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Introduction 
 
A mixer forms a critical building block for modern communication systems due to the limited budget in 
the frequency spectrum and the ever-increasing demand of channel capacity. If the mixer provides a 
single frequency signal with no harmonic components and no phase noise, many problems such as 
signal interference can be circumvented. The mixers are typically implemented as Fractional-N 
frequency synthesizers, which can provide high resolutions in frequency and high loop bandwidth (thus 
faster settling time) at the same time. We will explore this circuitry in more detail throughout the report. 
 
The system that we’ve developed over the latter half of the semester is shown in Figure 0-1. Discrete 
components, including MC145151-2 (PLL chip from Motorola), 74LS628 (VCO), were provided.  
The main topic of this project was to implement a Fractional-N Frequency synthesizer with sigma-delta 
dithering schemes. The lab was divided into 4 separate parts to ease the analysis of each building blocks. 
 
Part 1: VCO and buffer circuitry 
 
Making the VCO to have a range of 3MHz to 10MHz was not too hard thanks to the datasheet. We used 
two variable resistors to change the operational range of the VCO and the output frequency. As shown 
in Figure 1-1, our VCO showed very linear characteristic as we sweep the control voltage of the VCO. 
With the help of MATLAB, we fitted our result to a first order polynomial; the VCO characteristic 
follows the  
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relation. This characteristic curve corresponds quite closely to the case where Vrng is about 2V. We also 
looked at the spectral content of the VCO output signal. Since the output of the VCO can be 
approximated as a square wave, we expect that the spectral content of the signal will contain harmonic 
multiples of the fundamental frequency. This is exactly what we observed when we looked at the 
spectral content through the spectrum analyzer. (Figure 1-2)  
 
To implement a buffer to drive the spectrum analyzer, we chose the Class AB topology utilizing BJT’s 
(Figure 1-3).  We used the BJT’s to implement this circuit because the VBE is quite constant among 
different BJT’s. If we implemented the buffer with MOSFET’s, the mismatch of the MOSFET would 
have skewed the output voltage level to one way or another.  
 
Because of the finite base current in BJT’s, we had to make RA slightly smaller than RB to ensure that 
the output DC voltage is centered at 2.5V.  If not, the output signal cannot attain the full swing 
possible, i.e. from the rail to rail, without distortion. 
 
Part 2: The Phase-Locked Loop 
 
Designing the Low-Pass Filter 
 
In order to achieve zero steady-state phase error, we need to generate one pole at the origin in the low-
pass loop filter transfer function. After a number of trials, we realized that using the recommended 
topology in the data sheet is a safe and efficient way to implement the loop-filter, thus we finalized 
design based on Figure 2-1 (a). In fact, we tried another topology, as shown in Figure 2-1(b) which is 



supposed to generate the same transfer function, but it didn’t work as we expected to due subtle issues.  
One major issue is due to the fact that PDout is floating when neither UP nor DOWN are asserted.  
When floating, this floating voltage should match the virtual ground voltage in order to be effectively 
floating so that no current from the PLL gets integrated in the filter.  This is nearly impossible to do, so 
we switched to the topology shown in Figure 2-1 (a). 
 

We write the LPF transfer function as 2
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We solve these equations and component values should satisfy  
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However, some concerns were raised that we shouldn’t believe these equations completely. After trying 
different values, we finally chose 

1 5R K= Ω , 2 500R = Ω , 0.22C Fµ=  
and the resulting 3dB bandwidth is 9.8KHz 
 
Measuring Closed Loop Bandwidth 
 
In order to measure closed loop bandwidth, we came up with two approaches. As derived in REF2, the 
closed loop acts as a low pass for the PD-referred noise and high pass for the VCO-referred noise. If we 
manage to design the low pass filter so that the closed loop bandwidth is located where the phase noise 
from VCO and PD intersects, the total phase noise is minimized as well as that the frequency at which 
the phase noise begins to roll off is roughly the closed loop bandwidth (Fig 2-3). Even for not so good 
designs where the closed loop bandwidth is not at the optimum noise point, a peak of the phase noise 
that is located approximately at the closed loop bandwidth can be observable (Fig 2-4). The accuracy is 
enough. We thus expect to see similar flat waveform from the spectrum analyzer. Unfortunately what 
we observe in reality is as in Fig 2-5. It is still unexplained why this experiment result is different from 
theoretical result. Our guess is that there’re more noise sources than PD and VCO which shaped the 
output phase noise as the unexplainable. Or since the carry is not perfect sinusoid, it’s hard to 
differentiate noise and carry signal and the way we plot phase noise is not accurate. 
 
So the other approach is the step response. As for any second order system, if we apply a step input to 
the system as shown in Figure 2-6(a), the system response similar to Figure 2-6(b) would appear at the 
output. Here both the input and output are in terms of frequency. Two justifications need to be made 
before we start the measurement. First, since the system is second order, the relation between the 
settling time and the bandwidth is somewhat complicated. But as an approximation, the first order 
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 is accurate enough. Also, the step input is applied at the divider – changing one bit 

of the divider from 0 to 1. From lecture, we learn that the block diagrams in Figure 2-7 are equivalent. 
Thus even though we apply the input at the divider, the close loop transfer function is unchanged from 
the transfer function from the reference frequency to VCO output. 
 
Figure 2-8(a) shows the oscilloscope measurement. The time it takes to switch from frequency one to 
frequency two after the step input applied is 680us. The corresponding bandwidth is 1.47 kHz. 
Compared to the calculated value (1.56 kHz), the result is fairly accurate. To test the validity of this 
method, we changed the LPF component values. Figure 2-8(b) is the picture taken after a 4.7uF 
capacitor is used in the LPF feedback loop. The measured bandwidth is 330Hz while the hand 
calculation gives 680Hz. Again, there’s no error in magnitude.  
 
Part 3: The Σ∆ Modulator 
 
For this part, we use the first-order digital integrator as shown in Figure 3-1. The open loop transfer 
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 gives a closed loop transfer function of 1z−  and an error transfer function 

of . The corresponding frequency spectrum is shown in Figure 3-2. 11 z−−
 
We choose to use two’s complement to realize the arithmetic part.  Since we have 4 dip switches input, 
the input value ranges from -8 to 7. Ideally, we could obtain 16 different output sequences with different 
duty cycles if we manage to feedback 7(0111) (rather than 0) if the value before the comparator is 
above or equal to 0 and -8(1000) if the value before the comparator is below 0.  However, in order to 
avoid the overflow problem, we would need at least 5 bits to perform the math which would increase 
the circuit complexity greatly.  As a trade-off, we decided to feedback 0 instead of 7 when the output 
of the integrator is a non-negative number and we limit the input range within -8 and -1.  With the 
input ranges from -8 to -1, we obtain outputs with duty cycles of 100%, 87.5%, 75%, 62.5%, 50%, 
37.5%, 25% and 12.5% respectively. (shown in Figure 3-3) 
 
Part 4: Putting it all together 
 
With the sigma-delta modulator, we dithered the LSB of the internal counter in the PLL chip.  In order 
to clock the sigma-delta modulator, we used the Fv signal of the PLL chip so that we don’t miss out 
some of the VCO rising edges due to the changes in the divider, thus counter, values.  Because our 
sigma-delta modulator outputs a sequence of one-bit value in the period of 8, we could attain the 
resolution of 0.625Megahertz/8 = 78.125 KHz.  Although the signal showed some jitter (Figure 4-1), 
in general, the spectrum analyzer showed clear peaks at right frequencies (Figure 4-2).  Here is a table 
of measurement results that shows the phase noise characteristics and attainable output frequencies.  
 

Center Frequency 5.001MHz (Figure 4-2) 
Carrier Power 12.1dBm (Figure 4-2) 

Phase noise at 10kHz Offset 82.8dBc/Hz (Figure 4-3) 
Phase noise at 100kHz Offset 100.25dBc/Hz (Figure 4-4) 

Digital Input to the Sigma-delta 
Modulator 

Attainable Frequency 

0000 5.001MHz 
0001 5.078MHz 
0010 5.156MHz 
0011 5.237MHz 
0100 5.313MHz 
0101 5.393MHz 



0110 5.469MHz 
0111 5.55MHz 

 
As you can see, we can increment the digital input bit by bit, and increase the frequency in 1/8 of the 
resolution in the integer PLL. The measured output frequency is compared with ideal output frequency 
in Figure 4-5. 
 
To delve into the spur characteristics, we measured the primary spur power and its offset from the 
center frequency. The following table shows the measurement result. 
 

Center Frequency Carrier Power Spur Offset from the CF Spur Power 

5.078MHz 7dBm 0.078MHz 2.6dBm 

5.156MHz 9.8dBm 0.157MHz -7dBm 

5.312MHz 9.98dBm 0.311MHz -6.7dBm 

5.549MHz 8dBm 0.078MHz 1.3dBm 
 
An interesting observation is that by changing the voltage that controls the frequency range of the VCO, 
we can control the spur and the phase noise in the output signal spectrum.  This is perhaps due to the 
fact if the output of the loop filter has some ripples that are not totally filtered out when the PLL is 
locked, high gain in the VCO (Kv) can actually induce a lot of phase noise.  This signifies that when 
the loop-filter is sloppy, there is a certain trade-off between high Kv to attain high loop-gain and low Kv 
to attain small phase noise.  In other words, we need to set the range of the VCO appropriately to 
accommodate the necessary range of frequency that we design to synthesize, attain high enough Kv to 
have high loop-gain to decrease the phase difference between the reference clock signal and the output 
of the VCO, while low enough Kv to be able to tolerate the ripples from the output of the loop filter.  
Thus, designing a good loop-filter is a major concern from the PLL system perspective. 
 
OPTIMIZATIONS 
 
Added Digital Circuitry to randomize the output of the sigma-delta modulator 
 
Because loop-filters pose serious problems in the phase noise of the output signal, we wanted to 
implement an adaptive loop-filter that adapts its bandwidth based on the band-width and noise 
performance requirements, as in Figure 4-6.  By varying the loop dynamics based on the input digital 
words that signify the frequency to be synthesized, we could make better trade-offs in terms of settling 
time and phase-noise performance.  However, many non-idealities with off-the-shelf capacitors, 
resistors and OPAMP resulted in a hassle with the loop-filter in part 2 of the lab, and this discouraged us 
a great deal in pursuing this path.  Under a more controlled process (such as IC implementations), 
variable loop-filter could be a very interesting topic to consider. 
 
After all, as an optimization, we decided to decrease the spurs by employing the digital dithering 
scheme in the sigma-delta modulator.  Spectrum analyzer shows that we have many spurs around the 
center frequency if we dither the internal counter in the PLL chip with the first-order sigma-delta 
modulator.  This is due to the idle tones that are neglected in the derivation of the sigma-delta 
modulator model.  The introduction of the spur can be referenced back to the dithering between two 
frequencies that are available from the integer part of the PLL.  When the output frequency can be 
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reference frequency, we get the worst spurs.  These can be denoted as the idle tones present in the 
system.  To exacerbate the situation, these spurs will actually interact with one another again due to 
non-linearity present in the system to increase the power.   
 
Furthermore, another problem is that when the input of the sigma-delta modulator is DC, then the 
modulator encounters limit-cycle problems. When the limit cycle occurs, a very strong tone will be 
present at the output of the sigma-delta modulator, which will prohibit the noise-shaping functionality 
of the modulator. On top of that, this strong tone will be very hard to low-pass filter through the PLL 
dynamics. Therefore, we thought we can get rid of some of these spurs by adding more randomness in 
front of the comparator, which will effectively smear out the strong tone present for DC inputs.  
 
In order to achieve this, we use the GLFSR (Galois Linear Feedback Shift Registers) to generate the 
random numbers.  The conceptual visualization of the GLFSR is shown in Figure 4-6. What is 
different from the LFSR (Linear Feedback Shift Registers) is that the GLFSR does not concatenate 
every register to the next.  Instead, the GLFSR employs a configuration in which some of the register 
outputs are tapped to produce an XOR with the LSB of the GLFSR to produce the following bit, as 
shown in Figure 4-7.  In doing so, we can guarantee more randomness in the number generated 
through GLFSR.  However, there are several conditions to satisfy in order to guarantee the generation 
of every possible combination of numbers with N registers. To summarize, we should tap the output of 
the registers at prime numbered position.  In doing so, we can satisfy the necessary condition to 
achieve largest possible variations in the number we get from the GLFSR (this maximum number of 
variations we get from GLFSR is 2N-1, where N is the number of registers in GLFSR).  Also, the 
number of registers to tap depends on the number of registers you have.  In general, larger the number 
of registers, larger the number of tapped outputs is.  Interested readers can refer to REF 1 for more 
information. 
 
We chose to have 12 registers to generate the random number due to area constraints, and we tapped the 
output of the registers at 3rd, 5th, and 11th position in the register array.  It is proven that by tapping the 
outputs from the above registers we can get the full range of number available from 12 registers.  In 
order to add the randomness in the output of the sigma-delta, we added the LSB of the random number 
in front of the comparator, as shown in Figure 4-8.  This seems to add non-zero DC component in the 
sigma-delta modulator output, but the dynamics of the sigma-delta modulator operates such that the DC 
component of the sigma-delta modulator is suppressed.  In other words, we are randomly adding either 
1 or 0 in front of the comparator to randomize the accumulated error term, which the accumulator will 
try to pin down to zero with the feedback.  Thus, even if there is certain DC component we are adding 
with the GLFSR, we will eventually get the help from the sigma-delta modulator dynamics to suppress 
the DC component.  If the DC component is still a problem due to stability or dynamic range issues 
(such as overflow), we could choose to assert -1 when the LSB is 0 and assert 1 when the LSB is 1. 
 
The measured output spectrum of the PLL before and after dithering is shown in Figure 4-9.  As you 
can see here, the noise floor in the spectrum rose significantly, while the spur is suppressed quite a bit.  
The rise in the noise floor is intuitive because we are effectively introducing more random noise into the 
system with the GLFSR.  From the measurement, the peak-power in the largest spurs decreased by 
7dBm.  The measured phase-noise of our system is illustrated in the table below. 
 

Phase noise at 10kHz Offset 30.16dBc/Hz  
Phase noise at 100kHz Offset 44.21dBc/Hz  

 
Although there is a visible enhancement, the improvement is rather small.  Furthermore, the 
improvements in spur characteristics came about at the expense of two-fold increase in background 
noise.  Whether the introduction of the random noise into the system is still beneficial is thus 
questionable based on the application of this system.  The possible reason for only a small 
improvement could be due to the fact that even if you use GLFSR that generates the full range of 
numbers with N registers, it doesn’t guarantee that the sequence of bits you get from the LSB is as 



random (as white) as possible.  Therefore, in order to increase the effectiveness of our dithering 
scheme, we should come up with a better scheme to generate the random sequence of bits. 
 
Because we couldn’t get rid of spurs as much as we wanted, we decided to push forth implementing a 
second-order sigma delta modulator.  In pursuing this path, we thought that more noise shaping would 
lead us to better noise performance and also smaller spurs. 
 
Second Order Sigma-Delta Modulator 
 
We tried three different topologies as shown in Figure 4-10. The reason we added the shaded delay 
block in topology (a) is to block the direct feedback and make the system stable.  The closed loop 
signal gain G(z) and error gain E(z) are expressed as follows: 
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Topology (c)    ,     1( )G z z−= 1 2( ) (1 )E z z−= −
 
The frequency response of the three LPF is plotted as in figure 4-11 with the first-order LPF response 
included as a reference. The solid line is signal and the dotted line is error.  
 
We see that topology (c) is the second-order loop filter in the common sense while (a) and (b) shows 
some interesting characteristics such as increasing the signal or suppressing the error. But all shape the 
noise and push it to high frequency as we expect. To see what is really happening in the time domain, 
we simulated all circuits in matlab. As in part 3, we again choose -8 and 0 as feedback factors and 1/8 
as the frequency resolution to make the comparison with first-order fair. 
 
However, topology (a) and (b) give only 7 outputs with the duty cycle 100% and 62.5% missing 
respectively. We figure it might be due to the irregularity of the frequency response. One thing to note 
though, the valid outputs of (a) and (b) do bear a more random fashion. We list first-order and second-
order (c) output sequence in the table below. 
 

DC first-order second-order (c) 
1 1 1 

87.5% 11111110 1101111111101111 
75% 1110 10110111 
62.5% 11011010 0110101101011011 

50% 10 0011 
37.5% 10100100 0001010010100011 
25% 1000 00000011 
12.5% 10000000 0000000000000011 

 
We can see that output from 2nd order LPF is more random and scattered which means its high 
frequency component is magnified while the low frequency part is suppressed. 
 
As for implementation, since the maximum and minimum numbers encountered are 28 and -12, 6 bits 
are enough to give a resolution of 1/8 the original minimum frequency. The measured result is shown in 



Figure 4-12.  
 
Conclusion  
 
On top of the fractional-N synthesizer utilizing a first-order sigma-delta modulator, we have devised a 
method to enhance the performance of the system by increasing the randomness of the sigma-delta 
modulator output and introducing a second-order sigma-delta modulator in the dithering scheme.  
Although we have achieved noticeable enhancement in performance, several points need to be studied 
further. First of all, a better random-vector generator should be studied in the digital dithering scheme in 
order to decrease the spur at the output of the synthesizer. Also, different schemes to add the random 
noise into the system should be studied to increase the randomness of the sigma-delta modulator output.  
 
There are also a number of ways to improve our design second-order sigma-delta modulator in future.  
Due to the wiring complexity, we limited the number of effective ALU bits to be 6.  This gives 80kHz 
resolution which is fairly small.  However, we later realized that in order to achieve 40kHz resolution, 
only one more bit is needed.  It’s a pity we didn’t try to push ourselves harder for a finer resolution.  
Although we were able to generate random sequence through random number generator and second-
order sigma-delta, we weren’t able to reduce the phase noise visibly.  We see VCO output waveform 
dithering between two frequencies on the oscilloscope, which is worse than the first-order simple case.  
At first, we figured it might be the loop filter’s problem.  But we weren’t able to solve it by changing 
component values.  A more detailed calculation of the loop filter is required in order to filter out high 
frequency noise effectively. Since the second-order part is a really big digital module, noise injected 
into ground might influence the analog part negatively, which is another possible reason for the 
observed noisy waveform. 
 
The future generations of the project can delve into these issues to further enhance the performance of 
the system. 
 
 
REF1. D. K. Pradhan et al, “GLFSR—A New Test Pattern Generator for Built-in-Self-Test”, IEEE 
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VOL. 18, NO. 2, FEBRUARY 1999 



FIGURES 
 
 
 
Figure 0-1  
 
System Block Diagram 
 

 
 
Figure 1-1. 
 
VCO Characteristic 

 



Figure 1-2 
 
Spectral Content of the Output of the VCO at 5.5MHz 
 

 
 
Figure 1-3 
 
Buffer Schematic 
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Figure 2-1  
Loop-filter Schematic 

 
 
Figure 2-2 
Linearized PLL Model 
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Figure 2-3 
Relation between 3dB bandwidth of phase noise and closed loop bandwith 

 

 
 
Courtesy: Mike Perrott 
 



Figure 2-4 
Relation between 3dB bandwidth of phase noise and closed loop bandwith for bandwidth too 
small and too big 
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Figure 2-5 
Phase noise spectral density from spectrum analyzer 
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Figure 2-6 
Step response of second order system 
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Figure 2-7 
Equivalent block diagram of PLL 
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Figure 2-8 
Measured step response for different LPF cap values 
 

 
 



Figure 3-1 
Block diagram of first-order Σ∆ modulator 
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Figure 3-2 
Frequency response of first-order Σ∆ modulator 
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Figure 3-3 
Output sequence for different input 
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Figure 4-1.  
 
Time domain signal of the output of the Fractional N. 
 

 
 
Figure 4-2.  
 
Spectrum Analyzer plot of the above signal. 
 

 



Figure 4-3.  
Phase noise at 10kHz offset 
 

 
 
Figure 4-4.  
Phase noise at 100kHz Offset 
 

 
 
Figure 4-5. 
Measured output frequency versus ideal output frequency 
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Figure 4-6. 
Variable Loop-filter (Courtesy: SeungHwan Cho, MIT Ph.D. Thesis) 

 
 
Figure 4-7. 
Galois LFSR Scheme 
 

 
 
 



Figure 4-8.  
Sigma-Delta Block diagram with digital dithering 
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Figure 4-9.  
Output Spectrum of the PLL Before/After Dithering 
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Figure 4-10 
Block diagram of second-order Σ∆ modulator 
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Figure 4-11 
Comparison of frequency response of second-order Σ∆ modulator 
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Figure 4-12 
Measured result with second-order sigma-delta modulator 
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