
Composable Building Blocks to Open up Processor
Design

Sizhuo Zhang, Andrew Wright, Thomas Bourgeat, Arvind
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{szzhang, acwright, bthom, arvind}@csail.mit.edu

Abstract—We present a framework called Composable Modular
Design (CMD) to facilitate the design of out-of-order (OOO)
processors. In CMD, (1) The interface methods of modules
provide instantaneous access and perform atomic updates to the
state elements inside the module; (2) Every interface method
is guarded, i.e., it cannot be applied unless it is ready; and
(3) Modules are composed together by atomic rules which call
interface methods of different modules. A rule either successfully
updates the state of all the called modules or it does nothing.
CMD designs are compiled into RTL which can be run on FPGAs
or synthesized using standard ASIC design flows.

The atomicity properties of interfaces in CMD ensures com-
posability when selected modules are refined selectively. We show
the efficacy of CMD by building a parameterized out-of-order
RISC-V processor which boots Linux and runs on FPGAs at 25
MHz to 40 MHz. We also synthesized several variants of it in
a 32 nm technology to run at 1 GHz to 1.1 GHz. Performance
evaluation shows that our processor beats in-order processors in
terms of IPC but will require more architectural work to compete
with wider superscalar commercial ARM processors. Modules
designed under the CMD framework (e.g., ROB, reservation
stations, load store unit) can be used and refined by other
implementations. We believe that this realistic framework can
revolutionize architectural research and practice as the library
of reusable components grows.

I. INTRODUCTION

The software community has benefited for years from open
source projects and permissive licensing. This has allowed
reusable libraries with proper APIs to flourish. The RISC-V
ISA is an attempt to open up the processor design community
in a similar way [1]. By providing a free and open ISA,
unencumbered by restrictive licenses, suddenly it has become
possible for the research community to develop sophisticated
(and not so sophisticated) architectures which may benefit small
companies as well as the architecture community at large.

To realize the full potential of RISC-V, it is not enough to
have several good and free implementations of RISC-V. Such
implementations can serve as the role of exemplars, but to build
a real community of architects we need to provide a hardware
development framework where many people can contribute.
The framework must result in a variety of parts, whose numbers
and replacements grow with time, and which can be modified
and combined together easily to build commercially competitive
systems-on-a-chip (SoCs). This paper is about providing such
a framework and showing that the framework is rich enough

A version of this paper appears in the 51st IEEE/ACM International
Symposium on Microarchitecture (MICRO), October, 2018. ©2018 IEEE.

to express modern out-of-order multicores and their memory
systems efficiently.

A natural design flow for any complex piece of digital
hardware is to first design each component module and
then compose them together. Given the complexity of OOO
processors, after the first design pass, performance tuning
requires refining the implementations of various modules and
even the way different modules interact with each other. There
are two key challenges in this design flow: (1) How to compose
all the modules together; and (2) How to ensure modules can
be combined correctly during the performance tuning phase,
when modules are selectively refined. An essential property for
composability and modular refinement is latency-insensitivity,
i. e., the time it takes to produce an answer for a request
does not affect the correctness of the overall design. It is
common knowledge that if modules can be designed to have
only latency-insensitive FIFO-like interfaces, then they can be
composed easily and refined individually. However, in processor
design, a microarchitectural event may need to read and write
states across many modules simultaneously, requiring interfaces
to have the atomicity property which goes beyond latency
insensitivity. The atomicity property of interfaces governs the
concurrent execution of multiple methods and is specified via
the conflict matrix [2] for the methods of a module.

We present a framework called Composable Modular Design
(CMD) to address these issues. In CMD, a design is a collection
of modules, which interact with each other according to a set
of atomic rules such that,

• The interface methods of modules provide combinational
access and perform atomic updates to the state elements
inside the module;

• Every interface method is guarded, i. e., it cannot be applied
unless it is ready; and

• Modules are composed together by rules or “transactions”
which call interface methods of different modules. A rule
either successfully updates the states of all the called modules
or it does nothing.

CMD designs are compiled into RTL which can be simulated
in software, run on FPGAs or synthesized using standard
ASIC design flows. The resulting hardware behaves as if
multiple rules are executed every clock cycle, though the
resulting behavior can always be expressed as executing rules
one-by-one. CMD designs are often highly parameterized –

hardware synthesis and RTL generation is feasible only after
each parameter has been specified. The CMD framework can
be expressed in just about any HDL by appropriately annotating
wires and state elements, but we have used Bluespec System
Verilog (BSV) in our work. One benefit of using BSV is that
it provides type checking and enforces a guarded interface
protocol and rule atomicity. Any violation of these is detected
by the compiler, along with combinational cycles, and this
enforcement helps considerably in preserving the correctness
of the design as various refinements are undertaken.

This paper makes the following contributions:
• Composable Modular Design (CMD) flow, a new framework

for implementing complex and realistic microarchitectures;
• A complete set of parameterized modules for implementing

out-of-order RISC-V processors. Modules include ROB,
instruction issue queue, load-store unit and a cache-coherent
memory system;

• A parameterized OOO processor built using the CMD
framework, which boots Linux, runs on FPGAs at up to
40 MHz and can be synthesized in a 32nm technology to
run up to 1.1 GHz clock speed;

• Extensive performance evaluation using SPEC CINT2006
and PARSEC benchmark suites – some executing up to three
trillion instructions – without seeing any hardware bugs.
The results show that our processor easily beats in-order
processors in terms of IPC but requires more work to compete
with wider superscalar commercial ARM processors.
The ultimate success of the CMD flow would be determined

by our ability and the ability of others in the community
to refine our OOO design in future. For this reason, we
have released all the designs at https://github.com/
csail-csg/riscy-OOO under the MIT License.
Paper organization: In Section II we present some other
frameworks for designing processors, especially for RISC-V.
Section III introduces modules and rules for the CMD flow
via simple examples. In Section IV we illustrate the need for
atomic actions across modules using an important example
from OOO microarchitecture. Section V introduces the top-
level modular decomposition of a multicore. We will define
the interfaces of the selected modules to show how these
modules can be connected to each other using atomic rules.
Section VI discusses the performance of SPEC benchmarks
on our processor as compared to other RISC-V processors
and ARM. We also discusses the synthesis results. Finally we
present our conclusions in Section VII.

II. RELATED WORK

There is a long, if not very rich, history of processors
that were designed in an academic setting. Examples of early
efforts include the RISC processors like MIPS [3], RISC I
and RISC II [4], and SPUR [5], and dataflow machines like
Monsoon [6], Sigma1 [7], EM4 [8], and TRIPS [9]. All these
attempts were focused on demonstrating new architectures;
there was no expectation that other people would improve or
refine an existing implementation. Publication of the RISC-V
ISA in 2010 has already unleashed a number of open-source

processor designs [10]–[17] and probably many more are in the
works which are not necessarily open source. There are also
examples of SoCs that use RISC-V processors. e.g.: [18]–[22].

Most open source RISC-V designs are meant to be used
by others in their own SoC designs and, to that extent, they
provide a framework for generating the RTL for a variety
of specific configurations of the design. We discuss several
examples of such frameworks:

• Rocket chip generator [15], [23], [24]: Developed at UC
Berkeley, it generates SoCs with RISC-V cores and accelera-
tors. The RISC-V cores are parameterized by caches, branch
predictors, degree of superscalarity, and ISA extensions such
as hardware multipliers (M), atomic memory instructions
(A), FPUs (F/D), and compressed instructions (C). At the
SoC level, one can specify the number of cores, accelerators
chosen from a fixed library, and the interconnect. Given
all the parameters, the Rocket chip generator produces
synthesizable Verilog RTL.
Rocket chip generator has been used for many SoC de-
signs [22], [25]–[29]. Some modules from the Rocket chip
generator have also been used to implement Berkeley’s Out-
of-Order BOOM processor [16]. The Rocket chip generator
is itself written in Chisel [30].

• FabScalar [31]: Developed at North Carolina State Uni-
versity, it allows one to assemble a variety of superscalar
designs from a set of predefined pipeline-stage blocks, called
CPSL. A template is used to instantiate the desired number
of CPSL for every stage and then glue them together. For
example, one can generate the RTL for a superscalar core
with 4 fetch stages, 6 issue/register read/write back, and a
chosen set of predictors. FabScalar have been successful
in generating heterogeneous cores using the same ISA for
a multicore chip [32], [33]. They report results which are
comparable to commercial hand-crafted RTL. These CPSLs
are not intended to be modified themselves.

• PULP [14]: Developed at ETH Zurich, the goal of PULP
project is to make it easy to design ultra-low power IoT SoC.
They focus on processing data coming from a variety of
sensors, each one of which may require a different interface.
The processor cores themselves are not intended to be
refined within this framework. A number of SoCs have
been fabricated using PULP [21].

All these frameworks are structural, that is, they guarantee
correctness only if each component meets its timing assump-
tions and functionality. For some blocks, the timing assumptions
are rigid, that is, the block takes a fixed known number of cycles
to produce its output. For some others, like cache accesses, the
timing assumption is latency insensitive. In putting together the
whole system, or in replacing a block, if the user observes all
these timing constraints, the result should be correct. However
no mechanical verification is performed to ensure that the
timing assumptions were not violated, and often these timing
violations are not obvious due to interactions across blocks
with different timing assumptions.

The goal of our CMD framework is more ambitious, in the

sense that, in addition to parameterized designs, we want the
users to be able to incorporate new microarchitectural ideas.
For example, replace a central instruction issue queue in an
OOO design, with several instruction issue queues, one for each
functional unit. Traditionally, making such changes requires a
deep knowledge of the internal functioning of the other blocks,
otherwise, the processor is unlikely to function. We want to
encapsulate enough properties in the interface of each block
so that it can be composed without understanding the internal
details.

A recent paper [34] argues for agile development of
processors along the lines of agile development of software.
The methodological concerns expressed in that paper are
orthogonal to the concerns expressed in this paper and the
two methodologies can be used together. However, we do
advocate going beyond simple structural modules advocated
in that paper to achieve true modularity which is amenable to
modular refinement.

III. INTERFACE METHODS AND GUARDED ATOMIC
ACTIONS IN BSV

Modules in BSV are like objects in object-oriented program-
ming languages such as C++ and Java. In these languages, an
object can be manipulated only by its interface methods and the
internals of a module are beyond reach except via its methods.
This allows us to use alternative implementations as long as the
interface does not change. We associate some extra properties
with interfaces in our hardware modules. Consider the case of
dequeuing from an empty FIFO. In software, this will raise an
exception, but in our hardware model, we assume that there
is an implicit guard (a ready signal) on every method which
must be true before the method can be invoked (enabled). The
methods of a module are invoked from a rule, aka, guarded
atomic action, or from other methods. Another difference from
a software language is that an action may call multiple methods
of the same or different modules concurrently. When an action
calls multiple methods then its effect is atomic; it is as if
either all of the methods were applied successfully or none
were applied. Thus, if an action has an effect, by definition
the guards of all of its method calls must have been true.
Generally, a rule can be applied at any time as long as its
guard is true. There are some exceptions to this general firing
condition which will be explained as we encounter them. We
illustrate these properties using a module which generates the
hardware to compute the greatest common divisor (GCD) of
two numbers.

A. GCD: An Example to Illustrate Latency-insensitivity

The interface of GCD is shown in Figure 1. It has two
interface methods: start, an Action method that affects the state
of the module but does not return any value; and getResult,
an ActionValue method which returns a value in addition to
affecting the state of the module. There is another type of
method called a value method, which does not affect the state
but returns a value of a given type. This GCD interface does not
have a value method, but we could have provided a different

interface by replacing getResult by a pair of methods, i.e.,
a value method called result and an action method called
deqResult to delete the result internally. The # sign marks a
type parameter, e.g., one could have defined the GCD interface
for n-bit values.

Figure 2 shows an implementation of the GCD interface
called mkGCD. An implementation first instantiates state
elements with appropriate reset values. In this example these
are registers x, y, and busy. An implementation of GCD must
provide implementations of methods in its interface: start and
getResult. The guard of the start method is the busy flag which
must be false before the method can be invoked, while the
guard condition of the getResult method is that the value of
register x is zero and module was busy. Method getResult
resets the busy flag, ensuring that start can only be called
when the result has been picked up. Such interfaces are called
latency-insensitive, because the use of GCD does not require
one to know how many iterations it takes to compute the result.

Finally the implementation must provide the rule or rules that
perform the actual GCD computation. In this implementation
rule doGCD accomplishes that. Though it is not required by
the semantics, the implementation of BSV provided by the
Bluespec Inc. compiler always implements each rule to execute
in a single cycle, that is, the register values are read at the
beginning of a clock cycle, and updated at the end. Thus,
x <= y; y <= x; swaps the values of x and y. The circuit
generated by this implementation of GCD is shown in Figure 3.

1 interface GCD;
2 method Action start(Bit#(32) a, Bit#(32) b);
3 method ActionValue#(Bit#(32)) getResult;
4 endinterface

Fig. 1. GCD Interface

1 module mkGCD (GCD);
2 Reg#(Bit#(32)) x <- mkReg(0);
3 Reg#(Bit#(32)) y <- mkReg(0);
4 Reg#(Bool) busy <- mkReg(False);
5 rule doGCD (x != 0);
6 if(x >= y) begin
7 x <= x - y;
8 end else begin // swap
9 x <= y; y <= x;

10 end
11 endrule
12 method Action start(Bit#(32) a, Bit#(32) b) if(!busy);
13 x <= a;
14 y <= (b == 0) ? a : b;
15 busy <= True;
16 endmethod
17 method ActionValue#(Bit#(32)) getResult if(busy && x==0);
18 busy <= False;
19 return y;
20 endmethod
21 endmodule

Fig. 2. GCD Implementation

B. High-throughput GCD

Suppose the GCD implementation in Figure 2 is “streamed”,
i. e., a rule initiates it repeatedly by calling start and another rule
picks up the result by calling getResult. This implementation
does not permit a call to start unless the getResult for the

busy
D Q

x
D Q

y
D Q

==0 x==0

>= x>=y

- x-y

y
x-y

a

x
a
b

1

0

ge
tR

es
ul

t
st

ar
t

a
b

RDY_start
EN_start

result
RDY_getResult

EN_getResult

y

x==0
busy

busy

Control
Logic

b
==0 b==0

EN_* b==0
x==0 x>=y

Fig. 3. Generated Hardware for GCD

previous start has been executed, and therefore, at most one
GCD would compute at a time. We can provide a different
implementation for the same GCD interface to give up to
twice the throughput by including two mkGCD modules that
compute concurrently. Figure 4 shows mkTwoGCD, a GCD
implementation to achieve this.

1 module mkTwoGCD(GCD);
2 GCD gcd1 <- mkGCD;
3 GCD gcd2 <- mkGCD;
4 Reg#(Bool) inTurn <- mkReg(True);
5 Reg#(Bool) outTurn <- mkReg(True);
6 method Action start(Bit#(32) a, Bit#(32) b);
7 if(inTurn) begin
8 gcd1.start(a,b); inTurn <= !inTurn;
9 end else begin

10 gcd2.start(a,b); inTurn <= !inTurn;
11 end
12 endmethod
13 method ActionValue#(Bit#(32)) getResult;
14 let y = ?;
15 if(outTurn) begin
16 y <- gcd1.getResult; outTurn <= !outTurn;
17 end else begin
18 y <- gcd2.getResult; outTurn <= !outTurn;
19 end
20 return y;
21 endmethod
22 endmodule

Fig. 4. High-throughput GCD

This implementation uses a very simple policy where the
two internal mkGCD modules are called in a round-robin
manner. The flags at the inputs and outputs of the mkGCD
modules track which unit should be used for start and which
unit should be used for getResult. It is possible to generalize
this implementation to improve the throughput further by using
N mkGCD modules. Even higher throughput can be achieved
if we don’t insist on the first-in first-out property of the GCD
module, however in that case the interface would have to
change to include tags for identification in the input and output.
Notice, the interface and the latency-insensitive aspects of GCD
are not affected by whether a module is pipelined or not.

The latency-insensitive design paradigm illustrated by this
example is useful in processors where we may want to increase
or decrease the number of functional units, or inside the
memory system where we may want to build non-blocking
caches with different degrees of associativity.

IV. NEED FOR ATOMIC ACTIONS ACROSS MODULES

The latency-insensitive design paradigm, though very useful
for composing modules, is not sufficient. We will first introduce
the problem using the Instruction Issue Queue (IQ) from OOO
microarchitectures and then show how our guarded interfaces
extended with concurrency properties help solve the problem.

A. Instruction Issue Queue (IQ)

All OOO processors contain one or more instruction issue
queue (IQ) like structures as shown in Figure 5. IQ contains
instructions which have been renamed but have not yet been
issued to execution pipelines. It holds all the source fields
(SRC#) and the ROB tag for every instruction. Each source
field contains the name of the physical register, and its ready
bit (R#), which is also known as the presence bit. The physical
register file (PRF) holds the values in the “renamed registers”
and the bit vector RDYB holds the associated presence bit for
each register. After renaming the source registers and allocating
a destination register in the PRF, an instruction, along with its
ROB tag, is entered into the ROB (not shown) and the IQ by
copying the PRF presence bits from the RDYB. The presence
bit in RDYB of the destination register of the instruction also
gets reset. When the instruction has all its presence bits set, it
can be issued to or equivalently pulled by an execution pipeline.
After the instruction leaves the execution pipeline, it writes
the result in the destination register in the PRF and sets its
presence bit. Additionally, if this register is present in any IQ,
then the presence bit associated with each of those locations
is also updated; this process is often known as wakeup. It is a
big challenge to design an IQ where, enter, issue, and wakeup
are performed concurrently.

SRC1 R1

RDYB

PRF

IQ

issue

enter

from Renaming

SRC2

Execution Pipeline

R2

write-back
And

wakeup
reg-read

Fig. 5. Atomicity issues in reading and writing the register ready bits.

To understand the difficulty of concurrently executing these
operations, consider the situation when an instruction is being
entered to IQ, and one of its source registers is concurrently
being woken up. Without a bypass path from the wakeup signal
to the entering logic, the instruction in the IQ will have its
source marked as not present, but the corresponding entry in
the PRF will be marked present. Thus, this newly entered
instruction will never be issued and will eventually lead to
deadlock.

To avoid this deadlock but still permit the enter and wakeup
operations to be performed concurrently, a bypass path is
required to compare the entering source registers against the
register being written. This bypass path can exist as special
“glue logic” between the RDYB and the IQ, or it can reside
within either the RDYB or the IQ. Concurrent actions like this
often destroy the modularity of a hardware design; modifying

the IQ implementation would require you to know internal
details of the RDYB implementation. For example, if the RDYB
implementation is missing a bypass path, then the IQ needs to
have a bypass path.

To make more sense of this concurrency issue, let’s examine
two different placement of the “wakeup bypass” path.
1) Inside RDYB: A bypass path can be implemented such

that enter sees the present-bit values as if they have been
updated by wakeup.

2) Inside IQ: A bypass path can be implemented such that
wakeup searches and updates all entries including the newly
inserted instruction by enter.

Both of these solutions imply an ordering between the two
concurrent actions; in solution 1 wakeup happens before enter,
but in solution 2 enter happens before wakeup. The crux
of the correctness problem is that each action needs to be
performed atomically, e.g., wakeup must update RDYB and
IQ simultaneously before any other action can observe its
effects. Similarly, enter must read RDYB and update IQ
atomically. When viewed in this manner, then the final state
must correspond to as if wakeup was performed before enter,
or enter was performed before wakeup. Thus, both bypassing
solutions produce a correct design as long as the ordering is
consistent across modules.

B. Conflict Matrix: Extending Module Interface with Concur-
rency Properties

A rule can call several methods of a module concurrently.
In such cases, the module interface definition must specify
whether such concurrent calls are permitted, and if they are
permitted then what is the resulting functionality. That is, does
the state of the module after the two of its methods f1 and
f2 are executed concurrently looks as if f1 executed followed
by f2, or does it look as if f2 executed followed by f1. This
information can be summarized in a Conflict Matrix (CM),
which for each pair of methods f1 and f2 specifies one of the
four possibilities {C,<,>,CF}, where C means f1 and f2
conflict and cannot be called concurrently. In all other cases f1
and f2 can be called concurrently, and < means that the net
effect would be as if f1 executed before f2, while > means
that the net effect would be as if f2 executed before f1. CF
means that the methods are “conflict free”, i.e., the method
ordering does not affect the final state value.

The notion of CM extends to rules in a natural way: two rules
conflict if any of their method calls conflict; rule1 < rule2 if
every method of rule1 is either < or CF with respect to every
method of rule2. The BSV compiler automatically generates
the CM for each module implementation and each pair of rules.
It also declares a rule or a method to be illegal if conflicting
methods are called concurrently [35], [36]. For example, the
CM for the GCD implementation in Figure 2 would show
that start and getResult conflict with each other because both
methods update the busy flag,

A constructive procedure to transform a module implemen-
tation to achieve the desired CM was given by Rosenband [2],
[37]. A detailed explanation of the transformation procedure

is beyond the scope of this paper. Now we will show how
CM information can be used to solve the IQ problem without
knowing the detailed implementation of each module.

C. A Composable Modular Design for IQ
Figure 6 shows the structure of a composable modular design

that solves the IQ concurrency problem. The interface methods
for modules IQ and RDYB are given in Figure 7. Though
no implementation is given, let us assume we can instantiate
modules iq and rdyb corresponding to each of these interfaces,
respectively. The rules that operate on these modules are shown
in Figure 8. We have taken liberties with type declarations in
the code to avoid clutter.

IQ

RDYB

PRF

Rename

Reg-Write

Issue Execution Pipeline

Fig. 6. CMD’s view of the concurrency problem. Each module has interface
methods that are called by external rules.

1 interface IQ;
2 method Action enter(decodedRenamedInst, rdy1, rdy2);
3 method Action wakeup(dstPhyReg);
4 method ActionValue#(IssueInst) issue();
5 endinterface
6 interface RDYB;
7 method Bool rdy1(r1); // check presence bit
8 method Bool rdy2(r2);
9 method Action setReady(dstR); // set presence bit

10 method Action setNotReady(dstR); // reset presence bit
11 endinterface

Fig. 7. Interfaces for the design in Figure 6

1 rule doRename;
2 // dInst has been decoded, renamed and entered into ROB
3 Bool rdy1 = rdyb.rdy1(dInst.src1);
4 Bool rdy2 = rdyb.rdy2(dInst.src2);
5 rdyb.setNotReady(dInst.dst);
6 iq.enter(dInst, rdy1, rdy2);
7 endrule
8 rule doIssue;
9 let rdyInst <- iq.issue();

10 exec.req(rdyInst); // go to exe pipeline
11 endrule
12 rule doRegWrite;
13 let wbInst <- exec.resp(); // inst leaves exe pipeline
14 iq.wakeup(wbInst.dst);
15 rdyb.setReady(wbInst.dst);
16 // write PRF, set ROB complete...
17 endrule

Fig. 8. Rules for the design in Figure 6

Now let us consider the rule doRename; it invokes three
methods: rdy1, rdy2, and setNotReady of the RDYB module
and the enter method of IQ concurrently. It is conceivable that
IQ is full and thus the enter method is not ready. In which case
to preserve rule atomicity, the whole doRename rule cannot
be executed.

Consider the case where all three rules execute concurrently
and affect the state in the order: doIssue < doRegWrite <

doRename. This will be feasible only if methods of various
modules have certain properties.
• IQ methods must behave as if issue < wakeup < enter
• RDYB methods must behave as if setReady <
{rdy1, rdy2, setNotReady}

It is always possible to design modules so that their meth-
ods will satisfy these properties [2]. The interesting ques-
tion is what happens to the overall design if a module
has slightly different properties. For example, suppose the
RDYB module does not do internal bypassing, and there-
fore {rdy1, rdy2, setNotReady} < setReady. In this case,
doRename and doRegWrite will no longer be able to execute
concurrently preserving atomicity. But doIssue will still be
able to fire concurrently with either one of them, but not
both. So the design with such a RDYB module will have
less overall concurrency implying less performance, but it will
still be correct. This type of reasoning is the main advantage
of thinking of a modular design in terms atomic actions and
interface methods as opposed to just an interconnection of
finite-state machines.

D. Modularity and Architectural Exploration

Now we illustrate another point where a different ordering of
atomic actions can have different implications for performance
and thus, can be a mechanism for microarchitectural exploration.
Consider the case where all three rules execute concurrently
and affect the state in the order: doRegWrite < doIssue <
doRename. This will be feasible only if methods of various
modules have the following properties.
• In IQ wakeup < issue < enter
• In RDYB setReady < {rdy1, rdy2, setNotReady}
This ordering implies that entries in the IQ are woken up before
issuing, so an instruction can be set as ready and issued in the
same cycle. This reduces a clock cycle of latency compared to
the other ordering of these rules. The point is that by playing
with these high-level ideas, the focus shifts from correctness
to exploration and performance.

V. COMPOSING AN OUT-OF-ORDER PROCESSOR

Figure 9 shows the overall structure of the OOO core. The
salient features of our OOO microarchitecture are the physical
register file (PRF), reorder buffer (ROB), a set of instruction
issue queues (IQ) – one for each execution pipeline (only
two are shown to avoid clutter), and a load-store unit, which
includes LSQ, non-blocking D cache, etc.

The front end has three different branch predictors (BTB,
tournament direction predictor, and return address stack) and
it enters instructions into ROB and IQs after renaming. We
use epochs for identifying wrong path instructions. Instructions
can be flushed because of branch mispredictions, load miss-
speculations on memory dependencies, and page faults on
address translation. Each instruction that may cause a flush is
assigned a speculation tag [16], [31], [38], and the subsequent
instructions that can be affected by it carry this tag. These
speculation tags are managed as a finite set of bit masks

Rename

ROB

ALU IQ Issue Reg
Read Exec Reg

Write

MEM IQ Issue Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Bypass

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch

Fig. 9. Structure of the OOO core

which are set and cleared as instruction execution proceeds.
When an instruction can no longer cause any flush, it releases
its speculation tag, and the corresponding bit is reset in the
bit masks of subsequent instructions so that the tag can be
recycled. To reduce the number of mask bits, we only assign
speculation tags to branch instructions, while deferring the
handling of interrupts, exceptions and load speculation failures
until the commit stage. Every module that keeps speculation-
related instructions must keep speculation masks and provide a
correctSpec method to clear bits from speculation masks, and
a wrongSpec method to kill instructions. We do not repeatedly
describe these two methods in the rest of this section.

We also maintain two sets of PRF presence bits to reduce
latency between dependent instructions. The true presence bits
are used in the Reg-Read stage to stall instructions. Another set
of presence bits (Scoreboard in Figure 9) are set optimistically
when it is known that the register would be set by an older
instruction with small predictable latency. These optimistic bits
are maintained as a scoreboard, and are used when instructions
are entered in IQ and can improve throughput for instructions
with back-to-back dependencies.

In Figure 9, boxes represent the major modules in the core,
while clouds represent the top-level rules. A contribution of
this paper is to show a set of easily-understandable interfaces
for all the modules, and show some atomic rules that are used
to compose the modules. The lack of space does not allow
us describe all the details but in the following subsections we
discuss all the salient modules and some important rules. We
will also describe briefly how we connect multiple OOO cores
to form a multiprocessor. The whole design has been released
publicly as the RiscyOO processor at https://github.
com/csail-csg/riscy-OOO. Due to lack of space, we
do not discuss the details of front-end, and directly get into
the execution engine and load-store unit.

A. The Execution Engine

The execution engine consists of multiple parallel execution
pipelines, and instructions can be issued from the IQs in
different pipelines simultaneously. The number of execution

pipelines is parameterized. Though instructions execute and
write the register file out of order, the program order is always
kept by ROB. The Physical Register File (PRF) is shared by
all execution pipelines, and it stores a presence bit for each
physical register. Unlike the Scoreboard, the presence bit can
be set only when the data is written to the physical register.
Each IQ is responsible for tracking read-after-write (RAW)
dependencies, and issuing instructions with all source operands
ready, as discussed in Section IV-C. The most important module
is ROB which we discuss next.
ROB: ROB keeps in program order all in-flight instructions
which have been renamed but not yet committed. Each entry
has a PC, instruction type, a speculation mask, a completion bit,
detected exceptions, index to LSQ and page-fault address for
memory instructions, and a few more miscellaneous status bits.
Instructions that manipulate system special registers (CSRs in
RISC-V) overload the fault-address field as a data field. In a
different design, it may be possible to reduce the width of ROB
entries by keeping these data or address fields in a separate
structure, without affecting the ROB interface. ROB can use
a single register to hold CSR data, because we allow only
one CSR instruction in flight, and another register to store the
oldest faulting address. However, LSQ may need to keep virtual
addresses in each of its slots, because in RISC-V, a memory
access can cause exception even after address translation. In
addition to enq, deq, first, ROB has the following methods:

• getEnqIndex: returns the index for the slot where the next
entry will be allocated.

• setNonMemCompleted: marks the instruction at the specified
ROB index to have completed (so that it can be committed
later).

• setAfterTranslation: is called when a memory instruction
has finished address translation. It tells the ROB whether
the memory instruction can only access memory non-
speculatively (so ROB will notify LSQ when the instruction
reaches the commit slot), and also marks it complete in case
of a normal store.

• setAtLSQDeq: is called when load or memory-mapped store
is dequeued from LSQ. It marks exception or load speculation
failure or complete.

Bypass: Instead of bypassing values in an ad-hoc manner, we
have created a structure to bypass ALU execution results from
the Exec and Reg-Write rules in the ALU pipeline to the Reg-
Read rule of every pipeline. It provides a set method for each
of the Exec and Reg-Write rules to pass in the ALU results,
and a get method for each of the Reg-Read rules to check for
the results passed to the set methods in the same cycle. These
methods are implemented such that set < get.

B. Load-Store Unit

The load-store unit consists of an LSQ, a store buffer (SB)
and a non-blocking L1 D cache. LSQ contains a load queue
(LQ) and a store queue (SQ) to keep in-flight loads and stores
in program order, respectively. The SB holds committed stores
that have not been written into L1 D.

When a memory instruction leaves the front-end, it enters
the IQ of the memory pipeline and allocates an entry in LQ
or SQ. The memory pipeline computes the virtual address
in the Addr-Calc stage and then sends it to L1 D TLB for
address translation (see Figure 9). When the translation result
is available, the Update-LSQ stage checks if there is a page
fault, and if the memory instruction is accessing the normal
cached memory region or the memory mapped IO (MMIO)
region. It also updates the ROB, and LQ or SQ entry for this
instruction accordingly. In case of a normal load, it is executed
speculatively either by sending it to L1 or by getting its value
from SB or SQ. However, it may have to be stalled because of
fences, partially overlapped older stores, and other reasons.
Thus, LQ needs internal logic that searches for ready-to-
issue loads every cycle. Speculative loads that violate memory
dependency are detected and marked as to-be-killed when the
Update-LSQ stage updates the LSQ with a store address.

Unlike normal loads, MMIO accesses and atomic accesses
(i.e., load reserve, store conditional and read-modify-write)
can only access memory when the instruction has reached the
commit stage.

Normal stores can be dequeued from SQ sequentially after
they have been committed from ROB. In case of TSO, only
the oldest store in SQ can be issued to L1 D provided that
the store has been committed from ROB. However it can be
dequeued from SQ only when the store hits in the cache.
Though there can be only one store request in L1 D, SQ can
issue as many store-prefetch requests as it wants. Currently we
have not implemented this feature. In case of a weak memory
model like WMM [39] or GAM [40], the dequeued store will
be inserted into a store buffer (SB) without being issued to L1
D. SB can coalesce stores for the same cache line and issue
stores to L1 D out of order.

Normal loads can be dequeued from LQ sequentially after
they get the load values and all older stores have known ad-
dresses, or they become faulted or to-be-killed. A dequeued load
marks the corresponding ROB entry as complete, exception,
or to-be-killed.
LSQ: As mentioned earlier, loads and stores are kept in separate
queues. In order to observe the memory dependency between
loads and stores, each load in LQ keeps track of the index of
the immediately preceding SQ entry. In case a load has been
issued from LQ, the load needs to track whether its value will
come from the cache or by forwarding from an SQ entry or
a SB entry. When a load tries to issue, it may not be able to
proceed because of fences or partially overlapped older stores.
In such cases, the load records the source that stalls it, and
retries after the source of the stall has been resolved. In case of
ROB flush, if a load, which is waiting for the memory response,
is killed, then this load entry is marked as waiting for a wrong
path response. Because of this bit, we can reallocate this entry
to a new load, but not issue it until the bit is cleared. The LSQ
module has the following methods:

• enq: allocates a new entry in LQ or SQ for the load or store
instruction, respectively, at the Rename stage.

• update: is called after a memory instruction has translated
its address and, in case of a store, the store has computed its
data. This fills the physical address (and store data) into the
corresponding entry of the memory instruction. In case the
memory instruction is a store, this method also searches for
younger loads that violate memory dependency ordering and
marks them as to-be-killed. Depending upon the memory
model, more killings may have to be performed. We have
implemented the killing mechanisms for TSO and WMM; it
is quite straightforward to implement other weak memory
models.

• getIssueLd: returns a load in LQ that is ready to issue, i.e.,
the load does not have any source of stall and is not waiting
for wrong path response.

• issueLd: tries to issue the load at the given LQ index. This
method will search older stores in SQ to check for forwarding
or stall. The method also takes as input the search result
on store buffer, which is combined with the search result
on store queue to determine if the load is stalled or can be
forwarded, or should be issued to cache. In case of stall, the
source of stall will be recorded in the load queue entry.

• respLd: is called when the memory response or forwarding
data is ready for a load. This returns if the response is at
wrong path, and in case of a wrong path response, the waiting
bit will be cleared.

• wakeupBySBDeq: is called in the WMM implementation
when a store buffer entry is dequeued. This removes the
corresponding sources of stall from load queue entries.

• cacheEvict: is called in the TSO implementation when a
cache line is evicted from L1 D. This searches for loads
that read stale values which violate TSO, and marks them
as to-be-killed.

• setAtCommit: is called when the instruction has reached the
commit slot of ROB (i.e., cannot be squashed). This enables
MMIO or atomic accesses to start accessing memory, or
enables stores to be dequeued.

• firstLd/firstSt: returns the oldest load/store in LQ/SQ.
• deqLd/deqSt: removes the oldest load/store from LQ/SQ.

Store Buffer: The store buffer has the following methods:

• enq: inserts a new store into the store buffer. If the new store
address matches an existing entry, then the store is coalesced
with the entry; otherwise a new buffer entry is allocated.

• issue: returns the address of an unissued buffer entry, and
marks the entry as issued.

• deq: removes the entry specified by the given index, and
returns the contents of the entry.

• search: returns the content of the store buffer entry that
matches the given address.

L1 D Cache: The L1 D Cache module has the following
methods:

• req: request the cache with a load address and the cor-
responding load queue index, or a store address and the
corresponding store buffer index.

• respLd: returns a load response with the load queue index.

• respSt: returns a store buffer index. This means that the
cache has exclusive permission for the address of the indexed
store buffer entry. The cache will remained locked until the
writeData method is called to write the store data of the
indexed store buffer entry into cache.

• writeData: writes data to cache; the data should correspond
to the previously responded store buffer index.

L1 D also has the interface to connect to the L2 cache.
L1 D TLB: The L1 D TLB has FIFO-like request and response
interface methods for address translation. It also has methods
to be connected to the L2 TLB.

C. Connecting Modules Together

Our CMD framework uses rules to connect modules together
for the OOO core. The rules call methods of the modules, and
this implicitly describes the datapaths between modules. More
importantly, the rules are guaranteed to fire atomically, leaving
no room for concurrency bugs. The challenging part is to have
rules fire in the same cycle. To achieve this, the conflict matrix
of the methods of each module has to be designed so that
the rules are not conflicting with each other. Once the conflict
matrix a module is determined, there is a mechanical way
to translate an initial implementation whose methods conflict
with each other to an implementation with the desired conflict
matrix. It should be noted that though the rules fire in the same
cycle, they still behave as if they are firing one after another.

There are about a dozen rules at the top level. Instead of
introducing all the rules, we explain two rules in detail to further
illustrate the atomicity issue. Figure 10 shows the doIssueLd
and doRespSt rules. The doIssueLd rules first gets a ready-
to-issue load from the LSQ module. Then it searches the
store buffer for possible forwarding or stall (due to partially
overlapped entry). Next it calls the issueLd method of LSQ to
combine the search on the store buffer and the search on the
store queue in LSQ to derive whether the load can be issued
or forwarded. The respSt rule first gets the store response from
the L1 D cache. Then it dequeues the store from the store
buffer and writes the store to L1 D. Finally, it wakes up loads
in LSQ that has been stalled by this store earlier.

1 rule doIssueLd;
2 let load <- lsq.getIssueLd;
3 let sbSearchResult = storeBuffer.search(load.addr);
4 let issueResult <- lsq.issueLd(load, sbSearchResult);
5 if(issueResult matches tagged Forward .data) begin
6 // get forwarding, save forwarding result in a FIFO

which will be processed later by the doRespLd rule
7 forwardQ.enq(tuple2(load.index, data));
8 end else if(issueResult == ToCache) begin
9 // issue to cache

10 dcache.req(Ld, load.index, load.addr);
11 end // otherwise load is stalled
12 endrule
13 rule doRespSt;
14 let sbIndex <- dcache.respSt;
15 let data, byteEn <- storeBuffer.deq(sbIndex);
16 dcache.writeData(data, byteEn);
17 lsq.wakeupBySBDeq(sbIndex);
18 endrule

.
Fig. 10. Rules for LSQ and Store Buffer

Without our CMD framework, when these two rules fire
in the same cycle, concurrency bug may arise because both
rules race with each other on accessing states in LSQ and the
store buffer. Consider the case that the load in the doIssueLd
rule has no older store in LSQ, but the store buffer contains
a partially overlapped entry which is being dequeued in the
doRespSt rule. In this case, the two rules race on the valid bit
of the store buffer entry, and the source of stall for the load.
Without CMD, if we pay no attention to the races here and
just let all methods read the register states at the beginning
of the cycle, then the issueLd method in the doIssueLd rule
will records the store buffer entry as stalling the load, while
the wakeupBySBDeq method in the doRespLd rule will fail
to clear the stall source for the load. In this case, the load
may be stalled forever without being waken up for retry. With
our CMD framework, the methods implemented in the above
way will lead the two rules to conflict with each other, i.e.,
they cannot fire in the same cycle. To make them fire in the
same cycle, we can choose the conflict matrix of LSQ to be
issueLd < wakeupBySBDeq, and the conflict matrix of the
store buffer to be search < deq. In this way, the two rules
can fire in the same cycle, but rule doIssueLd will appear to
take effect before rule doRespSt.

D. Multicore

We have connected the OOO cores together to form a multi-
processor as shown in Figure 11. The L1 caches communicate
with the shared L2 via a cross bar, and the L2 TLBs sends
uncached load requests to L2 via another cross bar to perform
hardware page walk. All memory accesses, including memory
requests to L1 D made by memory instructions, instruction
fetches, and loads to L2 for page walk, are coherent. We
implemented an MSI coherence protocol which has been
formally verified by Vijayaraghavan et al. [41]. It should not
be difficult to extend the MSI protocol to a MESI protocol.
Our current prototype on FPGA can have at most four cores. If
the number of cores becomes larger in future, we can partition
L2 into multiple banks, and replace the cross bars with on-chip
networks.

Core N

L1 I$ L1 D$L2 TLB L1 I$ L1 D$L2 TLB

Cache Cross Bar

Non-Blocking Shared L2 $

Page Walk Cross Bar

Core 1

Uncached loads

…

Fig. 11. Multiprocessor

VI. EVALUATION

To demonstrate the effectiveness of our CMD framework, we
have designed a parameterized superscalar out-of-order proces-
sor, RiscyOO, using CMD. To validate correctness and evaluate
performance at microarchitectural level, we synthesized the
processor on AWS F1 FPGA [42] with different configurations
(e.g., different core counts and buffer sizes). The processor

boots Linux on FPGA, and benchmarking is done under this
Linux environment (i.e., there is no syscall emulation). For
single-core performance, we ran SPEC CINT2006 benchmarks
with ref input to completion. The instruction count of each
benchmark ranges from 64 billion to 2.7 trillion. With the
processor running at 40 MHz on FPGA, we are able to complete
the longest benchmark in about two days. For multicore
performance, we run PARSEC benchmarks [43] with the
simlarge input to completion on a quad-core configuration
at 25 MHz.

We will first give single-core performance, then multicore
performance followed by ASIC synthesis results.

A. Single-Core Performance

Methodology: Figure 12 shows the basic configuration, re-
ferred to as RiscyOO-B, of our RiscyOO processor. Since
the number of cycles needed for a memory access on FPGA
is much lower than that in a real processor, we model the
memory latency and bandwidth for a 2 GHz clock in our
FPGA implementation.

We compare our design with the four processors shown in
Figure 13: Rocket1 (RISC-V ISA), A57 (ARM ISA), Denver
(ARM ISA), and BOOM (RISC-V ISA). In Figure 13, we have
also grouped these processors into three categories: Rocket is
an in-order processor, A57 and Denver are both commercial
ARM processors, and BOOM is the state-of-the-art academic
OOO processor.

The memory latency of Rocket is configurable, and is 10
cycles by default. We use two configurations of Rocket in our
evaluation, i.e., Rocket-10 with the default 10-cycle memory
latency, and Rocket-120 with 120-cycle memory latency which
matches our design. Since Rocket has small L1 caches, we
instantiated a RiscyOO-C- configuration of our processor, which
shrinks the caches in the RiscyOO-B configuration to 16KB
L1 I/D and 256KB L2.

To illustrate the flexibility of CMD, we created another
configuration RiscyOO-T+, which improves the TLB microar-
chitecture of RiscyOO-B. In RiscyOO-B, both L1 and L2 TLBs
block on misses, and a L1 D TLB miss blocks the memory
execution pipeline. RiscyOO-T+ supports parallel miss handling
and hit-under-miss in TLBs (maximum 4 misses in L1 D TLB
and 2 misses in L2 TLB). RiscyOO-T+ also includes a split
translation cache that caches intermediate page walk results [45].
The cache contains 24 fully associative entries for each level
of page walk. We implemented all these microarchitectural
optimizations using CMD in merely two weeks.

We also instantiated a RiscyOO-T+R+ configuration which
extends the ROB size of RiscyOO-T+ to 80, in order to match
BOOM’s ROB size and compare with BOOM.

Figure 14 has summarized all the variants of the RiscyOO-B
configuration, i.e., RiscyOO-C-, RiscyOO-T+ and RiscyOO-
T+R+.

The evaluation uses all SPEC CINT2006 benchmarks except
perlbench which we were not able to cross-compile to RISC-V.

1The prototype on AWS is said to have an L2 [44], but we have confirmed
with the authors that there is actually no L2 in this publicly released version.

We ran all benchmarks with the ref input to completion on all
processors except BOOM, whose performance results are taken
directly from [46]. We did not run BOOM ourselves because
there is no publicly released FPGA image of BOOM. Since
the processors have different ISAs and use different fabrication
technology, we measure performance in terms of one over the
number of cycles needed to complete each benchmark (i.e.,
1 / cycle count). Given so many different factors across the
processors, this performance evaluation is informative but not
rigorous. The goal here is to show that the OOO processor
designed with CMD can achieve reasonable performance.

Front-end 2-wide superscalar fetch/decode/renam
256-entry direct-mapped BTB
tournament branch predictor as in Alpha 21264 [47]
8-entry return address stack

Execution 64-entry ROB with 2-way insert/commit
Engine Total 4 pipelines: 2 ALU, 1 MEM, 1 FP/MUL/DIV

16-entry IQ per pipeline
Ld-St Unit 24-entry LQ, 14-entry SQ, 4-entry SB (each 64B wide)
TLBs Both L1 I and D are 32-entry, fully associative

L2 is 2048-entry, 4-way associative
L1 Caches Both I and D are 32KB, 8-way associative, max 8 requests
L2 Cache 1MB, 16-way, max 16 requests, coherent with I and D
Memory 120-cycle latency, max 24 req (12.8GB/s for 2GHz clock)

Fig. 12. RiscyOO-B configuration of our RISC-V OOO uniprocessor

Name Description Catergory

Rocket

Prototype on AWS F1 FPGA for FireSim
Demo v1.0 [48]. RISC-V ISA, in-order
core, 16KB L1 I/D, no L2, 10-cycle or
120-cycle memory latency.

In-order

A57
Cortex-A57 core on Nvidia Jetson Tx2.
ARM ISA, 3-wide superscalar. OOO core,
48KB L1 I, 32KB L1 D, 2MB L2. Commercial ARM

Denver
Denver core [49] on Nvidia Jetson Tx2.
ARM ISA, 7-wide superscalar. 128KB L1
I, 64KB L1 D, 2MB L2.

BOOM

Performance results taken from [46].
RISC-V ISA, 2-wide superscalar. OOO
core, 80-entry ROB, 32KB L1 I/D, 1MB
L2, 23-cycle L2 latency, 80-cycle memory
latency.

Academic OOO

Fig. 13. Processors to compare against

Variant Difference Specifications
RiscyOO-C- Smaller Caches 16 KB L1 I/D, 256 KB L2

RiscyOO-T+ Improved TLB Non-blocking TLBs, page table
walk cache

RiscyOO-T+R+ Larger ROB RiscyOO-T+ with 80-entry ROB

Fig. 14. Variants of the RiscyOO-B configuration

Effects of TLB microarchitectural optimizations: Before
comparing with other processors, we first evaluate the effects
of the TLB microarchitectural optimizations employed in
RiscyOO-T+. Figure 15 shows the performance of RiscyOO-T+,
which has been normalized to that of RiscyOO-B, for each
benchmark. Higher values imply better performance. The last
column is the geometric mean across all benchmarks. The TLB
optimizations in RiscyOO-T+ turn out to be very effective: on
average, RiscyOO-T+ outperforms RiscyOO-B by 29% and it
doubles the performance of benchmark astar.

To better understand the performance differences, we show
the number of L1 D TLB misses, L2 TLB misses, branch

mispredictions, L1 D cache misses and L2 cache misses per
thousand instructions of RiscyOO-T+ in Figure 16. Benchmarks
mcf, astar and omnetpp all have very high TLB miss rates.
Although RiscyOO-B has a very large L2 TLB, the blocking
nature of L1 and L2 TLBs still makes TLB misses incur a huge
penalty. The non-blocking TLB designs and translation caches
in RiscyOO-T+ mitigate the TLB miss penalty and result in a
substantial performance gain.

This evaluation shows that microarchitectural optimizations
can bring significant performance benefits. It is because of
CMD that we can implement and evaluate these optimiza-
tions in a short time. Since RiscyOO-T+ always outperforms
RiscyOO-B, we will use RiscyOO-T+ instead of RiscyOO-B
to compare with other processors.

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref astar
omnetpp

xalancbmk
geo-mean

0

1

2

No
rm

al
ize

d
pe

rfo
rm

an
ce

RiscyOO-T +

Fig. 15. Performance of RiscyOO-T+ normalized to RiscyOO-B. Higher is
better.

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref astar
omnetpp

xalancbmk
0

10

20

30

40

50

60

m
iss

es
 p

er
 1

K
in

st
ru

ct
io

ns

96 133 91
DTLB L2TLB BrPred D$ L2$

Fig. 16. Number of L1 D TLB misses, L2 TLB misses, branch mispredictions,
L1 D misses and L2 misses per thousand instructions of RiscyOO-T+

Comparison with the in-order Rocket processor: Figure 17
shows the performance of RiscyOO-C-, Rocket-10, and Rocket-
120 for each benchmark. The performance has been normalized
to that of RiscyOO-T+. We do not have libquantum data for
Rocket-120 because each of our three attempts to run this
benchmark ended with an AWS server crash after around two
days of execution.

As we can see, Rocket-120 is much slower than RiscyOO-
T+ and RiscyOO-C- on every benchmark, probably because
its in-order pipeline cannot hide memory latency. On average,
RiscyOO-T+ and RiscyOO-C- outperform Rocket-120 by 319%
and 196%, respectively. Although Rocket-10 has only 10-cycle
memory latency, RiscyOO-T+ still outperforms Rocket-10 in
every benchmark, and even RiscyOO-C- can outperform or tie
with Rocket-10 in many benchmarks. On average, RiscyOO-
T+ and RiscyOO-C- outperforms Rocket-10 by 53% and 8%,
respectively. This comparison shows that our OOO processor
can easily outperform in-order processors.
Comparison with commercial ARM processors: Figure 18
shows the performance of ARM-based processors, A57 and
Denver, for each benchmark. The performance has been

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref astar
omnetpp

xalancbmk
geo-mean

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
pe

rfo
rm

an
ce

RiscyOO-C Rocket-10 Rocket-120

Fig. 17. Performance of RiscyOO-C-, Rocket-10, and Rocket-120 normalized
to RiscyOO-T+. Higher is better.

normalized to that of RiscyOO-T+. A57 and Denver are
generally faster than RiscyOO-T+, except for benchmarks mcf,
astar and omnetpp. On average, A57 outperforms RiscyOO-T+

by 34%, and Denver outperforms RiscyOO-T+ by 45%.
To better understand the performance differences, we revisit

the miss rates of RiscyOO-T+ in Figure 16. Because of the
high TLB miss rates in benchmarks mcf, astar and omnetpp,
the TLB optimizations enable RiscyOO-T+ to catch up with or
outperform A57 and Denver in these benchmarks. Commercial
processors have significantly better performance in benchmarks
hmmer, h264ref, and libquantum. Benchmarks hmmer and
h264ref both have very low miss rates in TLBs, caches and
branch prediction, so the higher performance in A57 and
Denver may be caused by their wider pipelines (our design
is 2-wide superscalar while A57 is 3-wide and Denver is 7-
wide). Benchmark libquantum has very high cache miss rates,
and perhaps commercial processors have employed memory
prefetchers to reduce cache misses.

Since we do not know the details of commercial processors,
we cannot be certain about our reasons for the performance
differences. In spite of this, the comparison still shows that
the performance of our OOO design is not out of norm.
However, we do believe that to go beyond 2-wide superscalar
our processor will require more architectural changes especially
in the front-end.

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref astar
omnetpp

xalancbmk
geo-mean

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
pe

rfo
rm

an
ce

3.19 3.97
A57 Denver

Fig. 18. Performance of A57 and Denver normalized to RiscyOO-T+. Higher
is better.

Comparison with the academic OOO processor BOOM:
Figure 19 shows the IPCs of BOOM and our design RiscyOO-
T+R+2. We have tried our best to make the comparison fair
between RiscyOO-T+R+ and BOOM. RiscyOO-T+R+ matches
BOOM in the sizes of ROB and caches, and the influence of the

2For each benchmark, we ran all the ref inputs (sometimes there are more
than one), and computed the IPC using the aggregate instruction counts and
cycles. This makes our instruction counts close to those reported by BOOM.

longer L2 latency in BOOM can be partially offset by the longer
memory latency in RiscyOO-T+R+. BOOM did not report IPCs
on benchmarks gobmk, hmmer and libquantum [46], so we
only show the IPCs of remaining benchmarks. The last column
shows the harmonic mean of IPCs over all benchmarks.

On average, RiscyOO-T+R+ and BOOM have similar perfor-
mance, but they outperform each other in different benchmarks.
For example, in benchmark mcf, RiscyOO-T+R+ (IPC=0.16)
outperforms BOOM (IPC=0.1), perhaps because of the TLB
optimizations. In benchmark sjeng, BOOM (IPC=1.05) out-
performs RiscyOO-T+R+ (IPC=0.73). This is partially because
RiscyOO-T+R+ suffers from 29 branch mispredictions per
thousand instructions while BOOM has about 20 [46].

This comparison shows that our OOO processor designed
using CMD has matching performance with the state-of-the-art
academic processors.

bzip2 gcc mcf sjeng
h264ref

omnetpp astar
xalancbmk

har-mean
0.0

0.5

1.0

IP
C

BOOM RiscyOO-T + R +

Fig. 19. IPCs of BOOM and RiscyOO-T+R+ (BOOM results are taken
from [46])

Summary: Our parameterized OOO processor designed using
CMD is able to complete benchmarks of trillions of instructions
without errors. It can easily outperform in-order processors
(e.g., Rocket) and matches state-of-the-art academic OOO
processors (e.g., BOOM), though not as good as highly
optimized commercial processors.

B. Multicore Performance

Methodology: We implemented a quad-core multiprocessor
on FPGA. Each core in the processor is derived from our OOO
single-core designed using CMD to support proper memory
models. Following the CMD methodology, we have derived
two versions of the OOO core which supports TSO and WMM
respectively. The major changes are in the LSQ module and
surrounding rules.

To fit the design onto FPGA, each OOO core is instantiated
with 48-entry ROB, and other buffer sizes are also reduced
accordingly. Note that the OOO core is still 2-wide fetch/de-
code/rename/commit and it has four pipelines.

We run PARSEC benchmarks on the TSO and WMM quad-
core multiprocessors. Among the 13 PARSEC benchmarks,
we could not cross-compile raytrace, vips and dedup to
RISC-V. Though we have managed to compile bodytrack,
x264 and canneal, they cannot run even on the RISC-V
ISA simulator [50], which is the golden model for RISC-
V implementations. Therefore, we only use the remaining
seven benchmarks for evaluation. We run each benchmark
with the simlarge input to completion with one, two and four
threads, respectively. We measure the execution time of the

parallel phase (i.e., the region marked by parsec roi begin and
parsec roi end).
Results: Figure 20 shows the performance of each benchmark
running on TSO and WMM multicores with different number
of threads. For each benchmark, the performance has been
normalized to that of TSO with 1 thread. The last column
is the geometric mean across all benchmarks. Higher values
imply better performance. As we can see, there is no discernible
difference between the performance of TSO and WMM. This
is because speculative loads in TSO that get killed by cache
eviction are extremely rare: maximum 0.25 kills per thousand
instructions (in benchmark streamcluster). One interesting
phenomenon is that benchmark freqmine has super-linear
speedup. We are still investigating the reasons, but one possible
explanation is that when running with one core, the data set
processed by this core becomes larger, and miss rate in TLB
and caches will become higher.

blackscholes
facesim ferret

fluidanimate
freqmine

swaptions

streamcluster
geo-mean

0

2

4

No
rm

al
ize

d
pe

rfo
rm

an
ce

wmm-1 tso-2 wmm-2 tso-4 wmm-4

Fig. 20. Performance of TSO and WMM multicores with different number
of threads (normalized to TSO with 1 thread). Legend tso-n or wmm-n means
TSO or WMM with n threads. Higher is better.

C. ASIC Synthesis

To evaluate the quality of the produced designs, we syn-
thesized a single core (processor pipeline and L1 caches) of
the RiscyOO-T+ and RiscyOO-T+R+ processor configurations
for ASIC. Our synthesis flow used a 32 nm SOI technology
and SRAM black-boxes using timing information from CACTI
6.5 [51]. We performed topographical synthesis using Syn-
opsys’s Design Compiler, i.e., we performed a timing-driven
synthesis which performs placement heuristics and includes
resistive and capacitive wire delays in the timing model. This
approach significantly reduces the gap between post-synthesis
results and post-placement and routing results. We produced a
maximum frequency for each configuration by reporting the
fastest clock frequency which was successfully synthesized. We
produced a NAND2-equivalent gate count by taking the total
cell area and dividing by the area of a default-width NAND2
standard cell in our library. As a result, our NAND2-equivalent
gate count is logic-only and does not include SRAMs.

Core Configuration RiscyOO-T+ RiscyOO-T+R+

Max Frequency 1.1 GHz 1.0 GHz
NAND2-Equivalent Gates 1.78 M 1.89 M

Fig. 21. ASIC synthesis results

Results: The synthesis results are shown in Figure 21. Both
processors can operate at 1.0 GHz or above. The area of

the RiscyOO-T+R+ configuration is only 6.2% more than
that of the RiscyOO-T+ configuration, because RiscyOO-T+R+

increases only the ROB size and the number of speculation
tags over RiscyOO-T+. The NAND2-equivalent gate counts
of the processors are significantly affected by the size of the
branch predictors. This can be reduced by either reducing the
size of the tournament branch predictor and/or utilizing SRAM
for part of the predictor.

VII. CONCLUSION

To fully benefit from the openness of RISC-V, the archi-
tecture community needs a framework where many different
people can cooperate to try out new ideas in real hardware.
Although existing chip generators can connect parameterized
building blocks together, they do not allow frequent changes
to the building blocks. We have also shown that latency-
insensitive interfaces alone are insufficient in processor designs.
In this paper, we have proposed the CMD framework in which
modules have guarded interface methods, and are composed
together using atomic actions. With the atomicity guarantee in
CMD, modules can be refined selectively relying only on the
interface details, including Conflict Matrix, of other modules.
We have shown the efficacy of CMD by designing an OOO
processor which has fairly complex architectural features. Both
the synthesis results and the performance results are very
encouraging, and with sufficient effort by the community, it
should be possible to deliver commercial grade OOO processors
in not too distant a future.

ACKNOWLEDGMENT

We thank all the anonymous reviewers for their helpful
feedbacks on improving this paper. We have also benefited from
the help from Jamey Hicks and Muralidaran Vijayaraghavan.
We would like to particularly thank Bluespec, Inc. for providing
free tool licenses. This research is supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract
No. FA8750-16-2-0004 (program BRASS) and Contract No.
HR001118C0018 (program SSITH). Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of the Defense Advanced Research Projects Agency (DARPA).

REFERENCES

[1] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for RISC-V,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, Aug 2014. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html

[2] D. L. Rosenband, “The ephemeral history register: flexible scheduling for
rule-based designs,” in Formal Methods and Models for Co-Design, 2004.
MEMOCODE’04. Proceedings. Second ACM and IEEE International
Conference on. IEEE, 2004.

[3] J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross, F. Baskett,
and J. Gill, “MIPS: A microprocessor architecture,” in ACM SIGMICRO
Newsletter, vol. 13, no. 4. IEEE Press, 1982.

[4] D. A. Patterson and D. R. Ditzel, “The case for the reduced instruction
set computer,” SIGARCH Comput. Archit. News, vol. 8, Oct. 1980.
[Online]. Available: http://doi.acm.org/10.1145/641914.641917

[5] M. D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. D. Adams, B. K.
Bose, G. A. Gibson, P. M. Hansen, J. Keller, S. I. Kong et al., SPUR: a
VLSI multiprocessor workstation. University of California, 1985.

[6] G. M. Papadopoulos and D. E. Culler, “Monsoon: an explicit token-store
architecture,” in ACM SIGARCH Computer Architecture News, vol. 18,
no. 2SI. ACM, 1990.

[7] K. Hiraki, K. Nishida, S. Sekiguchi, T. Shimada, and T. Yuba, “The
SIGMA-1 dataflow supercomputer: A challenge for new generation
supercomputing systems,” Journal of Information Processing, vol. 10,
1987.

[8] S. Sakai, K. Hiraki, Y. Kodama, T. Yuba et al., “An architecture of a
dataflow single chip processor,” in ACM SIGARCH Computer Architecture
News, vol. 17, no. 3. ACM, 1989.

[9] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with
the polymorphous TRIPS architecture,” in Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium on. IEEE, 2003.

[10] N. Gala, A. Menon, R. Bodduna, G. S. Madhusudan, and
V. Kamakoti, “SHAKTI processors: An open-source hardware initiative,”
in 2016 29th International Conference on VLSI Design and 2016
15th International Conference on Embedded Systems (VLSID), Jan
2016. [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=7434907&newsearch=true&queryText=risc-v

[11] “SHAKTI,” https://bitbucket.org/casl/shakti public/. [Online]. Available:
https://bitbucket.org/casl/shakti public/

[12] “Picorv32,” https://github.com/cliffordwolf/picorv32. [Online]. Available:
https://github.com/cliffordwolf/picorv32

[13] “Scr1,” https://github.com/syntacore/scr1. [Online]. Available: https:
//github.com/syntacore/scr1

[14] “PULP platform,” https://github.com/pulp-platform. [Online]. Available:
https://github.com/pulp-platform

[15] “Rocket core,” https://github.com/ucb-bar/rocket, accessed: 2015-04-07.
[Online]. Available: https://github.com/ucb-bar/rocket

[16] “The Berkeley out-of-order RISC-V processor,” https://github.com/
ucb-bar/riscv-boom, accessed: 2015-04-07. [Online]. Available: https:
//github.com/ucb-bar/riscv-boom

[17] E. Matthews and L. Shannon, “TAIGA: A new RISC-V soft-processor
framework enabling high performance cpu architectural features,” in
2017 27th International Conference on Field Programmable Logic and
Applications (FPL), Sept 2017.

[18] U. Banerjee, C. Juvekar, A. Wright, Arvind, and A. P. Chandrakasan,
“An energy-efficient reconfigurable DTLS cryptographic engine for end-
to-end security in IoT applications,” in 2018 IEEE International Solid -
State Circuits Conference - (ISSCC), Feb 2018.

[19] C. Duran, D. L. Rueda, G. Castillo, A. Agudelo, C. Rojas, L. Chaparro,
H. Hurtado, J. Romero, W. Ramirez, H. Gomez, J. Ardila, L. Rueda,
H. Hernandez, J. Amaya, and E. Roa, “A 32-bit RISC-V AXI4-lite
bus-based microcontroller with 10-bit SAR ADC,” in 2016 IEEE 7th
Latin American Symposium on Circuits Systems (LASCAS), Feb 2016.

[20] J. Gray, “Designing a simple FPGA-optimized RISC CPU and system-
on-a-chip,” in 2000. [Online]. Available: citeseer.ist.psu.edu/article/
gray00designing.html, 2000.

[21] F. Conti, D. Rossi, A. Pullini, I. Loi, and L. Benini, “PULP: A ultra-low
power parallel accelerator for energy-efficient and flexible embedded
vision,” Journal of Signal Processing Systems, vol. 84, Sep 2016.
[Online]. Available: https://doi.org/10.1007/s11265-015-1070-9

[22] Y. Lee, B. Zimmer, A. Waterman, A. Puggelli, J. Kwak, R. Jevtic,
B. Keller, S. Bailey, M. Blagojevic, P. F. Chiu, H. Cook, R. Avizienis,
B. Richards, E. Alon, B. Nikolic, and K. Asanovic, “Raven: A 28nm
RISC-V vector processor with integrated switched-capacitor DC-DC
converters and adaptive clocking,” in 2015 IEEE Hot Chips 27 Symposium
(HCS), Aug 2015.

[23] “Rocket chip generator,” https://github.com/ucb-bar/rocket-chip, accessed:
2015-04-07. [Online]. Available: https://github.com/ucb-bar/rocket-chip

[24] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovic,
and K. Asanović, “A 45nm 1.3 GHz 16.7 double-precision GFLOPS/W
RISC-V processor with vector accelerators,” in European Solid
State Circuits Conference (ESSCIRC), ESSCIRC 2014-40th. IEEE,
2014. [Online]. Available: http://www.cs.berkeley.edu/∼yunsup/papers/
riscv-esscirc2014.pdf

[25] T. Ajayi, K. Al-Hawaj, A. Amarnath, S. Dai, S. Davidson, P. Gao, G. Liu,
A. Lotfi, J. Puscar, A. Rao, A. Rovinski, L. Salem, N. Sun, C. Torng,
L. Vega, B. Veluri, X. Wang, S. Xie, C. Zhao, R. Zhao, C. Batten,
R. G. Dreslinski, I. Galton, R. K. Gupta, P. P. Mercier, M. Srivastava,
M. B. Taylor, and Z. Zhang, “Celerity: An open source RISC-V tiered
accelerator fabric,” in Symposium on High Performance Chips (Hot
Chips), ser. Hot Chips 29. IEEE, August 2017.

[26] B. Zimmer, P. F. Chiu, B. Nikoli, and K. Asanovi, “Reprogrammable
redundancy for cache Vmin reduction in a 28nm RISC-V processor,” in
2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), Nov 2016.

[27] B. Keller, M. Cochet, B. Zimmer, Y. Lee, M. Blagojevic, J. Kwak,
A. Puggelli, S. Bailey, P. F. Chiu, P. Dabbelt, C. Schmidt, E. Alon,
K. Asanovi, and B. Nikoli, “Sub-microsecond adaptive voltage scaling
in a 28nm FD-SOI processor SoC,” in ESSCIRC Conference 2016: 42nd
European Solid-State Circuits Conference, Sept 2016.

[28] B. Zimmer, Y. Lee, A. Puggelli, J. Kwak, R. Jevti, B. Keller, S. Bailey,
M. Blagojevi, P. F. Chiu, H. P. Le, P. H. Chen, N. Sutardja, R. Avizienis,
A. Waterman, B. Richards, P. Flatresse, E. Alon, K. Asanovi, and
B. Nikoli, “A RISC-V vector processor with simultaneous-switching
switched-capacitor DC converters in 28 nm FDSOI,” IEEE Journal of
Solid-State Circuits, vol. 51, April 2016.

[29] Y. Wang, M. Wen, C. Zhang, and J. Lin, “RVNet: A fast and high
energy efficiency network packet processing system on RISC-V,” in
2017 IEEE 28th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), July 2017.

[30] “Chisel 3,” https://github.com/freechipsproject/chisel3. [Online].
Available: https://github.com/freechipsproject/chisel3

[31] N. Choudhary, S. Wadhavkar, T. Shah, H. Mayukh, J. Gandhi, B. Dwiel,
S. Navada, H. Najaf-abadi, and E. Rotenberg, “FabScalar: Automating
superscalar core design,” IEEE Micro, vol. 32, May 2012.

[32] V. Srinivasan, R. B. R. Chowdhury, E. Forbes, R. Widialaksono,
Z. Zhang, J. Schabel, S. Ku, S. Lipa, E. Rotenberg, W. R. Davis,
and P. D. Franzon, “H3 (Heterogeneity in 3D): A logic-on-logic 3D-
stacked heterogeneous multi-core processor,” in 2017 IEEE International
Conference on Computer Design (ICCD), Nov 2017.

[33] R. B. R. Chowdhury, A. K. Kannepalli, S. Ku, and E. Rotenberg,
“AnyCore: A synthesizable RTL model for exploring and fabricating
adaptive superscalar cores,” in 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), April 2016.

[34] Y. Lee, A. Waterman, H. Cook, B. Zimmer, B. Keller,
A. Puggelli, J. Kwak, J. Bachrach, D. Patterson, E. Alon,
B. Nikolic, and K. Asanović, “An agile approach to building
RISC-V microprocessors,” IEEE Micro, vol. PP, 2016. [Online].
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=
7436635&newsearch=true&queryText=risc-v

[35] N. Dave, Arvind, and M. Pellauer, “Scheduling as rule composition,” in
5th ACM & IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE) 2007, May 30 - June 1st, Nice,
France, 2007. [Online]. Available: https://doi.org/10.1109/MEMCOD.
2007.371249

[36] M. Vijayaraghavan, N. Dave, and Arvind, “Modular compilation of
guarded atomic actions,” in 11th ACM/IEEE International Conference
on Formal Methods and Models for Codesign, MEMCODE 2013,
Portland, OR, USA, October 18-20, 2013, 2013. [Online]. Available:
http://ieeexplore.ieee.org/document/6670957/

[37] D. L. Rosenband, “A performance driven approach for hardware
synthesis of guarded atomic actions,” Ph.D. dissertation, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2005. [Online].
Available: http://hdl.handle.net/1721.1/34473

[38] K. C. Yeager, “The mips r10000 superscalar microprocessor,” Micro,
IEEE, vol. 16, 1996.

[39] S. Zhang, M. Vijayaraghavan, and Arvind, “Weak memory models:
Balancing definitional simplicity and implementation flexibility,” in 26th
International Conference on Parallel Architectures and Compilation
Techniques, PACT 2017, Portland, OR, USA, September 9-13, 2017,
2017. [Online]. Available: https://doi.org/10.1109/PACT.2017.29

[40] S. Zhang, M. Vijayaraghavan, A. Wright, M. Alipour, and Arvind,
“Constructing a weak memory model,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), June 2018.

[41] M. Vijayaraghavan, A. Chlipala, N. Dave et al., “Modular deductive veri-
fication of multiprocessor hardware designs,” in International Conference
on Computer Aided Verification (CAV). Springer, 2015.

[42] “Amazon EC2 F1 instances,” https://aws.amazon.com/ec2/instance-types/
f1/.

[43] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[44] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
K. Kovacs, B. Nikolic, R. Katz, J. Bachrach, and K. Asanovi, “FireSim:
Cycle-accurate rack-scale system simulation using FPGAs in the public
cloud,” 7th RISC-V Workshop, 2017.

[45] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching:
Skip, don’t walk (the page table),” in Proceedings of the 37th
Annual International Symposium on Computer Architecture, ser.
ISCA ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1815970

[46] D. Kim, C. Celio, D. Biancolin, J. Bachrach, and K. Asanovic, “Evalua-
tion of RISC-V RTL with FPGA-accelerated simulation,” Workshop on
Computer Architecture Research with RISC-V (CARRV), 2017.

[47] R. E. Kessler, “The alpha 21264 microprocessor,” IEEE micro, vol. 19,
1999.

[48] “FireSim demo v1.0 on Amazon EC2 F1,” https://fires.im/2017/08/29/
firesim-demo-v1.0.html.

[49] D. Boggs, G. Brown, N. Tuck, and K. Venkatraman, “Denver: Nvidia’s
first 64-bit ARM processor,” IEEE Micro, vol. 35, 2015.

[50] “Spike, a RISC-V ISA simulator,” https://github.com/riscv/riscv-isa-sim.
[51] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI

6.0: A tool to model large caches,” HP Laboratories, Technical Report
HPL-2009-85, 2009.

