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Abstract

In image restoration tasks, a heavy-tailed gradient distri
bution of natural images has been extensively exploited as
an image prior. Most image restoration algorithms impose
a sparse gradient prior on the whole image, reconstructing
an image with piecewise smooth characteristics. While the
sparse gradient prior removes ringing and noise artifacts,
it also tends to remove mid-frequency textures, degrading
the visual quality. We can attribute such degradations to
imposing an incorrect image prior. The gradient pro le in
fractal-like textures, such as trees, is close to a Gaussign
tribution, and small gradients from such regions are selyere
penalized by the sparse gradient prior.

To address this issue, we introduce an image restoration
algorithm that adapts the image prior to the underlying tex-
ture. We adapt the prior to both low-level local structures a
well as mid-level textural characteristics. Improvements
visual quality is demonstrated on deconvolution and denois
ing tasks.
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. ) . Figure 1. The colored gradient pro les correspond to theéareg

Image enhancement algorithms resort to image priors toyith the same color mask. The steered gradient pro le isiaiat
hallucinate information lost during the image capture. In yariant in most natural images. Therefore, the image phiouk
recent years, image priors based on image gradient statiSadapt to the image content. Insets illustrate how steeradigmts
tics have received much attention. Natural images oftenadapt to local structures.
consist of smooth regions with abrupt edges, leading to a
heavy-tailed gradient pro le. We can parameterize heavy- 2. Related work
tailed gradient statistics with a generalized Gaussiatnidis
bution or a mixture of Gaussians. Prior works hand-select
parameters for the model distribution, and x them for the

entire image, imposing the same image prior everywhere,ges Transforms derived from signal processing have been
[10, 17, 23]. Unfortunately, different textures have differ- exploited in the past, including the Fourier transfora][

ent gradient statistics even within a single image, theeefo 4 \wavelet transform?f], the curvelet transformd], and
imposing a single image prior for the entire image is iNap- he contourlet transfornBi. '

propna.lte (Figure). ) ) ) Basis functions learned from natural images have also
We introduce an algorithm that adapts the image prior {0 peen introduced. Most techniques learn Iters that lie ie th

both low-level local structures as well as mid-level tegtur null-space of the natural image manifole] 30, 31, 37].

cues, thereby imposing the correct prior for each texttire. Aharonet al. [1] learns a vocabulary from which a natu-

Adapting the image prior to the image contentimproves the 5| image is composed. However, none of these techniques
qulahty of restored images. adapt the basis functions to the image under analysis.
Strictly speaking, an estimate of image statistics mader &ftamin- _ : :
ing the image is no longer a “prior” probability. But the tlegradient Edge presgrvmg SmOOth_mg _operators do adapt t_O_ local
structures while reconstructing images. The anisotroibic d

distributions play the same role as an image prior in imagenstruction -
equations, and we keep that terminology. fusion operator] detects edges, and smoothes along edges

Image prior research revolves around nding a good im-
age transform or basis functions such that the transformed
image exhibits characteristics distinct from unnaturat im




but not across them. A similar idea appeared in a prob-

abilistic framework called a Gaussian conditional random
eld [ 26]. A bilateral lter [27] is also closely related to
anisotropic operators. Elad][and Barash{] discuss rela-
tionships between edge-preserving operators.

Some image models adapt to edge orientations as well as |

magnitudes. Hammonet al. [13] present a Gaussian scale

mixture model that captures the statistics of gradientp-ada
tively steered in the dominant orientation in image patches
Rothet al. [21] present a random eld model that adapts to

the oriented structures. Bennettal. [3] and Joshet al. [14]
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Figure 2. The distribution of, In( ) forr ox; r ax in natural im-
ages. While the density is the highest around 0 :5, the density
tails off slowly with signi cant density around = 2. We show, as

exploit a prior on colors: an observation that there are two insets, some patches from Figuréhat are representative of differ-

dominant colors in a small window.
Adapting the image prior to textural characteristics was

investigated for gray-scale images consisting of a single

texture P3]. Bishop et al [4] present a variational im-

age restoration framework that breaks an image into squareand thus different;
blocks and adapts the image prior to each block indepen-shape parameters

dently (i.e. the image prior is xed within the block). How-
ever, Bishoret al. [4] do not address issues with estimating
the image prior at texture boundaries.

3. Image characteristics

ent ; In( ).

3.2. The distribution of ;

Different textures give rise to different gradient pro les
We study the distribution of the

in natural images. We sample

110, 000patches of sizd1l 41from 500high quality nat-
ural images. We t the gradient pro le from each patch to
a generalized Gaussian distribution to associate each patc
with ; . We t the distribution by searching for, that
minimize the Kullback-Leibler (KL) divergence between
the empirical gradient distribution and the model distribu

in natural images

We analyze the statistics of gradients adaptively steeredion p, which is equivalent to minimizing the negative log-

in the dominant local orientation of an image Rothet al.
[21] observe that the gradient pro le of orthogonal gradi-
entsr x is typically of higher variance compared to that of
aligned gradients X, and propose imposing different pri-
orsonr ox andr zx. We show that different textures within
the same image also have distinct gradient pro les.

We parameterize the gradient pro le using a generalized

Gaussian distribution:
)

2(D kr xk )

p(r ) = exp( 1)

where is a Gamma function, and are the shape pa-
rameters. determines the peakiness andlietermines the
width of a distribution. We assume thai,x andr zx are
independentp(r oX;r aXx) = p(r oX)p(r ax).

3.1. Spatially variant gradient statistics

The local gradient statistics can be different from the
global gradient statistics. Figuleshows the gradient statis-
tics of the colored regions. Two phenomena are responsibl
for the spatially variant gradient statistics: the matlearad

likelihood of the model distribution evaluated over the-gra
dient samples:

(

[ 7= arg_min

)
In(p(r xi))

i=1

)

Figure2 shows the Parzen-window tto sampledin(™)
forr oX;r aX. For orthogonal gradients,x, there exists a
large cluster near = 0:5;In( ) = 2. This cluster corre-
sponds to patches from a smooth region with abrupt edges or
a region near texture boundaries. This observation support
the dead leaves image model —an image is a collage of over-
lapping instancesl];, 19]. However, we also observe a sig-
ni cant density even when is greater thad. Samples near

= 2 with large correspond to at regions such as sky,
and samples near= 2 with small correspond to fractal-
like textures such as tree leaves or grass. We observe sim-
ilar characteristics for aligned gradientg, x as well. The
distribution of shape parameters suggests that a signi can
portion of natural images is not piecewise smooth, which
é'usti es adapting the image prior to the image content.

4. Adapting the image prior

the viewing distance. For example, a building is noticeably

more piecewise smooth than a gravel path due to material

The goal of this paper is to identify the correct image

properties, whereas the same gravel path can exhibit differ prior (i.e. shape parameters of a generalized Gaussian dis-

ent gradient statistics depending on the viewing distahce.
account for the spatially variant gradient statistics, we- p
pose adjusting the image prior locally.

tribution) for each pixel in the image. One way to identify
the image prior is to t gradients from every sliding win-
dow to a generalized Gaussian distribution (Bgbut the



required computation would be overwhelming. We intro-
duce a regression-based method to estimate the image prio

4.1. Image model

Lety be an observed degraded imakgdae a blur kernel
(a point-spread function or a PSF), axde a latent image.
Image degradation is modeled as a convolution process:

®)

where is a convolution operator, andis an observation
noise. The goal of a (non-blind) image restoration problem
is to recover a clean image from a degraded observation
y given a blur kernek and a standard deviation of noise

y=k Xx+n
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Figure 3. The local variance and fourth moments of gradieors-
puted from the deconvolved, down-sampled image of Figuaee

closely correlated with those of the down-sampdeiginal image.

B=) . _ _(6=)
a=)y =)

)

, both of which can be estimated through other techniques

[10, 1§].

We introduce a conditional random eld (CRF) model to
incorporate texture variations within the image restorati
framework. Typically, a CRF restoration model can be ex-
pressed as follows:

yOGYis ks ) x(x)

Y
pOxiyiki )= i @

i
whereM is a partition function and is a pixel index.
is derived from the observation process Eq x from the
assumed image prior:

. )2
Joyik ) 1 exp( P8O0
L) 1 exp( krxk) ©6)

To model the spatially variant gradient statistics, we in-
troduce an additional hidden varialzecalledtexture to the
conventional CRF modet. controls the shape parameters of
the image prior:

y (XY ks ) xz (%2)

Y
pOGziyiki )= o ™

I
where ., (x;z) / exp( (z)kr xk (?)). We modek as a
continuous variable since the distribution[gf ]is heavy-
tailed and does not form tight clusters (Fige
We maximizep(xjy;k; ) to estimate a clean image
R. To do so, we approximate(xjy; k; ) by the function
p(x; zjy; k; ) at the mode:
z

p(xjy;k; )= p(x;zjy;k; )dz  p(x; 2jy;k; ) (8)
z
Section4.2 discusses how we estimatdor each pixel.

4.2. Estimating the texture2

A notable characteristic of a zero-mean generalized
Gaussian distribution is that the variancend the fourth
moment completely determine the shape paramdters]

[24):

To take advantage of these relationships, we de ne the local
texture around a pixé| 2, as a two dimensional vector. The
rst dimension is the variance; of gradients in the neigh-
borhood of a pixel, and the second dimension is the fourth
momentf; of gradients in the neighborhood of a pixel

2 = [vi(r x);fi(r x)] (10)

Qualitatively, the variance of gradienigr x) encodes the
width of the distribution, and the fourth momedntr x) en-
codes the peakiness of the distribution. Note that we can
easily compute; ; f; by convolving the gradientimage with

a window that de nes the neighborhood. We use a Gaussian
window with a 4-pixel standard deviation.

Estimating the texture 2 from the observationy The
texture2 should be estimated from the sharp imageve
wish to reconstruct, bux is not available when estimat-
ing 2. We address this issue by estimating the textire
from an image reconstructed using a spatially invariant im-
age prior. We hand-select the spatially invariant priothwit

a weak gradient penalty so that textures are reasonably re-
stored:[ o = 0:8; o = 6:5];[ 4 = 0:6; 5 = 6:5] A
caveat is that the xed prior deconvolution may contami-
nate the gradient pro le of the reconstructed image, which
may induce texture estimation error. To reduce such decon-
volution noise, we down-sample the deconvolved image by
a factor of 2 in both dimensions before estimating the tex-
ture2. The gradient pro le of natural images is often scale
invariant due to fractal properties of textures and piesewi
smooth properties of surfacesd 19, whereas that of the
deconvolution noise tends to be scale variant. Therefoee, t
texture2 estimated from the down-sampled deconvolved im-
age better resembles the texture of the original sharp image

4.3. Estimating the shape parameters from 2

We could numerically invert E to directly compute the
shape parametefs ] from the variance and fourth mo-
ment estimates’fd]. However, a numerical inversion is com-
putationally expensive and is sensitive to noise. We imstea
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‘ from the down-sampled deconvolved image of Figliréecon-
structed from an image degraded with 5% noise and the blur in
Figure7) and the down-sampled original image. The shape param-
eters estimated from the deconvolved image are similardsetiof

the original image.
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Figure 4. We regularize the estimated shape parameterg asin If multiple textures appear within a single window, the
GCRF such that the texture transition mostly occurs at tiete  €Stimated shape prior can be inaccurate. Suppose we want
boundary. We model the observation noise in the GCRF as theto estimate the image prior for a 1-dimensional slice of an
varianceof the variance and fourth moments estimated from two image (Figuret(a)). Ideally, we should recover two regions
Gaussian windows with different standard deviations —>&im@nd  with distinct shape parameters that abut each other viaa thi
4-pixel, as shown in (b). This reduces the shape parametier es pand of shape parameters corresponding to an edge. How-
mation error at texture boundaries, as shown in (c) (comgaen  ever, the estimated image prior becomes “sparse” (i.e.Ismal

and red curves). ) near the texture boundary even if pixels do not correspond
use a kernel regressor that maps the log of the textd to an edge (the green curve in Figutge)). The use of a
to shape parametefs In( )]. nite-size window for computing/ andf causes this issue.

The regressor should learn the mapping from the tex-  To recover shape parameters near texture boundaries, we
ture2 of the down-sampledeconvolvedmage to shape pa- regularize the estimated shape parameters using a Gaussian
rameters in order to account for any residual deconvolutionconditional random eld (GCRF)4€]. Essentially, we want
noise in the estimated textufe Since the deconvolved im-  to smooth shape parameters only near texture boundaries. A
age, thug, depends on the blur kernel and the noise level, notable characteristic at texture boundaries is #mesti-
we would have to train regressors discriminatively for each mated from two different window sizes tend to be different
degradation scenario, which is intractable. However, we em from each other: while a small window spans a homogenous
pirically observe in Figur&that the variance and fourth mo-  texture, a larger window could span two different textures,
ment of the deconvolved, down-sampled image are similargenerating differen#'s. We leverage this characteristic to
to those of the down-sampled original image. Therefore, we smooth only near texture boundaries by de ning the obser-
learn asingleregressor that maps the variance and fourth vation noise level in GCRF asraean variancef the vari-
moment of the down-sampleatiginal image to the shape ancev and of the fourth momerit estimated from windows
parameters, and use it to estimate the shape parameters frowf two different sizes (Gaussian windows with 2-pixel and
the down-sampled deconvolved image. 4-pixel standard deviations.) If the variance of these- esti

To learn the regression function, we samp25 000 mates is large, the central pixel is likely to be near a textur
patches of siz&7 17 pixels from500high quality natural ~ boundary, thus we smooth the shape parameter at the central
images. We t the gradient pro le of each patch to a gen- pixel. Appendix A discusses the GCRF model in detail. Fig-
eralized Gaussian distribution, and associate each t with ure 4(c) shows the estimated shape parameters before and
the variance and fourth moment of gradients in the down- after regularization along with the estimated GCRF observa
sampled version of each patch ( 9 pixels). We use the tion noise. After regularization, two textures are septat
collected data to learn the mapping frdmn(v);In(f)] to by a small band of sparse image prior corresponding to an
[; In( )] using LIbSVM [7]. We use a 10-fold cross valida- edge.
tion technique to avoid over- tting. Figure 5 shows the estimated shape parameters for or-



i i H I Unsteered gradient prior
thogonal gradients of Fllgurfla In the top row of Figures, PSNR | B Steorat oraiamt oo
the parameters are estimated from the image reconstructed 3 e
5 6 7 8 9

from 5% noise and the blur in Figuie We observe that the 2

estimated prior in the tree region is close to Gaussian (i.e. |

=2 3), whereas the estimated prior in the building re- g%,
|

gion is sparse (i.e.< 1). The estimated shape parameters  2s-

I Content-aware prior

| “ MMH il

are similar to parameters estimated from the down-sampled, 24 |
original image (the bottom row of Figutg. This supports jﬂﬂ
the claim that shape parameters estimated from a degraded * 2 ° * Qg C B0
input image reasonably accurate. ! T
0.98 - 4
4.5. Implementation details 0961 i
We minimize the negative log-posterior to reconstruct a °%]] ]
clean imagek: 0.92 ]
; | |H | |H | H
. k x
R= argmlnfu (11) 088 =23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 !1
X 2 Image number
) , , Figure 6. Image deconvolution results : PSNR and SSIM. Mean
) o(2i) ) a(2i) . . "
w ( o(2i)kr ox(i)k + a(Z)kr xk )9 PSNR: unsteered gradient prior — 26.45 dB, steered grapiiet
i=1 — 26.33 dB,content-aware prior — 27.11 dB Mean SSIM: un-

steered gradient prior — 0.937, steered gradient prior 400.9

where[ o; ol;[ a; are estimated parameters for orthog- )
[ o okl a; al P g content-aware prior — 0.951

onal and aligned gradients, respectively, ant a weight-

ing term that controls the gradient penalty= 0:025inall - of piecewise smooth objects such as buildings, the differ-
examples. We minimize Efjl using an iterative reweighted  ence petween the content-aware image prior and others is
least squares algorithm , 25]. minor. Figure7 compares the visual quality of images re-

. constructed using different priors. We observe that tedur

5. Experimental results regions are best reconstructed using the content-aware im-
We evaluate the performance of the content-aware imageage prior, illustrating the bene t of adapting the imageopri

prior for deblurring and denoising tasks. We compare our to textures.

resultg to those reconstructed using a sparse unsteeFﬁd 9ra penoising The goal of denoising is to reconstruct a sharp
ent prior [L/] and a sparse steered gradient priofj{using  jmage from a noisy observation given a noise level. We con-
peak signal-to-noise ratio (PSNR) and gray-scale strattur giger reconstructing clean images from degraded images at
similarity (SSIM) [29] as quality metrics. We augmented 4 nojise levels:5% and 10% Figure8 shows the mea-
the steerable random elds[], which introduced denois-  g,red PSNR and SSIM for the denoising task. When the
ing and image inpainting as applications, to perform decon- ygise |evel is low %), the content-aware prior reconstructs
yolutlon using the sparse steered gradient prior. In aléexp images with lower PSNR compared to competing methods.
iments, we use the rst order and the second order gradientone explanation is that the content-aware prior may not re-
lters [ 11]. We can augment these algorithms using higher yoye all the noise in textured regions (such as trees) becaus
order gradient lters to improve reconstruction qualitibat  he gradient statistics of noise is similar to that of theamd
it_is not ans?dered in this work. The test set consist.s of 21 lying texture. Such noise, however, does not disturb the vi-
high quality images downloaded from LabelMe] with sual quality of textured regions. The SSIM measure, which
enough texture variations within each image. is better correlated with the perceptual qualif]] shows
Non-blind deconvolution The goal of non-blind deconvo- that the content-aware image prior performs slightly worse
lution is to reconstruct a sharp image from a blurred, noisy if not comparably, compared to other methods &%anoise
image given a blur kernel and a noise level. We gener-level. It's worth noting that when the noise level is low, the
ate our test set by blurring images with the kernel shown observation term is strong so that reconstructed images do
in Figure 7, and addingb% noise to blurred images. Fig- not depend heavily on the image prior. The top row of Fig-
ure6 shows the measured PSNR and SSIM for different de- ure 9 shows that at % noise level, reconstructed images
convolution methods. The content-aware prior deconvolu- are visually similar.

tion method performs favorably compared to the competing  When the noise level is highl(%), SSIM clearly fa-
methods, both in terms of PSNR and SSIM. The bene t of vors images reconstructed using the content-aware prior. |
using a spatially variant prior is more pronounced for ingge this case, the observation term is weak, thus the image prior
with large textured regions. If the image consists prinyaril plays an important role in the quality of reconstructed im-
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Figure 7. Adapting the image prior to textures leads to betteonstructions. The red box denotes the cropped region.
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Figure 8. Image denoising results : PSNR and SSIM6%tnoise = Mean PSNR: unsteered gradient prior — 32.53 dB,estegadient prior
—32.74 dBcontent-aware prior — 31.42 dB Mean SSIM: unsteered gradient prior — 0.984, steered gmagrior — 0.984¢ontent-aware
prior — 0.982. At 10% noise = Mean PSNR: unsteered gradient prior — 28.54 dB,etegadient prior — 28.43 dBpntent-aware prior
—28.52 dB Mean SSIM: unsteered gradient prior — 0.950, steered gmnagrior — 0.953content-aware prior — 0.959

H Content-aware gradient prior Content-aware gradient prior
ages. Therefore’ the performance bene t from usmg the Vs. sparse unsteered gradient prior Vs. sparse steered gradient prior

content-aware prior is more pronounced. The bottom row of = ussieered grad.prior 555 No Difference WEEN Content-aware prior — Steeed grad. prior
Figure9 shows denoising results atl®%noise level, sup- .
porting our claim that the content-aware image prior gener-
ates more visually pleasing textures. o0a

Figure 10 shows the result of deconvolving a real blurry .-
image captured with a handheld camera. We estimate the o

blur kernel using the algorithm in Fergaesal. [10]. Again, ¢ @ - | - g% - | - | |
textured regions are better reconstructed using our method 8% oy 10% s 2% 5w 10% 5%
5.1. User study Figure 11. User study results. The blue region correspamdset

. fraction of users that favored our reconstructions for edefra-
We conducted a user study on Amazon Mechanical Turk gation scenario. At a low degradation level, users do nofepre

to compare the visual quality of the reconstructed images.one method over another, but as the level of degradatiorases,
We evaluated 5 randomly selected images for each degrausers clearly favor the content-aware image prior.

dation scenario considered above. Each user views two im-

ages, one reconstructed using the content-aware prior anéhg crop regions in order to minimize bias.

another reconstructed using either the unsteered gradient
prior or the steered gradient prior. The user selects the vis
ally pleasing one of the two, or sele¢fhere is no differ-
ence” option. We cropped each test image500 350
pixels to ensure that the users view both images without
scrolling. We did not refer to restored images while select-

erence when the degradation was small (B%.noise), but

content-aware image prior over others.

We gathered about 20 user opinions for each comparison.
In Figure11, we show the average user preference in each
degradation scenario. Users did not have a particular pref-

at a high image degradation level users clearly favored the
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Figure 9. The visual comparisons of denoised images. Théogdlenotes the cropped region. B& noise level, while the PSNR of
our result is lower than those of competing algorithms, afisuthe difference is imperceptible. Ai0% noise level, content-aware prior

outperforms others in terms of both the PSNR and the SSIMjsamabre visually pleasing.
Blurry input image Sparse unsteered gradient pri Sparse steered gradient pri Content-aware prio

Figure 10. The deconvolution of a blurred image taken witkaadaheld camera. We estimate the blur kernel using Fergak[10]. The
red box denotes the cropped region. The textured regiorttisrireconstructed using the content-aware image prior.

5.2. Discussions the estimated gradient statistics to adaptively restdfereli

A limitation of our algorithm, which is shared with algo- €Nt textural characteristics in image restoration taske W
rithms using a conditional random eld model with hidden show that the content-aware image prior can restore piece-
variables [4, 21, 26], is that hidden variables, such as the Wise smooth regions without over-smoothing textured re-
magnitude and/or orientation of an edge, or textureness of &ions, improving the visual quality of reconstructed image
region, are estimated from the degraded input image or theas veri ed through user studies. Adapting to textural chara
image restored through other means. Any error from this teristics is especially important when the image degradati
preprocessing step induces error in the nal result. IS signi cant.

Anothgrway 'Fo estim.ate a spatially varian.t prior is_ to seg- Appendix A
ment the image into regions and assume a single prior within
each segment. Unless we segment the image into manysaussian CRF model for[ ; ] regularization
pieces,_ the estimated prior can be inaccurgte_. Also, the sed  we regularize the regressor outp{its™] using a Gaus-
mentation may madvertently generate arti c!al bound&_an_e sian Conditional Random Fields (GCRF). We maximize the
in recons_tructed images. .There.fore, we estimate a d'St'nthollowing probability to estimate regularized
image prior for each pixel in the image. Y

P(;~)/ (i 0C i) (12)

6. Conclusion i 2N(@)

We have explored the problem of estimating spatially whereN(i) denotes the neighborhood iof is the obser-
variant gradient statistics in natural images, and ex@ibit vation model and is the neighborhood potential:
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We set | and , adaptively. We set the variancé (i; ] )

of the neighboring estimates;; j as 2(i;j) =

(x(i)

x(j))?, wherex is the image and = 0:01 controls how
smooth the neighboring estimates should heencourages
the discontinuity at strong edges of the imagg?6]. The
observation noise? is the average variance of the variance
and fourth moment estimates (for two Gaussian windows
with standard deviation = 2 pixels, 4 pixels). We use the [18]

same GCRF model to regularir€ ) with

=0:001
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