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1. The KL divergence between ¢z and ¢

We show that the penalty function pg defined in Algo-
rithm 1 in the paper is one way of evaluating the KL diver-
gence between the empirical distribution qr and the refer-
ence distribution gp.

Recall that the KL divergence between gr and qp is as

follows:
KL(qgllgr) = /qE(z) In (qE(z)) dz (1)

qr(2)

There are different ways to represent qz. We can param-
eterize qp as follows:
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where the shape parameters yg, Ag have been fitted to NV
gradient samples Vx; using Eq. 7 in the paper.
We can also parameterize qr as follows:
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2. Fitting samples to a generalized Gaussian
distribution

Claim 1 Suppose x;,i = 1..N are samples from an
unknown distribution, and we would like to fit a para-
metric distribution q to the samples x;. Let pg(x) =

+ Zi\rzl d(x — ;) be an empirical distribution of the sam-
ples x;, and let q be a generalized Gaussian distribution
parameterized by shape parameters \,~y. We show that a
distribution q that best parameterizes the empirical distri-
bution qg (in the KL divergence sense) minimizes the sum
of negative log-likelihood over samples x;:
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Proof: We can show that the KL divergence between pg
and q takes the following form:
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3. Algorithm details

We derive the details of the image reconstruction proce-
dure in Algorithm 1 in the paper. We can rewrite the image
reconstruction optimization function in Algorithm 1 as fol-
lows:
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The shape parameters of the empirical distribution qg are
functions of x, but dependences are omitted to reduce clut-
ter.

The first two rows of (7) are similar in form to the ordi-
nary MAP estimator, therefore they can be minimized using
a gradient descent technique. If we can compute the deriva-
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minimize the entire function in (7) using a gradient descent
method. We show that it indeed is the case.

) with respect to x, we can

Let X be a rasterized vector of the image x. The deriva-
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VU is a digamma function. Z% and %)‘—XE can be derived as
follows:
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We show the proofs in the following subsections. Since
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(7) using a gradient descent technique. Furthermore, at

fixed [y, Ag|, (8) is linear in X, suggesting that an iter-
ative reweighted least squares (IRLS) method can minimize

).

Let Y be a rasterized vector of the observed image y, and
K be the convolution matrix of the blur kernel k. We take
the derivative of the optimization function (7) with respect

) is differentiable, we can optimize

to X:
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where G is a gradient operator, and o is a Hadamard
element-wise matrix multiplication operator.

IRLS algorithm approximates the solution of a non-
linear equation (11) by iteratively solving a linear equation
that approximates (11). We approximate yG7'||G X ||7~! as
follows:

FGT|GX | = AyGTWGEX (12)

where W is a reweighting matrix. We update W iteratively
such that minimizing yGT'||GX||?~! matches minimizing
~VGTWGX.

We handle the non-linearity due to Ag|GX|7E In(|GX])
and |GX|"® by evaluating them once with the image recon-
structed from the previous iteration, and fixing these coeffi-
cients during the actual minimization with respect to X. We
iterate this process until convergence. We use a minimum
residual method to solve the linear system in (11).

We can easily modify this algorithm to derive the IDR
algorithm details.
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We note that v, Ar are independent of X, so we can
focus on taking the derivative of vg, Ag. We can rewrite

In (%) as follows:
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There exists a relationship between the Gamma function
I" and the digamma function W¥:
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We can use that relationship to show that
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3.2. The derivative of )\ with respect to X
We show that
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where NV is the total number of samples.
We can compute the second moment ms of gradient sam-
ples of X as follows:

1
mo = NXTGTGX (17)

where G is a gradient operator, and we assume that the mean
of gradients GX is zero.

The second moment m, is related to generalized Gaus-
sian shape parameters vz, Ag as follows:
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We take the derivative of my with respect to X. From
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From (19) and (20), we can show that
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3.3. The derivative of vz with respect to X
We show that
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where NV is the total number of samples.

Again, we use the relationship:
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We take the derivative of mo with respect to X assuming
that ms is independent of \g.
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Using above relationships and the derivative of my with
respect to X ((19)), we can show that
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4. User comments

In our user study, we asked users to comment on their se-
lection of the visually pleasing image. We present a subset
of comments from the users.

4.1. Comments from users that favored the image
reconstructed using the IDR algorithm

e road/gravel is clearer

e [ like the picture on the right more because certain
spots of the picture have more detail than the picture
on the left and the yellow in the train seems to POP
more

e Detail looks more realistic.
e bushes are clearer
o the picture on the left is more clear

e Detailing looks more realistic. The second one looks
like a painting.

e not sure. just more appealing



The fur on the mother bear was more visible and real
like than the first picture. Detailing was shown slightly
more in the cubs land and water as well.

Mother bear’s fur is more realistic

Can see gravel more clearly

Leaves on trees in background look more distinct
Better resolution

theres more detail and not as blury

the image is sharper

the color is more vivid and you can see the true color
of the bush rather than the blur.

Focused mainly on the clarity of the tree in front.
Branches seemed more defined than the other tree.
Building looked nearly the same though.

a bit crisper imagery

I like how the trees/bushes look more detailed more
real

You can see the individual hairs

In many places on the selected image the hair looks
more realistic (grainier fluffier and less of a blob).

prefer the look of the grassy bank in this one as it looks
clearer - the other just looks like a smudge

The 2nd image is a bit more focused than the other.

seems a slightly more focused picture so it’s clamer on
the eye

A tiny bit more detail can be seen on the path.
The trees in the selected image are much more in fo-
cus. Overall the image is less blurry but I can make out
individual details about the path and the trees.

the path in the foreground seems more natural

seems a little more in focus- looking at the grass as the
rest of the pic seems equally as unfocused

the other image looks like some one poured water on it

4.2.

Comments from users that favored MAP esti-
mates

neat and clean

I picked the one that looked a little abstract like a paint-
ing

The train in the selected image looks much clearer and
the building in the background seems less blurry after
staring at the two for a while.

better clarity

less specks

less blocky

The leaf in the road is easier to see.
Sharper focus

yellow vehicle more defined
Less pixely than the other one

it looks like an artist’s rendering
just a bit crisper

clearer image w/ less specks
this is little more clear

clearer images

. Comments from users that selected ' There is no

difference." option

Both are too bright.

I don’t see a difference.

both images are looking in every aspect same to me.
Leaves of tree seem to be better focused - slightly

seems a little more focused - looking at the path lead-
ing to the little conifer

Each photo had attributes that was more appealing in
presentation than the other. Picture one seemed to be
slightly clearer with the larger tree in front view. While
picture two the side of the building and sky was clearer.

I focused on the telephone pole

look the same



