# Low Power Carbon Nanotube Chemical Sensor System



Taeg Sang Cho, Kyeong-Jae Lee, Jing Kong and Anantha Chandrakasan Massachusetts Institute of Technology CICC September 17 2007

# Outline

- Introduction
- Carbon nanotube chemical sensors
- Sensor interface design
- Interface chip measurement
- Chemical sensor system test result
- Conclusion

## **Motivation for using CNT Sensors**





[Courtesy: A. Recco, J. Kong]

- Behaves as a resistive chemical sensor
- High sensitivity at room temperature
  - No need for micro hot-plates
- NO<sub>2</sub> can be sensed without any functionalization

# **Measured CNT Characteristics**



# Implications for the CMOS backend

- Wide dynamic range (10kΩ ~ 9MΩ), but only moderate resolution (1%)
  - Sub-ppm NO<sub>2</sub> detection
  - 16 bit dynamic range
  - 6-7 bit resolution
- Interface to multiple CNT sensors for increased reliability
  - Access to 24 CNTs
  - Maximum current through a single CNT < 30 µA

•

#### **Previous Sensor Interfaces**



- Make resistive sensor a current source by wrapping an OPAMP to supply a constant voltage across the sensor [Malfatti et al. ISSCC06]
- Use a resistive DAC and ADC to gain a wide dynamic range [Grassi et al. ESSCIRC 2005]

#### **Architectural Concept**





# **Proposed System Diagram**



#### **Architecture Optimization**

#### Why a 10-bit ADC and a 8-bit DAC to attain 18-bit dynamic range?

 $E_{\text{SYSTEM}} = P_{\text{ADC}}T_{\text{ADC}} + P_{\text{DAC}}T_{\text{DAC}} + E_{\text{DIGITAL}}$ 



Penalty paid for using a 10-bit ADC is 17%

## **DAC Control Scheme**



- Only allow I<sub>DAC</sub> = 2<sup>N</sup>I<sub>LSB</sub> : 4-bit representation of current.
- Supply the maximum current while meeting the DAC headroom constraint.
- Resistance can be calculated with register shift operations

# **DAC Control Scheme**

**DAC Current** 



## **DAC Calibration**



- Use off-chip reference resistors to measure how much current is being sourced at each current level
- A simple multiplication can be used to calibrate the DAC nonlinearity

# **Analog CNT Multiplexer**



# **Prototype Chips**

CNT sensors fabricated at MTL, RLE (MIT)

Prototype fabricated in 0.18µm CMOS process





#### **Performance : DAC Calibration**



**Current linearity error is kept below 1.2% after calibration** 

#### **Performance : Linearity and Power**



## **Comparison of interfaces**

|                              | Readout<br>Resolution | Resistance<br>Range | Readout<br>Rate      | Power<br>Consumption <sup>ŋ</sup> |
|------------------------------|-----------------------|---------------------|----------------------|-----------------------------------|
| Malfatti et al.<br>[ISSCC06] | 0.5% >                | 500kΩ ~<br>1GΩ      | Not<br>Available     | 3.1 mW                            |
| Grassi et al.<br>[ESSCIRC05] | 0.14% >               | 100Ω ~<br>20MΩ      | 100Hz                | 6 mW                              |
| Frey et al<br>[JSSC 07]      | 0.2% >                | 3kΩ ~<br>12MΩ       | 3kHz                 | ~ 130mW                           |
| Flammini*                    | 0.5 % >               | 10kΩ ~<br>10GΩ      | Depends<br>on resis. | 600 mW                            |
| This work                    | 1.32% >               | 10kΩ ~<br>9MΩ       | 1.83kHz              | 32 μW                             |

\* IEEE Transactions on Instrumentation and Measurement Nov 2004

<sup>n</sup> Excluding micro-hotplate power where applicable

#### **Chemical System Testing**

0.1

#### **Chemical System Test Setup**





#### Conclusion

- CNT sensors enable a low power chemical sensor system without micro hotplates
- The designed interface chip attains a wide dynamic range by automatic control scheme
- The full chemical sensor system is demonstrated

Acknowledgements: Funding provided by MARCO IFC, Samsung Scholarship Foundation, Intel; Chip fabrication provided by National Semiconductor