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Abstract

Most Bayesian deconvolution methods maximize the pos-

terior probability to reconstruct a clean image from a de-

graded image. The MAP estimator, in conjunction with a

sparse gradient image prior, favors piecewise smooth im-

ages and typically removes mid-frequency textures that are

important for visual realism.

We present an alternative deconvolution method called

iterative distribution reweighting (IDR) that matches the re-

stored image’s gradient distribution to the desired gradient

distribution. The desired gradient distribution is different

from one image to another, but may also vary within an im-

age, depending on the texture. We estimate the desired gra-

dient distribution directly from the degraded input image for

each segment. Our algorithm is able to reconstruct or hallu-

cinate rich mid-frequency textures. A large scale user study

supports the conclusion that our algorithm improves the vi-

sual realism of reconstructed images compared to those of

MAP estimators.

1. Introduction

Image restoration is typically an under-constrained prob-

lem. Information lost during a lossy observation process

needs to be restored with prior information about natural

images to achieve visual realism. Most Bayesian image

restoration algorithms reconstruct images by maximizing

the posterior probability, abbreviated MAP. Reconstructed

images are called the MAP estimates.

One of the most popular image priors exploits the heavy-

tailed characteristics of the gradient distribution, which are

often parameterized using a mixture of Gaussians or a gen-

eralized Gaussian distribution. The MAP estimator balances

the observation likelihood with the gradient penalty from

the sparse gradient prior, reducing image deconvolution ar-

tifacts such as ringing and noise. Unfortunately, the MAP

estimator also removes mid-frequency textures, often giv-

ing an unnatural and cartoonish look to the reconstructed

image.

In this paper, we introduce an alternative image restora-

tion strategy that is capable of reconstructing visually pleas-

Gradient pro�lesMAP estimate
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Figure 1. The gradient distribution of images reconstructed using

the MAP estimator can be quite different from that of the original

images. We present a method that matches the reconstructed im-

age’s gradient distribution to that of the desired gradient distribu-

tion (in this case, that of the original image) to hallucinate visually

pleasing textures.

ing textures. The key idea is not to penalize gradients, but

to match the reconstructed image’s gradient distribution to

the desired distribution. We introduce a method to estimate

the desired distribution directly from the degraded input im-

age. A user study substantiates the claim that images re-

constructed by matching gradient distributions are visually

more pleasing compared to those reconstructed using the

MAP estimator.

2. Related work

The Wiener filter [7] is a popular image reconstruction

method with a closed form solution. The Wiener filter is

a MAP estimator with a Gaussian prior on image gradi-

ents, which tends to blur edges and causes ringing around

edges because those image gradients are not consistent with

a Gaussian distribution.

Bouman and Sauer [1], Chan and Wong [2], and more

recently Fergus et al. [4] and Levin et al. [13], use a heavy-

tailed gradient prior such as a generalized Gaussian distribu-

1
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solution space

noise variance

ground truth data

observed data

blurred image manifold

x1

x2

=x2x1

(a) Denoising (b) Deblurring

=x2x1

x1

x2
Label

Figure 2. We illustrate the solution space of the MAP estimator for

the special case of a two-pixel image (x1, x2). (a) In denoising,

the MAP estimates lie on a line segment connecting the observed

image (the green dot) and x1 = x2. The weighting term w in Eq 1

determines x̂. (b) We can model a blurred image as a weighted

average of pixels x1, x2. The MAP estimate is always on x1 = x2

regardless of w.

tion [1, 13], a total variation [2], or a mixture of Gaussians

[4]. MAP estimators using sparse gradient priors preserve

sharp edges while suppressing ringing and noise. However,

they also tend to remove mid-frequency textures, which

causes a mismatch between the reconstructed image’s gra-

dient distribution and that of the original image.

Matching gradient distributions has been addressed in the

texture synthesis literature. Heeger and Bergen [8] synthe-

size textures by matching wavelet sub-band histograms to

those of the desired texture. Portilla and Simoncelli [16]

match joint statistics of wavelet coefficients to synthesize

homogeneous textures. Kopf et al. [10] introduce a non-

homogeneous texture synthesis technique by matching his-

tograms of texels (or elements of textures).

Matching gradient distributions in image restoration is

not entirely new. Li and Adelson [14] introduced a two-step

image restoration algorithm that first reconstructs an image

using an exemplar-based technique similar to Freeman et

al. [6], and warps the reconstructed image’s gradient dis-

tribution to the desired gradient distribution using Heeger

and Bergen’s method [8]. Recently, Woodford et al. [21]

proposed a MAP estimation framework called the marginal

probability field (MPF) that matches the histogram of low-

level features, such as gradients or texels, for computer vi-

sion tasks including denoising. The technique in Woodford

et al. [21] requires that we bin features to form a discrete

histogram; we propose a distribution matching method that

bypasses the binning process. Also, Woodford et al. used

an image prior derived from a database of images, and used

the same global prior to reconstruct images with different

textures. We estimate our image priors directly from the de-

graded image and for each textured region independently.

3. Characteristics of MAP estimators

We study the solution space of MAP estimators, and

show that MAP estimators favor piecewise smooth recon-

structions in the absence of image information. Let y be the

observed (degraded) image, k be the blur kernel, ⊗ be the

convolution operator, and x be the latent image. The MAP

estimator solves the following regularized problem:

x̂ = argmin
x

{

‖y − k ⊗ x‖2

2η2
+ w

∑

m

ρ(∇mx)

}

(1)

where η2 is the observation noise variance, m indexes gra-

dient filters, and ρ is a robust function that favors sparse

image gradients. We parameterize the gradient distribu-

tion using a generalized Gaussian distribution. In this case,

ρ(∇x) = − ln(p(∇x)), where p(∇x) is given as follows:

p(∇x) =
γλ( 1

γ
)

2Γ( 1
γ )

exp(−λ‖∇x‖γ) (2)

Γ is a Gamma function, and shape parameters γ, λ deter-

mine the shape of the distribution. In most MAP-based

image reconstruction algorithms, gradients are assumed to

be independent for computational efficiency: p(∇x) =
∏N

i=1 p(∇xi), where i indexes pixels and N is the total

number of pixels in an image.

To provide intuition, we graphically analyze the MAP

estimator for the special case of a two-pixel image. Let us

first consider the denoising task (Figure 2(a)). We observe

a noisy version y (the green dot) of a sharp image x (the

blue dot), and we want to reconstruct x from y. The obser-

vation term favors latent images that are close to y, but the

image prior favors images that lie on the x1 = x2 axis. The

weighting term balances the two competing “forces”, and

reconstructs an image that lies on the dotted blue line. Even

if we optimally set w, we cannot remove the noise compo-

nent parallel to the x1 = x2 axis.

Next, we consider the deblurring task (Figure 2(b)). Sup-

pose the blur kernel is rank-deficient so that we effectively

observe only one value ỹ, which is a linear combination of

the two pixel values x1, x2. Given the blur kernel, the set

of x1, x2 that can regenerate the observation ỹ forms a lin-

ear manifold (the dotted purple line.) Any observation noise

shifts the linear manifold orthogonal to the original mani-

fold. Let y be the blurred noisy observation (the solid purple

line.) The observation error is zero for x1, x2 that lie on this

purple line, whereas the prior term favors images with lower

gradients. Therefore, the MAP solution space is the blue dot

on the x1 = x2 line, regardless of w. In other words, in the

presence of a rank-deficient blur, the MAP estimator always

favors a piecewise smooth image, and generates an image

that has a different gradient distribution from the original

image’s gradient distribution (Figure 1).

These toy examples illustrate the discrepancy between

the image prior and the MAP estimate. The image prior

tells us that collectively, gradients in a natural image gen-

erate a sparse gradient profile, whereas the MAP estimator

minimizes each gradient independently, favoring piecewise

smooth images. This is unsatisfying for textured regions.

2
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Therefore, we need a mechanism to ensure that the recon-

structed image’s gradient profile matches the gradient distri-

bution insisted by the image prior.

4. Image reconstruction

We develop an image reconstruction algorithm that min-

imizes the distance between the reconstructed image’s gra-

dient distribution and the desired distribution. The gradient

distribution penalty acts as a global image prior that steers

the solution away from piecewise smooth images.

Let qE(∇x) be the empirical gradient distribution of the

image x, and qD be the distribution we want to match to. We

measure the distance between distributions qE , qD using the

Kullback-Leibler (KL) divergence:

KL(qE||qD) =

∫

∇x

qE(∇x) ln

(

qE(∇x)

qD(∇x)

)

d(∇x) (3)

In Section 4.1, we first introduce a method that penalizes

the KL distance between the empirical gradient distribution

qE and the desired gradient distribution qD. We show that

this algorithm is sensitive to the parameter setting; in the

following section, we extend this result to a more stable al-

gorithm called iterative distribution reweighting (IDR).

4.1. Penalizing the KL divergence

We can reconstruct an image x̂ with a gradient distribu-

tion close to qD by penalizing the KL divergence:

x̂ = argmin
x

‖y − k ⊗ x‖2

2η2
+ w1λD‖∇x‖γD

+ w2KL(qE ||qD)

(4)

where w2 determines how much to penalize the KL diver-

gence. In the above equation, we have replaced the summa-

tion over multiple filters in Eq 1, i.e.
∑

m λm‖∇xm‖γm ,

with a single gradient filter to reduce clutter, but the deriva-

tion can easily be generalized to using multiple gradient fil-

ters. We use four gradient filters in this work: x, y gradient

filters, x-y, and y-x diagonal gradient filters.

It’s hard to directly optimize Eq 4 because the KL diver-

gence is a non-linear function of the latent image x. There-

fore we optimize Eq 4 iteratively.

We iterate the following procedures to solve Eq 4 :

x̂L = (5)

argmin
x

{

‖y − k ⊗ x‖2

2η2
+ w1λD‖∇x‖γD + w2ρ

L
G(∇x)

}

,

ρL
G(∇x) = ln

(

qE
(L−1)(∇x)

qD(∇x)

)

(6)

We show in the supplemental material that
∑

i ρL
G(∇xi) is

one way of computing the KL divergence, where i indexes

gradient samples.

(a) Progression of Gamma (b) Progression of Lambda
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Figure 4. This figure shows how γE, λE change from one iteration

to the next. Different colors correspond to different gradient filters.

The algorithm in Eq 5 does not converge to a stable point, but rather

oscillates around the desired solution.

In words, we fit the gradient distribution of the previous

image estimate x̂L−1 to a generalized Gaussian distribution

to get qE
(L−1), and compute ρL

G using qE
(L−1). Then we

reconstruct a new image estimate x̂L that minimizes Eq 4

assuming the penalty function ρL
G is fixed. Given the new

estimate x̂L, we re-estimate the empirical distribution qE
L

and iterate the process until convergence.

Intuitively, if qE has more gradients of a certain magni-

tude compared to qD, ρG penalizes those gradients more in

the following iteration; if qE has fewer gradients of a cer-

tain magnitude compared to qD, ρG penalizes those gradi-

ents less in the following iteration. Figure 3 illustrates the

procedure.

We estimate the shape parameters γE , λE of an empirical

gradient distribution qE by minimizing the log-likelihood of

a generalized Gaussian distribution p(∇x) (Eq 2):

[γE , λE ] = argmin
γ,λ

{

−

N
∑

i=1

1

N
ln (p(∇xi))

}

(7)

where i indexes over gradient samples. This is equivalent to

minimizing the KL divergence between the gradient sam-

ples ∇x and a generalized Gaussian distribution (see the

supplemental material). We use the Nelder-Mead optimiza-

tion method [11] to solve Eq 7. We sketch the algorithmic

details of the energy minimization (Eq 5) in Appendix A;

the full derivation is available in the supplemental material.

Algorithm analysis The behavior of the algorithm in Eq 5

depends on the value of w2. When w2 is small, the recon-

structed image resembles the MAP estimate; when w2 is

large, the algorithm may oscillate around the desired solu-

tion (Figure 4). When w2 is very large, the linearized objec-

tive function (in Appendix A, Eq 10) becomes indefinite, in

which case the minimum residual method [18] cannot solve

the linearized system. To mitigate the reliability issue, we

develop an iterative distribution reweighting algorithm that

is conceptually similar to penalizing the KL divergence .
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Figure 3. This figure illustrates the KL divergence regularization algorithm in Section 4.1. Suppose we deconvolve a degraded image in

(a) using the MAP estimator. (c) shows that the x-gradient distribution of the deconvolved image in (b) does not match that of the original

sharp image. Our algorithm adds the log ratio of qE and qD to the original gradient penalty such that the weighted sum of the two penalty

terms encourages a better gradient match in the following iteration.

(a) IDR estimate (b) Gradient distribution (c) E�ective penalty (d) Original image
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Figure 5. Our algorithm iteratively modifies the penalty function such that it encourages missing gradients and penalizes surplus gradients.

(a) shows the deconvolved image using IDR, and (b) compares the gradient distribution of images reconstructed using the MAP estimator

and IDR. (c) The effective penalty after convergence penalizes small gradients and large gradients more than mid-level gradients.

4.2. Iterative distribution reweighting (IDR)

Our objective is to find a regularization function ρG in

Eq 5 such that minimizing the energy reconstructs the image

with the desired gradient distribution. We propose an itera-

tive strategy to search for the desired regularization function

ρG. This technique is motivated by perceptron algorithms

that iteratively adjust a decision boundary to minimize the

classification error. In our case, we iteratively adjust the

regularization function to match the empirical gradient dis-

tribution to the desired gradient distribution.

To do so, instead of penalizing just the KL distance as

in the previous section, we penalize the sum of KL dis-

tances over previous iterations. In other words, we adjust

the penalty ρG by the KL divergence:

x̂L = (8)

argmin
x

{

‖y − k ⊗ x‖2

2η2
+ w1λD‖∇x‖γD + w2ρ

L
G(∇x)

}

,

ρL
G(∇x) = ρ

(L−1)
G (∇x) + ln

(

qE
(L−1)(∇x)

qD(∇x)

)

(9)

Eq 9 iteratively adjusts the penalty function ρG by reweight-

ing each gradient by the ratio of qE and qD, thus the name it-

eratively distribution reweighting (IDR). The benefit of IDR

is that it reaches convergence when qE = qD. We can eas-

ily modify the algorithmic details in Appendix A to solve

(a) Progression of Gamma (b) Progression of Lambda
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Figure 6. This figure shows how γE , λE estimates of gradient fil-

ters change from one iteration to the next. Different colors corre-

spond to different gradient filters. We observe that the algorithm

converges to a stable point in about 8 iterations.

Eq 8. We illustrate IDR in Figure 5, and show how γE , λE

changes from one iteration to the next in Figure 6.

In Figure 7, we test IDR for deblurring a single texture,

assuming a known correct gradient distribution qD. We syn-

thetically blur the texture and add 5% noise to the blurred

image. We deblur the image using the MAP estimator and

IDR assuming a known blur kernel, and compare the recon-

structed images. For all examples in this paper, we run 10

iterations of IDR, and we use w1 = 0.025, w2 = 0.0025.

The MAP estimator over-smooths textures whereas IDR

reconstructs rich textures. The peak-signal-to-noise ratio

(PSNR) / gray-scale SSIM [20] of our result may actually

4
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Figure 7. We compare the deblurring performance of the MAP estimator and IDR. IDR matches the gradient distribution of the original

image better than the MAP estimator. IDR reconstructs visually more pleasing mid-frequency textures compared to the MAP estimator.

be lower than those of the MAP estimate. Visually, how-

ever, the texture reconstructed using our algorithm matches

the original image better.

Algorithm analysis In most cases, IDR reliably recon-

structs images with the desired gradient distribution. How-

ever, there are cases in which the algorithm settles at a lo-

cal minimum away from the desired texture. This usually

occurs when the support of the gradient filters is large and

many gradient filters are used to regularize the image. Sup-

pose we want to match the gradient histogram of a 3 × 3
Laplacian filter. The algorithm needs to update 9 pixels to

change the filter response at the center pixel, but updating 9

pixels also affects filter responses of 8 neighboring pixels.

Having to match multiple gradient distributions at the same

time adds on another degree of complexity. To control the

complexity, we match four two-tap gradient filters.

IDR matches a parametrized gradient distribution, and

therefore the algorithm is inherently limited by the accuracy

of the fit. In general, a generalized Gaussian is a good pa-

rameterization of natural image gradients.

The behavior of IDR is relatively insensitive to the

weighting term w2, but a large w2 can destabilize the mini-

mum residual algorithm [18] that solves the linearized sys-

tem in Eq 10.

4.3. Desired distribution qD estimation

We often do not know a priori what the desired gradient

distribution qD should be, so previous work estimated qD

from other natural images [4, 21] or hand-picked the param-

eters through trial and error [13]. We estimate qD from the

degraded input image directly.

To do so, we first deconvolve the degraded image us-

ing a MAP estimator using a hand-picked set of parameters,

tuned to restore different textures reasonably well (i.e. a rel-

atively small gradient penalty). In this paper, we set them

as [γ = 0.8, λ = 4, w1 = 0.01] for all images. Then we

down-sample the reconstructed image to reduce the decon-

volution noise. We fit the gradients from the down-sampled

image to a generalized Gaussian distribution to estimate the

desired gradient distribution qD. Fractal textures such as

trees or piecewise smooth surfaces such as buildings exhibit

scale-invariant gradient statistics [12, 15], so in theory the

downsampling should not induce estimation error in such

regions. While fine details in images can be lost through

down-sampling, we observed empirically that the estimated

gradient distribution qD is accurate enough to reconstruct

details in the final image.

IDR assumes that the texture is homogeneous (see the al-

gorithm derivation in the supplemental material). When we

have different textures within a single image, we segment

the image using the EDISON algorithm [3] and deconvolve

each region separately. We set the parameters (fixed for all

images) such that each image generates about 20 segments.

We illustrate the full deconvolution process in Figure 8.

5. Experiments

Deconvolution experiments We synthetically blur sharp

images with the kernel in Figure 9, add 2% noise, and de-

convolve them using competing methods. Figure 9 com-

pares the deconvolution result of a MAP estimator, using a

sparse gradient prior [13] and a two-color prior [9], and our

result. We also present the deconvolution result of a MAP

estimator using the estimated image prior for each segment.

We name this prior an adjusted sparse prior.

IDR does not perform the best in terms of PSNR / SSIM.

One explanation is that the degraded image may not strongly

constrain the position of gradients, in which case our al-

gorithm spreads gradients to match the gradient distribu-

tion, lowering PSNR / SSIM. Nevertheless, IDR recon-

structs mid-frequency textures well and produces visually

more compelling results compared to MAP estimators.

In Figure 10, we compare the denoising performance of

IDR to that of the MPF [21] at two noise levels (their imple-

mentation only handles gray-scale, square images). Wood-

ford et al. [21] estimate the desired gradient distribution

from a database of images, and use the same prior to de-

noise different images. This can be problematic because dif-

ferent images have different gradient profiles, but the MPF

enforces the same gradient profile on them. Also, the MPF

does not adapt the image prior to the underlying texture,

treating different textures the same way. Therefore, the MPF

distributes gradients uniformly across the image, even in
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Figure 8. We illustrate the IDR deconvolution process. We first deblur the degraded image using the MAP estimator with a fixed prior.

Down-sampled version of the deconvolved image is used to estimate the desired image prior qD (i.e. the shape parameters γ, λ) in each

segment, which is then used to deconvolve each segment separately using IDR. The red box denotes the cropped region. Compared to MAP

estimators, IDR better preserves natural textures.

MAP estimate - Fixed sparse prior MAP estimate - two-color prior IDR reconstruction Original image

PSNR : 27.91dB, SSIM : 0.741PSNR : 28.30 dB, SSIM : 0.741PSNR : 28.60dB, SSIM : 0.757

PSNR : 26.74dB, SSIM : 0.815 PSNR : 26.73 dB, SSIM : 0.811 PSNR : 26.35dB, SSIM : 0.801

MAP estimate - Adjusted sparse prior

PSNR : 28.58dB, SSIM : 0.753

PSNR : 26.48dB, SSIM : 0.804

Blur kernel

Figure 9. We compare the visual quality of deblurred images using IDR and the MAP estimators with the sparse gradient prior, the adjusted

gradient prior and the two-color prior. We blur the sharp image using the kernel shown on the right, and add 2% noise to it. The red

box denotes the cropped region. Although the PSNR and SSIM of our results are sometimes lower than those of MAP estimators, IDR

reconstructs visually pleasing textures such as bear furs or trees surrounding the lake.

smooth regions, which can be visually disturbing. IDR ad-

dresses these issues by estimating the desired gradient prior

from the input image, adapting to the spatially varying tex-

ture. Adapting gradient filters to local image structures us-

ing steerable filters [5, 17] may further improve the rendition

of oriented textures such as hair and fur, but it is not consid-

ered in this work. The MPF quantizes 256 (8-bit) intensity

levels to 64 intensity levels (6-bit) and bins gradient magni-

tudes to 11 slots for computational reasons, which reduces

the contrast and accentuates spotty noise in reconstructed

images. IDR adopts a continuous optimization scheme that

does not require any histogram binning or intensity quanti-

zation.

Segmenting images to regions and deconvolving each re-

gion independently can sometimes generate artificial texture

boundaries. We show such an example in Figure 11 where

the artificial boundary between two segments is visually dis-

turbing. While this rarely occurs, we could mitigate the ar-

tifacts using a texture-based segmentation algorithm rather

than EDISON [3], which is a color-based segmentation al-

gorithm.

User study IDR generates images with rich texture but

with lower PSNR/SSIM compared to MAP estimates. To

test our impression that images reconstructed by IDR are
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Figure 10. Comparing the denoising performance of IDR to the marginal probability field (MPF) [21]. IDR generates a better rendition of

the spatially variant texture.

MAP estimator - �xed prior IDR

Figure 11. We may observe a disturbing artifact when the estimated

prior is different in adjacent segments that have similar textures.

While this rarely occurs, we could remove such artifacts using a

texture segmentation algorithm instead of a color-based segmenta-

tion algorithm.

more visually pleasing, we performed a user study on Ama-

zon Mechanical Turk.

We considered seven image degradation scenarios: noisy

observations with 5%, 10%, 15% noise, blurry observations

with a small blur and 2%, 5%, 7% noise, and a blurry obser-

vation with a moderate-size blur with 2% noise. For each

degradation scenario, we randomly selected 4 images from

a dataset of 13 images (roughly 700 × 500 pixels), and re-

constructed images using the MAP estimator with a fixed

sparse prior, an adjusted sparse prior, and IDR. A subset of

reconstructed images are included in the supplemental ma-

terial for visual comparisons.

We showed users two images side-by-side, one recon-

structed using our algorithm and another reconstructed us-
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Figure 12. We conducted a user study to test our impression that

IDR reconstructions are more visually pleasing than MAP esti-

mates. The blue region corresponds to the fraction of users that

favored IDR over MAP estimators. When the image degradation

level is small, users did not show a particular preference, but as

the image degradation level increases, users favored images recon-

structed using IDR.

ing one of the two MAP estimators. We asked users to select

the image that is more visually pleasing, and give reasons

for their choice. Users were also given a “There is no dif-

ference.” option. We randomized the order in which we

place the images side by side. To ensure that users can view

both images on the same page while examining details, we

cropped test images to 320 × 240. We selected the crop re-

gion directly from original sharp images without referring

to reconstructed images, to minimize the selection bias.

We collected at least 25 user inputs for each compari-

son, and averaged the user preference for each degradation

scenario (Figure 12). When the degradation level is small

(5% noise or a small blur with 2% noise), users did not pre-

fer a particular algorithm. In such cases, the observation

term is strong enough to reconstruct visually pleasing im-

ages regardless of the prior or the reconstruction algorithm.
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When the degradation is large, however, many users clearly

favored our results. User comments pointed out that realis-

tic textures in trees, grass, and even in seemingly flat regions

such as gravel paths are important for visual realism. Users

who favored the MAP estimates preferred clean renditions

of flat regions, and were not disturbed by piecewise smooth

textures (some even found it artistic.) Another interesting

observation is that individual users consistently favored ei-

ther our result or the MAP estimates, suggesting that the

image evaluation is subjective in nature. We show a subset

of user comments in the supplemental material.

6. Conclusion

We have developed an iterative deconvolution algorithm

that matches the gradient distribution in an energy mini-

mization framework. Our deconvolution framework bridges

the energy minimization framework for deconvolution and

texture synthesis framework. We show through a user study

that matching gradient distribution is beneficial for the per-

ceptual quality of reconstructed images.

Appendix A

We sketch the details of the optimization procedures in

Eq 5. Let Y be a rasterized vector of the observed image y,

X be a rasterized vector of the image x, and K be the con-

volution matrix of the blur kernel k. We take the derivative

of the optimization function in Eq 5 with respect to X :

−
KT (Y − KX)

η2
+ 2w1λDγDGT ‖GX‖γD−1

+ w2

(

2λDγDGT ‖GX‖γD−1 − 2λEγEGT ‖GX‖γE−1

+





1

γE
−

ln(λE)

γE
2

+
Ψ

(

1
γE

)

γE
2

− λE |GX |γE ln(|GX |)



 ◦
∂γE

∂X

+

(

1

γEλE
− |GX |γE

)

◦
∂λE

∂X

)

= 0

(10)

where G is a gradient operator, and ◦ is a Hadamard

element-wise matrix multiplication operator. ∂γE

∂X and ∂λE

∂X
can be derived as follows:

∂γE

∂X
=

γE
2λE

( 2

γE
)
Γ( 1

γE
)

NΓ( 3
γE

)
(

Ψ( 1
γE

) − 3Ψ( 3
γE

) + 2 ln(λE)
)2GT GX

∂λE

∂X
= −

Γ(1/γE)γEλE
(1+2/γE)

NΓ(3/γE)
GT GX

(11)

N is the dimension of X .

We solve Eq 10 by iteratively approximating it with a lin-

ear equation [13, 19]. We use a minimum residual method

[18] to solve the linearized system in Eq 10. The full deriva-

tion is available in the supplemental material.
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