92
End-to-end (FBANK)+4%	64.81	20.22	19.91
End-to-end (FHVAE _{-z_1})	67.98	18.62	18.32
End-to-end (FHVAE_ z_2)	54.55	27.39	27.35
<with label=""></with>			

<**Resource-Poor Condition>**

When a label is unavailable, learning with unsupervised FHVAE has much more effective than other approaches

	Accuracy	EER	C _{avg} *100
i-vector +5%	46.11	32.77	32.08
End-to-end (MFCC)	> 48.86	29.31	28.61
End-to-end (FBANK)+199	47.86	30.19	29.67
End-to-end (FHVAE_ z_1)	58.16	25.40	24.66
End-to-end (FHVAE_ z_2)	36.36	39.00	38.32

<Graphical illustration of the FHVAE generative model. Grey nodes denote the</p> observed variables, and white nodes are the latent variables>

- Use FHVAE to learn representation from dialectal speech without supervision \bullet
 - > FHVAE is a variant of the variational auto-encoder that learns a disentangled representation from sequential data

 z_1 is more effective than z_2 as because it expected we encodes dynamic factors such as accent, tone, rhythm

<Without Label>

- When we add a domain mismatched labeled dataset for training, unsupervised learning shows still more effective performance than other approaches
- When we add a domain matched labeled dataset for training, the performance of the two systems (MFCC and FHVAE_z1) get gradually closer

<Efficiency of domain mismatched and matched labeled dataset>

Table 7. Performance comparison on MGB-3 test set.

Resource-poor	Accuracy	EER	C _{avg} *100
End-to-end (uBNF [18]	56.64	27.46	26.92
End-to-end (FHVAE _{-z_1)}	58.16	25.40	24.66
Resource-rich	Accuracy	EER	C _{avg} *100
Resource-rich End-to-end (uBNF [18])	Accuracy 66.24	EER 19.98	C _{avg} *100 19.63

For a given sequence $X = \{x^{(n)}\}_{n=1}^{N}$ FHVAE involves N pairs of sequence-level and segment-level latent variable z_1 and z_2 as follows :

1. a s-vector $\boldsymbol{\mu}_2$ is drawn from $p(\boldsymbol{\mu}_2) = \mathcal{N}(\boldsymbol{\mu}_2 | \boldsymbol{0}, \sigma_{\boldsymbol{\mu}_2}^2 \boldsymbol{I})$.

- 2. N i.i.d. latent segment variables $Z_1 = \{z_1^{(n)}\}_{n=1}^N$ are drawn from a global prior $p(\boldsymbol{z}_1) = \mathcal{N}(\boldsymbol{z}_1 | \boldsymbol{0}, \sigma_{\boldsymbol{z}_1}^2 \boldsymbol{I}).$
- 3. N i.i.d. *latent sequence variables* $\mathbf{Z}_2 = \{\mathbf{z}_2^{(n)}\}_{n=1}^N$ are drawn from a sequence-dependent prior $p(\boldsymbol{z}_2|\boldsymbol{\mu}_2) =$ $\mathcal{N}(\boldsymbol{z}_2|\boldsymbol{\mu}_2,\sigma_{\boldsymbol{z}_2}^2\boldsymbol{I}).$
- 4. N i.i.d. sub-sequences $X = \{x^{(n)}\}_{n=1}^N$ are drawn from $p(\boldsymbol{x}|\boldsymbol{z}_1, \boldsymbol{z}_2) = \mathcal{N}(\boldsymbol{x}|f_{\mu_x}(\boldsymbol{z}_1, \boldsymbol{z}_2), diag(f_{\sigma_x^2}(\boldsymbol{z}_1, \boldsymbol{z}_2))),$ where $f_{\mu_x}(\cdot, \cdot)$ and $f_{\sigma_x^2}(\cdot, \cdot)$ are parameterized by a decoder neural network.
- \succ The model encourages z_2 to represent relatively consistent latent factors within a sequence such as channel response, vocal tract characteristics
- \succ We use z_1 as a new feature since phonetic and lexical variability is useful information for dialect identification

<Comparison with another unsupervised learning of speech, uBNF>

Conclusion

- One of the challenges of processing real-world spoken content, such as media broadcasts, is the potential presence of different dialects of a language in the material
- A major challenge for Dialect identification (DID) is that there is not enough data or labeled data for training
- Unsupervised learning could be a remedy for such low-resource languages
- The proposed FHVAE based unsupervised learning effectively encodes language/dialectal information from speech
- The latent variables learned from FHVAE can substitute MFCCs as robust features that \bullet exploit dialectal information from speech