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Image restoration
by matching gradient distributions
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Abstract—A common image restoration method is to use a MAP estimator, which maximizes a posterior probability to reconstruct a
clean image from a degraded image. A MAP estimator, when used with a sparse gradient image prior, reconstructs piecewise smooth
images and typically removes textures that are important for visual realism. We present an alternative deconvolution method called
iterative distribution reweighting (IDR) which imposes a global constraint on gradients so that a reconstructed image should have a
gradient distribution similar to a reference distribution. In natural images, a reference distribution not only varies from one image to
another, but also within an image depending on texture. We estimate a reference distribution directly from an input image for each
texture segment. Our algorithm is able to restore rich mid-frequency textures. A large scale user study supports the conclusion that our
algorithm improves the visual realism of reconstructed images compared to those of MAP estimators.

Index Terms—Non-blind deconvolution, image prior, image deblurring, image denoising
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1 INTRODUCTION MAP estimate Gradient profiles

—Original image
107" —MAP estimate

Image restoration is typically an under-constrained pobl
Information lost during a lossy observation process neetiet
restored with prior information about natural images toiaah
visual realism. Most Bayesian image restoration algorithn
reconstruct images by maximizing the posterior probahilit
abbreviated MAP. Reconstructed images are called the M
estimates.

= 0

1
Gradient magnitude

—Original image
107" —MAP estimate

One of the most popular image priors exploits the heav
tailed characteristics of the gradient distribution, whiare
often parameterized using a mixture of Gaussians or a gt
eralized Gaussian distribution. The MAP estimator balanc
the observation likelihood with the gradient penalty frame t
sparse gradient prior, reducing image deconvolution aantisf
such as ringing and noise. Unfortunately, the MAP estimat *
also removes mid-frequency textures, often giving an wumaat
and cartoonish look to the reconstructed image.

< 0

In this paper, we introduce an alternative image restamati 3 ,
Gradient magnitude

strategy that is capable of reconstructing visually plegsi

textures. The key idea 'S not t'o pe”?"'ze graQ|eqts, but Iri?g. 1: The gradient distribution of images reconstructed
match the reconstructed image’s gradient distributionht® tusing the MAP estimator can be quite different from that
desired distribution. We introduce a method to estimate t}a

. L . . . f the original images. We present a method that matches
desired distribution directly from the degraded input i@ag the reconstructed image’s gradient distribution to thattioé

user study substantiates the claim that images reconstrug esired gradient distribution (in this case, that of thegimial

by matching gradient distributions are visually more _plbgts image) to hallucinate visually pleasing textures.
compared to those reconstructed using the MAP estimator.

2 RELATED WORK

e T. S. Cho and W. T. Freeman are with Computer Science andchattifi
Intelligence Lab (CSAIL), Massachusetts Institute of hetdgy,

Cambridge, MA 02139, The Wiener filter [9] is a popular image reconstruction metho

with a closed form solution. The Wiener filter is a MAP
e C. L. Zitnick, N. Joshi, S. B. Kang and R. Szeliski are withrdsioft ~estimator with a Gaussian prior on image gradients, which
Research, Redmond, WA 98004 tends to blur edges and causes ringing around edges because
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those image gradients are not consistent with a Gaussi@neren? is an observation noise varianeejndexes gradient
distribution. filters, andp is a robust function that favors sparse gradients.

We parameterize the gradient distribution using a gerrali
Bouman and Sauer [1], Chan and Wong [2], and more recen@éussian distribution. In this case({0l) = — In(p(0l: y,A)),

Ferguset. al. [6] and Levinet. al. [15], use a heavy-tailed | . the briom(01: v. ) is given as follows:
gradient prior such as a generalized Gaussian distrib{iipn priom(Dly,A) is @ :

[15], a total variation [2], or a mixture of Gaussians [6]. [RA Y, (3)

estimators using sparse gradient priors preserve shamgsedg p(dly,A) = or (L) exp(—A [ O1]Y) )
while suppressing ringing and noise. However, they alsd ten 4

to remove mid-frequency textures, which causes a mismatchs a Gamma function and shape parameteps determine
between the reconstructed image’s gradient distributioth athe shape of the distribution. In most MAP-based image recon
that of the original image. struction algorithms, gradients are assumed to be indegménd

or computational efficiencyp(0l;y,A) = 2 N, p(0li; v, A),

Matching grad|_en_t distributions has been addressed_ N Qherei is a pixel indexZ is a partition function, and\ is the
texture synthesis literature. Heeger and Bergen [11] ggite | .\ mber of pixels in an image
textures by matching wavelet sub-band histograms to thbse o '

the desired texture. Portilla and Simoncelli [18] matchjoi A MAP estimator balances two competing forces: the recon-

statistics of wavelet coefficients to synthesize homogesedtructed imagd should satisfy the observation model while

textures. Kopfet. al. [13] introduce a non-homogeneous texconforming to the image prior. Counter-intuitively, theage

ture synthesis technique by matching histograms of texels rior term, assuming independence among gradiemgys

elements of textures). favors a flat image to any other images, even a natural image.
. . R o o Therefore, the more the MAP estimator relies on the image

Matching gradient distributions in image restoration it NBrior term, which is often the case when the image degradatio

entirely new. Li and Adelson [16] introduce a two-step imagg severe, the more the reconstructed image becomes picewi
restoration algorithm that first reconstructs an image @isigooth.

an exemplar-based technique similar to Freeraainal. [8],

and warp the reconstructed image’s gradient distributon ©ne way to explain this property is that the independence
a reference gradient distribution using Heeger and Besgedmong local gradients fails to capture the global statisbt
method [11]. Woodforebt. al.[24] propose a MAP estimation gradients for the whole image. The image prior tells us that
framework called a marginal probability field (MPF) thagradients in a natural imagmllectivelyexhibit a sparse gradi-
matches a histogram of low-level features, such as graliefift profile, whereas the independence assumption of gtadien
or texels, for computer vision tasks including denoising?f forces us to minimize each gradieimdependently always
requires that one bins features to form a discrete histograi@voring a flat image. Nikolova [17] provides a theoretic
we propose a distribution matching method that by-passes tieatment of MAP estimators in general to show its deficiency

bln_nlng process. Also, WOOdngi' al.[24] use an image prior We could remove the independence assumption and impose
es_tlmated from a dz?\tabase Of Images and use the same gl?&ﬁ[ prior on all gradients, but this approach is compuatai
prior to reconstruct images with different textures. In trast, ally expensive. This paper introduces an alternative netho

we estimate the image prior directly from the degraded imaﬂﬁpose a global constraint on gradients — that a reconstluct
for each textured region. Schmidit. al. [21] match the .

gradient distribution through sampling. As with Woodfor({l;?satﬁgustirl)onlfld have a gradient distribution similar to a kiee
et. al. [24], Schmidtet. al. also use a single global prior to

reconstruct images with different textures, which caugasyn

renditions in smooth regions. HaCohet al. [10] explicitly 4 |MAGE RECONSTRUCTION

integrate texture synthesis to image restoration, spadific

for an image up-sampling problem. To restore textures, thgythis section, we develop an image reconstruction algorit

segment a degraded image and replace each texture segfgiitminimizes the KL divergence between the reconstructed

with textures in a database of images. image’s gradient distribution and its reference distiiut
This distance penalty plays the role of a global image prior
that steers the solution away from piecewise smooth images.

3 CHARACTERISTICS OF MAP ESTIMATORS Let ge(O1) be an empirical gradient distribution of an image

I, andgr be a reference distribution. We measure the distance

In this section, we illustrate why MAP estimators with &etween distributionsie and gr using the Kullback-Leibler
sparse prior recover unrealistic, piecewise smooth remditas (KL) divergence:

illustrated in Figure 1. LeB be a degraded imagk be a blur Ol
kernel,® be a convolution operator, aridbe a latent image. KL(qe||ar) :/ qe (01 In <QE( )) d(o) 3)
A MAP estimator solves the following regularized problem: &l agr(01)

B_k®l 2 .. N . . . . )
I . i@ I +WZp(DmI)} 1 An empirical distributionge is parameterized using a general
m

I= afglm'”{ ized Gaussian distributiop(Cl;y,A) (Eq. 2). Given gradient
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Algorithm 1 MAP with KL penalty iteration, the solution will move in the “correct” directio
% Initial image estimate to start iterative minimization  Figure 2 illustrates the procedure. The full derivation loé t
i® = argmin fler(?IZ o0 ||VD} algorithm details is available in Appendix A.

Updateqe® using Eq. 4 We can show that the penalty functigg in Algorithm 1 is
% lterative minimization one way to evaluate the KL divergence between the empirical
for =1 .. 10do distributionge and the reference distributiag.
0 .
Alj KL dlsti\nce qﬁﬁ[‘fﬁ‘('gferm update Proposition 1: Let gg be a parametric distribution of samples
pe(0l) = N In qr(01) x,i =1...N and letgr be a fixed parametric distribution. Then
% Image I’eCOESEL:CEIOH we can represent the KL divergence between sanypesnd
" = argmin {% +wiAp |01 +sz'6(D|)} gr as follows:
Updateqe' using Eq. 4 N N (1 /ge(x)
end for KL = Xi) = {—In< )} 6
end fo (Cellar) IZPG( i) lz N ar) (6)
proof: The KL divergence betweeqe andqgr is defined as
samples/[]l;, wherei indexes samples, we estimate the shagg"OWS:
parameterse, Ag of an empirical gradient distributioge by KL(ge||gr) = /qE(Z)In <QE(Z)> dz @)
minimizing the log-likelihood: z ar(2)
N . . L
B . 1 . There are different ways to represent the parametric bistri
Ve, Ae] = arg;mn{_ I;N In(p(Oli; W\))} @ fion ge. We can parameterize the distribution of samples using

. . L ) a generalized Gaussian distribution as follows:
This is equivalent to minimizing the KL divergence between

gradient sample8ll and a generalized Gaussian distribution. MEAE(%)
We use the Nelder-Mead optimization method [14] to solve de(2) = WGXD(—/\EHZHVE) (8)
Eqg. 4. ¥E

where the shape parametegs Az are fitted to samples;

) o ) _ using Eq. 4. We can also parameterize the distribution of
4.1 Failure of penalizing KL divergence directly samplesx as follows:

To motivate our algorithm in Section 4.2, we first introduce a . 1N

method that penalizes the KL divergence between an embpirica Ge(2) = § 2 3(z=x) ©)
gradient distributionge and a reference distributiogr. We '
show that the performance of this algorithm is sensitiveh® t Therefore,
parameter setting and that the algorithm may not always con-

verge. In Section 4.2, we extend this algorithm to a mordetab KL(gg||or) = /qE(z) In <QE(Z)> dz
algorithm called Iterative Distribution Reweighting (IDR z ar(2)
- z

We augment the MAP estimator (Eq. 1) with KL divergence: :/ E(2)In <3E(Z§> dz

z
. (|B—k®1|? . (10)

" argminf 221 warol o1+ wakL(cel o) g L ()
: L N\ dr(Xi)

where wp determines how much to penalize the KL diver- =
gence! It's hard to directly solve Eq. 5 because the KL diver-

gence is a non-linear function of a latent imageTherefore []

we solve Eqg. 5 iteratively.

>
(5) '
2

Algorithm 1, shown in pseudocode, solves Eq. 5 iterativel¢.1.1 Algorithm analysis

We can describe Algorithm 1 qualitatively as followsqgif has ) ]

more gradients of a certain magnitude thgg pg penalizes 1h€ behavior of Algorithm 1 depends on the valuevef.
those gradientsorein the following iteration; ifge has fewer Whenw; is small, the reconstructed image is similar to the
gradients of a certain magnitude thag, pg penalizes those MAP estimate. On the other hand, whew is large, the

gradientsless in the following iteration. Therefore, at each@!gorithm oscillates around the desired solution (Figuye 3
the algorithm “ping-pong’s” between a noisy solution and a
1. In Eq. 5, we have replaced the summation over multiplerdilie Eq. 1, piecewise smooth solution. For instance, suppose therdurre
|.e._zm')\m\|lilml\|’f",_wnh a single _derlvatlve _f||ter to _reduce_z_clu_tter, but theimage estimate is piecewise smooth. The algorithm would
derivation can easily be generalized to using multiple végixie filters. We h ixel ith | derivati in the
use four derivative filters in this work: x, y derivative filgeand x-y, and y-x then encourage more pixels with larger derivatives in the ne

diagonal derivative filters. iteration, which makes the subsequent solution noisiethén
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(a) MAP estimate o (b) Gradient distribution (c) Penalty update

20

==(Qriginal image == Qriginal penalty function
==MAP estimate ==The log ratio of q_ and q
1 Pll=The weighted sum of penalties

2 107 10° 107 107 10°

Gradient magnitude Gradient magnitude

Fig. 2: This figure illustrates Algorithm 1. Suppose we deconvoldegraded image using a MAP estimator. (b) shows that
the x-gradient distribution of the MAP estimate in (a) do@$ match that of the original image. (c) Our algorithm adds th
log ratio of g= and s to the original penalty (i.eAp||01]]*P) such that the weighted sum of the two penalty terms encesrag
a better distribution match in the following iteration.

(a) Progression of Gamma “ (b) Progression of Lambda Algorithm 2 The iterative distribution reweighting
— i -
| (IDR)
% Initial image estimate to start iterative minimization
. _ 2
|"0 = argm"] w +W1)\DH|:” ||y[)}

2n2

Updateqe® using Eq. 4

% lterative minimization

for =1 ..10do
% Accumulating the KL diver(glgel)nce
pg(01) = p(g*l)(DI )+ &In (7qEqR(DE)D'))
% Image reconstruction

7 8 9 10

4 5 6
Iterations

Fig. 3: We illustrate the operation of Algorithm 1 in terms 5 B kel |2 |
of the y&,Ag progressions. Different colors correspond to I" = argmin {—an— “+wiAp |01 ||P +W2PG(|:”)}
different gradient filters. Oftentimes, Algorithm 1 doest no  Updateqe' using Eq. 4

converge to a stable point, but oscillates around the ddsire end for

solution. [ =10

following iteration, to reduce the derivative magnitudes t

smooth noise, the algorithm penalizes gradients more slverrg do so, instead of using the KL divergence as a regulariza-

image becomes piecewise smooth again, exhibiting an osgl: divergences over previous iterations. Algorithm 2 shows
latory behavior. In fact, whewm: is very large, the linearized the pseudocode for IDR.
system (in Appendix A, Eq. 11) becomes indefinite, in which

case the minimum residual method [20] cannot be used to . _ _ . _
solve the linearized system. To mitigate the reliabilitpuis IDR iteratively adjusts the penalty functigr by the ratio of

and to damp possible oscillations around the desired soluti diStiPutionsge andqr using the formulation of KL divergence

we develop an iterative distribution reweighting algamith from Eq. 6, thus_the name thierative _d_istribution reweightir!g .
(IDR). If the ratio between the empirical and reference distri-

butions is large at a given iteration, the gradients are |path
4.2 The iterative distribution reweighting (IDR) more heavily at the next iteration, and less if the ratio ialm
As shown in the pseudocode for IDR in Algorithm 2, our new

We extend Algorithm 1 to reduce oscillations around thgsgularization ternpg is set to the sum of the KL divergences
correct solution and to reduce sensitivity to parametetiegl computed from Eq. 6 over previous iterations:

We achieve this by modifying the regularization functiog

in Algorithm 1. Our technique is motivated by perceptron 0 ) :p(lfl)([”)_i_iln (qE(ll)(Dl)> (11)
algorithms [5] that iteratively adjust a decision boundéwy G G N gr(0Ol)

minimize classification error. In our case, we iterativedijuest

the regularization function to match the empirical gratien

distribution to the reference gradient distribution. The benefit of IDR is that it reaches convergence when
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(a) IDR estimate (b) Gradient distribution (c) Effective penalty
10° : 20 :
==(Qriginal image == QOriginal penalty function
==MAP estimate == Effective penalty function

==|DR estimate

107 o 10° 107 0 10°

1 . 1 .
Gradient magnitude Gradient magnitude

Fig. 4: The IDR deconvolution result. (a) shows the deconvolvedémesing IDR, and (b) compares the gradient distribution
of images reconstructed using the MAP estimator and IDRT{® effective penalty after convergence (i.eAwy| 0l ||Y0 +

Wp zllgl%m (g‘;ég:;)) penalizes gradients with small and large magnitude moaa tradients with moderate magnitude.

i f i f . . .
o \FrosressionofGamma o Frogression oftambda IDR may not place the gradients at exactly the right position
Gamma progression wems | ambda progression . . oy
12 = = * Desired Gamma Degraded images do not strongly constrain the position of
gradients, in which case our algorithm disperses gradients
match the gradient distribution, which would lower the PSNR

/ SSIM.

4.2.1 Algorithm analysis

8 9 104

s o 1 |DR matches garametrizedgradient distribution, and there-
fore the algorithm is inherently limited by the accuracy of

Fig. 5: This figure shows how thg, Ae progress from one the fit. The behavior of IDR is relatively insensitive to the

iteration to the next. Different colors CorreSpond to chidet We|ght|ng terrnNZ’ but a |argeN2 can destabilize the minimum

gradient filters. We observe that the algorithm convergea toresjqual algorithm [20] that solves the linearized systar&d.
stable point in about 8 iterations. 11.

4 5 6 7 4 5 6 7
lterations Iterations

In most cases, IDR reliably reconstructs images with the
reference gradient distribution. However, there are cases

=gr. 2 We can also view th update equation as
mep?nRg the KL divergence withq?r?e spum of grevious Kﬂ’VhiCh the algorithm settles at a local minimum that does
ot correspond to the desired texture. This usually occurs

divergences, thereby smoothing oscillations. We can )eas'ﬂ o . .
modify derivations in Appendix A to derive details for AI-When the support. Of. derllvatlve filters 'S large gnd when

gorithm 2. We illustrate the operation of IDR in Figure 4, and/© Us€ many derivative filters to regularize th? 'mage. For
show howye, Ae changes from one iteration to the next ir+ns;tance, suppose we want to match the gradient histogram

Figure 5. Observe that, Ag no longer oscillate as in Figure 3.0f a3x3 f||t_er. The algorithm needs 1o up_date 9 pixels t_o
change the filter response at the center pixel, but updating

In Figure 6, we test IDR for deblurring a single texture9 pixels also affects filter responses of 8 neighboring gixel
assuming that the reference distributiggis known a priori. Having to match multiple gradient distributions at the same
We synthetically blur the texture using the blur kernel showtime increases the complexity. To control the complexitg, w
in Figure 8 and add 5% Gaussian noise to the blurred imageatch four two-tap derivative filters. Adapting derivatfilgers
We deblur the image using a MAP estimator and using IDRg local image structures using steerable filters [3], [ZR][
and compare the reconstructions. For all examples in thmsy further improve the rendition of oriented textures, ibut
paper, we usev; = 0.025w, = 0.0025. We observe that theis not considered in this work.

gradient distribution of the IDR estimate matches the mfee

distribution better than that of the MAP estimate, and Vigua o . )

the texture of the IDR estimate better matches the origirfa® Reference distribution gr estimation

image’s texture. Although visually superior, the peak aigpo- We parameterize a reference distributigg using a general-

noise ratio (PSNR) / gray-scale SS”.VI [23] of t_he IDR estlmatlged Gaussian distribution. Unfortunately, one often does
are lower than those of the MAP estimate. This occurs becaiise . . .
now a priori what gr should be. Previous work estimates

2. This statement does not mean that the algorithm will carv@nly if Or from a dat_abase of natural images [6]’ [24] O_r hand-pif:ks
Qe = gr; the algorithm can converge to a local minimum. gr through trial and error [15]. We adopt the image prior
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Original image MAP estimator Gradient distribution
10°
== QOriginal image
==|\AP estimate
107" ==|DR estimate
107
107
104 —2 ~1 ., 0
PSNR:28.87dB, SSIM:0.747  PSNR:28.00dB, SSIM:0.729 " Gradient magnitude °

Fig. 6: We compare the deblurring performance of a MAP estimator HDE. IDR reconstructs visually more pleasing
mid-frequency textures compared to a MAP estimator.

Blurry inputimage Reference distribution estimation IDR image reconstruction MAP estimate
{Estimated log-lambda \

Blur kernel

\ J
Fig. 7: For an image with spatially varying texture, our algorithmgenents the image into regions of homogeneous texture and

matches the gradient distribution in each segment indepetiy] Compared to MAP estimators, our algorithm reconstisu
visually more pleasing textures.

\ J AN ) Estimated gamma  J \°

estimation technique introduced in Ckt al.[3] to estimate 5 EXPERIMENTS
gr directly from a degraded image, as we will now describe.

5.1 Deconvolution experiments
We first deconvolve a degraded imageising a MAP estima-
tor (Eg. 1) with a hand-picked image prior, tuned to restofg/e synthetically blur sharp images with the blur kernel
different textures reasonably well at the expense of a #jighshown in Figure 8, add 2% noise, and deconvolve them using
noisy image reconstruction (i.e. a relatively small gratiecompeting methods. We compare the performance of IDR
penalty). In this paper, we set the parameters of the image pragainst four other competing methods: (i) a MAP estimator
as[y=0.8,A =4,w; =0.01] for all images. To reduce decon-with a sparse gradient prior [15], (i) a MAP estimator with a
volution noise, we down-sample the reconstructed image. Wgarse prior adapted to each segment (iii) a MAP estimator
fit gradients from the down-sampled image to a generaliz@gth a two-color prior [12] (iv) a MAP estimator with a
Gaussian distribution, as in Eq. 4, to estimate the referengontent-aware image prior [3]. We blur a sharp image using
distribution gr. While fine details can be lost through downthe kernel shown on the right, add 2% noise to it, and
sampling, empirically, the estimated reference distitoutik  restore images using the competing methods. Figure 8 shows
is accurate enough for our purpose. experimental results. As mentioned in Section 4.2, IDR does

not perform the best in terms of PSNR / SSIM. Nevertheless,
Our image reconstruction algorithm assumes that the extUbR reconstructs mid-frequency textures better, for insta
is homogeneous (i.e. a singig). In the presence of multiple fur details. Another interesting observation is that thateat-
textures within an image, we segment the image and estimateare image prior performs better, in terms of PSNR/SSIM,
separate reference distributiga for each segment: we use theahan simply adjusting the image prior to each segment’s tex-
EDISON segmentation algorithm [4] to segment an image intare. By using the segment-adjusted image prior, we observe
about 20 regions. Figure 7 illustrates the image deconwmlut segmentation boundaries that are visually disturbing.tAeo
process for spatially varying textures. set of comparisons is shown in Figure 9.
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Original image

. P

MAP estimate - Adjusted sparse prior
™ a I o

PSNR: 28.68dB, SSIM : 0.759
IDR reconstruction

PSNR:28.30 dB, SSIM : 0.741 PSNR : 29.08dB, SSIM : 0.761 PSNR:27.91dB, SSIM : 0.741

Fig. 8: We compare the performance of IDR against four other comgetiethods: (i) a MAP estimator with a sparse gradient
prior [15], (ii) a MAP estimator with a sparse prior adapted each segment (iii) a MAP estimator with a two-color prior
[12] (iv) a MAP estimator with a content-aware image priohd red box indicate the cropped regions. Although the PSNR
and the SSIM of our results are often lower than those of MARnasors, IDR restores more visually pleasing textures (se
bear furs).

In Figure 10, we compare the denoising performance of IDR &t. al. [24] estimate the reference gradient distribution from a
that of a marginal probability field (MPF) by Woodfodd. al. database of images, and use $aeneprior to denoise different
[24] at two noise levels (their implementation only handleisnages. This can be problematic because different images ha
grayscale, square images). Using MPF for denoising has tdifferent reference distributiongg, but MPF would enforce
drawbacks. First, MPF quantizes intensity levels and @ratdi the same gradient profile on them. Also, MPF does not adapt
magnitudes to reduce computation. MPF quantizes 256 |8-lifie image prior to the underlying texture, treating diffdre
intensity levels to 64 intensity levels (6-bit), and it bia56 textures the same way. Therefore, MPF distributes graslient
(8-bit) gradient magnitudes to 11 slots. These quantimatiouniformly across the image, even in smooth regions, which
would accentuate spotty noise in reconstructed images. IRBBn be visually disturbing. IDR addresses these issues by
adopts a continuous optimization scheme that does notreequéstimating a reference distributicgr from an input image
any histogram binning or intensity quantization, therefdr and by adaptingr to spatially varying texture.

does not suffer from quantization noise. Second, WOOdfO,'&q a high degradation level, such as a noise level of 31.4%, ou
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Original image MAP estimate - Fixed sparse prior MAP estimate - Adjusted sparse prior

S

PSNR: 26.74dB, SSIM : 0.815 PSNR: 26.88dB, SSIM : 0.814
MAP estimate - two-color prior MAP estimate - Content-aware prior IDR reconstruction

i E—

PSNR:26.73 dB, SSIM: 0.811 PSNR:27.09 dB, SSIM : 0.821 PSNR : 26.35dB, SSIM : 0.801

Fig. 9: We compare the performance of IDR against four other comgatiethods. As in Figure 8, IDR’s PSNR/SSIM are
lower than those of MAP estimators, but IDR restores vigualbre pleasing textures.

reference distribution estimation algorithm can be urlstdn  distribution of the restored image in Figure 10(b) is very
Figure 10(a), ougr estimation algorithm returns a distributionsimilar to that of the restored image in Figure 10(a), which
that has more “large” derivatives and less “small” deriwedi illustrates our concern that using a single image prior for
(dotted line in Figure 10), which manifests itself as a noisgifferent images would degrade the image quality.

IDR reconstruction. In contrast, MPF restores a plausibgee menting imades to regions and deconvolving each redion
image, but this is somewhat coincidental in that the refegen 9 g d g g g

distribution that MPF imposes is quite similar to that of thé(_eparately may geperate artificial texture boun-d.anes,nas '
original image. igure 11. While this rarely occurs, we could mitigate these

artifacts using a texture-based segmentation algoritithrera

At a more reasonable degradation level (15% noise), shownti@n EDISON [4], which is a color-based segmentation algo-
Figure 10(b), our algorithm estimates a reference didiobu rithm.

that is very similar to that of the original image. Given a

more accurate reference distribution, IDR restores a suas 2 yser study

pleasing image. On the other hand, MPF restores a noisy

rendition because the reference distribution is quiteed#ffit IDR generates images with rich texture but with lower

from that of the original image. Also note that the gradielRSNR/SSIM than MAP estimates. To test our impression that
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Noisy image Marginal Probability Field IDR Original image " Gradient profiles

— Original image
/|- - Estimated desired dist.
—MPF
_|— IDR estimate

31.4% noise

=
Gradient}%agnitude

—Original image
_{|- - Estimated desired dist.
—MPF
_{|—IDR estimate ,

15% noisg

=
Gradient}%agnitude

Fig. 10: Comparing the denoising performance of IDR to the margimabpbility field (MPF) [24]. IDR generates a better
rendition of the spatially variant texture.

MAP estimator - fixed prior IDR Iterative qistributipn reweighting Iterativg distributi'on reweighting‘
- \‘ ’ Vs. MAP Estimator (Fixed sparse prior) Vs. MAP Estimator (adjusted sparse prior)
j v I MAP - fixed prior No Difference Il IDR Estimate MAP - adjusted prior

o

5% 10% 15% 2% 5% 7% 2% 5% 10% 15% 2% 5% 7% 2%

noise blur
level kernel

Fig. 12: We conducted a user study to test our impression
that IDR reconstructions are visually more pleasing thanmMA

estimates. The blue region corresponds to the fraction of
users that favored IDR over MAP estimators. When the image

Fig. 11: We could observe an artificial boundary when thgee%reargﬁggnbljtvgls L?\esir:]nil,eu(?:r?agiig:ﬁeig?xc?eggfcﬂar
estimated prior is different in adjacent segments that ha\?é ’ 9 9 s

similar textures. While this rarely occurs, we could removgworeOI images reconstrucied using IDR.
such artifacts using a texture segmentation algorithmeiadt

of a color-based segmentation algorithm. ) ) ) )
the two MAP estimators (i.e. fixed or adjusted). We asked

users to select an image that is more visually pleasing and
v%ve reasons for their choice. Users were also givémteere

is no difference’option. We randomized the order in which
we place images side by side.

images reconstructed by IDR are more visually pleasing,
performed a user study on Amazon Mechanical Turk.

We considered seven image degradation scenarios: noisy gb- . .
servations with 5%, 10%, 15% noise, blurry observations wi e collected more than 25 user inputs for each comparison,
a small blur and 296%, 7% noise, and a blurry observationand averaged user responses for each degradation scenario
) 7 . . . 0 .
with a moderate-size blur and 2% noise. For each degradatfglquure 12). V\/_henothe d_egradatmn I_evel is low (5% noise or
scenario, we randomly selected 4 images from a dataset of mgll blur with 2% noise), users d'(.j not pre_fer a particular
images (roughly 70& 500 pixels), and reconstructed imageg1 gorlthm.t In ?U(.:h c?lsesl, the_ ob§ervat|0n termdlls stro?gt:)'?;mo
using a MAP estimator with a fixed sparse prior (i.e. the san@ econstruct visually pleasing images regardless o P

sparse prior across the whole image), an adjusted spatse p nd/o_r the reconstruction algorithm. When the degradation
and IDR. evel is high, however, many users clearly favored our tesul

User comments pointed out that realistic textures in trees,
We showed users two images side-by-side, one reconstrugjeass, and even in seemingly flat regions such as gravel paths
using our algorithm and another reconstructed using one af important for visual realism. Users who favored MAP



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 20XX

estimates preferred clean renditions of flat regions ance wes]
not disturbed by piecewise smooth textures (some even found
it artistic.) Individual users consistently favored eitheur

result or MAP estimates, suggesting that image evaluation!{]

subjective in nature. 5

6 CONCLUSION (6]
We have developed an iterative deconvolution algorithn tha
matches the gradient distribution. Our algorithm briddes ¢l
energy minimization methods for deconvolution and texture
synthesis. We show through a user study that matchiﬁ;&;
derivative distribution improves the perceived quality ref g
constructed images. The fact that a perceptually bettege'ame{

receives lower PSNR/SSIM suggests that there is a room o
improvement in image quality assessment.

(11]

APPENDIX A [12]

We sketch the details of the optimization procedures in Algo
rithm 1. LetY be a rasterized vector of the observed imad&>
y, X be a rasterized vector of the image and K be the
convolution matrix of the blur kernéd. We take the derivative |14
of the optimization function in Algorithm 1 with respect ¥a

[15]
KT(Y — KX )
_%—FZWMDVDGUGXHVD 1
+ w2 (2ApypGT [[GX||"0 1 — 24y GT||GX||¥E L 1]
W 17
i—@+(—VS)—AE|G><|VEIn<|G><|> - 2%
T Ve X g
1 0Ae
+ —_GXME>O—):0
<VE/\E IGX] X 18]
(12)

[20]
whereG is a gradient operator, andis a Hadamard element-

wise matrix multiplication operator%—y)f and ?—XE can be [21]
derived as follows:
2
I ye2Ae e (L) . [22]
X NI () (W(E) - 3W(2) +2In0ke) ) (13) 123

e T(A/y)yere™Hw
oxX NI (3/ye)
N is the dimension oK.

G'GX

[24]

We solve Eq. 12 by iteratively approximating it with a linear
equation [15], [22]. We use a minimum residual method [20]
to solve thelinearizedsystem in Eq. 12.
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