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ABSTRACT
Automatic detection of communication errors in conversa-
tional systems has been explored extensively in the speech
community. However, most previous studies have used only
acoustic cues. Visual information has also been used by
the speech community to improve speech recognition in dia-
logue systems, but this visual information is only used when
the speaker is communicating vocally. A recent perceptual
study indicated that human observers can detect commu-
nication problems when they see the visual footage of the
speaker during the system’s reply. In this paper, we present
work in progress towards the development of a communica-
tion error detector that exploits this visual cue. In datasets
we collected or acquired, facial motion features and head
poses were estimated while users were listening to the system
response and passed to a classifier for detecting a commu-
nication error. Preliminary experiments have demonstrated
that the speaker’s visual information during the system’s re-
ply is potentially useful and accuracy of automatic detection
is close to human performance.

Categories and Subject Descriptors
H.1.2 [User-Machine System]: Human Information pro-
cessing; I.5.4 [Computing Methodologies]: Pattern Recog-
nition Applications—computer vision

General Terms
Reliability, Human Factors, Experimentation

Keywords
Visual Feedback, System Error Detection, Conversational
systems

1. INTRODUCTION
Many spoken dialogue systems have difficulty detecting

the occurrence of communication errors (e.g., errors made
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by the speech recognizer). By our definition, a communi-
cation error occurs when the automatic speech recognition
system misinterprets the user and makes an erroneous re-
ply. Considerable research has been invested in monitor-
ing audio cues to detect such communication errors. Vari-
ous researchers have shown that human users change their
speaking style when they encounter a problem with a con-
versational system. For example, users tend to speak slower
or louder when speech recognition errors occur. These prob-
lems motivated the monitoring of prosodic aspects of a speaker’s
utterances. Different studies using prosodic features to de-
tect communication errors automatically have achieved vary-
ing results [10, 12, 1].

A recent perceptual study [2] indicated that the detection
can be improved significantly if visual modalities are taken
into account. This study showed that human observers per-
formed better at recognizing communication errors when
they were given the visual footage of the speaker when the
speaker is listening to the system’s response as compared
to when only audio recordings were provided. This insight
motivates us to detect communication errors automatically
by using the non-verbal facial expressions of the speakers
when the system is making its reply. Figure 1 illustrates the
reaction of a user experiencing a speech recognition error
from a conversational system. Notice that when the system
is giving its reply, the co-occurring facial expressions can
be indicative of the communication state. In most existing
work, when a system makes an erroneous reply, errors are
detected only during the speaker’s next turn in the conversa-
tion, but this insight shows that we can detect errors within
the same turn. Systems can benefit from this early feedback
to improve the quality of the conversation.

In this paper, we describe work in progress towards the de-
velopment of a communication error detector. Two datasets
are collected: the first dataset consists of actors articulating
facial expressions on demand. The second dataset consists of
subjects interacting with a conversational system in a natu-
ral setting. In both datasets, facial motion features and head
poses were estimated and passed to a classifier for training
and evaluation. We describe preliminary experiments which
show that automatic communication error detection based
on visual cues while a user is listening is useful, and that
this detection performance is similar in accuracy compared
to human observers.

2. RELATED WORK
Related work can be mainly divided into three categories,

namely, audiovisual emotion recognition (audiovisual), sys-



Figure 1: Diagram illustrating a speaker encountering a communication error. Notice that during the system’s
conversational turn (from time t1 to time t2), where it is giving an erroneous reply, the speaker twitched his
eyes naturally to signal an error. This suggests that visual analysis during the system turn may be useful.

tem error detection (audio) and facial expression analysis
(visual).

There has been considerable research activity in the do-
main of detecting communication problems using audio cues.
Litman et al. [10] developed a rule based system error de-
tector using prosody statistics. Hirschberg et al. [9] used a
combination of prosody, speech recognition features, dialog
history and the conversation turn to detect errors. This com-
bination of different audio features proved very useful. Ovi-
att [12] showed that there is a pattern of hyper-articulation
when there are system errors, which leads to worse recog-
nition results. However, a separate study by Ang et al. [1]
suggested that hyper-articulation may not be a good pre-
dictor of frustration.

Visual features have also been used to recognize facial ex-
pressions. Two comprehensive reviews can be found in [7,
13]. Most existing work encode facial expressions based on
the basic movements of facial features called action units
(AUs), as inspired by Ekman [6]. Recently, Cohen et al. [4]
proposed a Tree Augmented Classifier that learns the de-
pendencies between facial features.

A comprehensive survey of using audiovisual cues for emo-
tion recognition can be found in [5]. The most recent and
relevant work was presented by Zeng et al. [18], who used a
voting method to combine the facial expression and prosody-
based emotion classifiers to improve affect recognition. Chen [3]
fused the scores of facial feature and prosody classifiers oc-
curring sequentially in time. Yoshitomi et al. [17], used a
weighted sum of neural network classifiers to combine audio
and visual features. Song et al. [15] proposed a tripled hid-
den Markov Model (HMM) to perform audio visual emotion
recognition. The key advantage of this model was allowing
asynchrony of the audio and visual observation sequences
while preserving their natural correlation over time.

We believe our work is the first one to detect communica-
tion errors visually during the conversational system’s reply.
Our work is motivated by a perceptual study conducted by
Barkhuysen et al. [2], which showed that human observers
performed better at detecting errors when they only view
the visual footage of the speaker listening to the response of
the system than when they only use audio cues. Previous
works only use the speaker’s audio and/or visual features
in the next conversational turn to detect errors, but this
psychological insight shows that we could detect the errors
earlier within the current turn.

3. APPROACH
We propose detecting the communication errors visually

when the speaker is listening to the system’s reply. During
the interaction, video footage of the speaker is segmented
per conversation turn. Each segment’s boundaries are illus-
trated in Figure 1, where the segment of interest starts from
time t1 and ends at time t2. At time t1, the system starts its
reply and at time t2, the speaker clicks the ”click-to-talk”
button to communicate in the next conversation turn. For
each frame in the video segment while the user is listening,
facial motion features and head pose features are estimated.
These visual features are subsequently evaluated by Hidden
Markov Models (HMMs) [14] trained for communication er-
ror detection.

In our framework, head motion is decomposed into two
distinct components. The first component consists of the 3D
rigid motion, δ, of the head. The second component consists
of the local motion, Vf , generated by the non-rigid parts of
the face (e.g. mouth, lips, eyes). Our head motion estimation
algorithm consists of three components: estimating the rigid
motion component of the head, using this rigid motion to
compensate for the global motion of the head and estimating
the local motion of the non-rigid parts.

3.1 Head Motion and Pose Estimation
Head motion is estimated using a 3D model-based track-

ing algorithm. In our approach, the head of the user is mod-
eled using a 3D mesh, which consists of a set of 3D points
Mi = (Xi, Yi, Zi).

Let R and t be the rotation and translation of the head
between time t and t + 1. In case of small motions, the
rotation R can be parameterized by:

R = I +
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The rigid transformation can then be parameterized by
a 6-vector δ = (wx, wy, wz, t)>. Given the location and
orientation of the model (i.e. location of the points Mi) at
time t, the rigid motion δ of the head is estimated as follows:

Let M ′
i be the 3D location of point Mi at time t + 1. Let

mi and m′
i be the respective projections of Mi and M ′

i in the
image. Let f and (u0, v0) be the focal length and principal
point location of the camera respectively. Using the camera
as the reference, we can write:

mi =
1

Zi
PMi m′

i =
1

Z′i
PM ′

i (2)



where P is the camera-projection matrix defined as

P =

(
f 0 u0

0 f v0

)
(3)

If the face moves rigidly then all points Mi move according
to the same rigid transformation, i.e. M ′

i = RMi + t. Let
~ui = m′

i−mi be the optical flow estimated at point mi. By
combining eq. (2) and (1) for all i’s, δ can be found as the
solution of a linear system

Aδ = b (4)

where A is a matrix and b a vector, whose entries depend
on f , (u0, v0), Mi and ~ui (for all i’s).

If the head performs a perfectly rigid motion (i.e. all
points Mi perform the same rigid transformation), eq. (4)
can be solved exactly using a standard linear least-squares
technique. However, in order to account for outliers, i.e.,
points Mi corresponding to non-rigid parts of the face (e.g.,
eyes, mouth), a robust estimation algorithm needs to be
used. Because of its simplicity and performance, we chose
to employ the RANSAC [8] algorithm. The RANSAC algo-
rithm is able to find the dominant rigid motion of the face
even if half the points Mi perform some ‘outlier’ motions.

Our face tracking algorithm is initialized with the Viola-
Jones face detector [16]. In order to compensate for drift, we
implemented our face motion and pose estimation algorithm
in a keyframe-based estimation framework similar to [11].

3.2 Facial Motion Features
Let δ be the dominant rigid motion of the face. The facial

motion features are defined as the head motion-compensated
optical flow, i.e., the optical flow between the images It and
It+1 from which the motion δ has been ‘subtracted’. The
facial motion features correspond to the local non-rigid mo-
tion generated by the muscles of the face only (e.g., lips,
jaw, eyes) independently from the global head motion.

In order to estimate the motion-compensated optical flow,
we proceed as follows:

Let Ni = (XN
i , Y N

i , ZN
i ) be the 3D coordinates of point

Mi undergoing the exact rigid transformation δ, i.e. Ni =
RMi + t. Let ni = 1

ZN
i

PNi be the projection of Ni in the

image. We defined the motion-compensated optical flow ~u0
i

as the discrepancy between the rigid motion-induced flow
~vi = ni −mi and the measured optical flow ~ui.

~u0
i = ni −mi − ~ui =

1

ZN
i

P(RNi + t)−mi − ~ui

In our framework, the facial motion features are defined
as:

Vf = (~u0
1, . . . , ~u

0
N )

3.3 Classification
Once the visual features are estimated, we project the fea-

tures into a ten dimensional subspace using principle compo-
nent analysis for dimensionality reduction. These projected
features are subsequently used to train two HMMs [14], one
trained based on data consisting of communication errors
and the other trained on data with no communication errors.
During evaluation, test sequences are evaluated under each
model and the model with the highest likelihood is selected
as the recognized communication state. The performance of
these HMMs are evaluated on two datasets described below.

4. DATASETS
Two datasets, one consisting of staged expressions while

the other consisting of natural ones, are used to evaluate
the effectiveness of our approach in communication error
detection.

4.1 Staged dataset
In this dataset, each subject is asked to pose in front of a

camera and demonstrate non-verbal facial expressions that
would occur when he/she is listening to the response of a
conversational system. For communication errors, the sub-
ject presumes the system is giving an incorrect reply. Sub-
jects posed facial expressions depicting varying levels or frus-
tration or confusion. For non-communication errors or neu-
tral situations, each subject presumes the system is giving a
correct reply. To vary the intensity of the expressions, sce-
narios containing different numbers of correct system replies
are presented before the subject is asked to articulate his/her
facial expression. Eight posed facial expressions, each last-
ing on average three seconds, are collected per subject. Data
from a total of ten subjects is collected and the facial motion
and head pose features are extracted for our experiments.

4.2 Natural dataset
We want to investigate how effective our approach is in

detecting communication errors in a natural setting. For
preliminary evaluation, we acquired the dataset collected by
Barkhuysen et al. [2] for system questions. In this dataset,
subjects have made a train ticket reservation and are listen-
ing to system verification questions such as ”So you want to
travel to Amsterdam?”. Nine subjects’ video footage dur-
ing the system’s verification response is used for our exper-
iments. More details of this dataset could be found in [2].

5. EXPERIMENTS AND RESULTS
On the staged dataset, we used leave-one-out cross valida-

tion (nine subjects’ dataset were used for training and the
remaining one was used for testing), with randomly gener-
ated partitions. For each test set, we plot the ROC curve
for communication error detection. We compute the mean
and standard deviation of these individual ROC curves and
plot an averaged ROC curve with error bars shown in Fig-
ure 2. From this figure, the detection rate was significantly
above chance; however, this performance was evaluated on
a staged dataset and the performance on a natural dataset
may differ.

On the natural dataset, we conducted several experiments.
In the first experiment, we compared the performance of
a user-independent model versus human performance. We
conducted a nine-fold cross validation and made sure our
Hidden Markov models are not trained on any data com-
ing from a subject in the test set. In the same manner
as described in the experiments on the staged dataset, we
compute and plot the averaged ROC curve with error bars
for communication error detection. This is shown in Fig-
ure 3, where the averaged ROC curve was plotted in a solid
blue line. To compare against human performance, we con-
ducted a human perception experiment, where video seg-
ments evaluated by the HMMs were also evaluated by four
human observers. These four human observers did not view
any sample video footage of the subjects before the evalua-
tion. The results of the four human observers were denoted
as four green circles in Figure 3. The difference in detection
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Figure 2: Average ROC curve and error bars for de-
tecting communication errors on a staged dataset.
The red line, which is used as a reference here, rep-
resents detection accuracy at 50%.
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Figure 3: ROC curves, error bars and human
perception performance for detecting communica-
tion errors on a natural dataset. For the user-
independent experiment, the averaged ROC curve
is plotted in a solid blue line with error bars. The
green circles represent the performance of four hu-
man observers. For the partially user-dependent ex-
periment, the ROC curve is plotted as a dashed blue
line and the red star represents the average perfor-
mance of human observers reported in [2].

accuracy between humans and HMMs was not statistically
significant after performing a paired t-test (p = 0.78). This
showed that the detection accuracy by HMMs was indistin-
guishable from human performance.

In the second experiment, we compared the partially user-
dependent model against the human performance reported
in [2]. We trained and tested HMMs, such that video clips
from the same subject were used in training and testing.
Note that we made sure the test set consisted of the same
clips used for human evaluation in [2]. On average, each
subject had sixteen video clips used in the training set and
four video clips for the test set. The ROC curve is plot-
ted in a dashed blue line in Figure 3. The average human
performance reported in [2] is denoted as a red star in the
same figure. From this figure, the HMMs attained similar
performance as human observers.

6. CONCLUSIONS AND DISCUSSION
In this paper we describe work in progress towards the

automatic detection of communication errors using visual
cues during the system’s conversational turn. Significant
detection accuracy on the staged and the natural dataset
lends evidence that such a detection formulation is useful.
The visual cues captured in the natural dataset all occurred
during a system’s verification questions. As future work,
we plan to explore the strength of this effect during other
types of system response and develop better algorithms to
improve detection accuracy.
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