
The patch transform and its applications to image editing

Taeg Sang Cho∗, Moshe Butman†, Shai Avidan‡, William T. Freeman∗
∗ CSAIL, Massachusetts Institute of Technology

† Bar-Ilan University
‡ Adobe Systems Inc.

taegsang@mit.edu, butmoshe@cs.biu.ac.il, avidan@adobe.com, billf@mit.edu

Abstract

We introduce the patch transform, where an image is
broken into non-overlapping patches, and modifications or
constraints are applied in the “patch domain”. A modi-
fied image is then reconstructed from the patches, subject
to those constraints. When no constraints are given, the
reconstruction problem reduces to solving a jigsaw puzzle.
Constraints the user may specify include the spatial loca-
tions of patches, the size of the output image, or the pool
of patches from which an image is reconstructed. We define
terms in a Markov network to specify a good image recon-
struction from patches: neighboring patches must fit to form
a plausible image, and each patch should be used only once.
We find an approximate solution to the Markov network us-
ing loopy belief propagation, introducing an approximation
to handle the combinatorially difficult patch exclusion con-
straint. The resulting image reconstructions show the origi-
nal image, modified to respect the user’s changes. We apply
the patch transform to various image editing tasks and show
that the algorithm performs well on real world images.

1. Introduction

A user may want to make various changes to an image,
such as repositioning objects, or adding or removing tex-
tures. These image changes can be difficult to make using
existing editing tools. Consider repositioning an object. It
first must be selected, moved to the new location, blended
into its surroundings, then the hole left where the object
was must be filled-in through texture synthesis or image in-
painting. Even after these steps, the image may not look
right: the pixels over which the object is moved are lost,
and the repositioned object may not fit well in its new sur-
roundings. In addition, filled-in textures may change the
balance of textures from that of the original image.

It would be more convenient to specify only the desired
changes, and let the image automatically adjust itself ac-
cordingly. To allow this form of editing, we introduce an

image “patch transform”. We break the image into small,
non-overlapping patches, and manipulate the image in this
“patch domain”. We can constrain patch positions, and
add or remove patches from this pool. This allows explicit
control of how much of each texture is in the image, and
where textures and objects appear. From this modified set
of patches, we reconstruct an image, requiring that all the
patches fit together while respecting the user’s constraints.

This allows many useful image editing operations. The
user can select regions of the image and move them to new
locations. The patch transform reconstruction will then try
to complete the rest of the image with remaining patches
in a visually pleasing manner, allowing the user to generate
images with different layout but similar content as the orig-
inal image. If the user specifies both the position of some
patches and the size of the target image, we can perform im-
age retargeting [2], fitting content from the original image
into the new size. Alternatively, the user may increase or de-
crease the number of patches from a particular region (say,
the sky or clouds), then reconstruct an image that respects
those modifications. The user can also mix patches from
multiple images to generate a collage combining elements
of the various source images.

To “invert” the patch transform–reconstruct an image
from the constrained patches–we need two ingredients. The
patches should all fit together with minimal artifacts, so we
need to define a compatibility function that specifies how
likely any two patches are to be positioned next to each
other. For this, we exploit recent work on the statistics of
natural images, and favor patch pairings for which the abut-
ting patch regions are likely to form images. We then need
an algorithm to find a good placement for all the patches,
while penalizing the use of a patch more than once. For
that, we define a probability for all possible configuration
of patches, and introduce a tractable approximation for a
term requiring that each patch be used only once. We then
solve the resulting Markov Random Field for a good set of
patch placements using belief propagation (BP).

We describe related work in Section 2 and develop the

patch transform algorithm in Section 3. Section 4 will in-
troduce several applications of the patch transform.

2. Background

The inverse patch transform is closely related to solving
jigsaw puzzles. The jigsaw puzzle problem was shown to
be NP-complete because it can be reduced to the Set Parti-
tion Problem [8]. Nevertheless, attempts to (approximately)
solve the jigsaw puzzle abound in various applications: re-
constructing archaeological artifacts [15], fitting a protein
with known amino acid sequence to a 3D electron density
map [26], and reconstructing a text from fragments [19].

Image jigsaw puzzles can be solved by exploiting the
shape of patches, their contents, or both. In a shape-based
approach, the patches do not take a rectangular shape, but
the problem is still NP-complete because finding the correct
order of the boundary patches can be reduced to the travel-
ing salesperson problem. The largest jigsaw puzzle solved
with a shape-based approach was 204 patches [12]. Chung
et al. [6] used both shape and color to reconstruct an image
and explore several graph-based assignment techniques.

Our patch transform approach tries to side-step other
typical image editing tasks, such as region selection [21]
and object placement or blending [18, 22, 28]. The patch
transform method allows us to use very coarse image re-
gion selection, only to patch accuracy, rather than pixel or
sub-pixel accuracy. Simultaneous Matting and Composit-
ing [27] works on a pixel level and was shown to work well
only for in-place object scaling, thus avoiding the difficult
tasks of hole filling, image re-organization or image retar-
geting. Using the patch transform, one does not need to
be concerned about the pixels over which an object will be
moved, since those underlying patches will “get out of the
way” and reposition themselves elsewhere in the image dur-
ing the image reconstruction step. Related functionalities,
obtained using a different approach, are described in [25].

Because we seek to place image patches together in a
composite, our work relates to larger spatial scale versions
of that task, including Auto Collage [24] and panorama
stitching [5], although with different goals. Jojic et al. [13]
and Kannan et al. [14] have developed “epitomes” and “jig-
saws”, where overlapping patches from a smaller source im-
age are used to generate a larger image. These models are
applied primarily for image analysis.

Non-parametric texture synthesis algorithms, such as
[4], and image filling-in, such as [3, 7, 10], can involve com-
bining smaller image elements and are more closely related
to our task. Also related, in terms of goals and techniques,
are the patch-based image synthesis methods [7, 9], which
also require compatibility measures between patches. Efros
and Freeman [9] and Liang et al. [20] used overlapping
patches to synthesize a larger texture image. Neighboring
patch compatibilities were found through squared differ-

ence calculations in the overlap regions. Freeman, Pasztor
and Carmichael [11] used similar patch compatibilities, and
used loopy belief propagation in an MRF to select image
patches from a set of candidates. Kwatra et al. [17], and
Komodakis and Tziritas [16] employed related Markov ran-
dom field models, solved using graph cuts or belief prop-
agation, for texture synthesis and image completion. The
squared-difference compatibility measures don’t general-
ize to new patch combinations as well as our compatibility
measures based on image statistics. The most salient differ-
ence from all texture synthesis methods is the patch trans-
form’s constraint against multiple uses of a single patch.
This allows for the patch transform’s controlled rearrange-
ment of an image.

3. The inverse patch transform

After the user has modified the patch statistics of the
original image, or has constrained some patch positions, we
want to perform an “inverse patch transform”, piecing to-
gether the patches to form a plausible image. To accomplish
this, we define a probability for all possible combination of
patches.

In a good placement of patches, (1) adjacent patches
should all plausibly fit next to each other, (2) each patch
should not be used more than once (in solving the patch
placements, we relax this constraint to each patch seldom
being used more than once), and (3) the user’s constraints
on patch positions should be maintained. Each of these re-
quirements can be enforced by terms in a Markov Random
Field (MRF) probability.

Let each node in an MRF represent a spatial position
where we will place a patch. The unknown state at the ith
node is the index of the patch to be placed there, x i. Based
on how plausibly one patch fits next to another, we define
a compatibility, ψ. Each patch has four neighbors (except
at the image boundary), and we write the compatibility of
patch k with patch l, placed at neighboring image positions
i and j to be ψi,j(k, l). (We use the position subscripts i, j
in the function ψi,j only to keep track of which of the four
neighbor relationships of j relative to i is being referred to
(up, down, left, or right)).

We let x be a vector of the unknown patch indices x i at
each of the N image positions i. We include a “patch ex-
clusion” function, E(x), which is zero if any two elements
of x are the same (if any patch is used more than once)
and otherwise one. The user’s constraints on patch posi-
tions are represented by local evidence terms, φ i(xi), and
are described more in detail in Section 4.

Combining these terms, we define the probability of an
assignment, x, of patches to image positions to be

P (x) =
1
Z

∏
i

φi(xi)
∏

i,j∈N(i)

ψij(xi, xj)E(x) (1)

Patch i Patch j

Figure 1. ψA
i,j is computed by convolving the boundary of two

patches with filters, and combining the filter outputs with a GSM-
FOE model.

We have already defined the user-constraints, φ, and
patch exclusion term, E. In the next section, we specify
the patch-to-patch compatibility term, ψ, and then describe
how we find patch assignments x that approximately maxi-
mize P (x) in Eq. (1).

3.1. Computing the compatibility among patches

We want two patches to have a high compatibility score
if, when they are placed next to each other, the pixel values
across the seam look like natural image data. We quantify
this using two terms, a natural image prior and a color dif-
ference prior.

For the natural image prior term, we apply the filters of
the Gaussian Scale Mixture Fields of Experts (GSMFOE)
model [23, 29] to compute a score, ψA

i,j(k, l), for patches k
and l being in the relative relationship of positions i and j,
as illustrated in Fig. 1. The compatibility score is computed
with Eq. (2):

ψA
i,j(k, l) =

1
Z

∏
l,m

J∑
q=1

{
πq

σq
exp(−wT

l xm(k, l))
}

(2)

where x(k, l) is the luminance component at the boundary
of patches (k, l), σq, πq are GSMFOE parameters, and wl

are the learned filters. σq, πq, wl are available online 1.
We found improved results if we included an addi-

tional term that is sensitive to color differences between the
patches. We computed the color compatibility, ψB

i,j , be-
tween two patches by exponentiating the sum of squared
distance among adjacent pixels at the patch boundaries.

ψB
i,j(k, l) ∝ exp

(
− (r(k) − r(l))2

σ2
clr

)
(3)

where r(·) is the color along the corresponding boundary
of the argument, and σclr is fixed as 0.2 after cross vali-
dation. The final patch compatibility is then ψi,j(k, l) =
ψA

i,j(k, l)ψ
B
i,j(k, l).

Typically, we break the image into patches of 32 × 32
pixels, and for typical image sizes this generates ∼ 300
non-overlapping patches. We compute the compatibility

1http://www.cs.huji.ac.il/ yweiss/BRFOE.zip

(a) (b)

0

0.2

0.4

0.6

0.8

1

Figure 2. (a) and (b) show a part of pLR, pDU , of Fig. 4(a) in a
matrix form. pLR(i, j) is the probability of placing the patch i to
the right of the patch j, whereas pDU(i, j) is the probability of
placing the patch i to the top of the patch j. The patches are pre-
ordered, so the correct matches, which would generate the original
image, are the row-shifted diagonal components.

score for all four possible spatial arrangements of all pos-
sible pairs of patches for the image. Fig. 2 shows the result-
ing patch-patch compatibility matrices for two of the four
possible patch spatial relationships.

3.2. Approximate solution by belief propagation

Now we have defined all the terms in Eq. (1) for the
probability of any assignment x of patches to image po-
sitions. Finding the assignment x that maximizes P (x) in
the MRF of Eq. (1) is NP-hard, but approximate methods
can nonetheless give good results. One such method is be-
lief propagation. Belief propagation is an exact inference
algorithm for Markov networks without loops, but can give
good results even in some networks with loops [30]. For
belief propagation applied in networks with loops, different
factorizations of the MRF joint probability can lead to dif-
ferent results. Somewhat counter-intuitively, we found bet-
ter results for this problem using an alternative factorization
of Eq. (1) as a directed graph we describe below.

We can express Eq. (1) in terms of conditional probabil-
ities if we define a normalized compatibility,

pi,j(xi|xj) =
ψi,j(xi, xj)∑M
i=1 ψi,j(xi, xj)

(4)

and the local evidence term p(yi|xi) = φi(xi). Then we
can express the joint probability of Eq. (1) as

P (x) =
1
Z

∏
i=1

∏
j∈N (i)

p(yi|xi)pi,j(xj |xi)p(xi)E(x) (5)

where N (i) is the neighboring indices of xi, yi is the origi-
nal patch at location i, and pi,j is the appropriate normalized
compatibility determined by the relative location of x j with
respect to xi. A similar factorization for an MRF was used
in [11]. We can manipulate the patch statistics (Section 4.2)
through p(xi), but in most cases we model p(xi) as a uni-
form distribution, and is amortized into the normalization
constant Z.

The approximate marginal probability at a node i can be
found by iterating the belief propagation message update
rules until convergence [30]. Ignoring the exclusivity term
E(x) for now, the message update rules for this factoriza-
tion are as follows. Let us suppose that xj is an image node
to the left of xi. Then the message from xj to xi is:

mji(xi) ∝
∑
xj

pi,j(xi|xj)p(yj |xj)
∏

l∈N (j)\i

mlj(xj) (6)

Messages from nodes that are to the right/top/bottom of x i

are similarly defined with an appropriate p i,·(xi|·). The
patch assignment at node xi is:

x̂i = argmax
l

bi(xi = l) (7)

where the belief at node xi is defined as follows:

bi(xi) = p(yi|xi)
∏

j∈N (i)

mji(xi) (8)

3.2.1 Handling the patch exclusion term

In most cases, running the above message passing scheme
does not result in a visually plausible image because a triv-
ial solution to the above message passing scheme (without
any local evidence) is to assign a single bland patch to all
nodes xi. To find a more plausible solution, we want to re-
quire that each patch be used only once. We call this an
exclusivity term.

Since the exclusivity term is a global function involving
all xi, we can represent it as a factor node [30] that’s con-
nected to every image node xi. The message from xi to the
factor (mif) is the same as the belief without the exclusivity
term (Eq. (8)), and the message from the factor to the node
xi can be computed as follows:

mfi(xi) =
∑

{x1,...,xN}\xi

ψF (x1, ..., xN |xi)
∏

t∈S\i

mtf (xt)

(9)
where S is the set of all nodes xi. If any of the two
nodes (xl, xm) ∈ S share the same patch, ψF (·) is zero,
and is one otherwise. The message computation involves
marginalizingN − 1 state variables that can take onM dif-
ferent values (i.e. O(M (N−1))), which is intractable.

We approximate ψF (·) as follows:

ψF (x1, ..., xN |xi) ≈
∏

t∈S\i

ψFt(xt|xi) (10)

where ψFj (xj |xi) = 1 − δ(xj − xi). Combining Eq. (9)
and Eq. (10),

mfi(xi = l) ≈
∏

t∈S\i

M∑
xt=1

ψFt(xt|xi = l)mtf(xt)

=
∏

t∈S\i

(1 −mtf (xt = l))
(11)

(a) (b)

Figure 3. (a) The inverse patch transform with the proposed com-
patibility function reconstructs the original image perfectly. (b)
When a simple color and gradient-based compatibility measure is
used in the proposed message passing scheme, the algorithm can-
not reconstruct the original image perfectly.

where we have assumed that mtf is normalized to 1. In
words, the factor f tells the node xi to place low probability
on l if l has already been claimed by another node with a
high probability, and is intuitively satisfying.

The proposed message passing scheme has been tested to
solve the jigsaw puzzle problem (Fig. 3.) In most cases, the
original image is perfectly reconstructed (Fig. 3(a)), but if
the region lacks structure, such as in foggy or clear sky, the
algorithm mixes up the order of patches. When one patch
is only weakly favored over others, it may lack the power
to suppress its re-use, in our approximate exclusion term.
However, for image editing applications, these two recon-
struction shortcomings seldom cause visible artifacts.

4. Image Editing Applications

The patch transform framework renders a new perspec-
tive on the way we manipulate images. Applications in-
troduced in this section follow a unified pipeline: the user
manipulates the patch statistics of an image, and specifies
a number of constraints to be satisfied by the new image.
Then the patch transform generates an image that conforms
to the request.

The user-specified constraint can be incorporated into
the patch transform framework with the local evidence term.
If the user has constrained patch k to be at image position
i, then p(yi|xi = k) = 1 and p(yi|xi = l) = 0, for l �= k.
At unconstrained nodes, the low-resolution version of the
original image can serve as a noisy observation y i:

p(yi|xi = l) ∝ exp

(
− (yi −m(l))2

σ2
evid

)
(12)

where m(l) is the mean color of patch l, and σevid = 0.4
determined through cross-validation. Eq. (12) allows the
algorithm to keep the scene structure correct (i.e. sky at the
top and grass at the bottom), and is used in all applications
described in this section unless specified otherwise. The
spatial constraints of patches are shown by the red bounding
boxes in the resulting image.

(a) (b) (c) (d)

Figure 4. This example illustrates how the patch transform framework can be used to recenter a region / object of interest. (a) The original
image. (b) The inverse patch transform result. Notice that the overall structure and context is preserved. (c) Another inverse patch transform
result. This figure shows that the proposed framework is insensitive to the size of the bounding box. (d) Using the same constraint as that
of (b), a texture synthesis method by Efros and Leung [10] is used to generate a new image.

(a) (b)

Figure 5. This example shows that the proposed framework can
be used to change the relative position of multiple objects in the
image. (a) The original image. (b) The inverse patch transform re-
sult with a user specified constraint that the child should be placed
further ahead of his father.

Since BP can settle at local minima, we run the patch
transform multiple times with random initial seeds, and let
the user choose the best-looking image from the resulting
candidates. To stabilize BP, the message at iteration i is
damped by taking the weighted geometric mean with the
message at iteration i − 1. Inevitably, in the modified im-
age there will be visible seams between some patches. We
suppress these artifacts by using the Poisson equation [22]
to reconstruct the image from all its gradients, except those
across any patch boundary.

4.1. Reorganizing objects in an image

The user may be interested in moving an object to a new
location in the image while keeping the context. An exam-
ple of re-centering a person is shown in Fig. 4. The user first
coarsely selects a region to move, and specifies the location
at which the selected region will be placed. A new image
is generated satisfying this constraint with an inverse patch
transform (Fig. 4(b).) Note that the output image is a visu-
ally pleasing reorganization of patches. The overall struc-
ture follows the specified local evidence, and the content of

(a) (b)

Figure 6. This example verifies that the proposed framework can
still work well in the presence of complex background. (a) The
original image. (b) The inverse patch transform result with the user
constraint. While the algorithm fixed the building, the algorithm
reshuffled the patches in the garden to accommodate the changes
in woman’s position.

the image is preserved (e.g. the mountain background.) The
algorithm is robust to changes in the size of the bounding
box, as shown in Fig. 4(c), as long as enough distinguished
region is selected.

We compared our result with texture synthesis. Fig. 4(d)
shows that the Efros and Leung algorithm [10] generates
artifacts by propagating girl’s hair into the bush. Because
of the computational cost of [10], we computed Fig. 4(d) at
one quarter the resolution of Fig. 4(b).

The user can also reconfigure the relative position of ob-
jects in an image. For example, in Fig. 5(a), the user may
prefer a composition with the child further ahead of his
father. Conventionally, the user would generate a meticu-
lous matte of the child, move him to a new location, blend
the child into that new location, and hope to fill in the
original region using an image inpainting technique. The
patch transform framework provides a simple alternative.
The user constraint specifies that the child and his shadow
should move to the left, and the inverse patch transform re-
arranges the image patches to meet that constraint, Fig. 5(b).

The proposed framework can also work well in the pres-
ence of a complex background. In Fig. 6, the user wants
to recenter the woman in Fig. 6(a) such that she’s aligned
with the center of the building. The inverse patch transform
generates Fig. 6(b) as the output. The algorithm kept the

(a) (b) (c)

Figure 8. In this example, the original image shown in (a) is resized such that the width and height of the output image is 80% of the original
image. (b) The reconstructed image from the patch transform framework. (c) The retargeting result using Seam Carving [2]. While Seam
Carving preserves locally salient structures well, our work preserves the global context of the image through local evidence.

(a) (b) (c)

Figure 7. This example shows how the proposed framework can
be used to manipulate the patch statistics of an image. The tree is
specified to move to the right side of the image. (a) is the original
image. (b) is the inverse patch transform result with a constraint to
use less sky patches. (c) is the inverse patch transform result with
a constraint to use fewer cloud patches.

building still, and reorganized the flower in the garden to
meet the constraints. There is some bleeding of a faint red
color into the building. If that were objectionable, it could
be corrected by the user.

4.2. Manipulating the patch statistics of an image

With the patch transform, users can manipulate the patch
statistics of an image, where the patch statistics encode how
many patches from a certain class (such as sky, cloud, grass,
etc...) are used in reconstructing the image. Such a request
can be folded into the p(xi) we modeled as a constant. For
example, if a user specified that sky should be reduced (by
clicking on a sky patch xs), p(xi) can be parameterized so
that BP tries not to use patches similar to xs:

p(xi;xs) ∝ exp

(
(f(xi) − f(xs))2

σ2
sp

)
(13)

where σsp is a specificity parameter, and f(·) is a function
that captures the characteristic the user wants to manipulate.
In this work, f(·) is the mean color of the argument. Users
can specify how strong this constraint should be by chang-
ing σsp manually. The statistics manipulation example is

shown in Fig. 7. σsp = 0.2 in this example. Starting with
Fig. 7(a), we have moved the tree to the right, and specified
that the sky/cloud region should be reduced, respectively.
The result for these constraints are shown in Fig. 7(b) and
Fig. 7(c). Notice that cloud patches and sky patches are used
multiple times in each images: The energy penalty paid for
using these patches multiple times is compensated by the
energy preference specified with Eq. (13). This example
can easily be extended to favor patches from a certain class.

4.3. Resizing an image

The patch transform can be used to change the size of
the overall image without changing the size of any patch.
This operation is called image retargeting. This can be
thought of solving a jigsaw puzzle on a smaller palette
(leaving some patches unused.) In retargeting Fig. 8(a), the
user specified that the width and length of the output im-
age should be 80% of the original image. The reconstructed
image with the specified constraints is shown in Fig. 8(b).
Interestingly, while the context is preserved, objects within
the image have reorganized themselves: a whole row of
windows in the building has disappeared to fit the image
vertically, and the objects are reorganized laterally as well
to fit the image width. What makes retargeting work in the
patch transform framework is that while the local compat-
ibility term tries to simply crop the original image, the lo-
cal evidence term competes against that to contain as much
information as possible. The patch transform will balance
these competing interests to generate the retargeted image.

The retargeting result using Seam Carving [2] is shown
in Fig. 8(c). While Seam Carving better preserves the
salient local structures, the patch transform framework does
a better job in preserving the global proportion of regions
(such as the sky, the building and the pavement) through
local evidence.

(a) (b) (c) (d)

Figure 9. In this example, we collage two images shown in (a) and (b). (c) The inverse patch transform result. The user wants to copy the
mountain from (b) into the background of (a). The new, combined image looks visually pleasing (although there is some color bleeding of
the foreground snow.) (d) This figure shows from which image the algorithm took the patches. The green region denotes patches from (a)
and the yellow region denotes patches from (b).

4.4. Adding two images in the patch domain

Here we show that the proposed framework can generate
an image that captures the characteristics of two or more
images by mixing the patches. In this application, the local
evidence is kept uniform for all image nodes other than the
nodes within the bounding box to let the algorithm deter-
mine the structure of the image. An example is shown in
Fig. 9. A photographer may find it hard to capture the per-
son and the desired background at the same time at a given
shooting position (Fig. 9(a).) In this case, we can take mul-
tiple images (possibly using different lenses) and combine
them in the patch domain: Fig. 9(b) is the better view of the
mountain using a different lens. The patch transform result
is shown in Fig. 9(c). Interestingly, the algorithm tries to
stitch together the mountains from both images so that arti-
facts are minimized. This is similar to the work of Digital
Photomontage developed by Agarwala et al. [1]. The in-
verse patch transform finds the optimal way to place patches
together to generate a visually-pleasing image.

5. Discussions and conclusions

We have demonstrated that the patch transform can be
used in several image editing operations. The patch trans-
form provides an alternative to an extensive user interven-
tion to generate natural looking edited images.

The user has to specify two inputs to reconstruct an im-
age: the bounding box that contains the object of interest,
and the desired location of the patches in the bounding box.
As shown in Fig. 4, the algorithm is robust to changes in the
size of the bounding box. We found it the best to fix as small
a region as possible if the user wants to fully explore space
of natural looking images. However, if the user wants to
generate a natural-looking image with a small number of BP
iterations, it’s better to fix a larger region in the image. The
algorithm is quite robust to changes in the relative location
of bounding boxes, but the user should roughly place the
bounding boxes in such a way that a natural looking image
can be anticipated. We also learned that the patch transform

Figure 10. These examples illustrate typical failure cases. In the
top example, although the objects on the beach reorganize them-
selves to accommodate the user constraint, the sky patches prop-
agate into the sea losing the overall structure of the image. The
bottom example shows that some structures cannot be reorganized
to generate natural looking structures.

framework works especially well when the background is
textured (e.g. natural scenes) or regular (i.e. grid-type.)

With our relatively unoptimized MATLAB implementa-
tion on a 2.66GHz CPU, 3GB RAM machine, the compati-
bility computation takes about 10 minutes with 300 patches,
and the BP takes about 3 minutes to run 300 iterations with
300 image nodes. For most of the results shown, we ran BP
from 5 different randomized initial conditions and selected
the best result. The visually most pleasing image may not
always correspond to the most probable image evaluated by
Eq. (5) because the user may penalize certain artifacts (such
as misaligned edges) more than others while the algorithm
penalizes all artifacts on an equal footing of the natural im-
age and color difference prior.

Although the algorithm performed well on a diverse set
of images, it can break down under two circumstances (Fig-
ure 10.) If the input image lacks structure such that the
compatibility matrix is severely non-diagonal, the recon-
struction algorithm often assigns the same patch to multiple

nodes, violating the local evidence. Another typical failure
case arises when the it’s not possible to generate a plausi-
ble image with the given user constraints and patches. Such
a situation arises partly because some structures cannot be
reorganized to generate other natural looking structures.

The main limitation of this work is that the control over
the patch location is inherently limited by the size of the
patch, which can lead to visible artifacts. If patches are
too small, the patch assignment algorithm breaks down due
to exponential growth in the state dimensionality. A sim-
ple extension to address this issue is to represent the image
with overlapping patches, and generate the output image by
“quilting” these patches [9]. We could define the compat-
ibility using the “seam energy” [2]. Since seams can take
arbitrary shapes, less artifact is expected. Another limita-
tion of this work is the large amount computation. To en-
able an interactive image editing using the patch transform,
both the number of BP iterations and the amount of compu-
tation per BP iteration should be reduced. The overlapping
patch transform framework may help in this regard as well
since larger patches (i.e. less patches per image) can be used
without degrading the output image quality.

Acknowledgments

This research is partially funded by ONR-MURI grant
N00014-06-1-0734 and by Shell Research. The first author
is partially supported by Samsung Scholarship Foundation.
Authors would like to thank Myung Jin Choi, Ce Liu, Anat
Levin, and Hyun Sung Chang for fruitful discussions. Au-
thors would also like to thank Flickr for images.

References

[1] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker,
A. Colburn, B. Curless, D. Salesin, and M. Cohen. Inter-
active digital photomontage. In ACM SIGGRAPH, 2004. 7

[2] S. Avidan and A. Shamir. Seam carving for content-aware
image resizing. ACM SIGGRAPH, 2007. 1, 6, 8

[3] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image
inpainting. In ACM SIGGRAPH, 2000. 2

[4] J. D. Bonet. Multiresolution sampling procedure for analysis
and synthesis of texture images. In ACM SIGGRAPH, 1997.
2

[5] M. Brown and D. Lowe. Recognising panoramas. In Proc.
IEEE ICCV, 2003. 2

[6] M. G. Chung, M. M. Fleck, and D. A. Forsyth. Jigsaw puzzle
solver using shape and color. In Proc. International Confer-
ence on Signal Processing, 1998. 2

[7] A. Criminisi, P. Pérez, and K. Toyama. Region filling and
object removal by exemplar-based image inpainting. IEEE
Transactions on Image Processing, 2004. 2

[8] E. D. Demaine and M. L. Demaine. Jigsaw puzzles, edge
matching, and polyomino packing: Connections and com-
plexity. Graphs and Combinatorics, 23, 2007. 2

[9] A. A. Efros and W. T. Freeman. Image quilting for texture
synthesis and transfer. In SIGGRAPH, 2001. 2, 8

[10] A. A. Efros and T. K. Leung. Texture synthesis by non-
parametric sampling. In Proc. IEEE ICCV, 1999. 2, 5

[11] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learn-
ing low-level vision. International Journal of Computer Vi-
sion, 40(1):25–47, 2000. 2, 3

[12] D. Goldberg, C. Malon, and M. Bern. A global approach
to automatic solution of jigsaw puzzles. In Proc. Annual
Symposium on Computational Geometry, 2002. 2

[13] N. Jojic, B. J. Frey, and A. Kannan. Epitomic analysis of
appearance and shape. In Proc. IEEE ICCV, 2003. 2

[14] A. Kannan, J. Winn, and C. Rother. Clustering appearance
and shape by learning jigsaws. In Advances in Neural Infor-
mation Processing Systems 19, 2006. 2

[15] D. Koller and M. Levoy. Computer-aided reconstruction and
new matches in the forma urbis romae. In Bullettino Della
Commissione Archeologica Comunale di Roma, 2006. 2

[16] N. Komodakis and G. Tziritas. Image completion using effi-
cient belief propagation via priority scheduling and dynamic
pruning. IEEE Trans. Image Processing, 16(11):2649–2661,
November 2007. 2

[17] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.
Graphcut textures: image and video synthesis using graph
cuts. In ACM SIGGRAPH, 2003. 2

[18] J.-F. Lalonde, D. Hoiem, A. A. Efros, C. Rother, J. Winn,
and A. Criminisi. Photo clip art. ACM SIGGRAPH, 2007. 2

[19] M. Levison. The computer in literary studies. In A. D. Booth,
editor, Machine Translation, pages 173–194. North-Holland,
Amsterdam, 1967. 2

[20] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum. Real-
time texture synthesis by patch-based sampling. ACM Trans-
actions on Graphics, 2001. 2

[21] E. N. Mortensen and W. A. Barrett. Intelligent scissors for
image composition. In ACM SIGGRAPH, 1995. 2

[22] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing.
In ACM SIGGRAPH, 2003. 2, 5

[23] S. Roth and M. Black. A framework for learning image pri-
ors. In Proc. IEEE CVPR. 3

[24] C. Rother, L. Bordeaux, Y. Hamadi, and A. Blake. Autocol-
lage. In ACM SIGGRAPH, 2006. 2

[25] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Sum-
marizing visual data using bidirectional similarity. In Proc.
IEEE CVPR, 2008. 2

[26] C.-S. Wang. Determining molecular conformation from dis-
tance or density data. PhD thesis, Massachusetts Institute of
Technology, 2000. 2

[27] J. Wang and M. Cohen. Simultaneous matting and composit-
ing. In Proc. IEEE CVPR, 2007. 2

[28] J. Wang and M. F. Cohen. An iterative optimization approach
for unified image segmentation and matting. In Proc. IEEE
ICCV, 2005. 2

[29] Y. Weiss and W. T. Freeman. What makes a good model of
natural images? In Proc. IEEE CVPR, 2007. 3

[30] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understand-
ing belief propagation and its generalizations. Exploring ar-
tificial intelligence in the new millennium, pages 239–269,
2003. 3, 4

