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Image restoration
by matching gradient distributions
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Abstract—A common image restoration method is to use a MAP estimator, which maximizes a posterior probability to reconstruct a
clean image from a degraded image. A MAP estimator, when used with a sparse gradient image prior, reconstructs piecewise smooth
images and typically removes textures that are important for visual realism. We present an alternative deconvolution method called
iterative distribution reweighting (IDR) which imposes a global constraint on gradients so that a reconstructed image should have a
gradient distribution similar to a reference distribution. In natural images, a reference distribution not only varies from one image to
another, but also within an image depending on texture. We estimate a reference distribution directly from an input image for each
texture segment. Our algorithm is able to restore rich mid-frequency textures. A large scale user study supports the conclusion that our
algorithm improves the visual realism of reconstructed images compared to those of MAP estimators.

Index Terms—Non-blind deconvolution, image prior, image deblurring, image denoising

✦

1 INTRODUCTION

Image restoration is typically an under-constrained problem.
Information lost during a lossy observation process needs to be
restored with prior information about natural images to achieve
visual realism. Most Bayesian image restoration algorithms
reconstruct images by maximizing the posterior probability,
abbreviated MAP. Reconstructed images are called the MAP
estimates.

One of the most popular image priors exploits the heavy-
tailed characteristics of the gradient distribution, which are
often parameterized using a mixture of Gaussians or a gen-
eralized Gaussian distribution. The MAP estimator balances
the observation likelihood with the gradient penalty from the
sparse gradient prior, reducing image deconvolution artifacts
such as ringing and noise. Unfortunately, the MAP estimator
also removes mid-frequency textures, often giving an unnatural
and cartoonish look to the reconstructed image.

In this paper, we introduce an alternative image restoration
strategy that is capable of reconstructing visually pleasing
textures. The key idea is not to penalize gradients, but to
match the reconstructed image’s gradient distribution to the
desired distribution. We introduce a method to estimate the
desired distribution directly from the degraded input image. A
user study substantiates the claim that images reconstructed
by matching gradient distributions are visually more pleasing
compared to those reconstructed using the MAP estimator.

• T. S. Cho and W. T. Freeman are with Computer Science and Artificial
Intelligence Lab (CSAIL), Massachusetts Institute of Technology,
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Fig. 1: The gradient distribution of images reconstructed
using the MAP estimator can be quite different from that
of the original images. We present a method that matches
the reconstructed image’s gradient distribution to that ofthe
desired gradient distribution (in this case, that of the original
image) to hallucinate visually pleasing textures.

2 RELATED WORK

The Wiener filter [9] is a popular image reconstruction method
with a closed form solution. The Wiener filter is a MAP
estimator with a Gaussian prior on image gradients, which
tends to blur edges and causes ringing around edges because
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those image gradients are not consistent with a Gaussian
distribution.

Bouman and Sauer [1], Chan and Wong [2], and more recently
Ferguset. al. [6] and Levin et. al. [15], use a heavy-tailed
gradient prior such as a generalized Gaussian distribution[1],
[15], a total variation [2], or a mixture of Gaussians [6]. MAP
estimators using sparse gradient priors preserve sharp edges
while suppressing ringing and noise. However, they also tend
to remove mid-frequency textures, which causes a mismatch
between the reconstructed image’s gradient distribution and
that of the original image.

Matching gradient distributions has been addressed in the
texture synthesis literature. Heeger and Bergen [11] synthesize
textures by matching wavelet sub-band histograms to those of
the desired texture. Portilla and Simoncelli [18] match joint
statistics of wavelet coefficients to synthesize homogeneous
textures. Kopfet. al. [13] introduce a non-homogeneous tex-
ture synthesis technique by matching histograms of texels (or
elements of textures).

Matching gradient distributions in image restoration is not
entirely new. Li and Adelson [16] introduce a two-step image
restoration algorithm that first reconstructs an image using
an exemplar-based technique similar to Freemanet. al. [8],
and warp the reconstructed image’s gradient distribution to
a reference gradient distribution using Heeger and Bergen’s
method [11]. Woodfordet. al. [24] propose a MAP estimation
framework called a marginal probability field (MPF) that
matches a histogram of low-level features, such as gradients
or texels, for computer vision tasks including denoising. MPF
requires that one bins features to form a discrete histogram;
we propose a distribution matching method that by-passes this
binning process. Also, Woodfordet. al.[24] use an image prior
estimated from a database of images and use the same global
prior to reconstruct images with different textures. In contrast,
we estimate the image prior directly from the degraded image
for each textured region. Schmidtet. al. [21] match the
gradient distribution through sampling. As with Woodford
et. al. [24], Schmidtet. al. also use a single global prior to
reconstruct images with different textures, which causes noisy
renditions in smooth regions. HaCohenet. al. [10] explicitly
integrate texture synthesis to image restoration, specifically
for an image up-sampling problem. To restore textures, they
segment a degraded image and replace each texture segment
with textures in a database of images.

3 CHARACTERISTICS OF MAP ESTIMATORS

In this section, we illustrate why MAP estimators with a
sparse prior recover unrealistic, piecewise smooth renditions as
illustrated in Figure 1. LetB be a degraded image,k be a blur
kernel,⊗ be a convolution operator, andI be a latent image.
A MAP estimator solves the following regularized problem:

Î = argmin
I

{

‖B−k⊗ I‖2

2η2 +w∑
m

ρ(∇mI)

}

(1)

whereη2 is an observation noise variance,m indexes gradient
filters, andρ is a robust function that favors sparse gradients.
We parameterize the gradient distribution using a generalized
Gaussian distribution. In this case,ρ(∇I) = − ln(p(∇I ;γ,λ )),
where the priorp(∇I ;γ,λ ) is given as follows:

p(∇I ;γ,λ ) =
γλ ( 1

γ )

2Γ(1
γ )

exp(−λ‖∇I‖γ) (2)

Γ is a Gamma function and shape parametersγ,λ determine
the shape of the distribution. In most MAP-based image recon-
struction algorithms, gradients are assumed to be independent
for computational efficiency:p(∇I ;γ,λ ) = 1

Z ∏N
i=1 p(∇Ii ;γ,λ ),

wherei is a pixel index,Z is a partition function, andN is the
total number of pixels in an image.

A MAP estimator balances two competing forces: the recon-
structed imagêI should satisfy the observation model while
conforming to the image prior. Counter-intuitively, the image
prior term, assuming independence among gradients,always
favors a flat image to any other images, even a natural image.
Therefore, the more the MAP estimator relies on the image
prior term, which is often the case when the image degradation
is severe, the more the reconstructed image becomes piecewise
smooth.

One way to explain this property is that the independence
among local gradients fails to capture the global statistics of
gradients for the whole image. The image prior tells us that
gradients in a natural imagecollectivelyexhibit a sparse gradi-
ent profile, whereas the independence assumption of gradients
forces us to minimize each gradientindependently, always
favoring a flat image. Nikolova [17] provides a theoretic
treatment of MAP estimators in general to show its deficiency.

We could remove the independence assumption and impose a
joint prior on all gradients, but this approach is computation-
ally expensive. This paper introduces an alternative method to
impose a global constraint on gradients – that a reconstructed
image should have a gradient distribution similar to a reference
distribution.

4 IMAGE RECONSTRUCTION

In this section, we develop an image reconstruction algorithm
that minimizes the KL divergence between the reconstructed
image’s gradient distribution and its reference distribution.
This distance penalty plays the role of a global image prior
that steers the solution away from piecewise smooth images.

Let qE(∇I) be an empirical gradient distribution of an image
I , andqR be a reference distribution. We measure the distance
between distributionsqE and qR using the Kullback-Leibler
(KL) divergence:

KL(qE||qR) =
∫

∇I
qE(∇I) ln

(

qE(∇I)
qR(∇I)

)

d(∇I) (3)

An empirical distributionqE is parameterized using a general-
ized Gaussian distributionp(∇I ;γ,λ ) (Eq. 2). Given gradient



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 20XX 3

Algorithm 1 MAP with KL penalty

% Initial image estimate to start iterative minimization
Î0 = argminI

{

‖B−k⊗I‖2

2η2 +w1λD‖∇I‖γD

}

UpdateqE
0 using Eq. 4

% Iterative minimization
for l = 1 ... 10do

% KL distance penalty term update

ρ l
G(∇I) = 1

N ln
(

qE
(l−1)(∇I)
qR(∇I)

)

% Image reconstruction
Î l = argminI

{

‖B−k⊗I‖2

2η2 +w1λD‖∇I‖γD +w2ρ l
G(∇I)

}

UpdateqE
l using Eq. 4

end for
Î = Î10

samples,∇Ii , wherei indexes samples, we estimate the shape
parametersγE,λE of an empirical gradient distributionqE by
minimizing the log-likelihood:

[γE,λE] = argmin
γ,λ

{

−
N

∑
i=1

1
N

ln(p(∇Ii;γ,λ ))

}

(4)

This is equivalent to minimizing the KL divergence between
gradient samples∇I and a generalized Gaussian distribution.
We use the Nelder-Mead optimization method [14] to solve
Eq. 4.

4.1 Failure of penalizing KL divergence directly

To motivate our algorithm in Section 4.2, we first introduce a
method that penalizes the KL divergence between an empirical
gradient distributionqE and a reference distributionqR. We
show that the performance of this algorithm is sensitive to the
parameter setting and that the algorithm may not always con-
verge. In Section 4.2, we extend this algorithm to a more stable
algorithm called Iterative Distribution Reweighting (IDR).

We augment the MAP estimator (Eq. 1) with KL divergence:

Î = argmin
I

{

‖B−k⊗ I‖2

2η2 +w1λD‖∇I‖γD +w2KL(qE||qR)

}

(5)

where w2 determines how much to penalize the KL diver-
gence.1 It’s hard to directly solve Eq. 5 because the KL diver-
gence is a non-linear function of a latent imageI . Therefore
we solve Eq. 5 iteratively.

Algorithm 1, shown in pseudocode, solves Eq. 5 iteratively.
We can describe Algorithm 1 qualitatively as follows: ifqE has
more gradients of a certain magnitude thanqR, ρG penalizes
those gradientsmorein the following iteration; ifqE has fewer
gradients of a certain magnitude thanqR, ρG penalizes those
gradientsless in the following iteration. Therefore, at each

1. In Eq. 5, we have replaced the summation over multiple filters in Eq. 1,
i.e. ∑mλm‖∇mI‖γm, with a single derivative filter to reduce clutter, but the
derivation can easily be generalized to using multiple derivative filters. We
use four derivative filters in this work: x, y derivative filters and x-y, and y-x
diagonal derivative filters.

iteration, the solution will move in the “correct” direction.
Figure 2 illustrates the procedure. The full derivation of the
algorithm details is available in Appendix A.

We can show that the penalty functionρG in Algorithm 1 is
one way to evaluate the KL divergence between the empirical
distributionqE and the reference distributionqR.

Proposition 1: Let qE be a parametric distribution of samples
xi , i = 1...N and letqR be a fixed parametric distribution. Then
we can represent the KL divergence between samplesqE and
qR as follows:

KL(qE||qR) =
N

∑
i

ρG(xi) =
N

∑
i

{

1
N

ln

(

qE(xi)

qR(xi)

)}

(6)

proof: The KL divergence betweenqE andqR is defined as
follows:

KL(qE||qR) =

∫

z
qE(z) ln

(

qE(z)
qR(z)

)

dz (7)

There are different ways to represent the parametric distribu-
tion qE. We can parameterize the distribution of samples using
a generalized Gaussian distribution as follows:

qE(z) =
γEλE

(

1
γE

)

2Γ( 1
γE

)
exp(−λE‖z‖γE) (8)

where the shape parametersγE,λE are fitted to samplesxi

using Eq. 4. We can also parameterize the distribution of
samplesxi as follows:

q̃E(z) =
1
N

N

∑
i

δ (z−xi) (9)

Therefore,

KL(qE||qR) =

∫

z
qE(z) ln

(

qE(z)
qR(z)

)

dz

=

∫

z
q̃E(z) ln

(

qE(z)
qR(z)

)

dz

=
N

∑
i

{

1
N

ln

(

qE(xi)

qR(xi)

)}

=
N

∑
i

ρG(xi)

(10)

4.1.1 Algorithm analysis

The behavior of Algorithm 1 depends on the value ofw2.
When w2 is small, the reconstructed image is similar to the
MAP estimate. On the other hand, whenw2 is large, the
algorithm oscillates around the desired solution (Figure 3):
the algorithm “ping-pong’s” between a noisy solution and a
piecewise smooth solution. For instance, suppose the current
image estimate is piecewise smooth. The algorithm would
then encourage more pixels with larger derivatives in the next
iteration, which makes the subsequent solution noisier. Inthe
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(a) MAP estimate (b) Gradient distribution
 

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Gradient magnitude

 

Original image

MAP estimate

(c) Penalty update

10
−2

10
−1

10
0

0

5

10

15

20

Gradient magnitude

 

 

Original penalty function

The log ratio of q
E

 and q
D

The weighted sum of penalties

E
n

e
rg

y

Fig. 2: This figure illustrates Algorithm 1. Suppose we deconvolve adegraded image using a MAP estimator. (b) shows that
the x-gradient distribution of the MAP estimate in (a) does not match that of the original image. (c) Our algorithm adds the
log ratio of qE and qR to the original penalty (i.e.λD‖∇I‖γD) such that the weighted sum of the two penalty terms encourages
a better distribution match in the following iteration.
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Fig. 3: We illustrate the operation of Algorithm 1 in terms
of the γE,λE progressions. Different colors correspond to
different gradient filters. Oftentimes, Algorithm 1 does not
converge to a stable point, but oscillates around the desired
solution.

following iteration, to reduce the derivative magnitudes to
smooth noise, the algorithm penalizes gradients more severely
to better match the reference distribution, in which case the
image becomes piecewise smooth again, exhibiting an oscil-
latory behavior. In fact, whenw2 is very large, the linearized
system (in Appendix A, Eq. 11) becomes indefinite, in which
case the minimum residual method [20] cannot be used to
solve the linearized system. To mitigate the reliability issue
and to damp possible oscillations around the desired solution,
we develop an iterative distribution reweighting algorithm.

4.2 The iterative distribution reweighting (IDR)

We extend Algorithm 1 to reduce oscillations around the
correct solution and to reduce sensitivity to parameter values.
We achieve this by modifying the regularization functionρG

in Algorithm 1. Our technique is motivated by perceptron
algorithms [5] that iteratively adjust a decision boundaryto
minimize classification error. In our case, we iteratively adjust
the regularization function to match the empirical gradient
distribution to the reference gradient distribution.

Algorithm 2 The iterative distribution reweighting
(IDR)

% Initial image estimate to start iterative minimization
Î0 = argminI

{

‖B−k⊗I‖2

2η2 +w1λD‖∇I‖γD

}

UpdateqE
0 using Eq. 4

% Iterative minimization
for l = 1 ... 10do

% Accumulating the KL divergence

ρ l
G(∇I) = ρ (l−1)

G (∇I)+ 1
N ln

(

qE
(l−1)(∇I)
qR(∇I)

)

% Image reconstruction
Î l = argminI

{

‖B−k⊗I‖2

2η2 +w1λD‖∇I‖γD +w2ρ l
G(∇I)

}

UpdateqE
l using Eq. 4

end for
Î = Î10

To do so, instead of using the KL divergence as a regulariza-
tion termρG as in Algorithm 1, we setρG as thesumof the
KL divergences over previous iterations. Algorithm 2 shows
the pseudocode for IDR.

IDR iteratively adjusts the penalty functionρG by the ratio of
distributionsqE andqR using the formulation of KL divergence
from Eq. 6, thus the name theiterative distribution reweighting
(IDR). If the ratio between the empirical and reference distri-
butions is large at a given iteration, the gradients are penalized
more heavily at the next iteration, and less if the ratio is small.
As shown in the pseudocode for IDR in Algorithm 2, our new
regularization termρG is set to the sum of the KL divergences
computed from Eq. 6 over previous iterations:

ρ l
G(∇I) = ρ (l−1)

G (∇I)+
1
N

ln

(

qE
(l−1)(∇I)
qR(∇I)

)

(11)

The benefit of IDR is that it reaches convergence when
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(a) IDR estimate (b) Gradient distribution (c) E�ective penalty
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Fig. 4: The IDR deconvolution result. (a) shows the deconvolved image using IDR, and (b) compares the gradient distribution
of images reconstructed using the MAP estimator and IDR. (c)The effective penalty after convergence (i.e. w1λD‖∇I‖γD +

w2 ∑10
l=1

1
N ln

(

qE(∇I)
qR(∇I)

)

) penalizes gradients with small and large magnitude more than gradients with moderate magnitude.

(a) Progression of Gamma (b) Progression of Lambda
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Fig. 5: This figure shows how theγE,λE progress from one
iteration to the next. Different colors correspond to different
gradient filters. We observe that the algorithm converges toa
stable point in about 8 iterations.

qE = qR. 2 We can also view theρG update equation as
damping the KL divergence with the sum of previous KL
divergences, thereby smoothing oscillations. We can easily
modify derivations in Appendix A to derive details for Al-
gorithm 2. We illustrate the operation of IDR in Figure 4, and
show howγE,λE changes from one iteration to the next in
Figure 5. Observe thatγE,λE no longer oscillate as in Figure 3.

In Figure 6, we test IDR for deblurring a single texture,
assuming that the reference distributionqR is known a priori.
We synthetically blur the texture using the blur kernel shown
in Figure 8 and add 5% Gaussian noise to the blurred image.
We deblur the image using a MAP estimator and using IDR,
and compare the reconstructions. For all examples in this
paper, we usew1 = 0.025,w2 = 0.0025. We observe that the
gradient distribution of the IDR estimate matches the reference
distribution better than that of the MAP estimate, and visually,
the texture of the IDR estimate better matches the original
image’s texture. Although visually superior, the peak signal-to-
noise ratio (PSNR) / gray-scale SSIM [23] of the IDR estimate
are lower than those of the MAP estimate. This occurs because

2. This statement does not mean that the algorithm will converge only if
qE = qR; the algorithm can converge to a local minimum.

IDR may not place the gradients at exactly the right position.
Degraded images do not strongly constrain the position of
gradients, in which case our algorithm disperses gradientsto
match the gradient distribution, which would lower the PSNR
/ SSIM.

4.2.1 Algorithm analysis

IDR matches aparametrizedgradient distribution, and there-
fore the algorithm is inherently limited by the accuracy of
the fit. The behavior of IDR is relatively insensitive to the
weighting termw2, but a largew2 can destabilize the minimum
residual algorithm [20] that solves the linearized system in Eq.
11.

In most cases, IDR reliably reconstructs images with the
reference gradient distribution. However, there are casesin
which the algorithm settles at a local minimum that does
not correspond to the desired texture. This usually occurs
when the support of derivative filters is large and when
we use many derivative filters to regularize the image. For
instance, suppose we want to match the gradient histogram
of a 3× 3 filter. The algorithm needs to update 9 pixels to
change the filter response at the center pixel, but updating
9 pixels also affects filter responses of 8 neighboring pixels.
Having to match multiple gradient distributions at the same
time increases the complexity. To control the complexity, we
match four two-tap derivative filters. Adapting derivativefilters
to local image structures using steerable filters [3], [7], [19]
may further improve the rendition of oriented textures, butit
is not considered in this work.

4.3 Reference distribution qR estimation

We parameterize a reference distributionqR using a general-
ized Gaussian distribution. Unfortunately, one often doesnot
know a priori what qR should be. Previous work estimates
qR from a database of natural images [6], [24] or hand-picks
qR through trial and error [15]. We adopt the image prior
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Fig. 6: We compare the deblurring performance of a MAP estimator andIDR. IDR reconstructs visually more pleasing
mid-frequency textures compared to a MAP estimator.
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Fig. 7: For an image with spatially varying texture, our algorithm segments the image into regions of homogeneous texture and
matches the gradient distribution in each segment independently. Compared to MAP estimators, our algorithm reconstructs
visually more pleasing textures.

estimation technique introduced in Choet. al. [3] to estimate
qR directly from a degraded image, as we will now describe.

We first deconvolve a degraded imageB using a MAP estima-
tor (Eq. 1) with a hand-picked image prior, tuned to restore
different textures reasonably well at the expense of a slightly
noisy image reconstruction (i.e. a relatively small gradient
penalty). In this paper, we set the parameters of the image prior
as[γ = 0.8,λ = 4,w1 = 0.01] for all images. To reduce decon-
volution noise, we down-sample the reconstructed image. We
fit gradients from the down-sampled image to a generalized
Gaussian distribution, as in Eq. 4, to estimate the reference
distributionqR. While fine details can be lost through down-
sampling, empirically, the estimated reference distribution qR

is accurate enough for our purpose.

Our image reconstruction algorithm assumes that the texture
is homogeneous (i.e. a singleqR). In the presence of multiple
textures within an image, we segment the image and estimate
separate reference distributionqR for each segment: we use the
EDISON segmentation algorithm [4] to segment an image into
about 20 regions. Figure 7 illustrates the image deconvolution
process for spatially varying textures.

5 EXPERIMENTS

5.1 Deconvolution experiments

We synthetically blur sharp images with the blur kernel
shown in Figure 8, add 2% noise, and deconvolve them using
competing methods. We compare the performance of IDR
against four other competing methods: (i) a MAP estimator
with a sparse gradient prior [15], (ii) a MAP estimator with a
sparse prior adapted to each segment (iii) a MAP estimator
with a two-color prior [12] (iv) a MAP estimator with a
content-aware image prior [3]. We blur a sharp image using
the kernel shown on the right, add 2% noise to it, and
restore images using the competing methods. Figure 8 shows
experimental results. As mentioned in Section 4.2, IDR does
not perform the best in terms of PSNR / SSIM. Nevertheless,
IDR reconstructs mid-frequency textures better, for instance
fur details. Another interesting observation is that the content-
aware image prior performs better, in terms of PSNR/SSIM,
than simply adjusting the image prior to each segment’s tex-
ture. By using the segment-adjusted image prior, we observe
segmentation boundaries that are visually disturbing. Another
set of comparisons is shown in Figure 9.
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MAP estimate - Fixed sparse prior

PSNR : 28.60dB, SSIM : 0.757

MAP estimate - Adjusted sparse prior

PSNR : 28.68dB, SSIM : 0.759

IDR reconstruction

PSNR : 27.91dB, SSIM : 0.741

Original image

MAP estimate - two-color prior

PSNR : 28.30 dB, SSIM : 0.741

MAP estimate - Content-aware prior

PSNR : 29.08dB, SSIM : 0.761

Fig. 8: We compare the performance of IDR against four other competing methods: (i) a MAP estimator with a sparse gradient
prior [15], (ii) a MAP estimator with a sparse prior adapted to each segment (iii) a MAP estimator with a two-color prior
[12] (iv) a MAP estimator with a content-aware image prior. The red box indicate the cropped regions. Although the PSNR
and the SSIM of our results are often lower than those of MAP estimators, IDR restores more visually pleasing textures (see
bear furs).

In Figure 10, we compare the denoising performance of IDR to
that of a marginal probability field (MPF) by Woodfordet. al.
[24] at two noise levels (their implementation only handles
grayscale, square images). Using MPF for denoising has two
drawbacks. First, MPF quantizes intensity levels and gradient
magnitudes to reduce computation. MPF quantizes 256 (8-bit)
intensity levels to 64 intensity levels (6-bit), and it bins256
(8-bit) gradient magnitudes to 11 slots. These quantizations
would accentuate spotty noise in reconstructed images. IDR
adopts a continuous optimization scheme that does not require
any histogram binning or intensity quantization, therefore it
does not suffer from quantization noise. Second, Woodford

et. al. [24] estimate the reference gradient distribution from a
database of images, and use thesameprior to denoise different
images. This can be problematic because different images have
different reference distributionsqR, but MPF would enforce
the same gradient profile on them. Also, MPF does not adapt
the image prior to the underlying texture, treating different
textures the same way. Therefore, MPF distributes gradients
uniformly across the image, even in smooth regions, which
can be visually disturbing. IDR addresses these issues by
estimating a reference distributionqR from an input image
and by adaptingqR to spatially varying texture.

At a high degradation level, such as a noise level of 31.4%, our



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 20XX 8

PSNR : 26.73 dB, SSIM : 0.811

MAP estimate - two-color prior

PSNR : 26.74dB, SSIM : 0.815

MAP estimate - Fixed sparse prior

PSNR : 26.88dB, SSIM : 0.814

MAP estimate - Adjusted sparse prior

PSNR : 26.35dB, SSIM : 0.801

IDR reconstruction

Original image

PSNR : 27.09 dB, SSIM : 0.821

MAP estimate - Content-aware prior

Fig. 9: We compare the performance of IDR against four other competing methods. As in Figure 8, IDR’s PSNR/SSIM are
lower than those of MAP estimators, but IDR restores visually more pleasing textures.

reference distribution estimation algorithm can be unstable. In
Figure 10(a), ourqR estimation algorithm returns a distribution
that has more “large” derivatives and less “small” derivatives
(dotted line in Figure 10), which manifests itself as a noisy
IDR reconstruction. In contrast, MPF restores a plausible
image, but this is somewhat coincidental in that the reference
distribution that MPF imposes is quite similar to that of the
original image.

At a more reasonable degradation level (15% noise), shown in
Figure 10(b), our algorithm estimates a reference distribution
that is very similar to that of the original image. Given a
more accurate reference distribution, IDR restores a visually
pleasing image. On the other hand, MPF restores a noisy
rendition because the reference distribution is quite different
from that of the original image. Also note that the gradient

distribution of the restored image in Figure 10(b) is very
similar to that of the restored image in Figure 10(a), which
illustrates our concern that using a single image prior for
different images would degrade the image quality.

Segmenting images to regions and deconvolving each region
separately may generate artificial texture boundaries, as in
Figure 11. While this rarely occurs, we could mitigate these
artifacts using a texture-based segmentation algorithm rather
than EDISON [4], which is a color-based segmentation algo-
rithm.

5.2 User study

IDR generates images with rich texture but with lower
PSNR/SSIM than MAP estimates. To test our impression that
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Fig. 10: Comparing the denoising performance of IDR to the marginal probability field (MPF) [24]. IDR generates a better
rendition of the spatially variant texture.

MAP estimator - �xed prior IDR

Fig. 11: We could observe an artificial boundary when the
estimated prior is different in adjacent segments that have
similar textures. While this rarely occurs, we could remove
such artifacts using a texture segmentation algorithm instead
of a color-based segmentation algorithm.

images reconstructed by IDR are more visually pleasing, we
performed a user study on Amazon Mechanical Turk.

We considered seven image degradation scenarios: noisy ob-
servations with 5%, 10%, 15% noise, blurry observations with
a small blur and 2%,5%,7% noise, and a blurry observation
with a moderate-size blur and 2% noise. For each degradation
scenario, we randomly selected 4 images from a dataset of 13
images (roughly 700×500 pixels), and reconstructed images
using a MAP estimator with a fixed sparse prior (i.e. the same
sparse prior across the whole image), an adjusted sparse prior,
and IDR.

We showed users two images side-by-side, one reconstructed
using our algorithm and another reconstructed using one of
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Fig. 12: We conducted a user study to test our impression
that IDR reconstructions are visually more pleasing than MAP
estimates. The blue region corresponds to the fraction of
users that favored IDR over MAP estimators. When the image
degradation level is small, users did not show a particular
preference, but as the image degradation level increases, users
favored images reconstructed using IDR.

the two MAP estimators (i.e. fixed or adjusted). We asked
users to select an image that is more visually pleasing and
give reasons for their choice. Users were also given a“There
is no difference.”option. We randomized the order in which
we place images side by side.

We collected more than 25 user inputs for each comparison,
and averaged user responses for each degradation scenario
(Figure 12). When the degradation level is low (5% noise or
a small blur with 2% noise), users did not prefer a particular
algorithm. In such cases, the observation term is strong enough
to reconstruct visually pleasing images regardless of the prior
and/or the reconstruction algorithm. When the degradation
level is high, however, many users clearly favored our results.
User comments pointed out that realistic textures in trees,
grass, and even in seemingly flat regions such as gravel paths
are important for visual realism. Users who favored MAP
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estimates preferred clean renditions of flat regions and were
not disturbed by piecewise smooth textures (some even found
it artistic.) Individual users consistently favored either our
result or MAP estimates, suggesting that image evaluation is
subjective in nature.

6 CONCLUSION

We have developed an iterative deconvolution algorithm that
matches the gradient distribution. Our algorithm bridges the
energy minimization methods for deconvolution and texture
synthesis. We show through a user study that matching
derivative distribution improves the perceived quality ofre-
constructed images. The fact that a perceptually better image
receives lower PSNR/SSIM suggests that there is a room for
improvement in image quality assessment.

APPENDIX A

We sketch the details of the optimization procedures in Algo-
rithm 1. Let Y be a rasterized vector of the observed image
y, X be a rasterized vector of the imagex, and K be the
convolution matrix of the blur kernelk. We take the derivative
of the optimization function in Algorithm 1 with respect toX:

−
KT(Y−KX)

η2 +2w1λDγDGT‖GX‖γD−1

+w2
(

2λDγDGT‖GX‖γD−1−2λEγEGT‖GX‖γE−1

+





1
γE

−
ln(λE)

γE
2 +

Ψ
(

1
γE

)

γE
2 −λE|GX|γE ln(|GX|)



◦
∂γE

∂X

+

(

1
γEλE

−|GX|γE

)

◦
∂λE

∂X

)

= 0

(12)

whereG is a gradient operator, and◦ is a Hadamard element-
wise matrix multiplication operator.∂γE

∂X and ∂λE
∂X can be

derived as follows:

∂γE

∂X
=

γE
2λE

( 2
γE

)Γ( 1
γE

)

NΓ( 3
γE

)
(

Ψ( 1
γE

)−3Ψ( 3
γE

)+2ln(λE)
)2GTGX

∂λE

∂X
= −

Γ(1/γE)γEλE
(1+2/γE)

NΓ(3/γE)
GTGX

(13)

N is the dimension ofX.

We solve Eq. 12 by iteratively approximating it with a linear
equation [15], [22]. We use a minimum residual method [20]
to solve thelinearizedsystem in Eq. 12.
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