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1 The KL divergence betweengg and gr

We show that the penalty functigr; defined in Algorithm 1 in the paper is one way of

evaluating the KL divergence between the empirical distidn ¢ and the reference
distributiongg.
Recall that the KL divergence betwegn andgy, is as follows:
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There are different ways to represept \We can parameterizg: as follows:
ap(2) = el nE) exp (= Ap|2]*) (2)
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where the shape parameters, A\p have been fitted tov gradient sample¥ z; using
EqQ. 7 in the paper.
We can also parameterizg as follows:
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2 Fitting samples to a generalized Gaussian distribution

14

Claim. Supposer;,i = 1...N are samples from an unknown distribution, and we 15

would like to fit a parametric distributionto the samples;. Letpg(z) = + vazl o(z—
x;) be an empirical distribution of the samples and letq be a generalized Gaussian
distribution parameterized by shape parameiers We show that a distributiog that
best parameterizes the empirical distributjen(in the KL divergence sense) minimizes
the sum of negative log-likelihood over samplgs

N
Ig\lan K L(pg|lg) = min {— ; 1H(Q($i))} )

Ay
Proof. We can show that the KL divergence betweggrandg takes the following form:
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=—InN— N;ln (q(z;))

KL(pgellq) = /pE(f)ln

x

(6)

3 Algorithm details

We derive the details of the image reconstruction procetfufdgorithm 1 in the pa-
per. We can rewrite the image reconstruction optimizatigrcfion in Algorithm 1 as
follows:
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The shape parameters of the empirical distributignare functions ofr, but depen-
dences are omitted to reduce clutter.

The first two rows of Eq 7 are similar in form to the ordinary MABtimator, there-
fore they can be minimized using a gradient descent tecknifjwe can compute the
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derivative ofln (72?({9/14;})3 72;(;/1}13;) with respect tar, we can minimize the entire 31
function in Eq 7 using a gradient descent method. We showitthraiteed is the case. 32
Let X be arasterized vector of the imageT he derivative ofn (VEAEWE 2L/ yr) ) 33

2I'(1/vE) yrARY IR
with respect taX takes the following form: 34
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where 35

YE 9)

visa digammafunction‘?—XE and 22 can be derived as follows: 36

NEe _ A G 26T GX
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We show the proofs in the following subsections. Slﬂm{é’}(f/w) vR/\RlﬁR) is 37

differentiable, we can optimize Eq 7 using a gradient dedeehnique. Furthermore, at 38
fixed [yg, Ar|, Eq 8 is linear inX, suggesting that an iterative reweighted least squaress
(IRLS) method can minimize Eq 7. 40
Let Y be a rasterized vector of the observed imggand K be the convolution 41
matrix of the blur kernek. We take the derivative of the optimization function Eq 7 42
with respect taX': 43
K'Y - KX
KW - KX) = )4 20 ApYRGT | GX R
+wz (207G [GX 5 = 226G GX7F !

o (11)
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whereG is a gradient operator, ards a Hadamard element-wise matrix multiplication 44
operator. 45
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IRLS algorithm approximates the solution of a non-lineawapn Eq 11 by itera- 46
tively solving a linear equation that approximates Eq 11aperoximate/G* ||GX |7~ 47
as follows: 48

VGT|GX | = AGTWGEX (12)

wherelV is a reweighting matrix. We updal¥ iteratively such that minimizingG” || GX || a*
matches minimizing GTWGX. 50

We handle the non-linearity due dg; |G X |7E In(|GX|) and|GX | by evaluating 51
them once with the image reconstructed from the previouatitsn, andfixing these 52
coefficientgduring the actual minimization with respect . We iterate this process s3
until convergence. We use a minimum residual method to dbledéinear system in 54

Eq 11. 55

We can easily modify this algorithm to derive the IDR alglomit details. 56
Sati A'/"E 2I'(1/vR)

3.1 The derivative ofln (;’;(f/,m) ,YRARJ?R) 57

We note thatyg, Ar are independent oX’, so we can focus on taking the derivative of ss

. 1/
vE, Ag. We can rewritdn (%) as follows: 59

A 1/vE
In ('YE E

1 1
7211(1/%?)) =1In(vg) + V_E In(Ag) —In <2F(V_E)> (13)

There exists a relationship between the Gamma fundtiamd the digamma func- 60

tion ¥: 61
ar
) i) (14)
We can use that relationship to show that 62
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3.2 The derivative of Ag with respect to X 63

We show that 64
s Tre)ysds®H0 (16)
0X NTI'(3/vg)

whereN is the total number of samples. 65
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We can compute the second moment of gradient samples of as follows:
1
me = NXTGTGX (17)

whereG is a gradient operator, and we assume that the mean of gtadighis zero.
The second moment; is related to generalized Gaussian shape paramgters;

as follows:
I'(3/vE)

g =—F (18)
Ap78 I'(1/7vE)
We take the derivative ofi; with respect to X. From Eq 17,
3m2 2 T
— X 19
0X NG ¢ (19)
For tractability, we assume that; is independent oX . From, Eq 18,
8m2 F(3/’}/E) 2 —2 3 8/\E
= — B —— 20
0X ~T(/e) et 0K 0)
From Eq 19 and Eq 20, we can show that
(1+2/vE)
X NI'(3/ve)
3.3 The derivative ofyg with respect to X
We show that
%f _ 3 7E1 e (;E) 2GTGX 22)
NI(E) (#() - 30(L) + 2n(Ae) )
whereN is the total number of samples.
Again, we use the relationship:
I(3/78) 23)

2= T =
Ae7E I'(1/vE)

We take the derivative ofi, with respect taX assuming thatn, is independent of
\E.

1 (24)
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We can show that
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Using above relationships and the derivativeraf with respect taX (Eq 19), we
can show that

2y (55) L
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4 User comments

In our user study, we asked users to comment on their seteatitne visually pleasing
image. We present a subset of comments from the users.

4.1 Comments from users that favored the image reconstructeusing the IDR
algorithm

— road/gravel is clearer

— | like the picture on the right more because certain spote®ficture have more
detail than the picture on the left and the yellow in the tisgems to POP more

— Detail looks more realistic.

— bushes are clearer

— the picture on the left is more clear

— Detailing looks more realistic. The second one looks likem{ing.

— not sure. just more appealing

— The fur on the mother bear was more visible and real like thanfitst picture.
Detailing was shown slightly more in the cubs land and wasewell.

— Mother bear’s fur is more realistic

— Can see gravel more clearly

— Leaves on trees in background look more distinct

— Better resolution

— theres more detail and not as blury

— the image is sharper

— the color is more vivid and you can see the true color of thébather than the
blur.

— Focused mainly on the clarity of the tree in front. Branchesnsed more defined
than the other tree. Building looked nearly the same though.

— a bit crisper imagery

— | like how the trees/bushes look more detailed more real

— You can see the individual hairs
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— In many places on the selected image the hair looks morestieglyrainier fluffier
and less of a blob).

— prefer the look of the grassy bank in this one as it looks eleathe other just looks
like a smudge

— The 2nd image is a bit more focused than the other.

— seems a slightly more focused picture so it's clamer on tiee ey

— Atiny bit more detail can be seen on the path.

— The trees in the selected image are much more in focus. Qtteeamage is less
blurry but | can make out individual details about the pattl the trees.

— the path in the foreground seems more natural

— seems a little more in focus- looking at the grass as the félse@ic seems equally
as unfocused

— the other image looks like some one poured water on it

4.2 Comments from users that favored MAP estimates

— neat and clean

— | picked the one that looked a little abstract like a painting

— The train in the selected image looks much clearer and thHdibgiin the back-
ground seems less blurry after staring at the two for a while.

— better clarity

— less specks

— less blocky

— The leaf in the road is easier to see.

— Sharper focus

— yellow vehicle more defined

— Less pixely than the other one

— it looks like an artist’s rendering

— just a bit crisper

— clearer image w/ less specks

— this is little more clear

— clearerimages

4.3 Comments from users that selectedThere isno difference.” option

— Both are too bright.

— Il don't see a difference.

— both images are looking in every aspect same to me.

— Leaves of tree seem to be better focused - slightly

— seems a little more focused - looking at the path leadingedittte conifer

— Each photo had attributes that was more appealing in p&Esamthan the other.
Picture one seemed to be slightly clearer with the largeritmdront view. While
picture two the side of the building and sky was clearer.

— | focused on the telephone pole

— look the same
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