IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 8, AUGUST 2010

1489

The Patch Transform

Taeg Sang Cho, Student Member, IEEE, Shai Avidan, Member, IEEE, and
William T. Freeman, Fellow, |IEEE

Abstract—The patch transform represents an image as a bag of overlapping patches sampled on a regular grid. This representation
allows users to manipulate images in the patch domain, which then seeds the inverse patch transform to synthesize modified images.
Possible modifications include the spatial locations of patches, the size of the output image, or the pool of patches from which an image
is reconstructed. When no modifications are made, the inverse patch transform reduces to solving a jigsaw puzzle. The inverse patch
transform is posed as a patch assignment problem on a Markov random field (MRF), where each patch should be used only once and
neighboring patches should fit to form a plausible image. We find an approximate solution to the MRF using loopy belief propagation,
introducing an approximation that encourages the solution to use each patch only once. The image reconstruction algorithm scales
well with the total number of patches through label pruning. In addition, structural misalignment artifacts are suppressed through a

patch jittering scheme that spatially jitters the assigned patches. We demonstrate the patch transform and its effectiveness on natural

images.

Index Terms—Image models, statistical, applications, image-based rendering.

1 INTRODUCTION

THE patch transform represents an image as a bag of
patches sampled on a regular grid and treats each patch
as a basic element of an image. Image editing can be
formulated as shuffling patches to generate a visually
pleasing image while conforming to user constraints.
Reconstructing images from a set of patches is called the
“inverse patch transform.” One can think of the inverse
patch transform as solving a jigsaw puzzle subject to user
constraints. When no user constraints are specified, the
inverse patch transform reduces to solving a standard
jigsaw puzzle. We solve the inverse patch transform by
formulating a Markov random field (MRF) on image nodes
and using loopy belief propagation to find the patch label at
each image node.

The patch transform framework enables users to manip-
ulate images in the “patch domain”: Users can constrain
patch positions and add or remove patches from an image.
Such a characteristic gives rise to many useful image editing
operations. For example, a user can relocate objects by
specifying the desired location of certain patches. Also, a
user can “retarget” an image by specifying the desired size
of a modified image. Alternatively, a user can modify the
amount of certain textures by adding or removing patches
that belong to a particular class (say, blue sky or clouds). A
user can also mix patches from multiple images to generate
a collage. All of these image editing operations follow a
unified pipeline with a coarse, simple user input.

o T.S. Cho and W.T. Freeman are with the CSAIL, Massachusetts Institute
of Technology, 32 Vassar Street, 32D-466 Cambridge, MA 02139.
E-mail: {taegsang, billfl@mit.edu.

e S. Avidan is with Tel-Aviv University, Israel.

E-mail: shai.avidan@gmail.com.

Manuscript received 15 Aug. 2008; revised 5 Nov. 2008; accepted 5 May
2009; published online 22 June 2009.

Recommended for acceptance by Q. Ji, A. Torralba, T. Huang, E. Sudderth,
and J. Luo.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMISI-2008-08-0515.

Digital Object Identifier no. 10.1109/TPAMI.2009.133.

0162-8828/10/$26.00 © 2010 IEEE

Image edits, such as hole filling, texture synthesis, object
removal, and image retargeting, have been previously
addressed in the literature. Yet, there are two important
benefits to our method. First, we propose a unified frame-
work that addresses many editing operations. Any improve-
ment to our algorithmic engine can, therefore, improve all
image editing operations that rely on it. Second, our
approach simplifies user interactions. For example, with
current techniques, moving an object in the image from one
location to another involves carefully segmenting the object,
making room for it in its target location, pasting it to its new
location, and filling the hole created in the process. In
contrast, our algorithm only requires the user to roughly
select a small number of patches that belong to the desired
object and place them in their new location. The inverse
patch transform algorithm will automatically make room for
the newly located patches, fill in the hole, and rearrange the
image to comply with user constraints.

This paper extends the work of Cho et al. [1] in a number
of aspects. First, we sample overlapping patches from the
grid, instead of the nonoverlapping patches considered in
[1], to enhance the compatibility measure and reduce visual
artifacts. Second, we introduce a new pruning technique,
named the patch-loop-based label pruning, to reduce the
complexity of belief propagation from O(N?) to subqua-
dratic in NV, where N is the total number of patches. Using
label pruning, we can edit images with thousands of
patches. We also introduce a patch jittering technique to
reduce subpatch size structural alignment error.

2 RELATED WORK

The inverse patch transform is closely related to solving
jigsaw puzzles. Solving some types of jigsaw puzzles is NP-
complete [2] because it can be reduced to a set partition
problem. Nevertheless, there has been much work in the
literature to (approximately) solve the problem, and for
jigsaws with discriminative shapes, a polynomial algorithm
can solve the puzzle. Most jigsaw puzzle solvers exploit the

Published by the IEEE Computer Society

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

1490

Input image

Image editing framework

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 8, AUGUST 2010

Modified image

The patch transform

The inverse patch transform

7

+ userinput + _
A %

o

J

Fig. 1. lllustration of the pipeline of the patch transform-based image editing scheme. First, we compute the patch transform representation of the
input image and use the inverse patch transform to solve for the patch labels on the image grid, respecting the user input, compatibility requirements,
the low-resolution image, and the exclusion constraint. In the inverse patch transform block, the red ball denotes the image node and the green block
denotes the exclusion factor node that steers the solution to seldom use each patch more than once.

shape and content of the jigsaw. In a shape-based approach,
the boundary shape of the jigsaw is used to find valid
neighbors. Even if valid neighbors can be found using
shape, the problem is still NP-complete because finding the
correct order of the boundary jigsaws can be reduced to the
traveling salesman problem. Chung et al. [3] use both shape
and color to reconstruct an image and explore several
graph-based assignment techniques. To our knowledge, the
largest jigsaw puzzle solved by computer is with 320 jigsaw
pieces [4].

Many scientific problems have been formulated as
solving a jigsaw puzzle as well: reconstructing a relic from
its fragments [5], [6], [7], fitting a protein with known amino
acid sequence to a 3D electron density map [8], reconstruct-
ing documents from its fragments [9], [10], and reconstruct-
ing a speech signal from its scrambles [11].

Patch-based image representations have been used in the
form of “epitomes” [12] and “jigsaws” [13], where an image
is represented by a small source image and a transformation
map. While these models can generate an image with
overlapping patches from the source image, they are
applied primarily for image analysis.

There has been an evolution in the patch-based image
editing community. Criminisi et al. [14] introduce a patch
propagation method which is augmented with a global
optimization framework by the follow-up papers [15], [16].
These global methods allow the same patch to be used
multiple times, which limits the amount of control a user
has over the synthesized image. Also, it may tile the same
patch across the image, which may look unpleasant. Kopf
et al. [17] address this issue by keeping a counter for each
patch and adjusting the probability of reusing a patch
accordingly. We address this issue in a probabilistic
framework by introducing a term that penalizes the use of
the same patch multiple times.

While the patch transform is also closely related to
existing image editing frameworks, the patch transform
tries to sidestep other typical image editing tasks, such as
region selection [18] and object placement or blending [19],
[20], [21]. Techniques on image matting and image
composition [21], [22] work at a pixel-level accuracy, and
were shown to perform well in extracting foreground layers
in images and placing them on a new background, thus
avoiding the difficult tasks of hole filling, image reorgani-
zation, or image retargeting. The patch transform inherently

works with patch-level accuracy—thus, not requiring the
user to provide very accurate input—and it adjusts the
image to the user input so as to make the output image as
plausible as possible. Related functionalities have been
obtained using the notion of bidirectional similarity, which
is described in [23].

The patch transform stitches patches together to synthe-
size new images, thus it is closely related to larger spatial
scale versions of that task, including Auto Collage [24] and
panorama stitching [25], although with different goals.
Nonparametric texture synthesis algorithms, such as [26],
and image filling-in, such as [14], [27], [28], can involve
combining smaller image elements and are more closely
related to our task. Also related, in terms of goals and
techniques, are the patch-based image synthesis methods
[14], [29], which also require compatibility measures
between patches. Efros and Freeman [29] and Liang et al.
[30] use overlapping patches to synthesize a larger texture
image. Neighboring patch compatibilities were found
through squared difference calculations in the overlap
regions. Freeman et al. [31] use similar patch compatibilities
and used loopy belief propagation in an MRF to select image
patches from a set of candidates. Kwatra et al. [32],
Ramanarayanan and Bala [33], and Komodakis and Tziritas
[34] employ related Markov random field models, solved
using graph cuts or belief propagation, for texture synthesis
and image completion. The most salient difference from
texture synthesis methods is the patch transform’s constraint
against multiple uses of a single patch. This allows for the
patch transform’s controlled rearrangement of an image.

3 THE INVERSE PATCH TRANSFORM

3.1 The Image Editing Framework

We introduce an image editing framework (Fig. 1) lever-
aging the patch transform. Given an input image, the system
samples overlapping patches from a regular grid, each of the
same size and the same amount of overlap, and computes the
compatibility among all possible pairs of patches.

The inverse patch transform reconstructs an image by
first formulating an MRF in which nodes represent spatial
positions, where we place the patches. We call these nodes
the “image nodes.” The inverse patch transform runs loopy
belief propagation to solve for the patch assignment that is

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

CHO ET AL.: THE PATCH TRANSFORM

visually pleasing, is similar to the original image at low
resolution, and satisfes user inputs.

Once patches are assigned to the image nodes, we
stitch patches together in a way similar to the algorithm
introduced by Efros and Freeman [29]: Image nodes are
scanned in a horizontal-first manner, and at each image
node, the patch is stitched to the image thus far blended
by finding the seam that results in minimum artifacts. The
stitched image can still contain artifacts due to luminance
difference if neighboring patches were not adjacent in the
original image. We remove the intensity gradients along
the seam if the adjacent two patches were not adjacent in
the original image. We use the Poisson solver provided by
Agrawal et al. [35].

3.2 The Image Model

The unknown state at the ith image node is the index of the
patch z; to be placed at that position. We let x be a vector of
unknown patch indices z; at each of the N image positions i.
We define a compatibility ¥ that measures how plausibly
one patch fits next to another. Each image node has four
neighbors (except at the image boundary), and we write the
compatibility between patch k and patch [, placed at
neighboring image positions ¢ and j, to be ;;(k,1). A
“patch exclusion” function, E(x), is zero if any two elements
of x are the same (if any patch is used more than once) and is
otherwise one. We can represent user constraints using local
evidence terms ¢;(x;). We use ¢;(z;) to also ensure that the
final image has a similar structure to the original image:
¢i(z;) favors patch assignments x whose low-resolution
version looks similar to the low-resolution version of the
original image. We define the probability of an assignment x
of patches to image positions to be

Hdh(xi) IT i) p Ex). (1)

JEN (i)

By maximizing P(x), we seek a solution that matches
compatible patches locally while ensuring that each patch is
used only once. In the next section, we introduce a message
passing scheme to find the patch assignment x that
approximately maximizes P(x).

3.3 Approximate Solution by Belief Propagation
Finding the assignment x that maximizes P(x) (1) is NP-
hard, but approximate methods can nonetheless give good
results. One such method is belief propagation. Belief
propagation is an exact inference algorithm for Markov
networks without loops, but can give good results even in
some networks with loops [36]. For belief propagation
applied in networks with loops, different factorizations of
the MREF joint probability can lead to different results. We
factorize (1) as a directed graph:

N
x)oc [T T pwilzopis(elepe) B, ()

i=1 jeN (i)

where N (¢) is the neighboring indices of z;, y; is the patch at
location i in the original image, and p;; is the appropriate
normalized compatibility determined by the relative location

1491

of j with respect to i. A normalized compatibility p; ;(x;|x;) is
defined as follows:

Vig(@i, ;)
S (i, @)

and the local evidence term p(y; | ;) = ¢;(2;). In most cases,
we model p(z;) as a uniform distribution, but we can
manipulate p(z;) to steer the MRF to favor patches with
certain characteristics. We use this factorization, instead of
(1), to ensure that textureless patches are not overly favored
compared to other patches. Freeman et al. [31] use a similar
factorization. Equation (2) is exact for a tree, but only
approximate for an MRF with loops.

We can find the approximate marginal probability at
node i by iterating the sum-product message passing
scheme until convergence [36]. Ignoring the exclusion term
E(x) for now, the message update rules for this factoriza-
tion are as follows: Let us suppose that j is in the
neighborhood of ¢. The message from j to ¢ is

Zp“ml|x, (yjlz;) H ml}), (4)

leN(j
and the patch assignment at node i is

(3)

pij(wilz)) =

mn xz

Z; = argmax b;(x
1

where the belief at node 7 is defined as follows:

(yz|$z H m/z xz (6)

JEN (i)

3.4 Message Updates with the Patch Exclusion
Term

The message passing scheme in the previous section may fail
to reconstruct the original image because each patch can be
used more than once. In this section, we introduce a message
passing scheme that integrates the exclusion term so that it
favors a solution that seldom uses each patch more than once.
Since the exclusion term is a global function involving all
x;, we represent it as a factor node (shown in Fig. 1) that is
connected to every image node i [36]. The message from a
node i to a factor node (m;y) is the belief b;(z;) (6), and the
message from a factor node to a node i is as follows:

Z Yr(x1, ..., 2N) H myp(zy), (7)

{z1,0 ey P\ teS\i

myi(2;) =

where S is the set of all image nodes. If any of the two nodes
in S share the same patch, ¢p(-) is zero, and is one
otherwise. The message computation involves marginaliz-
ing N — 1 state variables (i.e., the image nodes) that can take
on M different values (i.e., the number of patches), so the
complexity of the marginalization becomes O(MW=Y),
which is often intractable.

We propose an approximate solution to (7). Instead of
marginalizing variables over a joint potential ¢p(z1, ..., zx),
we approximate ¢p(z1,...,xx) as a product of pairwise
exclusion potentials. For computing the message from the
exclusion factor node to an image node 1,

~ [T va (@), (8)

teS\i

w}q(l'l,...,x]v)

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

1492

Fig. 2. lllustration of how we compute the left-right seam energy for two
overlapping patches. The white line is the seam along which the color
difference between the patches is minimum. The color difference along
the white line is defined as the seam energy.

where

The product of pairwise exclusion potentials [;. ¢\; ¥r, (z¢|z;)
is zero only if the patch to be assigned to node i has already
been used by another image node. This is different from the
full joint potential ¢p(z1, . .., zx), which can be zero even if
the patch to be placed at node i is not being shared with
other image nodes. Combining (7)-(9), it gives

M
mypi(zi =)~ [T D vn (e = mu(a)

teS\i =1

= TT (0~ muplae =),

tesS\i

(10)

where we assume that my; is normalized to 1. This is
intuitively satisfying: The exclusion factor node f steers
the node ¢ to place low probability on claiming a patch [
if that patch has already been claimed by another node
with a high probability.

3.5 Implementation Details

3.5.1 The Compatibility Measure

In Cho et al. [1], sampled patches are nonoverlapping and
the patch-to-patch compatibility is defined in terms of a
natural image statistics prior. In this paper, we sample
overlapping patches and compute the pairwise compat-
ibility using the seam energy. using overlapping patches
reduces visual artifacts.

Fig. 2 illustrates how we compute the left-right seam
energy for two overlapping patches k£ and [. We first find
the seam within the overlapped region—denoted by the red
strip—along which the color difference between the two
patches is minimum. We use a dynamic programming
method described by Efros and Freeman [29] to find the
optimal seam. The color difference along the optimal seam
is the seam energy FE.n(k,1) and we exponentiate it to
compute the compatibility 1:

(11)

gl) o exp (— Boean &) ”) ,

o.(l)*

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 8, AUGUST 2010

where o.(l) is a parameter that controls how much we
penalize finite seam energy with a reference patch 1.

Note that F,.,, is zero for two patches that were adjacent
in the original image. This characteristic allows a greedy
polynomial-time algorithm to reconstruct the original
image. However, such a greedy algorithm does not
generalize well to accommodate image editing operations,
as an MRF-based algorithm does.

3.5.2 Setting o.(1)

In Cho et al. [1], o.({) in (11) is fixed for all pairs of patches
and was set through cross validation. In this work, we
adaptively set o.(I) for every reference patch I. We define
o.(1) as follows:

oc(l) = Ei(2) — E(1), (12)

where Ej(1) is the seam energy between a patch [and its
best match and E;(2) is the seam energy between a patch [
and its second best match.

The motivation for this choice of o.(l) is to simplify the
image completion problem such that the algorithm con-
siders only few patches as a plausible neighbor to a
reference patch [, effectively reducing the combinatorial
complexity.

3.5.3 User Input in the Image Model

We can incorporate the user input into the image model
using the local evidence term. If a user fixes a patch k at an
image node i, p(y; | i =k) =1 and p(y; | i =1) =0, for
Vi # k. At unconstrained nodes, the mean color of the
original patch y; serves as an observation:

2
o | = 1) mp<—M> (13)
Ocvid

where m(-) is the mean color of the argument and c.,q =
0.4 is determined through cross validation. Equation (13)
allows the algorithm to keep the scene structure correct (i.e.,
sky at the top and grass at the bottom) and is used in all
applications described in this section unless specified
otherwise. While m(-) denotes the mean color in this work,
we can modify this function to meet an application’s needs.

4 |IMAGE EDITING APPLICATIONS

We introduce a number of image editing applications that
leverage the patch transform. All the applications follow the
same pipeline as shown in Fig. 1.

4.1 Image Reorganization

A user may want to change the location of an object after
capturing an image. We show an example for relocating a
person in Fig. 3. Fig. 3a is the original image, and the user
wants to move the woman to the left side of the image. Fig. 3b
shows how the user specifies the input. The user grabs
patches that belong to the woman (the black bounding box)
and snaps them at the desired location (the green bounding
box). We have deliberately placed the woman to occlude two
men in the background to show how two men are relocated
automatically. The local evidence p(y; | x;) for nodes where

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

CHO ET AL.: THE PATCH TRANSFORM

(©) (d

(©) (f)

Fig. 3. lllustration of the contribution of each term in the image model.
(a) The input image. (b) The user input. (c) The reconstructed image
respecting the local evidence and the exclusion term. (d)-(f) Recon-
structed images with and without the local evidence and the exclusion
term. (d) Without the local evidence and without the exclusion term.
(e) With the local evidence and without the exclusion term. (f) Without
the local evidence and with the exclusion term.

the woman used to stand is now uniform over all x; since the
algorithm doesn’t know a priori what to place there.

With this user input, the inverse patch transform finds a
pleasant patch configuration and reconstructs an edited
image (Fig. 3c). One observation from the reconstructed
image is that two men in the background “got-out-of-the-
way” and placed themselves at a new location. The inverse
transform does not just swap patches that belong to the
woman with patches that the woman is placed upon.

To see how each term in the image model contributes to the
output image, we have conducted an experiment where the
local evidence and the exclusion term are each turned on and
off in the inverse patch transform. Fig. 3d shows the
reconstructed image when the local evidence term is uniform
(exceptin nodes with fixed patches) and the exclusion term is
turned off. While the patch assignments are locally compa-
tible, the final image does not have the same structure as the
input image. If we incorporate the local evidence term while
keeping the exclusion term off, we get a better structured
image, shown in Fig. 3e, but the reconstructed image has
duplicates of the woman in the foreground. If we only turn on
the exclusion term and keep the local evidence uniform, we
get the result shown in Fig. 3f. While there aren’t any

1493

Input image

o
3
Q

£
=
[
wv

=)

Output image

Fig. 4. Subject reorganization examples. (Color codes: red—fix,
green—move to, black—move from.)

repeating patches that generate visual artifacts, the
structure of the input image is not maintained. Fig. 4 has
more examples of object reorganization.

4.2 Object Removal

The patch transform can be used to remove objects from an
image: A user can reconstruct an image without patches
that correspond to the object of interest. Since the exclusion
term is not a hard constraint, the inverse patch transform
will judiciously reuse some patches.

Fig. 5 shows some examples of object removal. In the first
row, the user wants to remove large trees on the left side of
the building. To make up for the missing tree patches, the
algorithm chooses to reuse some patches of the building,
propagating the building structure. In the second example,

Inputimage User input Output image

Fig. 5. The object removal examples. The inverse patch transform
reconstructs an image discarding the user-specified patches. (Color
codes: red—fix, blue—remove.)

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

1494

CEEL R LU L L

A 0 0 0
{

Inputimage
¥s9q 9yl

Outputimage

IndinQ Buinie) weas }j SIUSPIAS [eD0]

Fig. 6. The image retargeting example. The inverse patch transform
reconstructs a resized image by solving for the patch assignment on a
smaller canvas.

the user wants to remove the long tower under construction
while keeping the dome at its current location. To complete
the missing region, the inverse patch transform reuses some
patches from the building.

4.3 Image Retargeting

A user may be interested in resizing an image while
keeping as much content of the original image as possible.
One effective method to retarget an image is “seam
carving” by Avidan and Shamir [37]. A seam carving
method finds a seam along which the energy is minimum,
and removes the seam from an image. While it achieves
excellent results on many images, the algorithm is in-
herently based on low-level cues, and sometimes it fails to
retain the overall structure of the image.

We argue that the patch transform allows users to resize
an image while keeping the structure of the image through
the local evidence term. An image retargeting in the patch
transform framework can be thought of as solving a jigsaw
puzzle on a smaller canvas (leaving some patches unused).
The local evidence on a smaller canvas is the low-resolution
version of the bicubically resized image.

We show an image retargeting example in Fig. 6 in which
the user wants to reduce the image size to be 80 percent in
height and width. The patch assignment result just with the
local evidence term is shown on the right. While the image
contains many artifacts, the overall structure of the original
image is maintained. After running belief propagation, we
can generate a resized image: A whole floor of the building
has been removed to fit the vertical size of the image, and
some pillars have been removed to fit the lateral size of the
image. At the same time, some pavement patches as well as
some people have disappeared. When we retarget the
image using Seam Carving [37], the scene can be well
summarized, but the overall structure of the image is not
maintained. Note that sky occupies a smaller portion of the
whole image.

What makes retargeting work is that while the
compatibility term tries to simply crop the original image,
the local evidence term competes against that to retain as
much information as possible. The inverse patch trans-
form balances these competing interests to generate a
retargeted image.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32,

NO. 8, AUGUST 2010

Input image

User input

Output image

Fig. 7. The user can manipulate the patch statistics of an image through
the image prior term, which can be designed to favor user specified
patches. (Color codes: red—fix, white—favor.)

4.4 Manipulating Patch Statistics
The patch transform is well suited to controlling the amount
of textures, or the patch statistics, in an image. One method of
manipulating the patch statistics is by explicitly controlling
how many patches of a certain class appear in an image. In
this section, we present another method to control the patch
statistics: by manipulating p(z;) in the image model (2).
Consider an input image in Fig. 7, and suppose that the
user wants to have more clouds similar to a patch z,. We
can fold the patch preference information into p(z;):

(f ()

- f(ws))2) 7 14)

p(wi; ;) o< exp (207,
where o), is a specificity parameter and f(-) is a function
that captures the characteristic of the patch. In this work,
f(+) is the mean color of the argument, but can be defined to
meet the application’s needs.

The reconstructed image, with o,, = 0.2, is shown in the
last row. Cloud patches are used multiple times: The energy
penalty paid for using these patches multiple times is
compensated for by the energy preference specified in the
prior (14). We can also favor sky patches and generate an
image consisting primarily of sky.

4.5 Photomontage

We introduce a photomontage application, where we mix
patches from multiple images to generate a single image. A
photographer may find it hard to capture the person and
the desired background at the same time at a given shooting
position. In this scenario, the user can take multiple images
using different zooms and combine them in the patch
domain. In Fig. 8, the user wants to transfer the large
mountain from image 2 to the background of image 1. This

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

CHO ET AL.: THE PATCH TRANSFORM

Input image 1

User input

o~

Input image 2 Outputimage

Fig. 8. We generate a photomontage of the two input images. The user
wants to copy the large mountain in image 2 to the background of
image 1, while keeping the person at the original location. (Color codes:
red—fix, green—insert.)

operation is simple in the patch transform framework. The
user specifies which portion of image 2 should be in the
background of image 1 and what region should be affixed
in image 1. Then the inverse patch transform reconstructs a
plausible image using patches from both images. There is a
region of contention that transitions from one image to the
next. The inverse patch transform finds a good region to
make such transitions.

5 THE FAST INVERSE PATCH TRANSFORM

We have introduced a number of image editing applica-
tions that leverage the patch transform. In all examples,
the input image was broken into 192 patches. We ran BP
with two to three randomized initial conditions and chose
the most visually pleasing result. With our relatively
unoptimized MATLAB implementation on a 2.66 GHz
CPU, 3 GB RAM machine, the compatibility computation

Fig. 9. Structural misalignments cause visible artifacts, motivating the
use of smaller patches (Section 5) and the patch jittering algorithm
(Section 6).

1495

. B

D isited f :Loop direction
[scurentnode

I ccorencnosesneshoor

:No local evidence

W s

. Assigned, but not yet visited

(a) (b)

Fig. 10. Methods to manage the growth of node state dimensions.
(a) The active labels are added by scanning the image nodes from the
top-left corner to the bottom-right. (b) The active label assignment
algorithm initially steps over the region without valid local evidence.
Then the algorithm assigns active labels to these regions by propagating
the active labels from the boundary nodes.

takes about 3 seconds, and belief propagation takes about
7 seconds for 50 message passing iterations.

One source of artifacts in the edited image is the structural
alignment error, as shown in Fig. 9. We could reduce the
patch size to suppress the structural misalignments. We
cannot, however, indefinitely reduce the patch size because
of the belief propagation complexity. The complexity of
belief propagation algorithm for discrete probabilities is
O(NMK), where N is the number of nodes, M is the number
of state labels per node, and K is the number of candidate
neighbors per state. By reducing the patch size, we increase
the number of patches as well as the number of image nodes,
which slows down belief propagation significantly.

We present a patch-loop-based label pruning method
that reduces the number of patch candidates per image
node (i.e., M and K).

5.1 Pruning Patch Labels with Patch Loops

A patch loop is a sequence of patches that forms a loop on
an MRF, as shown in Fig. 11a. We can form four types of
loops given a reference patch (shown in blue), ignoring
directionality. We name each loop LUR, LDR, RUL, RDL
based on the order in which we traverse the neighboring
nodes. For an image to be visually pleasing, the product of
compatibility along the patch loop should be high. The
patch loop label pruning “activates” patches that form
highly compatible loops with patch candidates in neighbor-
ing nodes. This label pruning routine serves as a preproces-
sing step to belief propagation.

5.1.1 Active Label Assignment Algorithm

Weassign active labels toimage nodes by scanning them from
the top-left corner to the bottom-right corner (Fig. 10a). At
each node, say, the yellow node in Fig. 10a, we take the k most
probable patches according to the local evidence, find [patch
loops with maximal compatibility for each of the k chosen
patches, and add patches that form patch loops as active
labels at the corresponding locations in the neighboring
nodes (shown in red). In the case of RDL loop (Fig. 11b), the
algorithm finds k patches for node u, and adds active labels to
i, j, and v in the order they form the patch loop.

When the user removes the patch at a node i, the local
evidence at a node ¢ is uniform for all patches, and the
algorithm does not have any cue to select the initial
k candidates. Therefore, if an image node has a uniform local
evidence, the active label assignment algorithm initially steps
over it and does not assign any active labels. Once the

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

1496

(a) (b)
Fig. 11. (a) For a reference patch (shown in blue), there are four

different types of neighboring loops (not considering the directions).
(b) An RDL loop.

algorithm finishes the node scanning process, the algorithm
propagates the active labels from the boundary of the patch
removed region into the center of the patch removed region
(Fig. 10b). We scan the uniform local evidence region from the
top-left corner to the bottom-right corner with RDL loops, and
reverse scan from the bottom-right corner to the top-left
corner with LUR loops. At each node, for every active label
(instead of the top k patch labels according to the local
evidence), we use [* patch loops (where [* can be different
from I) to assign active labels at the corresponding neighbor-
ing nodes. The initial active labels at node i are patches added
by its neighbors before the node scanning reaches the node i.
In practice, I* = 1 performs well.

5.1.2 Finding | Best Patch Loops

We could find the optimal | patch loops for a reference
patch u by enumerating all N? loop candidates, where N is
the total number of patches. We introduce an O(N?)
algorithm that finds I approximately best patch loops for
a fixed reference patch u.

Consider Fig. 11b. Let cH((,n) be the seam energy for
placing ¢ to the left of n, and ¢V ({, n) be the seam energy for
placing ¢ to the top of n. The following algorithm finds
patch labels ¥, j*, and v* that minimize the seam energy
across the loop:

I. Find the patch label ¢ that minimizes E;(j) =
min; (cH (u, i) + ¢V (4, 7)) for each j.
2. Find the patch label j for fixed i that minimizes
E;(v) = min;(E;(j) + cH(v,j) + ¢V (u, v)) for each v.
3. Find [patches v* that minimize F;(v) with the
corresponding j.
4. Find patches i, j* for each v* through back tracing:
j° = argmin;(FE;(v")), i* = argmin,; (E;(5)).
In other words, for each reference patch u, the algorithm
returns [approximately best patch loops by first sorting
E;(v), picking the I best patches v* that minimize F;(v), and
returning ¢*,j* with the corresponding v* through back
tracing. We can precompute the patch loops. The algorithm
is applicable for all other loops (i.e., RUL, LUR, LDR) with
minor modifications.

5.1.3 Discussions

The patch-loop-based label pruning algorithm is closely
related to label pruning algorithms for belief propagation.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

VOL. 32, NO. 8, AUGUST 2010

300
10*, == With label pruning

—w— Without label pruning

== With local evidence
== Without local evidence

Time (sec)
Average number of active labels

400 600 800 1000 1200 1400 1
Number of image nodes

(a) (b)

200 00 800 100 120 1400
Number of image nodes

Fig. 12. (a) The runtime comparison with and without label pruning. Note
that the y-axis is in log scale. (b) The average number of active labels in
nodes with/without local evidence as we increase the total number of
patches.

Label pruning has been successful in accelerating belief
propagation in many applications, including pose estima-
tion [38], object recognition [39], image analysis [40], stereo
depth map inference [41], and in medical applications [42].
On a theoretical note, Bishop et al. [43] and Koller et al. [44]
propose effective label pruning algorithms for MRFs with
potentials from an exponential family. Freeman et al. [31]
propose a method to retain state labels that have high
potential to be the final solution. The state label selection
can be thought of as maintaining only the top k state labels
with the highest probability before running belief propaga-
tion. While such a first-order label pruning scheme works
well in many applications, it breaks down in the inverse
patch transform. In the inverse patch transform, there
should be at least one state label at each node that its four
neighboring nodes can agree on. We call this a consensus
constraint and the first-order label pruning method may not
satisfy the consensus constraint. The patch loop label
pruning algorithm addresses this issue by taking into
account the active labels in the neighboring nodes.

The patch loop-based label pruning scheme is static: The
number of patch labels does not change as belief propaga-
tion proceeds. A dynamic label pruning method, intro-
duced by Komodakis and Tziritas [34], reduces the number
of state labels as belief propagation runs. This would be too
expensive for the inverse patch transform since it should
make sure that the consensus constraint is satisfied after
each BP iteration.

5.2 Evaluation

We experimentally show that reducing the patch size
improves the image editing quality. We show that the label
pruning step is important to reduce the computation time.
The label pruning scheme reduces the runtime per iteration
as well as the total number of required iterations for
convergence.

5.2.1 Runtime Comparison

We have performed the image reconstruction task by break-
ing the image into 192, 432, 768, 1,200, and 1,728 patches. The
corresponding patch sizes are 76 x 76, 56 x 56, 46 x 46,
40 x 40, and 36 x 36, all with 16 pixel overlap. We recorded
the time it takes to run 50 iterations of belief propagation with
these patches, with and without the label pruning. £ = 6,1 =
2 in these experiments. The number of patch loops for nodes
without valid local evidence I* was 1.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

CHO ET AL.: THE PATCH TRANSFORM

192 patches

432 patches

Without
label pruning

With
label pruning

768 patches

1497

1200 patches 1728 patches

Fig. 13. Reducing the patch size improves the edited image quality. The label pruning helps find visually pleasing local minima with a small number of

message passing iterations.

The blue plot in Fig. 12a shows the runtime of 50 message
passing iterations without label pruning. Note that the
image reconstruction slows down rapidly as the number of
image nodes (thus, the number of patches) increases. When
there are 1,728 patches, it takes nearly 5 hours to run
50 message passing iterations.

The red plot in Fig. 12a shows the runtime of 50 message
passing iterations with label pruning. Even with 1,728
patches, it takes about 2.5 minutes to complete 50 message
passing iterations. While the runtime is less than the case
without label pruning, the complexity of BP after label
pruning is not linear in the number of patches because the
number of active labels in image nodes increases roughly
linearly to the number of patches.

Fig. 12b shows the average number of active labels in
nodes with and without local evidence as we increase the
total number of patches. These plots show that the number
of active labels increases approximately linearly in the total
number of patches. In the case of nodes with local evidence,
the proportionality constant is roughly 0.01, and in the case
of nodes without local evidence, the proportionality
constant is roughly 0.3. This shows that the bulk of the BP
runtime is spent in regions without local evidence.

The belief propagation runtime reduction comes at a cost
of precomputing patch loops. The patch loop computation
takes 8 minutes with a mex code implementation in
MATLAB. Note that we only need to compute the patch
loop once before running belief propagation, and this delay
is not visible to the user during the image editing process.

5.2.2 Image Quality Comparison After 50 lterations of
BP

The benefit of label pruning is not just the per-iteration
message passing runtime reduction, but also the reduction
in the number of message passes for convergence. We show
that 50 message passing iterations are enough, even with
1,728 patches, to reconstruct a plausible image with label
pruning, but is not enough to reconstruct a plausible image
without label pruning.

Fig. 13 shows reconstructed images with/without label
pruning after 50 iterations of belief propagation using 192,
432, 768, 1,200, and 1,728 patches. Without label pruning,
reconstructed images contain repeating-patch artifacts.
Also, reconstructed images contain severe structural

misalignments because belief propagation did not converge
to a stable solution after 50 iterations of belief propagation.

With label pruning, with k£ = 6,1 = 2, artifacts due to the
patch repetition are unnoticeable, and the structural mis-
alignments are less salient. The label pruning not only helps
in reducing the runtime per message passing iteration, but
also in reducing the number of message passing iterations.

k and [are knobs to balance the fast convergence of belief
propagation and the ability to explore the possible space of
images that can be generated with a given set of patches. If £
and [are small, messages will converge faster, but the
resulting image would look similar to the original image. If &
and [are large, belief propagation would require more
message passing iterations to converge, but the algorithm
will explore more space of plausible images. The algorithm is
insensitive to the exact k, [values. We experimentally verified
that the algorithm performs wellif 4 < £ <8, 1 <1< 4.

We show some more images edited with the acceler-
ated patch transform. Each image is broken into patches
of size 36 x 36, with 16 pixel overlap, generating about
1,700 patches per image. A rough breakdown of the
processing time is shown in Fig. 14. Images in Fig. 15 are
generated by running the inverse patch transform three
times and taking the visually most pleasing image.

In Fig. 16, we show some failure examples. Since the
patches are smaller, the patch transform sometimes finds it
hard to transfer a whole object intact. In the top row of
Fig. 16, the right bench should have reappeared on the left
side of the image, but it reappeared only partially. Also, if
different regions have small color difference (the middle
row of Fig. 16), the different textures may try to merge.

Precomputable User interaction

i — ——

~50 sec ~8 minutes ~2.5 minutes
* compatibility computation

Fig. 14. The runtime breakdown for 1,728 patches. The runtime is
measured in MATLAB.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

1498

Edited image

Input image

User input

Fig. 15. More image editing examples. (Color codes: red—fix,
green—move to, black—move from, blue—remove, white—favor.)

6 PATCH JITTERING

While the use of small patches, enabled by the label pruning
method described above, drastically improves the edited
image quality, subpatch size structural misalignments still
generate visual artifacts. We present a method to suppress
subpatch size structural misalignments through a postpro-
cessing step called the patch jittering. The patch jittering
operation refers to finding an optimal spatial offset to patches
assigned to image nodes by the inverse patch transform. We
can jitter patches without generating a hole in the output
image since patches overlap. The maximum amount of jitter
is determined by the amount of patch overlap.

User input Edited image

Input image

Fig. 16. Some failure examples. The patch transform sometimes fails to
preserve structures. (Color codes: green—move to, black—move from.)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 8, AUGUST 2010

(a) (b)

Fig. 17. A local jittering scheme can fix some types of misalignments, but
has limitations, motivating the use of an MRF to jitter patches globally.
(a) The misalignment between the red patch and the patch to its right
can be reduced by jittering the red patch toward the right. (b) A simple
local jitter operation cannot fix the misalignment error for this example.
Moving the red patch upward would better fit the side on the right, but it
would cause misalignment with a patch on its left.

6.1 A Local Jittering Scheme
Fig. 17a illustrates the jittering operation. The gray over-
lapping squares denote the underlying patch grid and the
red square is the patch that we jitter. By moving the red
patch to the right, the red patch better fits the patch to its
right: The “dip” between the red tile and the white dress
will disappear. The increase in the seam energy between the
red patch and the patch to its left will not be drastic since
they are self-similar. Essentially, we are reusing some pixels
in the overlapped region to mask alignment errors.
Jittering each patch one by one has a limitation.
Consider Fig. 17b. By jittering the red patch upward, the
red patch will better fit the patch to its right. However, the
upward jitter causes a misalignment with the patch to its
left, and increases the total seam energy between the red
patch and its four neighbors. Therefore, we need to jitter
neighboring patches in unison to find a global optimal jitter
at every node.

6.2 The Jitter MRF

Our approach to globally jitter patches is to use another
MREF. We call this new MRF the jitter MRF. Once the inverse
patch transform assigns patches to image nodes, we
formulate a jitter MRF, where state labels at each node are
jittered versions of the assigned patches. Then belief
propagation on the jitter MRF searches for the globally
optimal jittered patch at each node. When computing the
seam energy, we normalize the sum of color difference
along the seam by the length of the overlapped region
because the size of the overlapped regions between patches
changes as we jitter them. This allows us not to unnecessa-
rily penalize the nojitter state.

In many cases, only a small portion of the image contains
structural misalignment artifacts that need to be fixed
through jittering. While it is easy to spot the misalignment
artifacts using pairwise compatibility, it is hard to find a
region that should be jittered. Since the patch jittering is a
postprocessing step, we ask users to specify regions that
need jittering. In our implementation, each patch is jittered
in steps of [—6,—3,0,3,6] pixels to reduce the computa-
tional overhead.

The patch jittering operation proceeds as follows:

1. The user selects regions that need jittering.
2. The algorithm computes the compatibility among
neighboring patches with all possible jitters.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

CHO ET AL.: THE PATCH TRANSFORM

1499

(@)

(©

Fig. 18. lllustration of the effectiveness of the patch jittering operation. (a) An edited image before the patch jittering. (b) A user input for the patch

jittering. (c) An edited image after the patch jittering.

3. The algorithm formulates an MRF, where the state
variable at each node is the amount of jitter, and
runs belief propagation to find the optimal jitter at
each node. The MRF is formed only on nodes that
the user selected.

6.3 Evaluation

We show the patch jittering operation in Fig. 18a. The inset
shows that the edited image before the patch jittering contains
visible alignment artifacts. Fig. 18b shows how the user
specifies the region to be jittered and Fig. 18c shows the final
edited image after the patch jittering. It takes about one
second to set up the jitter MRF (computing the pairwise
compatibility) and less than 0.5 second to run 20 iterations of
belief propagation.

The jittering operation removes much of the structural
alignment artifact. The alignment error along the black
pavement is removed by gradually jittering patches upward
to connect the pavements. Some grass pixels are used twice
and some bush pixels have disappeared. To fix the
alignment error along the red pavement to the left side of
the woman, the algorithm jitters the patch that abuts the
woman’s dress. To fix the alignment error to the right side
of the woman, the jitter MRF shortens her wrist and reuses
some finger pixels.

(b)

Fig. 19. Two other solutions to the jittering operation in Fig. 18. In (a),
tree pixels are reused to align the background, whereas in (b), the
forehead pixels are reused.

The jittering operation has a few local minima since most
of the jittered patches are compatible with its neighbors. We
explore some local minima by randomly initializing BP
messages. Fig. 19 shows two other local minima of the patch
jittering operation to user input Fig. 18b. Since running
20iterations of belief propagation takes less than 1 second, the
user could try different message initializations to explore
different local minima, and choose the best one.

Fig. 20 shows more patch jittering examples. The patch
jittering on the first example removes the alignment error
along the staircase, and the jittering on the second example
removes the residual error from the water bottle.

7 CONCLUSIONS

We have presented the patch transform and its applica-
tions to image editing. The patch transform allows users to

Input image

Edited image
before jitterin

Edited image
after jitterin

(a) (b)

Fig. 20. More patch jittering examples. Note that in (a), the alignment
error in staircases is fixed, and in (b), the residual error from the bottle is
fixed.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

1500

manipulate images in the patch domain, and the inverse
patch transform reconstructs an image that conforms to the
user input. The inverse patch transform reconstructs an
image from a bag of patches by considering three elements:
1) Neighboring patches should be compatible to one
another so that visible artifacts can be minimized, 2) each
patch should be used only once in generating the output
image, and 3) the user-specified changes in the patch
domain should be reflected in the reconstructed image. We
model the inverse patch transform as solving for patch
labels on an MRF, where each node denotes a location
where we can place patches. We introduce various image
editing applications that leverage the patch transform, and
verify that the patch transform framework works well with
real images. To further improve the edited image quality,
we introduce the patch loop-based label pruning and the
patch jitter-based structure misalignment correction. These
improvements give the appearance of making object-level
manipulations, while using the low-level computations of
the patch transform.

ACKNOWLEDGMENTS

This research is partially funded by ONR-MURI grant
N00014-06-1-0734 and by Shell Research. This work was
partially completed while Taeg Sang Cho was an intern at
Adobe Systems. Taeg Sang Cho is partially supported by
the Samsung Scholarship Foundation. The authors would
like to thank Myung Jin Choi, Ce Liu, Anat Levin, and
Hyun Sung Chang for fruitful discussions. They would also
like to thank Flickr for images.

REFERENCES

[1] T.S. Cho, M. Butman, S. Avidan, and W.T. Freeman, “The Patch
Transform and Its Applications to Image Editing,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2008.

[2] E.D. Demaine and M.L. Demaine, “Jigsaw Puzzles, Edge Match-
ing, and Polyomino Packing: Connections and Complexity,”
Graphs and Combinatorics, vol. 23, pp. 195-208, 2007.

[3] M.G. Chung, M.M. Fleck, and D.A. Forsyth, “Jigsaw Puzzle Solver
Using Shape and Color,” Proc. Int’l Conf. Signal Processing, 1998.

[4] T.R.Nielsen, P. Drewsen, and K. Hansen, “Solving Jigsaw Puzzles
Using Image Features,” Pattern Recognition Letters, vol. 29,
pp- 1924-1933, 2008.

[5S] B.J. Brown, C. Toler-Franklin, D. Nehab, M. Burns, D. Dobkin, A.
Vlachopoulos, C. Doumas, S. Rusinkiewicz, and T. Weyrich, “A
System for High-Volume Acquisition and Matching of Fresco
Fragments: Reassembling Theran Wall Paintings,” Proc. ACM
SIGGRAPH, 2008.

[6] H.C. da Gama Leitao and J. Stolfi, “A Multiscale Method for the
Reassembly of Two-Dimensional Fragmented Objects,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 9,
pp- 1239-1251, Sept. 2002.

[7] D. Koller and M. Levoy, “Computer-Aided Reconstruction and
New Matches in the Forma Urbis Romae,” Bullettino Della
Commissione Archeologica Comunale di Roma, 2006.

[8] C.-S. Wang, “Determining Molecular Conformation from Distance
or Density Data,” PhD dissertation, Massachusetts Inst. of
Technology, 2000.

[9] M. Levison, “The Computer in Literary Studies,” Machine

Translation, pp. 173-194, 1967.

L. Zhu, Z. Zhou, and D. Hu, “Globally Consistent Reconstruction

of Ripped-Up Documents,” IEEE Trans. Pattern Analysis and

Machine Intelligence, vol. 30, no. 1, pp. 1-13, Jan. 2008.

Y.-X. Zhao, M.-C. Su, Z.-L. Chou, and]. Lee, “A Puzzle Solver and

Its Application in Speech Descrambling,” Proc. 2007 WSEAS Int’l

Conf. Computer Eng. and Applications, 2007.

[10]

(1]

[12]

(13]

(14]

[15]

[16]

(171

(18]
[19]
(20]

(21]

(22]

(23]

[24]
[25]
[26]
7]
28]
[29]

(30]

(31]

(32]

(33]

(34]

[35]

[36]

[37]

(38]

(39]

(40]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 8, AUGUST 2010

N. Jojic, B.J. Frey, and A. Kannan, “Epitomic Analysis of
Appearance and Shape,” Proc. IEEE Int’l Conf. Computer Vision,
2003.

A. Kannan, J. Winn, and C. Rother, “Clustering Appearance and
Shape by Learning Jigsaws,” Advances in Neural Information
Processing Systems 19, MIT Press, 2006.

A. Criminisi, P. Pérez, and K. Toyama, “Object Removal by
Exemplar-Based Inpainting,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2003.

Y. Wexler, E. Shechtman, and M. Irani, “Space-Time Video
Completion,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2004.

J. Sun, L. Yuan, J. Jia, and H.-Y. Shum, “Image Completion with
Structure Propagation,” Proc. ACM SIGGRAPH, 2005.

J. Kopf, C.-W. Fu, D. Cohen-Or, O. Deussen, D. Lischinski, and
T.-T. Wong, “Solid Texture Synthesis from 2D Exemplars,”
Proc. ACM SIGGRAPH, 2007.

E.N. Mortensen and W.A. Barrett, “Intelligent Scissors for Image
Composition,” ACM Trans. Graphics, 1995.

J.-E. Lalonde, D. Hoiem, A.A. Efros, C. Rother, J. Winn, and A.
Criminisi, “Photo Clip Art,” ACM Trans. Graphics, 2007.

P. Pérez, M. Gangnet, and A. Blake, “Poisson Image Editing,”
ACM Trans. Graphics, vol. 22, pp. 313-318, 2003.

J. Wang and M.F. Cohen, “An Iterative Optimization Approach
for Unified Image Segmentation and Matting,” Proc. IEEE Int’l
Conf. Computer Vision, 2005.

A. Levin, A. Rav-Acha, and D. Lischinski, “Spectral Matting,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2007.

D. Simakov, Y. Caspi, E. Shechtman, and M. Irani, “Summarizing
Visual Data Using Bidirectional Similarity,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2008.

C. Rother, L. Bordeaux, Y. Hamadi, and A. Blake, “Autocollage,”
ACM Trans. Graphics, 2006.

M. Brown and D. Lowe, “Recognising Panoramas,” Proc. IEEE
Int’l Conf. Computer Vision, 2003.

J.D. Bonet, “Multiresolution Sampling Procedure for Analysis and
Synthesis of Texture Images,” ACM Trans. Graphics, 1997.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image
Inpainting,” ACM Trans. Graphics, 2000.

A.A. Efros and T K. Leung, “Texture Synthesis by Non-Parametric
Sampling,” Proc. IEEE Int’l Conf. Computer Vision, 1999.

A.A. Efros and W.T. Freeman, “Image Quilting for Texture
Synthesis and Transfer,” Proc. ACM SIGGRAPH, 2001.

L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-Time
Texture Synthesis by Patch-Based Sampling,” ACM Trans.
Graphics, vol. 20, no. 3, pp. 127-150, July 2001.

W.T. Freeman, E.C. Pasztor, and O.T. Carmichael, “Learning Low-
Level Vision,” Int’l |. Computer Vision, vol. 40, pp. 25-47, 2000.

V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick, “Graphcut
Textures: Image and Video Synthesis Using Graph Cuts,” Proc.
ACM SIGGRAPH, 2003.

G. Ramanarayanan and K. Bala, “Constrained Texture Synthesis
via Energy Minimization,” IEEE Trans. Visualization and Computer
Graphics, vol. 13, no. 1, pp. 167-178, Jan./Feb. 2007.

N. Komodakis and G. Tziritas, “Image Completion Using Efficient
Belief Propagation via Priority Scheduling and Dynamic Prun-
ing,” IEEE Trans. Image Processing, vol. 16, no. 11, pp. 2649-2661,
Nov. 2007.

A. Agrawal, R. Raskar, and R. Chellappa, “What Is the Range of
Surface Reconstructions from a Gradient Field?” Proc. European
Conf. Computer Vision, 2006.

J.S. Yedidia, W.T. Freeman, and Y. Weiss, “Understanding Belief
Propagation and Its Generalizations,” Exploring Artificial Intelli-
gence in the New Millennium, pp. 239-269, http://portal.acm.org/
citation.cfm?id=779352, Morgan Kaufmann Publishers, 2003.

S. Avidan and A. Shamir, “Seam Carving for Content-Aware
Image Resizing,” ACM Trans. Graphics, vol. 26, 2007.

JM. Coughlan and S.J. Ferreira, “Finding Deformable Shapes
Using Loopy Belief Propagation,” Proc. European Conf. Computer
Vision, 2002.

M.P. Kumar and P. Torr, “Fast Memory-Efficient Generalized
Belief Propagation,” Proc. European Conf. Computer Vision, 2006.
J. Lasserre, A. Kannan, and J. Winn, “Hybrid Learning of Large
Jigsaws,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2007.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

CHO ET AL.: THE PATCH TRANSFORM

[41]]J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo Matching Using
Belief Propagation,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 25, no. 7, pp. 787-800, July 2003.

[42] M. Pechaud, R. Keriven, T. Papadopoulo, and]J.-M. Badier,
“Combinatorial Optimization for Electrode Labeling of Eeg Caps,”
Medical Image Computing and Computer-Assisted Intervention,
Springer, 2007.

[43] C.M. Bishop, D. Spiegelhalter, and J. Winn, “Vibes: A Variational
Inference Engine for Bayesian Networks,” Proc. Conf. Neural
Information Processing Systems, 2003.

[44] D. Koller, U. Lerner, and D. Angelov, “A General Algorithm for
Approximate Inference and Its Application to Hybrid Bayes Nets,”
Proc. Ann. Conf. Uncertainty in Artificial Intelligence, 1998.

Taeg Sang Cho received the BS degree in
electrical engineering and computer science
from the Korea Advanced Institute of Science
and Technology in 2005, and the SM degree in
electrical engineering and computer science
from the Massachusetts Institute of Technology,
Cambridge, in 2007, where he is currently
working toward the PhD degree in the field of
computer vision and computer graphics. His
2 current research focuses on developing compu-
tational cameras and algorithms to enhance photographic images. He is
the recipient of the 2007 AMD/CICC Student Scholarship Award, the
2008 DAC/ISSCC Student Design Contest Award, and the 2008 IEEE
CVPR Best Poster Paper Award. He is a recipient of the Samsung
scholarship. He is a student member of the IEEE.

1501

Shai Avidan received the PhD degree from the
School of Computer Science at the Hebrew
University, Jerusalem, Israel, in 1999. He is a
professor at Tel-Aviv University, Israel. He was a
postdoctoral researcher at Microsoft Research,
a project leader at MobilEye, a start-up company
developing camera-based driver-assisted sys-
tems, a research scientist at Mitsubishi Electric
: Research Labs (MERL), and s senior research

A scientist at Adobe Systems. He has published
extensively in the fields of object tracking in video sequences and 3D
object modeling from images. Recently, he has been working on the
Internet vision applications such as privacy preserving image analysis,
distributed algorithms for image analysis, and media retargeting, the
problem of properly fitting images and video to displays of various sizes.
He is a member of the IEEE.

William T. Freeman received the PhD degree
from the Massachusetts Institute of Technology
in 1992. He is a professor of electrical engineer-
ing and computer science at the Massachusetts
Institute of Technology (MIT), working in the
Computer Science and Atrtificial Intelligence
Laboratory (CSAIL). He has been on the faculty
at MIT since 2001. He is also a principal scientist
at Adobe’s Advanced Technology Lab, where he
works part-time. From 1992 to 2001, he worked
at Mitsubishi Electric Research Labs (MERL), Cambridge, Massachu-
setts. Prior to that, he worked at Polaroid Corporation, and in 1987-
1988, was a foreign expert at the Taiyuan University of Technology,
China. His research interests include machine learning applied to
problems in computer vision and computational photography. He is a
fellow of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: MIT Libraries. Downloaded on June 29,2010 at 04:13:46 UTC from IEEE Xplore. Restrictions apply.

