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Abstract

One of the long-standing challenges in photography is mdtlar. Blur artifacts are gen-
erated from relative motion between a camera and a scenegdexposure. While blur can
be reduced by using a shorter exposure, this comes at anidablotrade-off with increased
noise. Therefore, it is desirable to remove blur computatiy.

To remove blur, we need to (i) estimate how the image is biure. the blur kernel or
the point-spread function) and (ii) restore a natural lagkimage through deconvolution. Blur
kernel estimation is challenging because the algorithnd® & distinguish the correct image—
blur pair from incorrect ones that can also adequately @éxphe blurred image. Deconvolution
is also difficult because the algorithm needs to restore fné@gfuency image contents attenuated
by blur. In this dissertation, we address a few aspects sktbhallenges.

We introduce an insight that a blur kernel can be estimateahlayyzing edges in a blurred
photograph. Edge profiles in a blurred image encode projestf the blur kernel, from which
we can recover the blur using the inverse Radon transfornis mkthod is computationally
attractive and is well suited to images with many edges. rBtledge profiles can also serve
as additional cues for existing kernel estimation algamgh We introduce a method to inte-
grate this information into a maximum-a-posteriori kerastimation framework, and show its
benefits.

Deconvolution algorithms restore information attenudigdlur using an image prior that
exploits a heavy-tailed gradient profile of natural imag&'s.show, however, that such a sparse
prior does not accurately model textures, thereby deggaidixture renditions in restored im-
ages. To address this issue, we introduce a content-awaggeiprior that adapts its charac-
teristics to local textures. The adapted image prior imgsahe quality of textures in restored
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images. Sometimes even the content-aware image prior mansbiicient for restoring rich
textures. This issue can be addressed by matching theadstoage’s gradient distribution
to its original image’s gradient distribution, which is iesated directly from the blurred im-
age. This new image deconvolution technique called iteradistribution reweighting (IDR)
improves the visual realism of reconstructed images.

Subject motion can also cause blur. Removing subject mbtiaris especially challenging
because the blur is often spatially variant. In this disgem, we address a restricted class
of subject motion blur: the subject moves at a constant iutgldocally. We design a new
computational camera that improves the local motion esiimand, at the same time, reduces
the image information loss due to blur.

Thesis Supervisor: William T. Freeman
Title: Professor of Electrical Engineering and ComputdeSce
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Chapter 1

Introduction

OTION blur is one of the salient sources of degradation in photggga Although
M motion blur can sometimes be desirable for artistic purpogeften severely limits
the image quality. Blur artifacts result from relative nootibetween a camera and a scene
during exposure. While blur can be reduced using a fasteteshgpeed, this comes with an
unavoidable trade-off with increased noise.

One source of a motion blur is camera shake. When a camerasrdavieg exposure, it
blurs the captured image according to its trajectory. Werndigate the camera shake blur by
using a mechanical image stabilization hardwa@.[ However, when a camera takes a long
exposure shot of a dark scene and/or when a camera usesl@teléggns, the camera shake
can be too large for assistive devices to accommodate. Ansthurce of blur is a movement
of objects in the scene, and this type of blur is harder tocavbherefore, it is often desirable
to remove blur computationally.

Motion blur removal, often called motion deblurring or lideconvolution, is challenging
in two aspects. The first challenge is estimating blur kernal point-spread functions (PSF),
from blurred images. Because many blur—-image pairs caraiexfiie observed blurry image,
blur kernel estimation is a difficult problem. Blur estinmatican be especially difficult if the
blur is spatially variant, for instance due to a dynamic scena camera rotation. The second
challenge is removing the blur to recover a blur-free imadetion blur averages neighboring
pixels and attenuates high frequency information of th@esce&Consequently, the problem of
recovering a blur-free image is ill-posed, and it needs taduressed by deblurring systems or
algorithms.

This thesis explores both hardware and software solutiomsitiress a few of these chal-
lenges. We introduce (i) a spatially-invariant blur keresfimation method using blurred edge
profiles, (ii) an adaptive image prior for improving the réimh of textures in restored images,
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(i) an image deconvolution technique that matches gradiestributions to improve visual re-
alism of textures, and (iv) a new computational camera that-optimally captures the image
information of moving objects.

B 1.1 Overview of techniques and contributions

This section provides a preview of techniques and contabat

B 1.1.1 Chapter 2: Blur kernel estimation from blurred edge profiles

We present a method to recover a spatially invariant blunrédédrom a single blurry photograph.
The key idea is that blur kernel projections can be estimiayehalyzing blurred edge profiles.
These projections are also known as Redon TransformBlur kernel projections are useful
because we can apply the inverse Radon transform to resterblar kernel. This method
is computationally attractive because we do not need tonasti the latent image in order to
iteratively refine the kernel and because most of the contipatés performed at the scale of
the blur kernel. Although this technique applies only to g@as with a sufficient number of
straight edges in many orientations, these encompass & satgof images including many
man-made scenes. Kernel projections can also providei@ullittcues to improve the kernel
estimation performance of existing algorithms. We proogay to integrate kernel projection
information in a MAP based kernel estimation framework.

B 1.1.2 Chapter 3: A content-aware image prior for image restoration

Even if we could accurately estimate the blur kernel, résgoa blur-free image from a blurry
photograph is still challenging because we lose high freguénformation during the obser-
vation process. To “fill-in” the missing information, we eft exploit prior knowledge about
natural images. One of the most popular image priors is ayhedled gradient distribution
of natural images. A MAP estimator, when used with a heailgeaor sparse, gradient prior,
reconstructs images with piecewise smooth charactevistii¢hile a sparse gradient prior re-
moves ringing and noise artifacts, it also removes midtfeeqy textures, degrading visual
quality. We can attribute such degradations to imposingnaarrect image prior. As is seen
in Fig. 1.1, the gradient profile in fractal-like textures, such asdrégclose to a Gaussian dis-
tribution, therefore a sparse gradient prior would peeasimall gradients from such regions,
over-smoothing textures.
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Figure 1.1: The gradient profile of natural images is often used as an ér@gpr in image
restoration tasks. Oftentimes, we use a single heavydtgjiadient profile as an image prior
for the entire image. However, this figure shows that gradpofiles differ significantly in
response to underlying textures. This observation suggést we should adapt the image
prior to the image content. This so called a content-awaragenprior improves the visual
realism of restored images.

To address this issue, we introduce an image priordlaptsto local texture. We adapt
the prior to both low-level local structures as well as neddl textural characteristics. We
demonstrate improvements on deblurring and denoisingtask
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Figure 1.2: The gradient distribution of images restored using a MAhestor can differ from
that of the original images, and this manifests itself as atmed textures. In Chaptet, we
present an alternative deconvolution method that matcheseconstructed image’s gradient
distribution to its reference distribution (i.e. the gradit distribution of the original image) to
restore visually pleasing textures.

B 1.1.3 Chapter 4: Image restoration by matching gradient distributions

Even with a content-aware image prior, a MAP estimator da¢shvays reliably reconstruct
rich textures. We present an alternative image restoratiethod calledterative distribution
reweighting (IDR}o improve the rendition of rich textures. IDR imposes a glatonstraint on
image gradients: the restored image should have a gradgtribdtion close to a reference dis-
tribution. As is explored in Chapté&; a reference distribution not only varies from one image
to another, but also within an image depending on texturerdfbre, we estimate a reference
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Sensor

Static camera image Orthogonal parabolic camera:input Orthogonal parabolic camera: deblurred output

Figure 1.3: In Chapter5, we address spatially variant motion blurs induced by scibpao-
tions. We address two challenges associated with motiarrétnoval, namely the blur kernel
estimation and the reduction of information loss, by dgvelgp a new computational camera
that takes two consecutive images of a moving sdegfeé. An image captured by a static cam-
era. Middle: Our solution takes two consecutive images of a scene usigadplic camera
moving in two orthogonal direction®Right: The restored image.

distribution directly from the blurry image for each texdétsegment. We show through experi-
ments and user studies that IDR is able to restore rich reiglifency textures that are visually
more appealing than MAP estimates.

B 1.1.4 Chapter 5: Orthogonal parabolic exposures for motion deblurring

In this chapter, we address spatially variant blur inducgchbving objects. Removing subject
motion blur is challenging because one hadtally estimate the motion. Even if the motion
is successfully identified, blur inversion can still be @& because the blur kernel attenuates
high frequency image content.

We present a computational camera to address these cleleéig assume that the object
is moving at constant velocities in arbitrary 2D directigregallel to the imaging plane. This
assumption is often satisfied when the exposure time iswelatshort. Our solution captures
two images of the scene with a parabolic camera motion in tivmgonal directions. We show
that this strategy near-optimally preserves the imageetrf moving objects, which allows
for a stable blur inversion. Taking two images of a sceneladjos us estimate spatially varying
object motions. We present a prototype camera and demtstrecessful motion deblurring
on real world motions.
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M 1.2 Other work not included in the thesis

During the PhD studies, | also had a chance to contributestiglines other than deblurring. In
collaboration with Dr. Hensin Tsao and Prof. William Freembdeveloped an automatic skin
mole localization methodlg] that can be used as a front-end system for automatic melanom
detection. With Prof. Shai Avidan and Prof. William Freemameveloped a new image
editing framework called “The Patch Transforml'719]. We extended this framework to
solving image jigsaw puzzles consisting of square piet8ks [

H 1.3 Notes

Parts of the work presented in this thesis appeared prdyiati2010 IEEE International Con-
ference on Computational Photography (ICCPJ)] fand 2010 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR].

This work was supported in part by Samsung Scholarship Fdiord by NGA NEGI-
1582-04-0004, by ONR-MURI Grant N00014-06-1-0734, by @ifim Microsoft, Google,
Adobe and Quanta.



Chapter 2

Blur kernel estimation from blurred

edge profiles

H 2.1 Introduction

ANY challenges in deblurring stem from the severely undericained nature of the
M problem: many image-blur pairs can explain the blurred enalylost image—blur
pairs, however, are implausible because the corresporigiages contain ringing and noise;
kernels are not continuous. Therefore, existing deblgrtechniques distinguish the correct
solution pair from incorrect ones by exploiting prior kn@dfie about natural images and blur
kernels. Although using prior knowledge is effective, ibféen not strong enough to reliably
distinguish the correct solution from others. In this cleaptve present two blur estimation
algorithms that exploit additional cues from blurred edges

Our algorithms estimate a blur kernel by analyzing blurréges. Intuitively, edges along
different orientations are affected differently by bluretefore we can consider different edge
profiles as “signatures” of the blur kernel. We formalizesthituition and show how to use
blurred edges to recover tiikadon transfornof the blur kernel, that is, a set of projections of
the blur kernel in different orientations.

To recover the blur kernel, we can explicitly invert the Radi@nsform of the blur kernel.
This method is advantageous because (i) we do not decortt@valurred image to refine the
estimated kernel and that (ii) we perform a bulk of the corapoh at the size of the kernel,
which is often considerably smaller than the image. The Baityp of this algorithm comes
at a price of restricted set of applicable images. This dlyoris well-suited for scenes with
numerous edges such as man-made environments.

Even if a blurred image does not contain many edges in diffeygentations, however, we

29
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can still exploit kernel projections. As a second contiiiimut We introduce an algorithm that
integrates Radon transform constraints in a maximum-gpos kernel estimation framework
to improve the kernel estimation performance. This altieraanethod is computationally more
expensive, but it is more stable for a variety of natural iesag

Contributions We can summarize the contributions of this chapter as fallow

e We demonstrate that the blur kernel can be estimated fromelol@dge profiles using the
inverse Radon transform.

e We describe a method to detect stable edges for use in kestimala¢ion.

e We introduce an algorithm that integrates blur kernel mtige constraints in a maximum-
a-posteriori estimation framework to jointly estimate bher kernel and the sharp image.

M 2.1.1 Related work

In this work, we consider spatially invariant blur. Spadyiahvariant blur arises when the scene
is static and the camera undergoes a small out-of-plangaiar a translation (for a constant-
depth scene.) A spatially invariant blur model is popularhese one can exploit a simple global
convolution model to describe an image formation procesgenkvith the spatially invariant
blur assumption, however, estimating the correct blur feosingle image is a challenging task
due to inherent ambiguities: the observed blurry input ienagn be interpreted as a blurry
image of a sharp scene or a sharp image of a blurry scene. iigyaity can be address
by taking multiple photos, each of which contains differbhir [9, 13, 15,52, 64,90]. Taking
images with modified camera§,[79] can also improve the kernel estimation performance.
Oftentimes, however, we are provided only with a singledylimage from a conventional
camera, therefore a single-image blur kernel estimatioblpm received a lot of attention. To
resolve the inherent ambiguity, different assumptions lon kernels and natural images have
been incorporated. Fergesal.[31] exploit the knowledge that a histogram of gradients from
natural images exhibits a heavy-tailed profile and that @mgiam of intensities in blur kernels
is sparse. They use a variational inference technique t@fitsnate a blur kernel, which is then
used to restore a blur-free image using the Richardson-decgnvolution algorithmd4, 65].
Shanet al.[74] introduce a local prior, in addition to a sparse gradiemnpof natural images,
to detect and smooth surfaces. @aial. [10] assume that a blur kernel should be sparse in
the Curvelet domain and an image should be sparse in the tagdioenain. These techniques
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solve a large system of equations to find the sharp image matid/dlur kernel that satisfy the
observation model while conforming to prior knowledge atidur and natural images.
Several prior work explicitly leverage blurred edges taneate blur, as in our method.
Jia [41] estimates an alpha matte from user-selected edges, asdguéntly estimates the
blur kernel from the matte by minimizing a non-linear costdtion consisting of an image
observation term as well as an image prior. Jashal. [42] predict sharp edges directly from
a blurry photo and estimate the blur kerig@&lenthe location of predicted sharp edges. Their
edge prediction scheme assumes that the blur kernel is ad&nChoet al. [14] extend Joshi
et al. [42] in a multi-scale manner to estimate more general blur kemnwéh multiple modes.
Choet al.[14] reduce the computation by deblurring only edges in theigradlomain: their
GPU implementation runs in near real-time. Lewnal. [50] compare the performance of
several single-image blind deconvolution algorithms, angpirically show that the algorithm
introduced by Ferguet al.[31] is the state-of-the-art in single-image blur kernel estion L.

B 2.2 Kernel estimation from edges

We model the image formation as a convolution of a blur kekreetd a sharp latent image
B=k®l+n (2.1)

whereB is an observed, blurry image ands input noise. Our goal is to reconstruct a sharp,
natural-looking latent imagefrom the observed imaga.

B 2.2.1 The Radon transform and blurred line profiles

We briefly review the Radon transform for two-dimensiongnsils and illustrate how it is
related to blur. For an in-depth review of the Radon tramsfave refer the readers t@%, 81].
The Radon transform of a signé{x,y) is an integral of the signal along a straight line:

a(p)= | | 1(x)5(p—xcos6) ~ysin(6))dxdy (2.2)

where8 is the orientation of the straight line that we integrateraed p is the offset of that
line from the origin of thex —y coordinate (See Fig.1). (pef can be viewed as a projection
of the signalf along the direction orthogonal to orientatién If we take enough projections

1l evin et al.[50] do not consider Chet al.[14].
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AN
o(p)

Figure 2.1: The Radon transfompg (p) of asignal f (i.e. the star) is an integral of the signal
along the linep = xcog ) + ysin(0) (i.e the dotted line).

of the signalf in all possible orientations, asymptotically we can recate original signalf
using the inverse Radon transforgi].

We can relate the Radon transform to our imaging model ir?Elg.The imaging model in
Eqg.2.1can be expressed in the continuous domain:

8oy = [ [ KOl (o~ py ~y)edxdy 2.3)

If the latent image is an ideal straight line along orieta®, we can parameterize the latent
imagel asd (xcog0) +ysin(8)), wherep = , / pZ + pZ. Therefore,

BL(py) = [ [ Kixy)3(p—xcos(6) —ysin(9)) dxcly

= ¢(p)

(2.4)

In words, every orthogonal slice of a blurred line, takemglthe orientatior®, is a projection
of the blur kernelcpg(p). Fig. 2.2 shows graphically theB, (px, py), evaluated at a fixed point
[Ox, py], is @ sum of intersections between the blur kernel and tiee Bn(py, py) is a projection
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Figure 2.2: The value of the convolved image at the green dot is a sumessattions of the
blur kernel (the black line) and the line (the red line). Thattdd green circles indicate the
intersections.

of the blur kernel.

To illustrate this concept numerically, we blur lines infeient orientations and compare
orthogonal slices of blurred lines to explicit projectiarfghe blur kernel in those orientations.
Fig. 2.3 shows the results. As expected, the orthogonal line pradiles/ery close to explicit
kernel projections.

This relationship between the Radon transform and bluireddrofiles implies that if we
can detect lines from the blurry photograph, we can estirnlatekernel projections and use
them for kernel estimation. However, detecting lines tdjifrom a blurred image is a chal-
lenging problem, especially when the blur is multi-modalrtRermore, many lines in images
are not ideal: each line has a finite width, therefore blulireg profiles are no longer perfect
projections of the blur kernél

Fortunately, we can use blurred edges. An ideal binary stgp with orientatiorf can be
modeled as an integral of a line aloflg

e(p) — /ic‘i(r — xcog(8) —ysin(6)) dt (2.5)

2We can show that a slice of a blurred line of a finite width is @jgrtion of the kernel convolved with a box
filter of that width.
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Blurred line - 0 degree Blurred line - 45 degrees  Blurred line - 135 degrees

Slice of blurry line Projection of blur kernel

Figure 2.3: We show experimentally that a slice (shown dotted-red)ogdhal to a blurred
line is the same as an explicit projection of the blur kerrehg the line.

Therefore, a blurred edge profile can be modeled as follows:

BE(px,py)
Z/jo /jo k(x,y)/p 3 (1 —xcog @) —ysin(8)) drdxdy

= /i {/Z /:) K(x,y)0 (T —xcog0) —ysin(8)) dxdy} dr
= [* (e

(2.6)

In other words, an orthogonal slice of a blurred edge is asgiail of a blurred line profile.
Therefore, blurred line profiles can be recovered by difféating blurred edge profiles.

Extracting edge profiles from color images To extract blur kernel projections from a color
image, we assume a color-line image modsd|] a local region in a natural image has two
dominant colors. Two dominant colors for a given pixel argnegted by averaging pixels at

two ends of the slice. Given the two dominant coMfsZ, we can represent each pixel on the
orthogonal slice; as a linear combination &¥,Z:
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. e Vi
color estimation “:\

Figure 2.4: To find two dominant colors on either side of an edge, we aeethg pixels
separated from the edge By4 the assumed size of the blur kernel.

C = C{iW—I-(l—C{i)Z (2.7)
We usea’s as the blurred binary edge slice.

B 2.2.2 Recovering the blur kernel from its projections

Recovering a two-dimensional signal from its one-dimemaigrojections, also known as the
inverse Radon transform, has been studied extensivelyeirature 25, 81]. In this work, we
view the inverse Radon transform as maximizing the post@riobability of the blur kernek
given the observed imad® From the Bayes' rule,

p(k|B) O p(BIk) p(k) (2.8)

We model the likelihood ternp(BJ|k) from the constraint that explicit projections of the blur
kernelk should match its projectiong, estimatedrom blurred edge slices:

N
P(Blk) = |] P (k)

N B 2
mexp<_z._1||<pze.nz Rak| )
p

(2.9)
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wherei indexes edge samplds,is the total number of edge sampl®&g, is a projection operator
alongit" sample’s dominant orientatiof, andng is the variance of observation noise. We set
the noise variancqg as(2+ a)n? wheren? is the variance of the imaging noise. The factor
of 2 results from differentiating edge slices (see E&) anda models orientation estimation
error, which increases with the image noise level. The d#lgoris robust to the value af; we
seta = 1 through cross validation.

A large number of edge samples (i.8.in Eq. 2.9) would reduce the speed of our algo-
rithm. We observe, however, that having many edge sampkmitar orientations is beneficial
mostly in terms of reducing noise of the projection along traentation. In light of this obser-
vation, we average out the noise “off-line” in order to aecate the kernel reconstruction. In
particular, we approximatg )" ||@s — Rgk||? as a sum over binned angles:

N 360
Zi\lfpe.—Re.kHz% > Wil —Re;k|[? (2.10)
i= =1

wherej indexes angles in steps dT,ﬁJej is the average of kernel projections that have the same
binned orientatiorf;, andw; is the number of samples that have the same binned oriemtatio
;. This approximation allows us to efficiently recover therigreven for images with many
edge samples.

In addition to kernel projection constraints, we incorpgerthe knowledge that intensity
profiles of blur kernels, as well as gradient profiles of blerrels, are sparse:

p(k) O exp{— (Aa[[K||"* + Az||CK|[*) } (2.11)

We use the same parameters for all experiments, determtimedgh cross-validationi; =
15y =09A,=0.1,o=0.5.
Given this model, we can recover the blur kernel by miningine negative log-posterior:

5 | 3729w || @, — ReyK|>
k= argkmln{ 2r7]2 !
p

We use an iterative reweighted least squares med)d@§] to minimize the energy in EQ.12

+)\1||k\lyl+)\zHDkH”} (2.12)

Aligning blur kernel projections In order to reconstruct an accurate blur kernel, blur kernel
projections should be aligned: the center of projection ragragl kernel projections should be
the same. If the centers of projections are not alignedjldetiihe blur kernel can get smeared
out.
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@ : Center of mass

Figure 2.5: The center of gravity within an object’s projection is eqlent to the projection
of the object’s center of gravity.

To align blur kernel projections, we exploit the fact thag ttenter of mass in a signal’s
projection is equivalent to the projection of the signaknter of mass, as shown in Fig.5.
We shift the projections such that the center of mass in eagjhgtion is in the middle.

Synthetic experiments \We analyze the performance of our kernel estimation algoritsing

a synthetically blurred test pattern. We generated a tdtdrpavith ideal lines and ideal step
edges in 12 orientations, shown in F&y6. We blur this test pattern using a blur kernel shown
in Fig. 2.6, and add 0.5% Gaussian noise to the blurred pattern.

In Fig. 2.6(a-c), we take 120 slices of blurred lines (at edge samphldisated with green
dots) and recover a blur kernel from those slices using ttiifeerent inverse Radon transform
algorithms. We consider a back projection algorithm in Rig(a), a filtered back projection
algorithm in Fig.2.6(b), and our algorithm in Fig2.6(c). We add different amount of Gaus-
sian noise to the ground-truth orientation of each slicetress-test algorithms to orientation
estimation error. We observe that our algorithm faithfuldyzconstructs the blur kernel at all
orientation noise level, whereas other algorithms recaoskernels that are too “blurred” or
that have streaks even at a low orientation noise level. Jlinsvs that a sparse prior on blur
kernels improves the kernel reconstruction performance.

As a second experiment, shown in FRJ§(d), we take 120 slices of blurregdgesand
recover the blur kernel from the derivatives of blurred edgefiles. Again, we add different
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Legend

Original
blur kernel 6,=0

6,=5 6,= 10 6,=20

(a) Kernel estimation from lines using
back projection - 120 slices, 12 orientations

(c) Kernel estimation from lines
using a sparse prior

(e) Kernel estimation from edges
- 60 slices, 12 orientations

(b) Kernel estimation from lines using
filtered back projection

(d) Kernel estimation from edges
- 120 slices, 12 orientations

-

(f) Kernel estimation from edges
- 60 slices, 6 orientations

Figure 2.6: We estimate a blur kernel from a synthetically blurred testgrn. We blur the
test pattern using the blur kernel shown on the top left. ht)@wve compare three different
inverse Radon transform algorithms: (a) the back projettagorithm (b) the filtered back
projection algorithm (c) our algorithm in E®.12 We estimate the blur kernel from 120 slices
of lines in 12 orientations. Green dots correspond to pixalsvhich we take the slices. We
add different amount of orientation noise, of standard deéen o, (in terms of degrees), to
the ground-truth orientation, and show reconstructed Karnels in each case. We observe
that our algorithm faithfully reconstructs the kernel assoall orientation noise levels, whereas
other algorithms reconstruct kernels that are too “blurfear that have streaks. We test the
stability of our kernel reconstruction algorithm by vargithe number of edge slices and the
number of orientations. (d) 120 slices of edges in 12 origoa () 60 slices of edges in 12
orientations (f) 60 slices of edges in 6 orientations. Weeoles that it is important to sample
enough edges in many orientations.
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amount of Gaussian noise to the ground-truth orientatidre Kernel estimation performance
deteriorates slightly since differentiation of edge pesfidoubles the observation noise vari-
ance. However, recovered kernels are close to the groutidternel across all orientation
noise levels. In Fig2.6(e), we reduce theaumberof edge slices for kernel estimation while
sampling edges in all 12 orientations. Reducing the numbsliaes by a factor of 2 increases
the noise variance by a factor ¢f2, but even in this case the estimated kernels are still quite
accurate. When we reduce the number of orientations by arfattwo while using 60 slices
(Fig. 2.6(f)), however, our algorithm is less stable. This experitrafrows that, if possible, we
should take many edge samples in many orientations.

B 2.2.3 Detecting reliable edges from a blurry image

For an accurate kernel reconstruction, we need to find stablated step edges. We introduce
an image analysis technigue that selects stable edges flanrg image. As a first step, we
run an edge detector to find an edge rapf candidate edge samples.

Our goal is to sieve isolated step edges that satisfy fouredbsharacteristics. First, se-
lected pixels should correspond to a step edge with enougtiash on either side, which en-
sures that the signal to noise ratio of the blurred profileigdrh We enforce this constraint
by discarding edge samples with a small color differencevéen two locally dominant colors
(Sec.2.2.1). In RGB space, ifiW — Z|| < 0.03, we discard that edge sample. Second, the
blurred edge profile should not be contaminated by adjackggs To ensure that two adjacent
step edges are sufficiently separated, we take an orthoglice$: of the edge maj at each
edge candidate, and we discard edge samples Wgh> 1. Third, a local neighborhood of
an edge candidate should conform to a color-line image mddedther words, blurred edge
profiles (i.e. a’s from Eq.2.7) should lie between 0 and 1. An edge sample with a slice that
lies outside of O- € and 1+ &, wheree = 0.03, is discarded. Lastly, the edge should be locally
straight. The “straightness” is measured as the norm of\ikeage orientation phasor in the
complex domain. At each edge candidgtere compute the following measure:

|3 jena) exp(—i26;)|
Yieniy 1l

wherei = /—1, andN(l) indicates edge candidates in the neighborhood of pixéthis norm

(2.13)

is close to 1, then the edge is locally straight in the neighbdad of pixell. We discard edge
samples with the norm less than 0.97.
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Our edge selection algorithm depends on the blur kerne| siaeeh is estimated by users.
If the estimated blur kernel size is too large, the secondthind step of our edge selection
algorithm would reject many edges since (i) more slices ef@éldge magE would contain
more than one edge (ii) the size of the neighborhood in witieltoblor-line model should hold
increases. Therefore, users should ensure that the estirnlair size is just enough to contain
the blur.

W 2.2.4 Comparison to Joshi et al.
Joshiet al.[42] minimize the following energy function to estimate thebkernel:

; IMB—ka )]

_ i 2
k=arg min 207 + A OK]| (2.19)

whereB is an input blurry photograplk is a blur kernel] is an image with predicted location
of sharp edges, and is a function to mask predicted edges and their neighborhtd¢el can
distinguish our algorithm from Josht al.[42] on two fronts: (i) using only perpendicular slices
of blurred edges and (ii) using centroid constraints torelijrred edges to enable multi-modal
blur kernel estimation.

The likelihood termZiEE”(‘;";Iife'k”2 in our algorithm (Eg2.12 ensures that when we explic-
itly compute the projections of the restored blur kernel,raeover projections similar to those
estimated from the blurred imadge We could rewrite this likelihood term as follows:

ZeE”(pZﬂr’z Ra K|l :ieisel <(M(B) 2rl\’/|2(k®|)) > (2.15)

whereS is a “slicing” operator that returns a slice of the argumedon@ the perpendicular
orientation of the edgé From this, we observe that our algorithm essentially redube
dimensionality of the data. Josht al. [42] in effect establish slicing constraints in virtually
all possible orientations using the observation congtrBin k® I. Instead of using slicing
constraints from virtually all possible orientations, wsewnly the relevant information (i.e.
perpendicular slices) for blur estimation, which improtles computational efficiency. This
computational efficiency comes at a price of using just ghtaedges, as opposed to using
curved edges. Because Jostial. use an observation constraint, they can use curved step
edges in addition to straight edges.

Despite this inherent drawback, using only the perpendicsiices actually has an added
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benefit that it can handle multi-modal blur kernels, as opdds only uni-modal kernels as in
Joshiet al.[42]. Joshiet al. predict the location of the sharp edge by propagating thedftabn
into the blurred edge. If the predicted location of the shedge is inaccurate, it will cause
error in the latent image estimation (il§, which would lead to a blur kernel estimation error.
This problem is more pronounced when the algorithm considarlti-modal blur because the
sharp edge prediction becomes more challenging. The ertthiei sharp edge location in the
context of @2] is equivalent to the misalignment of blur kernel projensan the context of
our work. We address this issue by aligning blur kernel mtigpas through aligning center of
mass, which can address multi-modal blur kernels as well.

Choet al. [14] extend the idea from Joskt al. [42] in a multi-scale manner to deal with
complex kernels. Therefore, quantitative comparisons/éeth Choet al. [14] and our work,
presented in the experimental section, would also holddorgarisons between Joghial.[42]
and our work.

H 2.2.5 Experimental results

This section provides experimental results that illustridite performance of our deblurring
algorithm. We compare our algorithm’s performance to tloempeting methods: Ferges
al. [31], Shanet al.[74], and Choet al. [14]. In order to compare just the kernel estimation
performance, we used the same deconvolution algorig8htd restore images.

Fig. 2.7 shows deblurred images. In most test images, our algorithriogns favorably
compared to prior art. As long as we can find enough stableseidgmany orientations, our
algorithm can reliably estimate the kernel. R2g8 shows more comparisons.

Our algorithm sometimes recovers blur kernels with spuritislands” when the edge
selection algorithm erroneously includes unstable edgeghech edge slices intersect other
neighboring edges. A better edge selection algorithm shaduce such error.

Our algorithm can also be unstable when there are not enalggseas shown in Fig.9a),
and/or when there are not enough edges in different orientatas shown in Fi®2.9b). When
there are not enough edges, there simply isn’t much infoomab estimate the kernel with;
when there are only few dominant orientations in selectegegdwe can only constrain the
blur in those orientations and cannot recover meaningiui kérnel in other orientations. In
some cases, this is less problematic. An interesting agpestimating the blur kernel explic-
itly from blurred edge profiles is that the estimated blumieticontains enough information to
properly deblur edges in those orientations, even if the kdunel is not entirely correct. For
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Ours

Blurry image Fergus et al. Shan et al. Choetal. Radon Transform

Figure 2.7: This figure compares our algorithm’s kernel estimation perfance to three pre-
vious work: Fergus et al.31], Shan et al. [f4], and Cho et al. L4]. In most examples, our
algorithm compares favorably to prior art.

instance, if an image is a single step edge, as inZif) we do not need to recover the original
blur kernel to adequately remove the blur. We can remove lilmeftom the stripes as long as
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Ours
- Radon Transform

Blurry image Fergus et al. Shan et al. Cho et al.

Figure 2.8: This figure shows more comparisons of our kernel estimatigorighm and prior
art: Fergus et al. B1], Shan et al. 4], and Cho et al. [L4].

we recover the horizontal component of the blur kernel, aiglis what our algorithm does.
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Selected

edge samples Ours

Blurry image

(b)

-

Figure 2.9: Our kernel estimation algorithm is sensitive (a) when theee not enough edges
and/or (b) when there are not enough edges in different tai@ns. This figure illustrates
these failure modes.

Kernel projection constraints in EQ.-9 assume that the imadgis a “linear” image. In
other words, the blurred imadge is not processed by any non-linear operators such as non-
linear tone maps. We observe experimentally that our dlgaris vulnerable to non-linearities
in B, therefore it is important to properly linearize the inpotaigeB. In this work, we used
only raw images as our test set in order to factor out arsf&cm non-linearities. We observe
that while competing algorithms are less susceptible telim@arities, using raw images also
improves their performance.

Chromatic aberration from a camera lens may also affectekerstimation performance.
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(d)

Figure 2.10: (a) A blurred stripe (b) The deblurred stripe using the kémstimated from our
algorithm (c) Estimated blur kernel (d) The ground-truthuibkernel. Our kernel estimation
algorithm only recovers the “horizontal” component of theognd-truth blur kernel, but the
deblurred image is still crisp and is free of ringing.

When chromatic aberration is significant, our edge seleaigorithm will discard most edge
samples because an edge slice would not be explain by twandotolors (Se@.2.1).

B 2.3 The RadonMAP algorithm

As discussed in the previous section, our kernel estimatigorithm is less stable when there
are not enough edges in many orientations. To handle imagesio not have enough iso-
lated edges, we develop a method that incorporates kemjelction constraints within a MAP
estimation framework.

In a MAP framework, we maximize the posterior probabilitythwiespect to the bluk and
the imagd jointly [14, 74]:

[k, 1] = argmaxp(k, 1 |B)
K

(2.16)
= ar%rlnam(Blk,l)p(k) p(l)
[R ﬂ is called a maximum-a-posteriori (MAP) of the joint distriton p(k,1|B). One often
models the likelihood termp(BJk, ) using the image observation model (2qL):
IB—k®1]?
p(Blk,1) O exp(—Tg (2.17)

The image priomp(l) favors a piecewise-smooth latent image:
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p() Dexp(=A[[0H]Y) (2.18)

The kernel priorp(k) favors kernels with sparse intensity profiles as well asssparadient
profiles (Eq.2.11). We often resort to an alternating maximization algorittonsolve Eq2.16
we first maximize the joint distributiop(k, | |B) with respect to the blur kern&lwhile keeping
the image fixed, and then we maximizp(k, | |B) with respect td while holdingk fixed. We
iterate these two steps until convergence.

Despite the simplicity, Levitet al.[50] argue that the joint estimation of the kernel and the
sharp image is not a good idea because the joint probabtjt BE6is often maximized when
kis an impulse function antis the input blurry imagé.

To resolve this issue, we augment the likelihood term in E&7 using the blur kernel
projection constraints in EQ.1Q

p(Blk,1) O
exp<_ { B—kel|2 | £3%4willd —ReKI? }) (2.19)

2nz 2n3

The Radon transform term relies on a strong assumption ttatrai images consist of step
edges and that every detected edge should be an ideal step kdgsentially penalizes the
no-blur solution, and steers the joint distributiptk, ||B) to favor the correct solution. Algo-
rithm 1 shows the pseudocode for the joint estimation algorithm.n@éfee this algorithm the
RadonMAP.

Notice that we filter the latent image estimétesing a bilateral filter before re-estimating
the kernel, as in Chet al.[14]. The bilateral filter step is important for improving therkel
estimation performancei. usually contains visually disturbing ringing and noise dese the
initial kernel estimate is inaccurate. If we directly us® refine the blur kernel, we would be
seeking a blur kernel that would reconstruct the visualspuibing imagé from B. To improve
the blur kernel, we bilateral-filter the latent image so ttat refined blur kernel restores an
image with less ringing and noise.

B 2.3.1 Experimental results

Fig. 2.11(a-b) show how the RadonMAP algorithm improves the failagas shown in Fi@.9.
The images deblurred using the RadonMAP are more crisp aralléss ringing compared to
those of our original kernel estimation algorithm. In gethethe RadonMAP cleans up spurious
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% Initial kernel estimation
k < argmin, Eq.2.12
for I=1to5do
[ < argmax p(k,1|B) % Latent image estimation
| < bilateralFiltering()
k < argmax, p(k,T|B) % Kernel re-estimation
end for
[ < argmax p(k,1|B)

Algorithm 1: The RadonMAP blur estimation algorithm

“islands” in estimated kernels and improves the quality elfldrred images. Fi®.12shows
more examples comparing the performance of competing deigualgorithms.

To double-check that the new posterior probability modeés deblurring problem better
than the conventional posterior probability, we compaeertegative log-posterior of our MAP
solution and the no-blur solution. The negative log-pastesf our solution in Fig2.11(a) is
2.29x 10%, whereas that of the no-blur solution is 7:930°: the Radon transform constraint
penalizes the no-blur solution effectively.

M 2.4 Quantitative evaluation

We compare the performance of blur estimation algorithmentjtatively using a cumulative
error ratio p0]. Error ratio (ER) measures the deconvolution error of gighe estimated blur
kernel compared to the deconvolution error of using the getnuth kernel. In particular, ER

is defined as follows: 2
I~ Des

Il = Dgt[|?
whereDeg is the image restored using the estimated blur kernel Cypés the image restored

ER= (2.20)

using the ground-truth blur kernel. Lev@ al.[50] provide a set of test images and blur kernels
for comparisons. However, the test images are gray-saadeghay are small (25% 255 pixels)
compared to the size of the blur kernels, which may bias timepeosison results. To address
this issue, we have selected 6 images (each with about 1 merds)wf different contents, and
computed ER for each blur kernel provided in Lewinal.’s dataset. Fig2.13shows the test
images and blur kernels: each algorithm is tested with 48dauimages. Images 1-3 contain
many edges in different orientations, whereas images 4+®ddr herefore, we can conjecture
that our algorithms would perform better on images 1-3 thammages 4-6.
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Ours - QOurs -
Radon Transform RadonMAP

Blurry image Fergus et al. Shan et al. Cho et al.

,Am,xﬁuxw,xwx
~ - I

Figure 2.11: By integrating kernel projection constraints to a MAP kdrestimation method,
we can improve the kernel estimation performance. We naimaltorithm RadonMAP. (a-b)
show that even when there are not enough edges in differ@mttations (as shown in Fi@..9),
the RadonMAP algorithm can reliably reconstruct the kernel

Fig. 2.14shows the cumulative error ratio for each deblurring athani The inverse Radon
transform of blur projections performs better than the aljms presented in Ferges al.[31]
and Sharet al.[74], but performs worse than the algorithm in Céioal. [14]. Augmenting the
blur kernel projection constraints in a MAP framework (thedenMAP algorithm) improves
the performance of our algorithm, but it still falls short@foet al.’s algorithm.

To gain more insight, we have plotted the cumulative errtyo far images 1-3 and images
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Ours - Ours -
Radon Transform RadonMAP

Blurry image Fergus et al. Shan et al. Cho et al.
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Figure 2.12: We show more examples in which the RadonMAP improves tmeagsti blur
kernels.

4-6 separately in Fig2.15 This figure shows an interesting trend that for piecewiseatm
images with enough edges in many orientations (i.e. imag8} the RadonMAP algorithm
outperforms all existing algorithms, but if images lack lswziges (i.e. images 4-6), Cho’s
algorithm performs the best. Still, even in such scenariosatgorithms compare favorably to
Ferguset al.’s and Sharet al.’s algorithms.

We also observed that the size of the blur affects the pedoom of our algorithm. There-
fore, we plotted the cumulative error ratio for blur kerne#dland 5-8 in Fig2.13separately
in Fig. 2.16 Blur kernels 5-8 have larger spatial supports comparetutdbrnels 1-4. Inter-
estingly, when the blur kernel support is small, the Radandform based algorithms perform
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Image 2

Image 4 Image 5
Kernel 1 Kernel 2 Kernel 3 Kernel 4

Kernel 5 Kernel 6 Kernel 7 Kernel 8

Figure 2.13: We evaluate the blur estimation performance of five diffebdmr estimation

algorithms. We synthetically blur each image with each leimel shown in this figure, and
estimate blur kernels from each of them using five competiggrithms. The algorithms’
performance is measured using the cumulative error ratio.
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Figure 2.14: This figure shows the cumulative error ratio for five blur egttion algorithms:
Fergus et al. B1], Shan et al. [f4], Cho et al. [14], the inverse Radon transform based blur
estimation in Se@.2.2(named Radon in the legend), and the RadonMAP. From the atiraul
error ratio, the algorithm in Cho et al. performs the bespsgly followed by the RadonMAP.

slightly better than Cho’s algorithm, but when the blur l@rsupport is large, our algorithms
suffer. This issue can be attributed to edge detectionhéyiumber of stable edges decreases
as the blur kernel support increases because more edgemtaieninated by otherwise isolated
neighboring edges (ii) the stable edge detection becomeschallenging because a single iso-
lated edge is often interpreted as two edges that starteatrmhof the blurred profile and stops
at the other end. We could reduce such blur size dependdnciestending our algorithms in

a multi-scale manner.

B 2.5 Conclusion

In this work, we introduce a new insight to the blur kerneliraation problem: blur kernel
projections can be estimated by analyzing blurred edgel@sofThis observation is especially
useful when images have many step edges in different ofiensa such as man-made scenes.
We presented two algorithms that exploit this observatibha direct inversion of the blur
kernel projections (ii) the RadonMAP. Experimental reswhow that our kernel estimation
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Figure 2.15: In this figure, we plot the cumulative error ratio for images3land images
4-6 separately. The inverse Radon transform of kernel gtiojes (named Radon) and the
RadonMAP both perform well when images contain many edgdiffénent orientations as in
images 1-3, but their performance drops drastically wheages do not contain enough edges

as in images 4-6.
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Figure 2.16: The performance of the inverse Radon transform of kerngégtions (named
Radon) and the RadonMAP depend on the size of the blur. Ifighi®, we plot the cumulative
error ratio for kernels 1-4 and kernels 5-8 in Figj.13separately. We observe that both Radon
and RadonMAP are state-of-the-art when blur kernels arellsimat their performance drops

drastically when blur kernels are large.

algorithm compares favorably to the state-of-the-art.



Chapter 3

A content-aware image prior for

image restoration

H 3.1 Introduction

VEN if we could perfectly estimate the blur kernel from a blurdyopograph, restoring
E a clean, sharp image is still a challenging problem becaligeatienuates information
about the original image. Image enhancement algorithnes eéisort to image priors to hallu-
cinate the lost information.

Natural images often consist of smooth regions with abrdges, and this characteristic
leads to a heavy-tailed gradient profile. In recent yearseavyrtailed gradient profile has
been extensively exploited as an image prior: the gradiatisics are represented by fitting a
flexible parametric distribution to gradient samples. geitparameters are often kept uniform
for the entire image, effectively imposing the same imagderpverywhere 31,48, 71]. Un-
fortunately, different textures have different gradieatistics even within an image, therefore
imposing a single image prior for the entire image is inapgede (Fig.3.1).

We introduce an algorithm that adapts the image prior to lmthlevel local structures as
well as mid-level texture cues, thereby imposing an adaptied for each texture! Adapting
the image prior to the image content improves the image nagio performance. In Se8.3
we analyze a large database of natural images and presem@ncal result that gradient
statistics in certain textures are not sparse. This observgustifies our argument that we
should adapt the image prior to underlying textures. We igeoalgorithmic details of the
content-aware image prior in S&4, and show image restoration results in S26.

1strictly speaking, an estimate of image statistics made aftamining the image is no longer a “prior” proba-
bility. But the fitted gradient distributions play the sanaéeras an image prior in image reconstruction equations,
and we keep that terminology.

53
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Figure 3.1: Colored histograms represent gradient statistics of ragiavith the same color
mask. In many images, the steered gradient profile is spatia@riant. Therefore, an image
prior should adapt to the image content. Insets illustrabsvisteered gradients adapt to local
structures.

M 3.2 Related work

Image prior research revolves around finding a good imagefwem or basis functions under
which a transformed natural image exhibits unique chariatites. Transforms derived from
signal processing have been exploited in the past, inauthie Fourier transform3{], the
Wavelet transform§3], the Curvelet transformll], and the Contourlet transforn26.

Basis functions learned from natural images have also bdesdiiced. Most techniques
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learn filters that lie in the null-space of the natural imagenifold [66, 86,87,91]. Aharon
et al. [4] learn a vocabulary that a natural image is composed of. Keweone of these
techniques adapt the basis functions to the image.

Edge-preserving smoothing operators do adapt to locattstes. Anisotropic diffusion
operators 8] detect edges, and smooth along edges but not across thenmilarsdea ap-
peared in a probabilistic framework called a Gaussian ¢mmdil random field §0]. A bilat-
eral filter [82] is also closely related to anisotropic operators. ERd &nd Barash¥] discuss
relationships between edge-preserving operators.

Some image models adapt to edge orientation as well as rmdgniHammondtt al. [38]
present a Gaussian scale mixture model that capturedistati§ gradients that are adaptively
steered in the dominant orientation within an image patathBt al. [67] extends this idea to
a random field to model oriented structures in images.

Adapting the image prior to textural characteristics wagstigated for gray-scale images
consisting of a single textureé/f]. Bishop et al. [7] present a variational image restoration
framework that breaks an image into square blocks and attapisnage prior to each block
independently (i.e. the image prior is fixed within the blpdiowever, Bishoget al.[7] do not
address the stability issues at texture boundaries.

B 3.3 Image characteristics

We analyze statistics of gradients adaptively steereddrdtminant orientation of local struc-
tures. Rothet al. [67] observe that the gradient profile of orthogonal gradidngs show a
higher variance compared to that of aligned gradiénfls thereby they propose imposing dif-
ferent priors orilgl and,l. We show that different textures within the same image a&s@h
distinct gradient profiles, therefore we propose adaptiegorior to local textures.

We parameterize gradient profiles using a generalized @audistribution:

V)\(y)
p(Hlv,A) = F(_l)exp(—)\HDI 1Y) (3.1)
y

wherel is a Gamma function, angb, A are shape parameters. Qualitativelydetermines
the peakiness andl determines the width of a distribution. We assume thgltand 0,1 are
independentp(Tol, Oal ) = p(Dol ) p(Tal ).
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H 3.3.1 The distribution of y,A in natural images

Different textures give rise to different gradient profilsd thus differeny,A. This section
investigates thalistribution of the shape parameteysA in image patches. About 110,000
image patches of 4% 41 pixels are sampled from 500 high quality natural imagesd, their
gradient profiles are fitted to a generalized Gaussian loligtoin to associate each patch with
v,A. We fit the distribution by minimizing the Kullback-LeibléKL) divergence between the
empirical gradient distribution and the model distribati@ We can show that this is equivalent
to minimizing the negative log-likelihood of the model distition evaluated over gradient
samples:

[7,5\] rgmln{——zlln (Ok;v,A)) } (3.2)

Claim 1. Supposeixi = 1..N are samples from an unknown distribution, and we wouldttike
fit a parametric distribution q to the samples ket ¢z (x) = & 51, 5(x—x) be an empirical
distribution of the samples xand let p be a generalized Gaussian distribution paranister
by shape parameterk, y. We show that a distribution p that best parameterizes thararal
distribution ¢ (in the KL divergence sense) minimizes the sum of negativikielihood over
samples x

N
minKL (el p) = ijﬂ{—%;ln(p(m:v,)\))} (3.3)

Proof. We can show that the KL divergence betwgenandq takes the following form:

KL(aelp) = [ ot (E ) ax

o)
_/N{Zléx X }In( bis 1()8( X')}>dx (3.4)
18 (n
N £ " (p(xl)>
Therefore, N
rp’iyKL(qellp) = T’iy{—%izlln(p(m;v,/\))} (3.5)
]

We use a Nelder-Mead optimization methdd][to solve Eq.3.2
Figure 3.2 shows the Parzen-window fit to samplfmn(}\) for Ool,O4l. For orthogonal
gradientsl,l, there exists a large cluster ngar 0.5,In(A) = 2. This cluster corresponds
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Figure 3.2: The distribution ofy,In(A) for Oyl , Oal in natural images. While the density is the
highest aroundy = 0.5, the density tails off slowly with significant density ardun= 2. We
show, as insets, some patches from Bid.that are representative of differeptin(A).

to smooth patches with abrupt edges or patches from textoweadaries. This observation
supports the fallen - leaves image model — an image is a eotdgverlapping instanceg,

55. However, we also observe a significant density even whengreater than 1. Samples
neary = 2 with largeA correspond to flat regions such as sky, and samplesynea? with
small A correspond to fractal-like textures such as tree leavegamsg We observe similar
characteristics for aligned gradierntgl as well. The distribution of shape parameters suggests
that a significant portion of natural images is not piecewiseoth, which justifies adapting the
image prior to the image content.

B 3.3.2 Spatially variant gradient statistics

Local gradient statistics can be different from global @gat statistics. Fig3.1 shows the
gradient statistics of colored regions. Two phenomena espansible for spatially variant
gradient statistics: the material and the viewing distafirce example, a building is noticeably
more piecewise smooth than a gravel path due to materiabpiep, whereas the same gravel
path can exhibit different gradient statistics dependinghe viewing distance.

To understand the implication of spatially variant gratligatistics, we consider using the
gradient profile of a specific region as an image prior for thire image in restoring a blurry
photo of Fig.3.1 Fig. 3.3 illustrates the experiment. When we use gradient stagigtmm
the sky to deblur the entire image, we recover the smoothlskypver-smooth other regions.
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Original image Using sky prior Using road prior

Blurred input Using tree prior Using building prior

Figure 3.3: We render a blurry photo of the sharp image in R3gl, and deblur it using priors
fitted to gradient statistics of different regions. We showpped patches of deblurred images
for comparison. The prior from the sky over-smoothes alkotiegions to generate smooth
sky; the prior from grass hallucinates high frequenciesriaisg at the expense of noise in other
regions. While the prior from buildings generates reasdeaenditions in all regions, the
reconstructed image is generally piecewise smooth, wisictisturbing in textured area such
as trees.

When we use the statistics from trees, we hallucinate higduiency texture in trees, but we fail
remove noise from other regions. While the prior from thdding does recover reasonable
renditions in all regions, the reconstructed image is pigse smooth and has visual artifacts
in textured area such as trees. This experiment impliedthktcally adapting the image prior

to underlying textures, we can restore an image that is \yspkeasing everywhere.

B 3.3.3 Scale dependence of gradient histograms

The scale invariance of natural images has been studiedsivety [68]. Two models embrace
the scale invariance: an occlusion model (a.k.a. a fatbends modeH6, 55]) and a pink-noise
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Figure 3.4: Different textures exhibit different gradient statistié®r some textures the shape
of the gradient histogram is roughly scale invariant. Thadjent statistics after deconvolution
also remain quite similar after down-sampling. First rovexture images. Second row: the
Fourier spectrum of a 1D slice through the center of the cgpnding sharp image. Third row:
the gradient histogram of the corresponding sharp imageirfforow: the gradient histogram
of the deconvolved image. The dotted black line corresptmtise gradient distribution of a
sharp image at the full resolution. Fifth row: the Fouriereggirum of a 1D slice through the
center of the corresponding deconvolved image.
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model, which stipulates that a Fourier spectrum of a natorage falls off as a function of/if .
Srivastaveet al. [77] experimentally show that the scale invariance holds oohah ensemble
of images and not necessarily within each image.

In this section, we analyze the scale invariance of gradiestbgrams withireachimage.
We assume that there are three dominant types of texturegunahscenes: a random natural
texture such as grass, a man-made scene, and a structured sexch as a brick wall (Fig.4).
We can view a random natural texture as an instance of a midenand we can consider
an image of man-made objects as an instance of an occlusageimodel. We analyze the
gradient profile of these textures as we vary the scale.

We first analyze the Fourier spectrum of a central row of thagen The Fourier spectra
(shown in the second row of Fig.4) of the grass and the chair scene (first two columns) fall off
inversely proportional to frequendy, whereas that of a brick wall image, which exhibit struc-
tured textures, show humps at high frequencies (in additiche harmonics) that correspond
to structural details. From the Fourier spectrum, we cafjecture that the gradient histogram
of structured textures may not be scale invariant since stwahtural details in high frequencies
will be lost through down-sampling.

The third row of Fig.3.4 shows the gradient histogram of each image across scaleetdhe
line corresponds to the histogram at full resolution; treegrline at one-half the full resolution;
the blue line at one-quarter the full resolution. We noticat the gradient profile is roughly
scale invariant for a random texture and a man-made scehéhdiuof structured textures is
not. As is conjectured earlier, we can attribute the scatenee of structured textures to the
loss of high frequency details from down-sampling.

To observe how deconvolution modifies gradient statistiesplur the images and decon-
volve them using a fixed image prioys(= 0.8,)5 = 0.6). The blur is about 5 pixels in width.
The fourth row of Fig.3.4 shows the gradient histogram of images after deconvolutidme
dotted black line corresponds to the gradient distributbthe sharp image at the full resolu-
tion. The sparse deconvolution tends to preserve the gradistribution of random textures
and man-made scenes, but greatly modifies the gradientegpodfditructured textures because
blur low-pass filters high frequency details.

Another interesting observation is that the gradient ofdbeonvolved image at one-half
the original resolution mimics that of the original imagefdt resolution in the case of ran-
dom texture and man-made objects. We leverage this obssmiatestimating the gradient
distribution from the blurry input image.
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Figure 3.5: This figure illustrates the pipeline of our image restoratimethod. Detailed
descriptions of each block are provided in Séel

B 3.4 The image prior estimation

The goal of this work is to identify the correct image prior é&ach pixel in the image. If we are
given a sharp image, one way to identify the image prior al @@l is to fit gradients in each
sliding window to a generalized Gaussian distribution, assign the fitted shape parameters
to the central pixel of each window, as shown in FB¢h. However, fitting gradients to a gen-
eralized Gaussian distribution requires a large amounbwipzitation, rendering this operation
for each sliding window intractable. Furthermore, we dolmte a sharp image to estimate the
image prior with.

This section presents our solution to this challenging lemb (i) we introduce a method
to estimate the image prior directly from a blurry input ireagnd (ii) we present a regression-
based technique to estimate the image prior. Our methodnipetationally more attractive
compared to fitting gradients within each sliding window tpemeralized Gaussian distribution.

H 3.4.1 Image model
Let B be an observed degraded imagbge a blur kernel (a point-spread function or a PSF), and
| be a latent image. Image degradation is modeled as a colrofutocess:

B=k®l+n (3.6)

where® is a convolution operator, amds an observation noise. The goal of (non-blind) image
restoration is to recover a clean imddeom a degraded observati@ygiven a blur kernek and
a standard deviation of noigg both of which can be estimated through stand-alone teabsiq
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[31,53.
We introduce a conditional random field (CRF) model to incogte texture variations

within the image restoration framework. Typically, a CRBtogation model can be expressed

as follows:

1

p(11B,k,n) = v

[]4s(l:Bikn)gi(l) (3.7)

whereM is a partition function and is a pixel index. Y is derived from the observation
processy from the assumed image prior:

L N2
we(l:Bi k) O exm—(a;%”% (3.8)
W) O exp—A|OIY) (3.9)

To model spatially variant gradient statistics, we introglan additional hidden variabie
calledtexture to the conventional CRF modet controls the shape parameters of the image
prior:

p(1,2B.k,1) = o [ (1B 1) (1,2) (3.10)

wherey ,(1,2) O exp(—A (2)]|01]"®). We modelz as a continuous variable since the distribu-
tion of [y,A] is heavy-tailed and does not form tight clusters (Bi@).

We maximizep(1|B,k, i) to estimate a clean imageTo do so, we approximatg(l|B,k,n)
by the functionp(l,

) at the modez”

ydz=~ p(l,2

p([B.kn) = [ pl, ) (3.11)

Sec.3.4.2discusses how we estimatéot each pixel.

B 3.4.2 Estimating the texture 2

A notable characteristic of a zero-mean generalized Gauskstribution is that the varianee
and the fourth momentt completely determine the shape paramefgrd| [75]:

_ E(B/V) . E(S/V)
AVI(1/y) AVT(1/y)

(3.12)
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To take advantage of these relationships, we define a varalied a local texture around each
pixeli, z, as a two dimensional vector. The first dimension is the waga; of gradients in the
neighborhood of a pixel and the second dimension is the fourth momigiof gradients in the
neighborhood of a pixet

z = [vi(On), fi(O)] (3.13)
Qualitatively, the variance of gradientg [l ) encodes the width of the distribution, and the
fourth momentf; (Ol ) encodes the peakiness of the distribution. Note that we asityecom-
putev;, f; through convolution.

Estimating the texture Z from the observe image B \We should ideally estimate the texture ~
from sharp image, butl is not available when estimatirg We address this issue by estimat-
ing the texturez from an image reconstructed using a spatially invariangenarior. We hand-
select the spatially invariant prior with a weak gradiengley so that textures are reasonably
restored at the expense of slightly noisy smooth regifggs: 0.8,Ao = 6.5],[ya = 0.6,A3 =6.5.

A caveat is that the fixed prior deconvolution may contangrthe gradient profile of the re-
constructed image, which could induce texture estimatioor.eTo reduce such deconvolution
noise, we down-sample the deconvolved image by a factor ef@&® estimating the textue ~
As investigated in Se@.3.3 a gradient profile of natural images is often scale invamae to
fractal properties of textures and piecewise smooth ptigsenf surfaces46, 55|, whereas that
of the deconvolution noise tends to be scale variant. Thezethe texture éstimated from the
down-sampled deconvolved image is close to the textureeobtiginal sharp image.

B 3.4.3 Estimating the shape parameters y,A from 2

We could numerically invert Eg.12to directly compute the shape parametgra ] from the
variance and fourth moment%]. However, a numerical inversion is computationally exgpes
and is sensitive to noise. We instead use a kernel regressitimod that maps the log of the
texture In(2) to shape parametefg, In(A)].

We should train the regressor to learn how to map the textaféhe down-sampledecon-
volvedimage to shape parameters to account for the effect of rasgiiiconvolution noise in
textureZ Since the deconvolved image, ttmygiépends on the blur kernel and the noise level,
we would ideally have to train regressors discriminativielyeach degradation scenario, which
is intractable. However, we empirically observe in B¢ that the variance and fourth moment
of the deconvolved, down-sampled image are close to thogeafown-sampled original im-
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Figure 3.6: We observe that the local variance and fourth moments ofignésl computed
from the deconvolved, down-sampled image of Bifj.are close to those computed from the
down-sampledriginal image.

age. Therefore we can afford to learsiagleregressor from the variance and fourth moment
of the sharp, down-sampled image to the shape parameteesesiimated shape parameters
are reasonably accurate for our purpose.

To learn the regression function, we samplé 25,000 patches of size ¥717 pixels from
500 high quality natural images. We fit the gradient profileeath patch to a generalized
Gaussian distribution, and associate each fit with the negi@nd fourth moment of gradients
in the down-sampled version of each patclx @ pixels). We use the collected data to learn the
mapping fromIn(v),In(f)] to [y,In(A)] using LibSVM [12]. We use a 10-fold cross validation
technique to avoid over-fitting.

B 3.4.4 Handling texture boundaries

If multiple textures appear within a single window, the estied shape prior can be inaccurate.
Suppose we want to estimate the image prior for a 1-dimeakshice of animage (Fig.7(a)).
Ideally, we should recover two regions with distinct shapeameters that abut each other by a
thin band of shape parameters corresponding to an edge. vdgwiee estimated image prior
becomes “sparse” (i.e. smaf) near the texture boundary even if pixels do not correspond t
an edge (the green curve in Fi§1.7(c)). This occurs because we use a finite-size window for
computingv and f causes this issue.

To recover appropriate shape parameters near texture aoesdwe regularize the esti-
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Figure 3.7: We regularize the estimated shape parameters using a GC&FRisat the texture
transition mostly occurs at a texture boundary. We modebthgervation noise in the GCRF
as thevarianceof the variance and fourth moments estimated from two Ganssindows of
different standard deviations — 2-pixel and 4-pixel, asvghan (b). This reduces the shape
parameter estimation error at texture boundaries, as shaw(c) (compare green and red
curves).

mated shape parameters using a Gaussian conditional rafieldn (iGCRF) B0]. Conceptu-
ally, we want to smooth shape parameters only near texturadasies. A notable observation
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at texture boundaries is thas estimated from two different window sizes tend to be défe
from each other: the large window could span two differextuiees while the smaller window
spans a homogenous texture, generating diffeent\We exploit this observation to smooth
only near texture boundaries.

To be more specific, we maximize the following probabilityrégularizey returned by the
regressor:

ply, )0 [1 vHIv)¥v.v) (3.14)

i,jeN()

whereN(i) denotes the neighborhood iofiy is the observation model and is the neighbor-
hood potential:

& N2
wiily) Dexp( -~ )

_v:)2
T W

(3.15)

We seta; and g, adaptively. We set the varianag(i, j) of the neighboringy as g2(i, j) =
a(l(i) —1(j))?, wherea = 0.01 controls how smooth neighboring estimates should dyge.
encourages the discontinuity at strong edges of the irh&8@]. The observation noiser,2 is
themean variancef the variancer and of the fourth momerit estimated from windows of two
different sizes (Gaussian windows with 2-pixel and 4-pstandard deviations.) If this value
is large, the central pixel is likely to be near a texture oy, thus we allow its estimated
parameter to be smoothed. We use the same GCRF model toriegiméA ) with a = 0.001.

Fig. 3.7(c) shows the estimated shape parameters before and ajtdanization along with
the estimated GCRF observation noise. After regularimati’o textures are separated by a
small band of sparse image prior corresponding to an edgkesa®d.

Fig. 3.8 shows the estimated shape parameters for orthogonal gradié Fig.3.1 In
Fig. 3.8(a,b), the parameters are estimated from the image reactedrfrom 5% noise and the
blurin Fig.3.11 In Fig. 3.8(@) we show the estimated shape parameters before textunebo
ary handling, and in Fig3.8(b) we show the result after texture boundary handling. @ith
texture boundary handling, estimated shape parametews “‘simging” at texture boundaries.
After texture boundary handling, we correctly estimate shape parameters even at texture
boundaries. We observe that the estimated prior in the &gien is close to Gaussian (i.e.
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Figure 3.8: (a) The shape parameters for orthogonal gradients, est@ohdtom the down-
sampled deconvolved image of F&jl, before texture boundary handling. We observe “ring-
ing” at texture boundaries. (b) The estimated shape parameafter texture boundary han-
dling. Parameters are more consistent at texture boundari{g) The shape parameters esti-
mated from the down-samplediginal image. (c) is quite close to (b), which implies that our
kernel estimation method is accurate.

y =2 ~ 3), whereas the estimated prior in the building region isspé.e.y < 1). The esti-
mated shape parameters are similar to parameters estifnatedhe down-sampled, original
image, shown in Fig3.8(c). This supports the claim that shape parameters estinfistten a
degraded input image are reasonably accurate.
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B 3.4.5 Implementation details

We minimize the negative log-posterior to reconstruct artienage:
= argmm{( Cw Zi (Ao(2)[[Tol (D) + Aq(2) |01 || 2)} (3.16)

where [yo,Ao), [Ya; Aa] are estimated parameters for orthogonal and aligned gnadieespec-
tively, andw is a weighting term that controls the gradient penalty= 0.025 in all examples.
We minimize Eq.3.16 using an iterative reweighted least squares algorith@&78]. Algo-
rithm 2 shows the pseudocode of the entire system.

Yo <= 0.8« 6.5, < 0.6,A,<6.5
I < argmin Eq.3.16
for Orthogonal and aligned gradientsiadio
% For every pixel in the image
for i = l to Ndo
Vi = W ZleN (DDZ
fi <= @ Zheng (OD*
z < v, fi]
[Vo(i),In(Ao(i))] <= regression(z)
[Va(i),In(A4(i))] < regression(z)
end for
end for
[Yo, A0, Yas Aa] <= GCRFRegulariz€yo, Ao, Va, Aa))
| < argmin Eq.3.16

Algorithm 2: Image reconstruction algorithm

B 3.5 Experimental results

We evaluate the performance of the content-aware image lpyiapplying the prior in image
restoration tasks. The use of the content-aware imageipriorage restoration tasks improves
the rendition of textures.

B 3.5.1 Image restoration

We evaluate the performance of the content-aware image fatialeblurring and denoising
tasks. We compare our results to those reconstructed usipgrae unsteered gradient prior
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Figure 3.9: We compare the image restoration performance on 21 natorages with spatially
variant texture characteristics.

[48] and a sparse steered gradient pri®#][ using peak signal-to-noise ratio (PSNR) and gray-
scale structural similarity (SSIMBP] as quality metrics. We have augmented the steerable
random fields §7], which introduced denoising and image in-painting as igptibns, to per-
form deconvolution. In all experiments, we use the first oled the second order gradient
filters [32]. We can augment these algorithms with higher order gradikars to improve
reconstruction qualities, but it is not considered in thizrkv The test set, shown in Fi§.9,
consists of 21 high quality images downloaded from Label&8 fvith enough texture varia-
tions.

Non-blind deconvolution The goal of non-blind deconvolution is to reconstruct a ghar-
age from a blurred, noisy image given a blur kernel and a rleiss. We generate our test
set by blurring images with the kernel shown in F3gll, and adding 5% noise to blurred im-
ages. Fig3.10shows the measured PSNR and SSIM for different deconvaolutiethods. The
content-aware prior performs favorably compared to thepmiing methods, both in terms of
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Figure 3.10: Image deconvolution results : PSNR and SSIM. Mean PSNReenest gradient
prior — 26.45 dB, steered gradient prior — 26.33 di®ntent-aware prior — 27.11 dB Mean
SSIM: unsteered gradient prior — 0.937, steered gradiemdrpr 0.940,content-aware prior

—-0.951

PSNR and SSIM. The benefit of using a spatially variant pganore pronounced for images
with large textured regions. If the image consists prinyasflpiecewise smooth objects such as
buildings, the difference between the content-aware inpaige and others is minor. Fi.11
compares the visual quality of restored images.

Denoising The goal of denoising is to reconstruct a sharp image fromisynabservation
given a noise level. We consider reconstructing clean im&gen degraded images at two noise
levels: 5% and 10%. Fig3.12shows the measured PSNR and SSIM for the denoising task.
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Blurry/Noisy image Unsteered gradient prior Steered gradient prior

PSNR: 25.59dB, SSIM: 0.960 PSNR: 25.48dB, SSIM: 0.962

Original image Content-aware prior

PSNR: 26.45dB, SSIM: 0.970

Figure 3.11: Adapting the image prior to textures leads to better reamasions. The red box
indicate the cropped regions.

When the noise level is low (5%), the content-aware prioonstructs images with lower PSNR
compared to competing methods. One explanation is thatdhtewt-aware prior may not
remove all the noise in textured regions (such as trees)JuBedie gradient statistics of noise
is similar to that of the underlying texture. Such noise, begr, does not disturb the visual
quality of textures. The SSIM measure, which is better ¢ated with the perceptual quality
[85], indicates that the content-aware image prior perfornghs} worse, if not comparably,
compared to other methods at a 5% noise level. The top rowgpf3FL3shows that at a 5%
noise level, reconstructed images are visually similds viorth noting that when the noise
level is low, image degradation is only moderate so thatnsitacted images do not depend
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Figure 3.12: Image denoising results : PSNR and SSIMb%inoise = Mean PSNR: unsteered
gradient prior — 32.53 dB, steered gradient prior — 32.74 dBntent-aware prior — 31.42 dB
Mean SSIM: unsteered gradient prior — 0.984, steered gradieior — 0.984,content-aware
prior — 0.982. At 10% noise = Mean PSNR: unsteered gradient prior — 28.54 dB, stéer
gradient prior — 28.43 dBg¢ontent-aware prior — 28.52 dB Mean SSIM: unsteered gradient
prior — 0.950, steered gradient prior — 0.95@ntent-aware prior — 0.959

heavily on the image prior.

When the noise level is high (10%), SSIM clearly favors inggeconstructed using the
content-aware prior. In this case, the observation termeigkythus the image prior plays an
important role in the quality of reconstructed images. Tagdm row of Fig.3.13shows de-
noising results at a 10% noise level, supporting our claiat the content-aware image prior
generates more visually pleasing textures. Bi@4shows more denoising performance com-
parisons.

Fig. 3.15shows the result of deblurring a blurry image captured wittaadheld camera.
We estimate the blur kernel using Fergisal. [31]. Again, textured regions are better recon-

structed using our method.

User study We conducted a user study on Amazon Mechanical Turk to caeniber visual
quality of reconstructed images. Each user views two imagee reconstructed using the
content-aware prior and another reconstructed usingreitieeunsteered gradient prior or the
steered gradient prior. The user has a choice of selectemgtire visually pleasing image or
selecting dThere is no difference’option.

We gathered about 20 user opinions for each comparisongli3Ai§ we show the average
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Figure 3.13: The visual comparison of denoised images. The red box detimeecropped
region. At ab5% noise level, while the PSNR of our result is lower than thdseompeting
algorithms, visually the difference is imperceptible. At@% noise level, the content-aware
prior outperforms the others both in terms of the PSNR an&®id. Furthermore, the content-
aware image prior restores visually more pleasing images.
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Figure 3.14: More visual comparison of denoised images.

user preference in each degradation scenario. Consistmowr expectations, users did not
have a particular preference when the degradation was $egll 5% noise), but at a high
image degradation level users clearly favored the coraemtre image prior over others.

M 3.5.2 Discussions

A limitation of our algorithm, which is shared by algorithrasing a conditional random field
model with hidden variablegB, 67, 8Q], is that hidden variables, such as the magnitude and/or
orientation of an edge, or texture of a region, are estimated the degraded input image or
the image restored through other means. Any error from tt@prpcessing step induces error
in the final result.

Although our algorithm improves the rendition of textureséstored images, the quality
of the restored textures still depends on the weighting terim Eq. 3.16 If w is too small,
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Blurry/Noisy image Unsteered gradient prior Steered gradient prior Content-aware prior

K e q

Figure 3.15: The deconvolution of a blurred image taken with a hand-haldera. We estimate
the blur kernel using Fergus et al3]]. The red box denotes the cropped region. The textured
region is better reconstructed using the content-awaregengrior.

Content-aware gradient prior Content-aware gradient prior
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Figure 3.16: This figure summarizes the user study results. The bluerremiaesponds to
the fraction of users that favored our reconstructions. Ada degradation level, users do not
prefer one method over another, but as the level of degradaticreases, users clearly favor
the content-aware image prior.

smooth regions may become noisy, wheneas too large, even the content-aware image prior
could over-smooth textures. Also, while reconstructedgesacontain richer texture compared
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to those of previous techniques, textures are still smodthen that of the original image.
In Chapter4, we introduce a different deconvolution algorithm capadflesynthesizing rich
textures.

Another way to estimate a spatially variant prior is to segitle image into regions and
assume a single prior within each segment. Unless we sedheeimhage into many pieces, the
estimated prior can be inaccurate. Also, the segmentataninadvertently generate artificial
boundaries in reconstructed images. Therefore, we estimalistinct image prior for each
pixel in the image.

M 3.6 Conclusion

We have explored the problem of estimating spatially vargaadient statistics in natural im-

ages, and exploited the estimated gradient statisticsaptaely restore different textural char-
acteristics in image restoration tasks. We show that théeeobaware image prior can restore
piecewise smooth regions without over-smoothing textueggbns, improving the visual qual-

ity of reconstructed images as verified through user studidapting to textural characteristics
is especially important when the image degradation is Bazmit.



Chapter 4

Image restoration by matching

gradient distributions

H 4.1 Introduction

HE content-aware image prior improves texture restoratian,tle restored texture is
Toften not as rich as the original texture. We attribute tisricoming to the use of
a MAP estimator. The MAP estimator balances the observéitietihood with the gradient
penalty from the sparse gradient prior, reducing image mextation artifacts such as ringing
and noise. Unfortunately, the MAP estimator also removesfngiquency textures, often giving
an unnatural and cartoonish look to the reconstructed im&geh a phenomenon manifests
itself in the gradient distribution: the gradient disttilotn of the reconstructed image is quite
different from that of the original image. Oftentimes, thestored image has more gradients
with small magnitude compared to the original image, whiatidates that the restored image
is smoother, as shown in Fig.1

To address this issue, we introduce an alternative imageragion algorithm that is ca-
pable of synthesizing rich textures. Our deconvolutioroatgm matches the reconstructed
image’s gradient distribution to its reference distribati(i.e. the gradient distribution of the
original image). Essentially, our method imposes a globaktraint on gradients, as opposed
to imposing local constraints by simply penalizing indivadl gradient as in a MAP estima-
tor. To estimate the reference distribution directly fromegraded input image, we adapt the
method introduced in Chapt8r User study substantiates the claim that images recoeatruc
by matching gradient distributions are visually more plegigompared to those reconstructed
using MAP estimators.

77
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MAP estimate Gradient profiles

| — Original image
— MAP estimate |

0 10
Gradient magnitude
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Figure 4.1: When we use a MAP estimator restore a degraded image, théegtatistribution
of the reconstructed image can be quite different from tliahe original image. We consider
the difference in gradient distributions as an indicatoatlthe restored image is not as natural-
looking. We present a method that matches the reconstructage’s gradient distribution to
its reference distribution (i.e. the gradient distributi@f the original image) to hallucinate
visually pleasing textures.

H 4.2 Related work

Matching gradient distributions has been well investidatethe texture synthesis literature.
Heeger and Berger39] synthesize textures by matching wavelet sub-band higtogito those
of a desired texture. Portilla and Simonce62] match joint statistics of wavelet coefficients
to synthesize homogeneous textures. Kep#hl. [44] introduce an inhomogeneous texture
synthesis technique by matching histograms of texelsuitex¢lements).
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Matching gradient distributions in image restoration i$ eotirely new. Li and Adelson
[5]] introduce a two-step image restoration algorithm that figsonstructs an image using an
exemplar-based technique similar to Freeratal. [33], and warp the reconstructed image’s
gradient distribution to a reference gradient distributicsing Heeger and Bergen’s method
[39]. Woodfordet al.[89] propose a MAP estimation framework called a marginal pbdtig
field (MPF) that matches a histogram of low-level featuraghsas gradients or texels, for
computer vision tasks including denoising. MPF requirest thne bins features to form a
discrete histogram; we propose a distribution matchinghotkthat by-passes this binning
process. Also, Woodforet al.[89] use an image prior estimated from a database of images and
use the same global prior to reconstruct images with difftelextures. In contrast, we estimate
the image prior directly from the degraded image for eactutex region. Schmidét al.[72]
match the gradient distribution through sampling. As witbddford et al. [89], Schmidtet
al. also use a single global prior to reconstruct images witfeifit textures, which causes
noisy renditions in smooth regions. HaColetral. [37] explicitly integrate texture synthesis
to image restoration, specifically for an image up-sampfiraplem. To restore textures, they
segment a degraded image and replace each texture segntleriextires in a database of
images.

B 4.3 Characteristics of MAP estimators

In this section, we illustrate why MAP estimators with a Sgaprior recover unrealistic, piece-
wise smooth renditions as illustrated in HigLl LetB be a degraded imagk pe a blur kernel,

® be a convolution operator, andbe a latent image. A MAP estimator solves the following
regularized problem:

[ = argmin

{|]B—k®IH2
|

o7 +WZp(DmI)} (4.1)

m

wheren? is an observation noise varianeejndexes gradient filters, anmlis a robust function
that favors sparse gradients. We parameterize the gradistnfoution using a generalized
Gaussian distribution. In this case(dl) = —In(p(0l;y,A)), where the priop(0l; y,A) is
given as follows: "
NG
p(O1y,A) = S exp(—A |0l ]]Y) (4.2)

_yAr
1
or (1)
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I is a Gamma function and shape paramejgeisdetermine the shape of the distribution. In
most MAP-based image reconstruction algorithms, grasliant assumed to be independent
for computational efficiencyp(Ol; y,A) = % ﬂiN:1 p(dli; v, A ), wherei is a pixel index,Z is a
partition function, and is the total number of pixels in an image.

A MAP estimator balances two competing forces: the recanstd imagd should satisfy
the observation model while conforming to the image pri@u@er-intuitively, the image prior
term, assuming independence among gradiahtsggysfavors a flat image to any other images,
even a natural image. Therefore, the more the MAP estimati@sron the image prior term,
which is often the case when the image degradation is sehereore the reconstructed image
becomes piecewise smooth.

One way to explain this property is that the independencengntmcal gradients fails to
capture the global statistics of gradients for the wholegena he image prior tells us that gra-
dients in a natural imagepllectivelyexhibit a sparse gradient profile, whereas the independence
assumption of gradients forces us to minimize each gradielependentlyalways favoring a
flat image. Nikolova 58] provides a theoretic treatment of MAP estimators in gelrterahow
its deficiency.

We could remove the independence assumption and imposetajar on all gradients,
but this approach is computationally expensive. This papesduces an alternative method
to impose a global constraint on gradients — that a recartetiumage should have a gradient
distribution similar to a reference distribution.

B 4.4 Image reconstruction

In this section, we develop an image reconstruction algarithat minimizes the KL diver-
gence between the reconstructed image’s gradient distiband its reference distribution.
This distance penalty plays the role of a global image phat steers the solution away from
piecewise smooth images.

Let ge(O1) be an empirical gradient distribution of an imagendqgg be a reference dis-
tribution. We measure the distance between distributipnendgr using the Kullback-Leibler
(KL) divergence:

KL(aelow) = | ae(in (S ) aon 3

An empirical distributionge is parameterized using a generalized Gaussian distributio

p(dl;y,A) (Eqg. 4.2. Given gradient samples]l;, wherei indexes samples, we estimate
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the shape parameteys, Ag of an empirical gradient distributioge by minimizing the log-
likelihood:

y:A

: N1
Ve Al = argmm{— ;Nln<p<mli;y,A>>} (4.4)
1=
This is equivalent to minimizing the KL divergence betweeadient samplesll and a gen-

eralized Gaussian distribution (see Se8.1). We use the Nelder-Mead optimization method

[45] to solve Eq4.4.

B 4.4.1 Failure of penalizing KL divergence directly

To motivate our algorithm in Seel.4.2 we first introduce a method that penalizes the KL
divergence between an empirical gradient distributiprand a reference distributicgk. We
show that the performance of this algorithm is sensitiveht iarameter setting and that the
algorithm may not always converge. In Sdcd.2 we extend this algorithm to a more stable
algorithm called Iterative Distribution Reweighting (IDR

First, we augment the MAP estimator (EQ1) with KL divergence:

B—ke1|?

e WAR] O KL (o) | @5

= arglmin{
wherew, determines how much to penalize the KL divergehck’s hard to directly solve
Eq. 4.5because the KL divergence is a non-linear function of a tdtaagel. Therefore we
solve Eq4.5iteratively.

Algorithm 3, shown in pseudocode, solves Bcpiteratively. We can describe Algorithh
qualitatively as follows: ifge has more gradients of a certain magnitude thanos penalizes
those gradientmorein the following iteration; ifge has fewer gradients of a certain magnitude
thangg, pc penalizes those gradieréssin the following iteration. Therefore, at each iteration,
the solution will move in the “correct” direction. Fid.2 illustrates the procedure. The full
derivation of the algorithm details is available in Appendi.

We can show that the penalty functigg in Algorithm 3 is one way to evaluate the KL
divergence between the empirical distributignand the reference distributiar.

Claim 2. Let g= be a parametric distribution of sampleg ix=1..N and let g be a fixed
parametric distribution. Then we can represent the KL djeaice between samples and o

1In Eq.4.5 we have replaced the summation over multiple filters in&#j.i.e. S mAm||Oml ||¥, with a single
derivative filter to reduce clutter, but the derivation casily be generalized to using multiple derivative filterse W
use four derivative filters in this work: x, y derivative filteand x-y, and y-x diagonal derivative filters.
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% Initial image estimate to start iterative minimization

. _ 2
° = argmin {7”8 o + WiAg]| I HVR}

Updateqe® using Eq4.4
% Iterative minimization
forI=1... 10do

% KL distance penalty term update

P50 = &In (qEqIR(%ﬁ”)

% Image reconstruct|on

M= argmin { 251° w01 [+ woply (1) }
Updateqe! using Eq4.4

end for
[ = [0

Algorithm 3: MAP with KL penalty

as follows:

L(celloR) = Zpe %{%In (?;&i)} (4.6)

Proof. The KL divergence betweeai: andgr is defined as follows:

Liaelon) ~ [ae@in (EZ ) az @7)

There are different ways to represent the parametric bligian g=. We can parameterize

the distribution of samples using a generalized Gausssrildition as follows:

) B VE)\E(é)

Oe(2) = Ti)exp(_AEHZHVE) (4.8)

where the shape parametggsAg are fitted to samples using Eq.4.4. We can also parame-
terize the distribution of samplegas follows:

Z|H

N
S 5(z (4.9)

Therefore,
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(@) MAP estimate o (b) Gradient distribution , (c) Penalty update

==Qriginal image == QOriginal penalty function
=—MAP estimate ==The log ratio of q_and q
1 Pl—The weighted sum of penalties

- 107 10° 10° A 10
Gradient magnitude Gradient magnitude

Figure 4.2: This figure illustrates Algorithr8. Suppose we deconvolve a degraded image using
a MAP estimator. (b) shows that the x-gradient distribut@frthe MAP estimate in (a) does
not match that of the original image. (c) Our algorithm adts tog ratio of ¢ and c to the
original penalty (i.e Ag||0I]]*®) such that the weighted sum of the two penalty terms encesrag
a better distribution match in the following iteration.

KL(de|lgr) = /ZCIE(Z)ln (gi(2)> dz

-5 (i (0]

[

Algorithm analysis The behavior of AlgorithnB3 depends on the value @f,. Whenws, is
small, the reconstructed image is similar to the MAP estm#&®n the other hand, whem

is large, the algorithm oscillates around the desired moluiFig. 4.3): the algorithm “ping-
pong’s” between a noisy solution and a piecewise smoothisoluFor instance, suppose the
current image estimate is piecewise smooth. The algoritlmuichvthen encourage more pixels
with larger derivatives in the next iteration, which makee subsequent solution noisier. In
the following iteration, to reduce the derivative magnéado smooth noise, the algorithm
penalizes gradients more severely to better match theereferdistribution, in which case the
image becomes piecewise smooth again, exhibiting an atseil behavior. In fact, whew,

is very large, the linearized system (in Appendix A, EB) becomes indefinite, in which case
the minimum residual method (] cannot be used to solve the linearized system. To mitigate
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(a) Progression of Gamma (b) Progression of Lambda

s GAMMa progression Lambda progression
1.8 = = = Desired Gamma = = = Desired lambda

lterations

Figure 4.3: We illustrate the operation of Algorith@in terms of the, Ag progressions. Dif-
ferent colors correspond to different gradient filters. édtimes, Algorithn3 does not converge
to a stable point, but oscillates around the desired sohutio

(a) IDR estimate (b) Gradient distribution (c) Effective penalty
10° . 20
==Qriginal image ==Qriginal penalty function
==MAP estimate ==Effective penalty function
107k ==|DR estimate

107 0 10° 107 L
Gradient magnitude Gradient magnitude

Figure 4.4: The IDR deconvolution result. (a) shows the deconvolvedémnaing IDR, and (b)
compares the gradient distribution of images reconstrctsing the MAP estimator and IDR.

(c) The effective penalty after convergence (i.@Apli 01 ||'R +w, 519 Lln (3?5:3 )) penalizes

gradients with small and large magnitude more than gradiemith moderate magnitude.

the reliability issue and to damp possible oscillationsuatbthe desired solution, we develop
an iterative distribution reweighting algorithm.

B 4.4.2 The iterative distribution reweighting (IDR)

We extend AlgorithnB to reduce oscillations around the correct solution anddace sensitiv-
ity to parameter values. We achieve this by modifying theulagzation functionog in Algo-
rithm 3. Our technique is motivated by perceptron algorithms teaiively adjust a decision
boundary to minimize classification error. In our case, \weaitively adjust the regularization
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% Initial image estimate to start iterative minimization
2
1° —argmin { 56515 4 wy g 01 % }
Updateqe® using Eq4.4
% lterative minimization
for 1=1...10do
% Accumulating the KL divergence
-1 C(a]
PL(ON) = p§ V(00 + Fin (T
% Image reconstruction
i _ i [ IB—kaI]? ®R |
" = argmin { =50 +wWiAR| |01 R +wapg (D)
Updateqe! using Eq4.4

end for
[ = [0

Algorithm 4: The iterative distribution reweighting (IDR)

function to match the empirical gradient distribution te tieference gradient distribution.

To do so, instead of using the KL divergence as a regulaoizaérmpg as in Algorithms3,
we setpg as thesumof the KL divergences over previous iterations. Algoritdrshows the
pseudocode for IDR.

IDR iteratively adjusts the penalty functigog by the ratio of distributionge andgg, thus
the name thaterative distribution reweighting (IDR)The benefit of IDR is that it reaches
convergence whege = gr. 2 We can also view th@g update equation as damping the KL
divergence with the sum of previous KL divergences, thersghgothing oscillations. We can
easily modify derivations in Appendix A to derive detailg fdlgorithm 4. We illustrate the
operation of IDR in Fig4.4, and show hows,Ag changes from one iteration to the next in
Fig. 4.5. Observe thaye, Ae no longer oscillate as in Fig..3

In Fig. 4.6, we test IDR for deblurring a single texture, assuming thatreference distri-
bution gr is known a priori. We synthetically blur the texture using thlur kernel shown in
Fig.4.8and add 5% Gaussian noise to the blurred image. We debluntgei using a MAP es-
timator and using IDR, and compare the reconstructionsalFexamples in this paper, we use
wy = 0.025w, = 0.0025. We observe that the gradient distribution of the #3&nate matches
the reference distribution better than that of the MAP eaténand visually, the texture of the
IDR estimate better matches the original image’s textutéhodigh visually superior, the peak

2This statement does not mean that the algorithm will coreertly if e = gr; the algorithm can converge to
a local minimum.
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(a) Progression of Gamma (b) Progression of Lambda

Gamma progression Lambda progression
1.2 = = 1 Desired Gamma = = 1 Desired lambda

i 5 6 7 8 8 1071 2 s 4 5.6 7
Iterations Iterations
Figure 4.5: This figure shows how thg, Ag progress from one iteration to the next. Different
colors correspond to different gradient filters. We obsethett the algorithm converges to a

stable point in about 8 iterations.

MAP estimator IDR Gradient distribution

10°

Original image

==Qriginal image
==MAP estimate
==|DR estimate

107"
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10

|
10
10%

107
Gradient magnitude

PSNR:28.87dB, SSIM:0.747  PSNR:28.00dB, SSIM : 0.729

Figure 4.6: We compare the deblurring performance of a MAP estimatorl&®l IDR recon-
structs visually more pleasing mid-frequency texturespamad to a MAP estimator.

signal-to-noise ratio (PSNR) / gray-scale SSI8B|[of the IDR estimate are lower than those
of the MAP estimate. This occurs because IDR may not placgrédmdients at exactly the right
position. Degraded images do not strongly constrain th&ipnsf gradients, in which case
our algorithm disperses gradients to match the gradiemtilwiion, which would lower the
PSNR / SSIM.

Algorithm analysis IDR matches @arametrizedyradient distribution, and therefore the algo-
rithm is inherently limited by the accuracy of the fit. The beior of IDR is relatively insen-
sitive to the weighting termv,, but a largew, can destabilize the minimum residual algorithm
[70] that solves the linearized system in Bd.

In most cases, IDR reliably reconstructs images with theresfce gradient distribution.
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However, there are cases in which the algorithm settles @a minimum that does not cor-
respond to the desired texture. This usually occurs wherstipgort of derivative filters is
large and when we use many derivative filters to regularieerttage. For instance, suppose
we want to match the gradient histogram of & 3 filter. The algorithm needs to update 9
pixels to change the filter response at the center pixel, pdating 9 pixels also affects filter
responses of 8 neighboring pixels. Having to match muligpéient distributions at the same
time increases the complexity. To control the complexitg match four two-tap derivative
filters. Adapting derivative filters to local image stru@sirusing steerable filter2Q, 32, 67]
may further improve the rendition of oriented textures, ibig not considered in this work.

B 4.4.3 Reference distribution gr estimation

We parameterize a reference distributimusing a generalized Gaussian distribution. Unfor-
tunately, one often does not kn@npriori whatgg should be. Previous work estimaigsfrom

a database of natural imag&4]89] or hand-picksyr through trial and erro48]. We adopt the
image prior estimation technique introduced in Si24to estimategr directly from a degraded
image, as we will now describe.

We first deconvolve a degraded imaBeusing a MAP estimator (Eqt.1) with a hand-
picked image prior, tuned to restore different texturessoeably well at the expense of a
slightly noisy image reconstruction (i.e. a relatively dingmadient penalty). In this paper,
we set the parameters of the image priofyas 0.8,A = 4,w; = 0.0] for all images. To re-
duce deconvolution noise, we down-sample the reconsttuistage. We fit gradients from the
down-sampled image to a generalized Gaussian distriQuai®im Eq4.4, to estimate the ref-
erence distributiorgg. While fine details can be lost through down-sampling, eioglly, the
estimated reference distributi@g is accurate enough for our purpose.

Our image reconstruction algorithm assumes that the txutomogeneous (i.e. a single
gr). In the presence of multiple textures within an image, wgnsent the image and esti-
mate separate reference distributigpnfor each segment: we use the EDISON segmentation
algorithm R2] to segment an image into about 20 regions. Big.llustrates the image decon-

volution process for spatially varying textures.
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Blurry input image Reference distribution estimation  IDR image reconstruction MAP estimate

{Estimated log-lambda )

Blur kernel

Estimated gamma  J
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Figure 4.7: For an image with spatially varying texture, our algorithregsnents the image into
regions of homogeneous texture and matches the gradiemibdifon in each segment inde-
pendently. Compared to MAP estimators, our algorithm retarts visually more pleasing
textures.

B 4.5 Experiments

Deconvolution experiments We synthetically blur sharp images with the blur kernel show
in Fig. 4.8 add 2% noise, and deconvolve them using competing methddscompare the
performance of IDR against four other competing methodsa AP estimator with a sparse
gradient prior 48], (i) a MAP estimator with a sparse prior adapted to eachrssag (iii) a
MAP estimator with a two-color prior43] (iv) a MAP estimator with a content-aware image
prior. We blur a sharp image using the kernel shown on the, régid 2% noise to it, and restore
images using the competing methods. H@ shows experimental results. As mentioned in
Sec.4.4.2 IDR does not perform the best in terms of PSNR / SSIM. Neede#ts, IDR recon-
structs mid-frequency textures better, for instance faaitke Another interesting observation
is that the content-aware image prior performs better, im$eof PSNR/SSIM, than simply
adjusting the image prior to each segment’s texture. Bygusegment-adjusted image prior,
we observe segmentation boundaries that are visuallyrdisty Another set of comparisons
is shown in Fig4.9.

We compare the denoising performance of IDR to that of a matgirobability field (MPF)
by Woodfordet al.[89] 3. Using MPF for denoising has two limitations. First, MPF qtizes
intensity levels and gradient magnitudes to reduce corntiputa MPF quantizes 256 (8-bit)
intensity levels to 64 intensity levels (6-bit), and it bi2s6 (8-bit) gradient magnitudes to 11
slots. These quantizations would accentuate spotty noisscbnstructed images. IDR adopts

3Available implementation of MPF only handles grayscaleiasq images.
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Figure 4.8: We compare the performance of IDR against four other comgeatiethods: (i)
a MAP estimator with a sparse gradient priod], (i) a MAP estimator with a sparse prior
adapted to each segment (iii) a MAP estimator with a two-cpir [ 43] (iv) a MAP estimator
with a content-aware image prior. The red box indicate thepped regions. Although the
PSNR and the SSIM of our results are often lower than thoseAdt bktimators, IDR restores
more visually pleasing textures (see bear furs).

a continuous optimization scheme that does not require &tggnam binning or intensity
quantization, therefore it does not suffer from quant@atoise. Second, Woodfosd al.[89]
estimate the reference gradient distribution from a da@lod images, and use teameprior

to denoise different images. This can be problematic becdiiferent images have different
reference distributiongr, but MPF would enforce the same gradient profile on them. Also
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Original image MAP estimate - Fixed sparse prior MAP estimate - Adjusted sparse prior
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Figure 4.9: This figure provides another set of deconvolution perforteacomparisons.

MPF does not adapt the image prior to the underlying textueating different textures the
same way. Therefore, MPF distributes gradients unifornshpss the image, even in smooth
regions, which can be visually disturbing. IDR addressesdhissues by estimating a reference
distributionggr from an input image and by adaptiag to spatially varying texture.

At a high degradation level, such as a noise level of 31.4%reference distribution es-
timation algorithm can be unstable. In F#§10 our gr estimation algorithm returns a distri-
bution that has more “large” derivatives and less “smallfividgives (dotted line in Figd.10,
which manifests itself as a noisy IDR reconstruction. Intcast, MPF restores a plausible
image, but this is somewhat coincidental in that the refegatstribution that MPF imposes is
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Figure 4.10: We compare the denoising performance of IDR and the marghohlability field
(MPF) [89] at a high noise level (31.4%). At such a high noise level,distribution estimation
algorithm is not reliable, thus IDR restores a noisy rerwliticompared to MPF.

quite similar to that of the original image.

At a more reasonable degradation level (15% noise), as showig. 4.11, our algorithm
estimates a reference distribution that is very similah#d of the original image. Given a more
accurate reference distribution, IDR restores a visua#lgging image. On the other hand, MPF
restores a noisy rendition because the reference distnibig quite different from that of the
original image. Also note that the gradient distributiortteé restored image is very similar to
that of the restored image in Fig.1Q which illustrates our concern that using a single image
prior for different images would degrade the image quality.

Segmenting images to regions and deconvolving each regjosrately may generate ar-
tificial texture boundaries, as in Fig.12 While this rarely occurs, we could mitigate these
artifacts using a texture-based segmentation algoriththerahan EDISON 22], which is a
color-based segmentation algorithm.

User study IDR generates images with rich texture but with lower PSN&\Ethan MAP
estimates. To test our impression that images reconstrbgt¢DR are more visually pleasing,
we performed a user study on Amazon Mechanical Turk.
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Figure 4.11: In this figure, we compare the denoising performance of ID&the MPF B9
at a moderate noise level (15%). At this noise level, theipted gradient distribution matches
the underlying image well, and the IDR restores a more naiunnage.

We considered seven image degradation scenarios: noisyvalisns with 5%, 10%, 15%
noise, blurry observations with a small blur and 2%, 5%, 7%se1oand a blurry observation
with a moderate-size blur and 2% noise. For each degradstiemario, we randomly selected
4 images from a dataset of 13 images (roughly ¥@DO pixels), and reconstructed images
using a MAP estimator with a fixed sparse prior (i.e. the sapagse prior across the whole
image), an adjusted sparse prior, and IDR.

Asin Sec.3.5 we showed users two images side-by-side, one reconstrusiieg our algo-
rithm and another reconstructed using one of the two MARMedtrs (i.e. fixed or adjusted).
We asked users to select an image that is more visually ptpasid give reasons for their
choice. Users were also giveriBhere is no difference”option. We randomized the order in
which we place images side by side.

We collected more than 25 user inputs for each comparisahaeraged user responses for
each degradation scenario (Fg13. When the degradation level is low (5% noise or a small
blur with 2% noise), users did not prefer a particular algponi. In such cases, the observation
term is strong enough to reconstruct visually pleasing esaggardless of the prior and/or
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MAP estimator - fixed prior

Figure 4.12: We could observe an atrtificial boundary when the estimatéar [is different

in adjacent segments that have similar textures. While rdnisly occurs, we could remove
such artifacts using a texture segmentation algorithmeadtof a color-based segmentation
algorithm.

the reconstruction algorithm. When the degradation les/gigh, however, many users clearly
favored our results. User comments pointed out that reaiesttures in trees, grass, and even in
seemingly flat regions such as gravel paths are importanidoal realism. Users who favored

MAP estimates preferred clean renditions of flat regionswaarck not disturbed by piecewise

smooth textures (some even found it artistic.) Individusgns consistently favored either our
result or MAP estimates, suggesting that image evaluasieubjective in nature.

B 4.6 Conclusion

We have developed an iterative deconvolution algorithnt thatches the gradient distribu-
tion. Our algorithm bridges the energy minimization methdéar deconvolution and texture
synthesis. We show through a user study that matching diegvdistribution improves the

perceived quality of reconstructed images. The fact tharagptually better image receives
lower PSNR/SSIM suggests that there is a room for improvéimemage quality assessment.
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Figure 4.13: We conducted a user study to test our impression that IDRstnactions are
visually more pleasing than MAP estimates. The blue regioresponds to the fraction of users
that favored IDR over MAP estimators. When the image dedi@auevel is small, users did

not show a particular preference, but as the image degradalivel increases, users favored
images reconstructed using IDR.



Chapter 5

Orthogonal parabolic exposures for

motion deblurring

H 5.1 Introduction

N previous chapters, we addressed spatially invariant hiertd handshake. This chapter
I addresses a different class of blur: a subject motion blwcaBse subjects can move in
different directions, images are often blurred in a spgtishriant manner. Therefore, the
subject motion blur removal often requires spatially vatrienotion estimation. Even if we
could perfectly identify the motion, however, blur remoigstill challenging because we lose
high frequency information about the image due to blur.

This chapter provides a solution that addresses thesesnbjel for a restricted class of
subject motions. We assume that the scene consists of ®bjemting at a constant speed
in arbitrary directions parallel to the image plane and thatcamera is placed on a tripod.
Spatially variant subject motion blur is therefore locgligcewise constant (in contrast to in-
plane camera rotations that induce continuous spatiafignvablur.)

Our solution takes two successive images using a movingoeensie moving in a hor-
izontal parabolic displacement path and another moving weréical parabolic path. From
these two images, we recover one sharp image by locally astigumotions (i.e. blur kernels)
(Sec.5.4.2 and by deconvolving input images using a multi-image declution algorithm
(Sec.5.4.1). We show that the kernel estimation error is negligible #rad the image informa-
tion loss due to motion blur is provably near minimal (S&86).

95
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M 5.2 Related work

Some previous methods handle spatially variant blur byiotisig the type of spatially variant
blur [23,24,42,47,49,73]: Levin [47] considers a piecewise constant spatially variant blur;
Shanet al. [73] assume that the relative motion between the camera anccéme $s purely
rotational; Whyteet al.[88] and Gupteet al.[36] estimate a spatially variant blur by modeling
camera shake as a rigid body motion. To aide spatially vatitur estimation, additional
hardware could be used to record the relative movement bettee camera and the scene
during exposure, from which one can estimate the spatiallamt blur B, 79. Levin et al.[49]
introduce a new camera that makes the blur invariant to 1[2suimotions. Users could assist
spatially varying blur estimation by specifying blurredged that should be sharg1] or by
specifying regions with different amount of blu24]. Taking two images also helps estimate
spatially variant blur 15, 76].

Most of aforementioned methods do not address informatigs Hue to blur. Typical
motion blur kernels correspond to box filters in the motiorediion, therefore blurs attenuate
high spatial frequencies and make the blur inversion ilgeb One technique addressing this
issue is a flutter shutter came®&8]. By opening and closing the shutter multiple times during
exposure, one can significantly reduce the high frequen@ag@rnformation loss. Another
method takes two images, each with different exposure har{g0]. The short-exposure image
contains high frequency information that supplements tligsimg information in the long-
exposure, blurred image. Agrawet al. [3] take multiple shots of a moving object, each with
different exposures, and deconvolve the moving objectguaihthe shots. The multi-shot
strategy is beneficial because the information lost in onthefshots is captured by another.
However, their strategy does not offer guarantees on thestwase performance. Levat
al. [49] propose a parabolic motion camera to minimize the infoiomatoss for 1D constant
velocity motions, but the solution is invalid if a 2D motiospresent. Agrawal and Raskdj [
analyze the performance of a flutter-shutter camera andedpléc camera and conclude that a
flutter shutter camera performs better for handling a 2D teoriselocity motion blur. Agrawal
and Xu P] introduce a new code for a flutter shutter camera with a betide-off between blur
estimation and information capture.
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B 5.3 Sensor motion design and analysis

Consider an object moving at a constant velocity andJet= [s,,s,] be its 2D velocity vector.
Suppose we capturkimagesB?, ..B’ of this object using) translating cameras. Locally, the
blur is a convolution:

Bl =k &l+n (5.1)

wherel is an ideal sharp image! imaging noise, an(zléx‘y a blur kernel (point spread function,
PSF).kzimy is a function of the relative motion between the sensor aedtene. The convolution
is a multiplication in the frequency domain:

B () = R;,y(w,y)r(%,y) + A (ayy) (5.2)

wherewy = [wy, wy] is a 2D spatial frequency, and the indicates the Fouriesstoam of the
corresponding signal.

To deblur images successfully, we need to increase therapedntent of blur kernels
HRéxvy(a&,y)Hz. Qualitatively, a deblurring algorithm divides the FourteansformBi of the
image by that of the blur kerndiﬂ,ny at every spatial frequency. |I|f<§xyy(mx,y)||2 is small for all
cameras, the deblurring algorithm amplifies noise and diegréhe quality of restored image.
We show in Secb.4.1that the reconstruction performance of the Wiener filterodgolution
method is inversely related to the summed spectra:

Ky (@) 12 = 3 IIKL ()12 (5.3)
J

Therefore, we should maximize the joint spectrLu:Kg&y(wx,y) |? of an imaging device for every
wyy and for everys, . This goal is formally stated as follows:

Given a time budget T, find a set of J camera motions that masgrhe minimum of the
summed power spectruMﬁS&y(wx,y) |2 over every spatial frequenay, and every motion vec-

tor [[scyl| < Sobj-

We introduce thédirst solution that provides the worst-case spectral power gieedor 2D
constant velocity motions. To prove our claim, we start witirief review of space time motion
blur analysis. We show that a set of PSFs for all 2D constalacitg motions||s,y|| < Sobj
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Static camera Flutter shutter camera Linear camera X-parabolic camera Y-parabolic camera
| £,
|
I

|

Time

Figure 5.1: The integration curveg (a-e), the point spread functiong k(f-j) and their log-
power spectra (k-0) for a few cameras. In (f-0), the outersazerrespond to X,y directional
speed. In (f-}), the inner axes correspond to x—y coordmatad in the spectra plots (k-0),
the inner axes correspond to,—w, coordinates. All spectra plots are normalized to the same
scale.

occupies the complementary volume of an inverted double @orthe Fourier domain, and
that the camera motion design can be formulated as maxigihi@ spectral content in this
volume. We show analytically that the best worst-case spleciverage of any camera motions
is bounded and that our design approaches the bound up tetanbmultiplicative factor.

B 5.3.1 Motion blur in the space-time volume

We represent light received by the sensor as a 3D space-timmeL(x,y,t). Thatis,L(x,y,t)
denotes the light ray hitting they coordinate of a static detector at a time instanca static
camera forms an image by integrating these light rays oveaita fxposure timé :

B(x,y) = L(xy,t)dt (5.4)

o= N
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Assume the camera is translating during exposure or-plane, and let be its displacement
path:

{f: Xy, t] = [fx(t), fy(t),t]} (5.5)

Then the rays hitting the detector are spatially shifted:

—-

B(x,y) = [ L (x+ fy (t),y+ fy (1), ) dt+n (5.6)

2

wheren is imaging noise. For example, for a static camera the iategr curve is a vertical
straight line fy(t) = fy(t) = 0 (Fig. 5.1(a)). The integration curve of a camera moving at a
constant velocity is a slanted lirfe(t) = sit, fy(t) = syt (Fig. 5.1(c)). For horizontal parabolic
motion, f(t) = at?, fy(t) =0 and for a vertical parabol&(t) = 0, f,(t) = at? (Fig. 5.1(d-e)).

We can represent the integration cufwes a 3D integration kernet:

P(xy,t) = O(x— fi(t))- Sy — fy(t)) (5.7)

whered is a Dirac delta function.

If an object motion is locally constant, we can express thegirated image as a convolution
of a sharp image at one time instance (&Y, 0)) with a point spread functioks, . The PSF
ks,, Of @ constant velocity motios,y = [s;,S,] is a sheared projection of the 3D integration
kernel g:

ks, (XY) = /tqo(x—s“t,y—syt,t)dt (5.8)

Some PSFs of different integration kernels are shown ineersd row of Fig5.1
The Fourier transforrﬂ%sx‘y of the PSFks,, is a slice from the Fourier transforg of the
integration kernelp [49, 56]:

Koey (000 0) = B0, G, S+ 5,03 (5.9)

ks, for several object motions for different integration kdsng are shown in the bottom row
of Fig. 5.1 Fig. 5.2(a) shows Fourier slices corresponding to horizontal dhjestions at
varying velocities, the case considered 49| Slices occupy a 3D double wedge. When the
motion direction changes (e.g.= s, in Fig. 5.2b)), slices occupy a rotated 3D double wedge.
In general, 2D Fourier slices corresponding to all motioreations||s,y|| < Spj lie in the
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Figure 5.2: (a) The union of horizontal motion PSF slices at all velasiti forms a 3D double
wedge. (b) A union of diagonal motion PSF slices forms a eat&D double wedge. (c) The
spectra of all 2D constant velocity PSF slices comprise ageeaf revolution.

complementary volume of an inverted double cone (Big(c)). We refer to this volume as
wedge of revolutiondefined as a set:

C = {(wowy, @)|w < Sobjlloxyll} (5.10)

To see this, note that the Fourier transform of a PSF is a sbhee (Z) ataw = sy + sywy, and
if ISyl < Sobj Stk + Sy < Sonjl|axy |-

Bounding spectral content Suppose we captutkimages of a scene and I|¢ci)H2 be the joint
power spectrunﬂc?;(wx,wy,m)uz = zf @) (e, @y, @ )||2. As mentioned earlier, our goal is to
design a set of camera motions that maximizes the joint kepaetrum|| ﬁs&y % (Eq.5.3) for all
object motiong|s,y|| < Sybj. Since PSFs of all bounded 2D linear motions occupy the wetlige
revolution (Eq.5.10), designing PSFs with high spectral power forgl} < Sy is equivalent
to maximizing the spectral content HJ;)HZ within the wedge of revolution.

We can derive an upper bound on the worst-case spectralntaftany camera motions.
The amount of photon energy collected by a camera within d fsx@osure timd is bounded.
Therefore, by Parseval’s theorem, the norm of ewsgy, slice of(; (i.e. ci)(o%,o%,m)) is
bounded 49]:

[ 19, 0,2) Pdea < T (5.1)

Every w,, y,-slice intersects the wedge of revolution for a segmentmgte 2|y, y,||- TO
maximize the worst-case spectral power, the optimal cametdd spread the captured energy
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uniformly in this intersection. Therefore, we can derivewper bound on the worst-case
spectral power by dividing the captured energy by the setjieagth:

min | @(cx, @y, ) 2 < (5.12)

2S0b || ol
Since the PSFs specﬂi'gy are slices througkﬁj, this bound also applies for the PSFs’ spectral
power:

min ks, (o) < (5.13)

2Sb || e yoll
The optimal bound Edp.12applies to any types of integration kerngtegardless of the num-
ber of shots taken during the time buddget

H 5.3.2 Orthogonal parabolic motions

We seek a motion path whose spectrum covers the wedge ofitievoland approaches the
bound in Eq.5.12 We also seek to cover the spectrum with the fewest imagesuke as
we take more images within the time budget, the delay betwabrequent shots reduces the
effective time budget, degrading the spectral performance

We could compute the optimal camera motion by inverting tbarier transform of the
bound in Eq.5.12 However, the inverse Fourier transform of this bound isaghysically
valid motion of the form in Eg5.7. To illustrate this, we invert the bound for 1D motio9]
in Fig. 5.3'. We can see that the corresponding optimal motion in théapamain is not
a realizable motion: the inverse Fourier transform is démdke spatial domain and contains
negative pixel values. If we invert the bound for 2D motion€Q.5.12 we observe the same
phenomenon in 3D: the optimal path is not a realizable motion

Our solution captures two images of a scene with two orthagparabolic motions. We
show analytically that the orthogonal parabolic motiongtoee the wedge of revolution with
the worst-case spectral power greater thah®»f the upper bound.

Camera motion Let @, @ be the 3D integration kernels of x and y parabolic cameraansti
The kernels are defined by the integration curfgs,:

f1(t) = [ax(t+ T/4)2,04], t=[-T/2..q

(5.14)
fa(t) = [0,ay(t —T/4)%t], t=1[0..T/2|

1The bound for 1D motions in the Fourier space is the slice ®fibdge of revolution on they — w plane.
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Spectral bound - 1D motions Inverse Fourier transform
(in log domain) (in log domain)

Figure 5.3: We explicitly invert the spectral bound for 1D motions tastrate that the explicit
inversion of the spectral bound in E§.12does not result in a physically realizable motion of
the form in Eg5.7. Both the spectrum and the motion (i.e. the inverse Fourarsform) are
shown in the log-domain.

At time t, the derivative of the x-parabolic camera motifit) is 2a(t — T /4), therefore
the camera essentially tracks an object moving with veldeas (t — T /4) alongx axis. Dur-
ing exposure, the x-parabolic camera track&e every moving object with velocity within
the range[—2a,T /4...28T /4]. Similarly, the y-parabolic camera covers the velocitygean
[—2ayT /4...2a,T /4]. For the reason that will be clarified below, we set

Oy =ay = 2\/.?_5)“

(5.15)

The maximal velocity of the sensor becon®s,s= v2%p j- Thatis, the velocity range covered
by these parabolas js-Ssens.-Sseng-

Fig. 5.1(i-j) show PSFs of different object motions captured by thiéhnagonal parabolic
camera. PSFs take the form of a truncated and sheared pathbbldepends on the object
speed.

Optimality As mentioned earlier, to make the blur easily invertible, want to maximize
the spectral power of the camera motion paths within the wedgevolution (Eq5.10. We
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Figure 5.4: (a) The spectrump, captured by a x-parabolic camera. (b) The spectrgn
captured by a y-parabolic camera. (c) The sum of spectrawegdtby the two orthogonal
parabolic cameras approximates the wedge of revolution.

show that the orthogonal parabolic motions capture the wefigevolution with the worst-case
spectral power greater than2® of the optimal bound in Ec.13

We first derive the joint spectral coveraﬂ;é |2 of the two orthogonal parabolic motions.

Levin et al. [49] show that a parabolic motion’s spectrum is approximatetjoable wedge.
Since a x-parabolic motiog, is a Dirac delta along thg axis, the 3D kernel spectrwﬁtl)lu2
spreads energy in a 3D double wedge and is constant alongytlais (Fig.5.4(a)). The
y-parabolic motion spreads energy in the orthogonal 3D Eowledge (Fig5.4(b)). Mathe-
matically speaking,

~ 2 T
» Wy, ~ o H(Sen -
1006, @)|* % g (Ssendo] — )

0 2%71- H —
l@2(ex @y @) 1Sad @] (Ssend|ay[| — [ |])

(5.16)

whereH (-) is a Heaviside step function.

The 2D PSF spectra are slices from the 3D double wﬁ(ﬁg|€. Fig.5.1(n-0) show the log-
spectrum of PSF@ for parabolic exposures as we sweep the object velocityxfelirectional
motions 6, = 0), the x-parabolic camera covers all spatial frequencigisowt zeros. This
agrees with the 1D optimality argument in Lewét al. [49]. However, as y-directional mo-
tion increases, the x-parabolic camera fails to captureubdldonvedge of frequencies near the
wy axis. In other words, the x-parabolic camera misses spemirdents in the presence of
a y-directional motion, and the blur inversion is unstablée y-parabolic camera, however,
covers the frequencies missed by the x-parabolic cameseeftite thesumof these two spec-
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Figure 5.5: The summed spectrum coverage of the two orthogonal pacabwitions for dif-
ferent object velocities,g. While each parabolic motion has zeros in a range of spated f
quencies (see Figh.1(n-0)), their summed spectrum does not have zeros in anyakfrat
quencies. The log-spectrum plots in this figure are norredlito the same scale as that of the
log-spectrum plots in Figs.1(k-0).

tra (Fig. 5.5 does not have any zeros in any spatial frequencies. Therelby taking two
orthogonal parabolic exposures, we can reliably inverbthefor all 2D object motions.

Fig. 5.4(c) visualizes the joint spectrum covered by the orthogpaahbolic motions, sug-
gesting that the sum of orthogonal 3D wedges is an approximaf the wedge of revolution.
In fact, the sum of double wedges subsumes the wedge of tmlifi the maximal sensor

speedSsensis set tov/2Sp).

Claim 3. Let Sepsbe the maximum sensor speed of the parabolic camera, gg)do8 the
maximum object speed. lfHs> v2Sp;, the joint power spectrunﬁ(?)H2 of an orthogonal
parabolic camera subsumes the wedge of revolution. WkgRp=Sv/2%p j» the worst-case
spectral power of the orthogonal parabolic camera, at arggfrency, is at Ieasi\l—@ of the
optimal bound.

Proof. The power spectrum of each parabolic camera is given irbEl@  The joint power
spectrum of the orthogonal parabolic camera is non-zetweiset{ (o, w,, w )| w < SsengMax(||wy||, [|ay||)}-
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wyo wy

Figure 5.6: The joint spectrum of orthogonal parabolic motions substithe wedge of revo-

If (e, wy, @) lies in the wedge of revolution, then < Sypjl|awxy||. Sincel|wy||? < 2max||ax||?, |y |?),

w < Sopjll ooyl
< V2Spmax(||axl], |layl])
< Sengmax(||ax|l, [awyl) (5.17)

In other words, the joint spectrum of the orthogonal panabmmeras subsumes the wedge of
revolution. This is illustrated in Figh.6.
The spectral power of the joint spectrum(ai, w,, « ) is at least the minimum of the 3D

. T T
L 5.18
min <4&en4mu 4ssen4mu> (5.18)

wedge spectra:

Since||ayy|| > max(||a], [|wyl]),

min( T + T ) > T
ASsend| k|| 4Ssend| ||/ T 4Ssend|wkyl|
T

AV 25|y

(5.19)

Therefore, the worst-case spectral power of the orthogosralbolic camera is at least®® of
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the upper boundf]

Fig. 5.5 shows the log spectrum of the orthogonal parabolic cam&m®s present in one
camera are compensated by its orthogonal counterpartlfobjaict motions. At each veloc-
ity sy, information for some spatial frequencies is better presthan others, but Clai®
guarantees that at each frequency, the spectral conterliemsa2 1> of the optimal bound.

Discussions The orthogonal parabolic camera deblurs diagonally mowinjgcts better than
objects moving along the camera motion axis because x-plicadnd y-parabolic shots both
capture information from diagonally moving objects. Ndtattif we know before the image
capture that object motions are primarily x-directionade@ould increase the exposure length
of the x parabolic shot to improve the deblurring perforneaimexpectation.

The spectral bound in E§.19assumes that the image information at each spatial freguenc
is independent. Therefore, our bound holds only if the rasitn method treats each spatial
frequency as independent. One such restoration methock i8Vvibiner filter (introduced in
Eq. 5.30 that imposes a Gaussian prior on image gradients. In & sgitse, the use of a
non-linear image reconstruction algorithm would requirdiféerent analysis method, which
takes into account correlations between different spagluencies. However, our framework
still provides a concrete construction for comparing défé camera designs, which we present
below.

M 5.3.3 Discussion of other cameras

We compare the performance of the orthogonal parabolic @teethose of other designs
available in literature.

A static camera The integration kernel of a static camerag@&(t) = [0,0], for t €
[—-T/2..T/2] (Fig. 5.1(a)). Since the integration curve does not vary alongxloe y axis,
the power spectrum is constant alasagand w:

1¢° (o, wy, @) |2 = T2sin(w T) (5.20)

The Fourier transform of the PSF is a slice of the 3D spectgyrand is a sinc whose width
; swistatic||2 _ T2 ; ;
depends on the object velocifikS>"(|* =T sin((scawx + sywy)T). For fast object motions
this sinc highly attenuates high frequencies. In fact, & tbject motion is fast it is better to
reduce the exposure time (this increases the width of tleg despite reducing the total amount
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of energy collected.

A flutter shutter camera In a flutter shutter camer&3], the integration curve of a static
camera is temporally modulated (Fi1(b)). Therefore, the spectrum of the integration curve
@'t s constant alongw, w, and is modulated alongy:

~flutter

o 12

(@, oy, @))% = [M(a)]? (5.21)

wheren is the Fourier transform of the shutter code. This code cadesgned to be more
broadband than the sinc function in a static camera. How#werspectrum is constant along
wy, wy. Therefore, the worst-case spectral performance is balasiéollows:

min k" (@, 6y) > = T /(2%0/Q) (5.22)

for all (wy, wy) [49], whereQ is the spatial bandwidth of the camera. As a result, the flutte
shutter poorly captures the low frequency image contents.

A linearly moving camera If the camera moves at a constant velocity (Bid.third column),
the integration curve is a slanted straight Il (t) = [sit,5t,t] (Fig. 5.1(c)). By linearly
moving the camera, we can track the object that moves at theregs speed, but we still suffer
from a sinc fall-off for objects whose velocities are ditfat from the camera’s velocity.

A parabolic camera with a single exposure Blur kernels from a single-exposure parabolic
camera are invariant to 1D constant-velocity motions, ame shown to approach the optimal
bound for a set of 1D linear motions with bounded spe&d].[ A single parabolic camera,
however, is neither motion invariant nor optimal for 2D noots. When an object moves in a
direction orthogonal to the camera movement axis (i.e. argimlic camera imaging an object
moving in they direction), the spectral coverage along the orthogonajuieacies (i.e.wy)

is poor. We have shown in Fi$.1 (n-0) several Fourier slices in which the captured spectra
contain zeros.

A camera with parametric motions We design other cameras with parametric motions and
analyze their performance. Although we cannot analytiaddirive the spectral performance of
each camera, we can compare each design numerically. We defincameras: (i) a camera
with a raised-cosine mation, (ii) a camera with a circulatiorowith a constant angular speed,
(iif) a camera with a circular motion with a constant angwaceleration, and (iv) a camera
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motion camera

Figure 5.7: We numerically analyze the spectral performance of fiverdifit cameras: (a) a
camera with a parabolic motion, (b) a camera with a raise@dine motion, (c) a camera with
a circular motion with a constant angular speed, (d) a camwith a circular motion with a
constant angular acceleration, and (e) a camera with a dpmation. This figure shows that
even a two-image solution of cameras (b-e) cannot captuifesgiuencies without zeros for all
object motions, as a two-image solution of a parabolic can{a) does.

with a spiral motion. Each camera moves in the defined cametagpduring the exposure
€[-T/2.7/2].
(i) A camera with a raised-cosine motion: The parametric motion for a raised-cosine
motion is:

{o: xy,t] =[a(1+coqwt)),0,t]} (5.23)
wherew = 1/(T/2) anda = Sypj/w. This camera moves in 1D and covers each velocity
twice as opposed to once as in a parabolic camera. Fih) shows the blur kernel spectra
for different object motions. The zero pattern is quite amio that of a parabolic camera in
Fig. 5.7(a), but zeros also appear in frequencies that are well edvey a parabolic camera.
This observation suggests that even a two-image solutica raised-cosine camera cannot
cover all frequencies without zeros, as a pair of orthodgsrabving parabolic camera does.

(i) A camera with a circular motion with a constant angular speed: We can define the
motion of this camera as:

{@:[xy,t] =[acoqwt),asin(wt),t]} (5.24)

wherew = 11/(T /2) anda = Sppj/(2w). The camera sensor moves along a circular path at a
predetermined speety;/2), therefore the camera essentially tracks each objedomeaith

this particular speed in all possible orientations. Howgtles camera fails to capture motions
with other speeds, and consequently generates many zelohs ikernel spectra, as shown in
Fig.5.7(c).
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(iif) A camera with a circular motion with a constant angular acceleration: We can
modify the above camera to track each object speed once,raifferent orientations. The
idea is to move the camera circularly but at a constant angalzeleration:

{o:[xyt] = [acosw(t+T/2)%),asin(w(t+T/2)?),t]} (5.25)

where w = 271/(T)? and o = Sypj/(2wT). While this camera performs well for many ob-
ject velocities, the blur spectra still contain many zerae tb phase coupling, as shown in
Fig.5.7(d).

(iv) A camera with a spiral motion:

{@:[xy,t] =[atcoqwt),atsin(wt),t]} (5.26)

where w = krt/(T/2) anda = Spj/+/(1+ w?T2/4). k determines the number of “spirals”
during exposure. Here, we det= 3. This camera tracks each speed once during exposure, but
not in all directions. Fig5.7(e) shows that blur kernels for different object velocitgestain
substantial amount of zeros.

Two shots Taking two images with cameras defined above can simplifkéneel estimation
task, but it does not substantially enhance the spectralrage of these cameras. Optimizing
the exposure lengths of each shgjt find in the case of a flutter shutter camera also optimizing
the random codes in each shot, do not eliminate their fundehémitations: their power
spectra are constant along,, and hence they spend the energy budget outside the wedge
of revolution. Previous two-image solutions to deblurrisgich as 13, 15, 64, 90, fall into

the category of taking two images with a static or a linearlyving camera. These methods
can correctly find the motion kernels, but the image recanitn quality is limited since the
spectrum coverage is low.

Synthetic simulation We compare the deblurring performance of (i) a pair of steimeras,

(ii) a pair of flutter shutter cameras, (iii) a single parabalamera and (iv) an orthogonal
parabolic camera through simulations (Bd). For all cameras, we fix the total exposure time
T and assume that the object motion is known. The orthogomabpéc camera is setup to
deblur objects moving at speed less tlsggy. To give previous solutions the favor of doubt, we
optimized their parameters feachmotion independently: for a pair of static camera, we use
the optimal split of the exposure timeinto two shots; for a pair of flutter shutter camera, we
use the optimal split of the exposure tiMieandthe optimal code combinations. In a realistic



110 CHAPTER 5. ORTHOGONAL PARABOLIC EXPOSURES FOR MOTION DEBLURRING

Object motion . . Flutter shutter . Orthogonal parabolic
[Sx, Syl/Sobj  Static camera pair camera pair x-parabolic camera camera pair
sy Bl | 8 Byl | W
- nmere mmere | mUP
;stae | sa@_‘
[0; 0] 20.00 dB 34.96 dB 28.73 dB
£ f ] |
‘r mn w i :rv ¢ nnue
E Sk, E IE se, gm
(0, 0:25] 26.35dB 26.69 dB 26.31dB 27.66 dB
) “> . [ © " “> 1
' IH & HLRL N LR LY 1cre
SE ey Sk
L0706, 0701 21.70 dB 2231dB 2234dB 35.16 0B

Figure 5.8: Synthetic visualizations of the reconstruction qualitye ®@gtimized the exposure
lengths of each camera. First column: The object motionrduthe exposure. The green disc
denotes the velocity range covered by the orthogonal pdi@lbamera, and the red arrow
denotes the object velocity. Other columns show imagesndelr@d using the Wiener filter
(Eq. 5.30. The orthogonal parabolic camera outperforms the othetimjzed solutions in
deblurring the moving object.

scenario we cannot optimize the split of the exposure finmor flutter-shutter codes because
the object motion is not known a priori.

We render images of a moving object seen by these camerasmean Gaussian noise
with standard deviatiom = 0.01 is added to the rendered blurry images. We deblur redder
images using the Wiener deconvolution and compare the sétmtion performance. Fi.8
shows deconvolution results and their peak signal-toen@to (PSNR). Each row corresponds
to a different object velocity. When the object is staticaér pf static camera restores visually
the most pleasing deconvolution result. This is intuitivehtisfying since the static camera is
optimized for static object motions. The image quality frarflutter shutter camera is slightly
worse than that of a static camera due to the loss of light. nkaring objects, the orthog-
onal parabolic camera restores visually the most pleasaopri/olution results. While the
orthogonal parabolic camera deblurs moving objects bistser other cameras, its performance
degrades as the object moves faster. However, the worstspestral performance across all
velocitiess,y of interest is at least 2> of the optimal bound.

We put the synthetic experiment in the context of previows kkmoval techniques. The
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performance of previous two-image motion deblurring téghes, such asl, 15, 64, 90] can
be approximated by the deconvolution result of the statmera pair in Fig.5.8 Even if
these solutions correctly estimate the motion, inverthmy lilur kernel is still hard since high
frequencies are attenuated. Blind motion deblurring gmhgt such asdl, 74], attempt to
resolve an even harder problem, since they estimate thddioel from a single input image.

B 5.4 Image reconstruction

We review a Bayesian method for image deconvolution andekegstimation, and extend the
result to accomodate two input images. We derive a closad fmlution to estimate blur
kernels from input images, and present an equivalent reptasson to estimate motion locally.
Also, we experimentally show that an image reconstructroor €lue to kernel misclassification
is small.

H 5.4.1 Non-blind deconvolution

A non-blind deconvolution algorithm recovers a blur-fresagel from a blurry imageB! and
an estimated blur kern&l. LetB,k beB = [B%,B?|,k = [k}, k?]. We recover the blur-free image
by maximizing the posterior probability. Using Bayes rule:

= argmavp(1(B,k)
|

0 argmaxp(l, BJk)
|

(5.27)
2 o
= argmaxp(1) [ p(B' K, 1)
el
where we can define each term as follows:

0gp(BIK ) = ~ o[BI K@ IP G (5.28)

logp(l) = =B (p(I9i())+pgy))+Cz (5.29)

|

n?is the imaging noise variancg,= 0.002 controls the variance of the gradient profilgC,

are constantgy;, gy, arex,y directional gradient operators at pixehndp(z) = z% is a robust
norm. Whena = 2, we impose a Gaussian prior on the image gradients, and wked, we
impose a sparse prior.
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Eq.5.27is essentially a joint deconvolution model, stating thatseek an imagé that fits
the convolution constraints of boB# andB2. In other words, the deconvolved imakf,]should
be able to synthesize the input imad&'sand B? using the pair of kernels that reconstructed
I. Although not presented in Bayesian terms, Rav-Acha anegFiéd] essentially deblur two
input images by maximizing the likelihood term (E528, and Cheret al. [13] augment it
with the prior term Eq5.29 Using a sparse prior leads to visually pleasing resulth arisp
edges, but it is worth considering a Gaussian prior becaesgaw derive closed form solutions.

We can efficiently solve Edh.27using the Wiener filter (i.e. a Gaussian image priG§]{

(yy) = k*(wxy) (ﬁ&y)

- . (5.30)
,,—12 k()12 + 0-2(axy)

where* is a complex conjugate operatcn?(a&,y) is the variance of the image prior in the
frequency domaino—2(ayy) = B(||Gx|? + ||Gy||?) whereGy, G, are the Fourier transform of
derivative filters. We use the Wiener filter to restore imafgpeskernel estimation, but use a
sparse deconvolution to restore the final blur-free image.

We can explicitly compute the expected reconstructionrarsing a Gaussian image prior
by taking expectation over the space of natural images aedimage noise:

rIZ
Ein [ —1 5.31
[T ZZ & 3 Ik, (00 )12+ n20-2(w @) &3

Eqg.5.31highlights that the image reconstruction error decrease®tonically as the summed
power spectruny ; ||Réx,y(wx, wy)||? increases. This justifies our PSF design goal in5E8,.

M 5.4.2 Kernel estimation

A critical step in motion deblurring is estimating the catrblur kernelk. For that we seek

k= argmaxp(k|B) = argmap(B[k) p(k) (5.32)
k k

where p(E) is a prior on blur kernels (which we assume uniform). We dgethe likelihood
p(E?]E) by marginalizing over all latent imagés

(5.33)
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wherep(B, _) is defined in Eq5.285.29 If the prior p(l) is Gaussianp(BT\E) is also Gaus-

sian. If p(1) ~ N(0,02), we can evaluate(B|k) explicitly in the Fourier domain:

log p( I§_

1k2* Bz*lez—H) o (HélH2+|“§2”2) (5.34)
N Z [BUE+ |87+ n7o 2

We have omitted the dependencedayy for clarity. When there is only one observed image (i.e.
k2=0,B2= 0), Eqg.5.34reduces to a zero-frequency test which favors kernels witlies zero
patterns as that of the blurry imaBé[48]. When there are two observed images, the difference
term || Bk?* — B2*k!||2 supplements the zero frequency test: this term favors aop&iernels
that satisfies the commutative property of convolution. sTiptiase term drastically improves
the reliability of the kernel estimation measure. While Rasha and Pelegd4], Chenet

al. [13] and Agrawalet al.[3] introduce kernel estimation methods that explicitly argtate the
commutative property of convolution, what we introduceehisra Bayesian kernel estimation
method that balances the contribution of the commutatigpgnty of convolution and the image
prior.

We can rewrite logp( A_|A_) in an equivalent representation that is more attractivecéon-
putational reasons. This involves solving for the lateragei using Eq.5.27, and expressing
p(B|k) as follows?:

log p(BJk) = log (i, BK) + ¥+ Cq (5.35)

where® = 5, logW¥,,, and¥,, = % 5 [l |2+ 0,,2is the variance op(l§_w|R_w). This variance
term plays a critical role in distinguishing E5.35from a standard MAP scong(l,k|B) since
Eqg. 5.35accounts for the overall probability volume around the madeé not only the mode
itself [50].

Qualitatively, logp(, BT\E) penalizes kernel paidgthat restore an imagewhich would not
fit the convolution constraints in E§.28 To satisfy the convolution constraints, the kernel
pair k should “undo” the blur present in input imagBsand respect the spatial shift between
input images (i.e. satisfy the commutative property of odumion.) Fig.5.9shows a synthetic
example. We blur a sharp image with a pair of blur kernels,dewbnvolve the blurred images
using the correct/incorrect kernel pair. When we use arriecbokernel pair, we observe ghost-

2This is a Laplace approximation of angBT\R_), which is equivalent to Iog(l_5:|R_) since logp(B|k) is a Gaussian
distribution.
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Figure 5.9: An image is synthetically blurred, and is deconvolved usliregcorrect blur kernel
pair and an incorrect blur kernel pair. An incorrect blur kel pair has a spatial shift incom-
patible with input images, leading to ghosting and ringingthe restored image, whereas the
correct kernel pair restores a sharp, artifact free image.

ing artifacts due to an incompatible spatial shift. Therefdhis image is unable to regenerate
the input images, and lqy, B_|E) penalizes that. On the other hand, ghosting artifacts are no
visible when we use the correct kernel to deblur the inpugiesa

Most PSF estimation algorithm81, 74] are designed to estimate blur kernels that are uni-
form across the image, and are not well suited to subjectomdsiur because these algorithms
search over the full space of possible motions. In our se@nalbject motions are assumed to
be constant velocity. Since constant velocity motions aaseponly a small subset of general
motions, we can constrain the motion search space (i.e. ltinéérnel search space) to con-
stant velocity motions. This subsequently reduces thegkestimation error. In this work, we
estimatek by evaluating the log likelihood Ed.350n a set of PSF pairs that correspond to
discretized 2D constant velocity motions, and by choodivegpair with the highest log likeli-
hood.

M 5.4.3 Local kernel estimation

If there are multiple motions in the scene, we need to locadiymate the motion. Ldt be
images generated by deconvolviﬁa_gwith the blur kernel paiﬂzs, and Ietl§é = ké ® I~s be a



Sec. 5.4. Image reconstruction 115

% Variable definitions

B = Blurred input images.

S = A set of blur kernel candidates.
I = A pixel index.

f(B,k) = Eq.5.36

C <= 0.15% penalty for single-image explanations
B; < 15x 15 window around the pixelin B.
% Compute the log-likelihood
for every kernel candidatec S, do
if =0then
costk) < f(B;j,k) +C % A single-image explanation
else o
costk) < f(B;,k)
end if
end for
% The kernel estimate maximizes the log-likelihood
Kernel estimate at4 argmin costk)

Algorithm 5: Blur kernel estimation at pixel i

re-convolved image. The log-likelihoddg(p(B|ks)) at pixeli is:

S 1 2 o
0 p(BIi) ) ~ 57 3 B1(0) — BL()
2’72;1 (5.36)
PG4 (%)~ PGy () + 1

whereN = 15x 15 is the size of the local window centered around the pixel

Handling motion boundaries Because we take two images sequentially, there are motion
boundaries that are visible in one image but not in the otlresuch regions the observation
model (Eq5.28 is inconsistent and the joint deconvolution leads to Visu@facts. Therefore,

we use an image deblurred using only one of the two input imagdill in motion bound-
aries. We can automatically detect where to use a singlgéraaplanation by also considering
kernel candidates that consist of a single image obsenvéita B = 0,k?> = 0). We add an ad-
ditional fixed penalty C (set to 0.15 for all experiments gdetined through cross validation) to
those kernel candidates; otherwise, the log-likelihoog. 8236 always favors a single image
solution. Algorithm5 provides a pseudocode for blur kernel estimation at pixel
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% Variable definitions

K = the kernel estimate gth scale.j indexes the scale 1 to 3, from coarse to fine.
B! = Input image pyramids &t" scale.

S = 2 x 4500/4? kernel candidates at the coarsest scale.

Generate a 3-level image pyramid down-sampled in octaves.
% Estimate the blur at the coarsest scale
for every pixeli do _
ki(i) < EstimateBlurPixeB!, S, i)
end for
% Regularize the estimate using MRF
ki < MRFRegularizel;)
% Loop over scales
for j=2:3do
for every pixeli do
% Velocity candidate reduction
Si(i) <= 9 velocity neighbors okj_1(i)
ki(i) < EstimateBlurPixeB!, S (i),i)
end for
k; <= MRFRegularizek;)
end for

Algorithm 6: Multi-scale blur estimation

Multi-scale blur kernel estimation The quality of restored images depends on how finely
we sample the space of 2D constant velocity motions. Withcoarent camera setup, we
discretize the space into 4500 samples. We quantize the spab that a step in the velocity
space results in roughly a one-pixel blur at the maximumathjelocity. Searching over 4500
velocity samples to find the correct kernel pair at the fulage resolution is computationally
expensive. We resort to a coarse-to-fine strategy to métifed computational burden. We
first down-sample the input imag@sby a factor of 4 in both width and height to reduce the
number of pixels and also the motion search space: blur kefrem two adjacent velocity
samples are essentially identical at a coarser resoludittiine coarsest scale, we search through
2 x 4500/ (4?) velocity samples (single-image explanations incur théofaof 2). We then
propagate the estimated motion to a finer resolution to réfie@stimates.

At each spatial scale, we regularize the log-likelihood ¢n &36using a Markov random
field (MRF). Algorithm6 provides a pseudocode for our multi-scale kernel estimatiategy.
We use the regularized kernel map to reconstruct the blerifmagel. First, we deconvolve
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Figure 5.10: This figure evaluates the amount of deconvolution error rioutied by the local
kernel estimation algorithm. When the local window is lartgean 15 x 15 pixels, the decon-
volution error from kernel estimation negligible.

input imagesBTusing all blur kernelskzs&y that appear in the estimated kernel map. Given the
set of deconvolved imagéds,,, we reconstruct the blur free image frdig, by selecting, at
each pixel, the pixel value from the image deblurred usimgettimated blur kernel. We blend
different motion layers using a Poisson blending meth&l] fo reduce artifacts at abutting
motion layers.

Quantifying the kernel estimation error Fig. 5.10quantifies the image reconstruction error
introduced by kernel estimation. We blur a sharp naturabienasing a blur kernel pair, and we
deblur the rendered images using the correct kernel pagn We compute the base-line mean-
squared error (MSE). The mean-squared error is not zerabeage lose information through
the blurry observation process, thus the restored imagetiexactly the same as the original
image. We also deblur the rendered images using kernelbylestimated by maximizing the
log-likelihood in Eq.5.36 and compute its MSE. For this experiment, we compute the MSE
as we increase the window size, shown as a green curve irbHig. On the same plot, we
show the base-line MSE (a dotted blue curve). The base-li8& Mindependenbf the kernel
estimation error, therefore the difference between thergrirve and the dotted blue curve
is the deconvolution error from kernel misidentification.e\&bserve that the additional error
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Figure 5.11: (a) A diagram of our prototype. (b) A photograph of the actuaiand the camera
Sensor.

from kernel estimation is negligible when the window sizgrisater than 1% 15. This result
suggests that it is reasonable to focus on finding a cameriamibiat maximizes the spectral
power of blur kernels.

B 5.5 Experiments

M 5.5.1 Prototype camera

We built a prototype camera consisting of a sensor, two matiages and their controllers.
We mounted a light-weight camera sensor (Point Grey Relsddea 2 Camera) on two mo-
tion stages (Physik Instrumente M-663 pair), where eachnoave the camera sensor along
orthogonal axes (See Fi§.11(a)). In each image capture, one of the motion stages unekergo
parabolic motion, approximated by 19 segments of consklotity due to control constraints.
In practice, we could replace the motion stages with an inséajglization hardware. The cam-
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Figure 5.12: This figure shows the pipeline of our system. We take two snag@g the
orthogonal parabolic camera, and we locally estimate nmotibhe estimated motion is shown
with the color coding scheme in the inset, and the detecteatbmboundaries are represented
with black bounding boxes. We deblur the captured imageysiirg the estimated motion map.
For reference, we also show the image taken with a syncledrstatic camera with a 500ms
exposure.

era lens is affixed to the camera lid, and does not move dukpgseire. The total exposure
time for taking two images is 500ms: 200ms for each imageh witlelay of 100ms between
exposures. 100ms delay is incurred by switching the cofrivah one motion stage to another,
and can be reduced by using an improved hardware.

We rendered PSFs of our imaging system for different objeeed using a parameterized
actuator motion model, and used them for deconvolution. alidated the accuracy of rendered
PSFs by physically calibrating blur kernels at several dbjelocities and by comparing them
to rendered kernels. For calibration, we place a high-feegu calibration pattern on a motion
rail, take a sharp image of the static calibration pattetin wistatic camera, and take an image
of the moving pattern with a camera undergoing a parabolitamoWe solve for the kerneéd

that minimizes|B — k® 1|2, wherel is the sharp image of the static calibration pattern, Bnd

is the image of the moving pattern taken with a parabolic came

M 5.5.2 Results

Fig. 5.12illustrates the deblurring pipeline. First, we capture tw@mges successively while
the sensor undergoes parabolic motions in two orthogonattitins. From the two images, we
locally estimate the motion and restore the blur-free imasieg blur kernels that correspond to
the estimated motion. Automatically detected motion beuies are shown by black bounding
boxes. Our kernel estimation algorithm sometimes misiflassnotions in un-textured regions,
but this does not lead to visual artifacts. For reference hgsvsan image taken with a static
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Figure 5.13: We compare the deblurring performance of a two-shot stadimera and an
orthogonal parabolic camera. We optimize the split of thposxire for the static camera,
assuming that we know the object motion: 40ms for the first ahd 360ms for the second
shot. The blur kernel is estimated manually to compare hestimount of information captured
by these cameras. The static camera reconstructs statectsbjvell, but at the expense of a
degraded rendition of the moving object, whereas the ohagparabolic camera restores a
reasonable rendition of both the static and moving parts.

camera with 500ms exposure, synchronized to the first stibeairthogonal parabolic camera.
This reference image reveals the object motion during exjgos

In Fig. 5.13 we compare the deconvolution performance of a two-shéitstamera and
an orthogonal parabolic camera. A toy train is moving at astaomt velocity, assumed known
for this comparison. For the static camera, we optimize phiea the exposure for this known
train motion: 40ms for the first shot, and 360ms for the secmt. Using the static camera,
we can reliably reconstruct the static part of the sceneeatfpense of degraded renditions
of moving parts. On the other hand, our camera enables leliabonstructions of both static
and moving parts, although static regions are slightly ndegraded compared to static regions
restored using the static camera. An orthogonal parabahceta spreads the energy budget
over all velocities of interest, whereas a static cameraeoinates the energy budget for the
static motion.

We present more deblurring results on human motions in3=igl using parabolic expo-
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Image from a static camera

Deblurred image

Figure 5.14: We show the deblurring performance of the orthogonal palialmamera. Images
from a static camera with 500ms exposure are shown for reéereArrows on reference images
show the direction and magnitude of motion.

sure to capture motions in non-horizontal directidngmages from the static camera (500ms
exposure) reveal the motions during exposure, shown by medve. We can observe some
artifacts at motion boundaries at which the joint convalmtmodel does not hold. In general,
however, the reconstructions are visually pleasing. Inthivel column of Fig.5.14 we show
how an orthogonal parabolic camera handles a perspectitiermiVhile a perspective motion
does not conform to our assumption on object motions, ouesystill recovers a reasonably
sharp image.

Our image reconstruction algorithm treats an occludedregs a motion boundary. When
a moving object is seen only in one of the two images due tousamh, as in Fig5.15 an
image deblurred using only one of the input images is used to the occluded region.

3The camera bodly is tilted for this purpose.
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Figure 5.15: Our image reconstruction algorithm handles occlusion liames in a manner
similar to motion boundaries. In the occluded region, angmadeblurred using only one of the
two input images is used.

M 5.5.3 Discussion

Kernel estimation takes 30 min - 1 hour on a single, serialhim&c the running time depends
on the size of the image. A by-product of kernel estimaticelidur free image deblurred using
the Wiener filter. The running time of the sparse deconwotuglgorithm is roughly 6 hours.
We assume that objects move at a constant velocity withiregp@sure time, which is
a limitation shared by most previous work that deals witheobjmotion f7,49]. Camera
shake, which typically exhibits complex kernels, needsedandled separately. Our camera
design captures image information almost optimally, budaés not provide guarantees for
kernel estimation performance. While taking two imagedaiely helps kernel estimation,
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designing a sensor motion that optimizes both kernel ebmand information capture is an
open problem. Our image reconstruction takes into accagitisions by allowing some pixels
to be reconstructed from a single images, but a full treatmoéocclusion for deconvolution

remains an open challenge.

B 5.6 Conclusion

This chapter presented a two-exposure solution to remasimgtant velocity object motion
blur. We showed that the union of PSFs corresponding to Z&atimotions occupy a wedge of
revolution in the Fourier space, and that the spectral obatehe orthogonal parabolic camera
approaches the optimal bound up to a multiplicative constéthin the wedge of revolution.
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Chapter 6

Conclusions and future work

HIS thesis investigated new ideas to address to a long-stapdatdem in photography:
T motion blur removal. Motion blur removal is challenging base many blur — image
pairs can explain the blurry photograph and we need to pielctiirect pair from them. The
challenge is aggravated since the blur can be spatiallpviadepending on the relative motion
between the camera and the scene.

This thesis proposed both hardware and software solutioaddress a few aspects of these
challenges. Chaptett introduced the idea of analyzing blurred edge profiles foir Bernel
estimation. We showed that (i) it is possible to estimate k&rnel projections by analyzing
blurred edge profiles and that (ii) we can reconstruct a kdunéd from these projections using
the inverse Radon transform. This method is conceptuathplei and computationally attrac-
tive, but is applicable only to images with many edges inedléht orientations. To address this
concern, we also proposed an alternative technique thegratties kernel projection constraints
in a MAP blur kernel estimation framework. We experimemtalhowed that this technique is
stable even for images without many isolated edges in difteorientations.

Even if we could perfectly estimate the blur kernel, blur osail is still challenging because
a blur attenuates high frequency information about theimaigmage. To hallucinate the lost
information, a sparse gradient profile of natural imagesh®es extensively exploited as an
image prior. We showed in Chapt&rhowever, that a sparse gradient prior is not a good model
for textures. Our result showed that we should adapt the énpeigr to local textures. While
this technique improves the quality of restored imagesored textures were not as rich as the
original texture. To address this issue, we developed a mage restoration technique called
iterative distribution reweighting (IDR) (in Chaptd). IDR matches the gradient distribution
of restored images to their reference distribution. We grpentally demonstrated that IDR
restores visually more pleasing images compared to MABna#&n methods.

125
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Chapter5 addressed subject motion blur. Removing subject motion islehallenging
because the blur is spatially variant. However, we can sfynfile problem by assuming that
the subject is moving at a constant velodibgally. This assumption not only simplified the
kernel estimation problem, but also allowed us to modify ithaging system to reduce the
image information loss due to blur.

There are two concrete ways to extend ideas presented ihdsis. The following sections
explore these ideas in detalil.

B 6.1 Blur kernel estimation from blurred line profiles

In Chapter2, we showed that we can recover a blur kernel by analyzingdduedge profiles.
One of the assumptions is that an image consists of isolaégdesiges oriented in different
directions, and this assumption limits the algorithm’s leggility. In fact, even piecewise
smooth logos sometimes have thin bands at boundaries, gnalkimalgorithm inappropriate.

We would like to extend our method to incorporate blurree lgnofiles as well as blurred
edge profiles. Because there are generally more lines tkaresiges, we foresee that using
information from lines would improve the kernel estimateccuracy and stability.

There are two ways to incorporate blurred line profiles. Th& fnethod models a line
profile as a box filter of unknown width. If the blur kernel isdwin, we can estimate the line
widths; if the line widths are known, we can estimate the leimel from the blurred line
profiles using a modified inverse Radon transform (see6H). Therefore, we iteratively try
to estimate the line width and the blur kernel from blurreg lprofiles, assuming that one of
the two is known in each iteration. The second method is meneigl: we assume that a line
profile is a more general signal. We attempt to recover battbthr kernel and theeblurred
line profiles from blurry line profiles. We explain both ideagletail.

H 6.1.1 Modeling lines as a box filter

A line of finite width z parallel to they axis can be representéd(x,y) = S(x) — S(x— z), where
S(x) is a step function along theaxis. L*(X,y) is equivalent to a convolution of an ideal line
o(x) with a box filter of widthz. A step edge is a special case of a line wheteco.

We can show that a blurred profile bf is a projection of a blur kernddlurred by a box
filter of width z. To show this, we note that a blurred edge profile is an intexfra blur kernel
projection:
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Be (P, py) = / ot (6.1)

whereg(p) is a blur kernel projection along orientatiéhandp = ,/ 2+ p2(these variables
are defined more rigorously in Chap®r SincelL? is a difference between edges separated by
z and since these operations are linear, the blurred proféeiog of widthz along orientation
Ois: o

Xop) = | (@)~ At —2)ar 62

We can rewrite Eg6.2in a different form:

%500 = [* { [ dbt@a-0)- 8-z et por 63)

—00

Now, by changing the order of integration,

xio)= [ (@) { [ o)~ sir-z-ayar}
= [ a(@){Sp-0)-Sp-2- 0} 6.4)
= gh(p) @ (S(p) —Sp—2))

Therefore, a blurred profile df* in orientation® is a blur kernel projectiorqo'e‘(p) convolved
with a box filter of widthz

This finding implies that if we know the width of the line, werncase the blurred line
profiles for kernel estimation. To do so, we just need to féadehe likelihood termp(B|K) in
the posterior probability(k|B) O p(B|k)p(k). In Sec.2.2.2 we definedp(B|Kk) as follows:

p(Blk) = |'lp @5 k)

: rl{exp< I ZnF;ean)}

whereRy is a projection operator alorj. We redefine this likelihood in terms of blurred line

(6.5)

profilesx:



128 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

N
p(Blk) = |] P(Xa k)

N
= |] P(Xalk z)p(2) (6.6)

N _ . 2
: u{exp<_ W R ) } o

whereW(z) is a convolution matrix that blurs the kernel projection bg width of the line

z. Because’s are unknown, we also need to inferduring kernel estimationz’s have a
structural regularity: edges from the same line are likelhave the same width. This prior
knowledge can be represented as a smoothnessggaprGiven this model, we can either per-
form (i) an alternating maximization with respectktandzor (ii) an Expectation-Maximization
by treating line widthg as a hidden variable.

H 6.1.2 Recovering both the line profiles as well as the blur kernel from the

blurred line profiles

The idea in the previous section is conceptually simple,idbuwstill restrictive since it makes
a strong assumption that line profiles are box filters. Linay mave complex structures that
cannot be adequately represented using a box-filter manl@tesvould like to eliminate such
assumptions on line profiles. To do so, we attempt to recowtr lne profilesL;’s as well
as the blur kernek from blurred line profiles(g’s extracted from the blurred image. In other
words, we want to recovdrandL; that maximize the following probability:

N N
|] p(Li,KiXa) = |1 P(Xa[Li,K)p(Li) (k) (6.7)

We can model the likelihood term( xg |Li, k) as follows:

(6.8)

p(XalLi k) O exp<— X _5‘9'“-@‘()\\2)

2:75

wheresg is a slicing operator orthogonal to orientatién To learn the line priop(L;), we
can sample 1D slices of lines from natural images and iny&tgtistructural regularities. Since
analyzing 1-dimensional structures should be easier thalyzang 2-dimensional images, this
should be a feasible task. Given these models, we can maxithe posterior probability
|‘|i'\':l p(Li,Kk|xa ) with respect tdk andL;’s to recover both the blur kernkland the line profiles
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L;.

B 6.2 Blur kernel estimation using phase information

While Chapter2 introduced a computationally attractive kernel estinratoethod, another
way to reduce the computational complexity is to developosed form solution to kernel
estimation. Leviret al.[48] derive a closed form solution for kernel estimation by nmaizing
the posterior probabilityp(k|B) that assumes a Gaussian image pp@r) ~ N(0,02) and a
uniform prior on blur kernels. Leviet al. [48,50] show thatp(k|B) ~ N(0,Ka?KT 4 n?l),
whereK is a convolution matrix ok andl is an identity matrix. Therefore, we can find the blur
kernel estimate by minimizing the log-posterior as follows

k=argminB" (Ka’KT +n2)~1B (6.9)
K

whereB is a rasterized version & We can rewrite this expression in the Fourier domain:

~ 3 2
() — argrin—— B0

k 6.10
 lIk(axy)l2o(axy)l2+n? (6.10)

This kernel estimation strategy is simple and enables d it@pr kernel estimation.

One drawback of Ec6.10is that it ignores the phase informatids0]. It's well known that
a Gaussian prior cannot disambiguate a sidrig) from its time-inverted versiori (—t). The
importance of phase has been recognized early in the signeggsing communitye0]. Also,
in Sec.5.4.2 we have observed how phase information from two input iredgdps kernel
estimation. We expect that integrating phase informatipnding a non-Gaussian image prior
would improve the kernel estimation performance.

We foresee two directions to incorporate the phase infaomat

e Using higher-order spectra

Higher-order spectra (HOS) analysis technigues analyimals phase informatiorg[7].
HOS techniques have been successfully applied to varicupuatr vision tasks: remov-
ing a gamma correctior2], removing a radial lens distortiol3(Q], and estimating planar
surface orientation9]. HOS could provide similar benefits to blur kernel estiroati

e Using local phase coherence

Wang and Simoncellig4] present an interesting observation that a natural imagddia
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cally coherent phase across scale. Wang and Simor@4ljpfesent a theoretical justifica-
tion of the local phase coherence using scale-invarianeenaiiltiscale Wavelet/steerable
pyramid. We could use this information as an image prior teetbg a kernel estimation

algorithm. In other words, we can formulate the blur kerrstineation problem as finding

a blur kernel that would maximally correlate the local phakienages across scale.
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Appendix A: Algorithm details of IDR

We derive the details of the KL divergence penalty algoriihr@hapterd.4.1 We can rewrite
the image reconstruction optimization function as follows

IB—k®l]?
2n?

AeYE 2r(1
+W1)\RHD|||VR‘|'W2(/\RHDI||VR_)\EHDI||VE)+|H(yE E ( NR)) (11)

2T (L)) Yo

The shape parameters of the empirical distributiprare functions of, but dependences are
omitted to reduce clutter.

First three terms EdL1 are similar in form to the ordinary MAP estimator, thereftiney
can be minimized using a gradient descent technique. If wecompute the derivative of

yeAe Y E 2F(1/VR>> i inimi i ion i i
In <2r(1/yE) TR with respect td, we can minimize the entire function in Efjl using a

gradient descent method. We show that it indeed is the case.

/ .
Let i be a rasterized vector of the image The derivative of Ir(gEr’\f/yg 21/ /VR)) with

respect td takes the following form:

2, ( VALY 2F(1/VR)> - dvE +[3_ (12)

o\ 2r (1)) ypagt/®

where

( 1 e ¥ (ylg))
a=|-— - 2L
VTS Ve 13)

2

o VEZ/\E(VE)F(%) 2G'Gi

T NT) (WG —3¥(R) +2in0ke)) a4
e _ TA/wAe™" o .

i NI (3/y)

We show the proofs in following subsections. Smc{%ﬁ% Tk
can optimize Eqll using a gradient descent technique. Furthermore, at figede|, Eq. 12

) is differentiable, we



132 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

is linear ini, suggesting that we can use an iterative reweighted leaates| (IRLS) method to
minimize Eq.11
Let B be a rasterized vector of the observed imBgandK be the convolution matrix of
the blur kernek. We take the derivative of the optimization function Bd.with respect td:
KT(B—KI . — o e
—%+2W1ARVRGT||GI 1wy (2AR)RG ||GT|[ 1 — 22 e GT||GIT|E L
(15)

+ (a — Ag|GIEIn(|GIT)) o ad‘f + (B—|GI|%) o a;F) =0

whereG is a gradient operator, ands a Hadamard element-wise matrix multiplication opera-
tor.

IRLS algorithm approximates the solution of a non-lineanawpn Eq.15 by iteratively
solving a linear equation that approximates E8. We approximate/G' ||Gi||Y~* as follows:

YyGT |Gl = yGTWGE (16)

whereW is a reweighting matrix. We updaW iteratively such that minimizingG' ||GI||Y~1
matches minimizingGTW G

We handle the non-linearity due #g:|GI|% In(|GI|) and |Gi|* by evaluating them once
with the image reconstructed from the previous iteratiorg fixing these coefficientduring
the actual minimization with respect to We iterate this process until convergence. We use a
minimum residual method to solve tlieear system in Eq15.

We can easily modify this algorithm to derive the IDR algomit details.

— YA E 2|'(1/VR))
The derivative of In <2|'(]_/yE) YRARY/ R

We note that, Ag are constants, so we can focus on taking the derivatiye . We can

rewrite In(%) as follows:
yeAR Y 1 < 1 >
Nl ———— | =In +—In(Ag)—=In( 2 (— 17

There exists a relationship between the Gamma fundtiand the digamma functiow:

dr(z
dz

—r2¥(Q) (18)
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We can use this relationship to show that

0 [ YereE 2 (1))
of  \ 2 (1/ye) yrARY®
_ 10k 1ok 1 0k 1,1 0%
T Al veAs O w2 I
00X
=5 TP

The derivative of Ag with respect to I
We show that
dAe  T(A/ye)yeAeH
or NI (3/ye)
whereN is the total number of samples.

G'GI

We can compute the second momentof gradient samples dfas follows:

1 ~
=i"G"Gi
M=y

whereG is a gradient operator, and we assume that the mean of gm@ikis zero.

(19)

(20)

(21)

The second momemiy, is related to generalized Gaussian shape paramgteks as fol-

lows: - r(3/ye)

-2
AeET(1/¥)
We take the derivative afy, with respect td. From Eq.21,

om 2 4 .~
~=—G'Gl
ol N

For tractability, we assume thgt is independent of. From, Eq.22,
omp  T(3/y) 2, —2_10A€
al T/ k& Fll
From Eqg.23 and Eq.24, we can show that

dAe  T(A/ye)yeAeHH*

o NI (3/y) G'GI

The derivative of y& with respect to |

We show that

(22)

(23)

(24)

(25)
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25 ()1
o A T Ge) 267Gl (26)
NG (WG —3W(R)+2inGie))

whereN is the total number of samples.

Again, we use the relationship:

re3
mp— ) @7
AeeT(1/%)
We take the derivative afy, with respect td assuming thatn, is independent ofg.

Jdmp 1 {33 3., 2 1 3<d<21>>}

= = XAT(—)W(—=)(——=)Aeg¥el (=) —T(—) | =— (Ae¥ET(—

P @2 5 (VE) (VE)( yEz) E (yE) (VE) I (VE)

e ()
(28)

We can show that

(i (,\ér(i)» - _,\Eér(i) (%) <w(é)+2ln(/\E)> (29)

Using above relationships and the derivativerefwith respect td (Eq. 23), we can show
that

= = 2G'GI (30)




Bibliography

[1] Amit Agrawal and Ramesh Raskar. Optimal single imageuwapfor motion deblurring.
In Proceedings of the IEEE Conference on Computer Vision ariteffaRecognition
(CVPR) 2009.96

[2] Amit Agrawal and Yi Xu. Coded exposure deblurring: Opitnexd codes for PSF estima-
tion and invertibility. InProceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR2009.96

[3] Amit Agrawal, Yi Xu, and Ramesh Raskar. Invertible matiblur in video. ACM Trans-
actions on Graphics (Proc. of SIGGRARP09.96, 109 113

[4] Michal Aharon, Michael Elad, and Alfred Bruckstein. ThkeSVD: an algorithm for
designing of overcomplete dictionaries for sparse reptasien. IEEE Transactions on
Signal ProcessingNov. 2006.55

[5] Danny Barash. A fundamental relationship between éikdtfiltering, adaptive smooth-
ing, and the nonlinear diffusion equationEEE Transactions on Pattern Analysis and
Machine Intelligence24(6):844 — 847, June 20035

[6] Moshe Ben-Ezra and Shree K. Nayar. Motion-based motaiiudring. IEEE Transac-
tions on Pattern Analysis and Machine Intelligen26:689 — 698, 200430, 96

[7] Tom E. Bishop, Rafael Molina, and James R. Hopgood. Naiwtiary blind image
restoration using variational methods. Pmoceedings of the IEEE International Con-
ference in Image Processing (ICIF2007.55

[8] Michael J. Black, Guillermo Sapiro, David H. Marimontpé David Heeger. Robust
anisotropic diffusion/EEE Transactions on Image Processimgar. 1998.55

135



136 BIBLIOGRAPHY

[9] Jian-Feng Cai, Hui Ji, Chaogiang Liu, and Zuowei Shemgh-juality curvelet-based mo-
tion deblurring from an image pair. Froceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPRP09. 30

[10] Jian-Feng Cai, Hui Ji, Chaogiang Liu, and Zuowei ShelindBmotion deblurring from
a single image using sparse approximation.Plnceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPE)09.30

[11] Emmanuel J. Candes and David L. Donoho. Curvelets -g@risimgly effective nonadap-
tive representation for objects with edges, 1959.

[12] Chih-Chung Chang and Chih-Jen LiblBSVM: a library for support vector machines
2001.64

[13] Jia Chen, Lu Yuan, Chi-Keung Tang, and Long Quan. RoHust motion deblurring.
In Proceedings of the IEEE Conference on Computer Vision arntéfPaRecognition
(CVPR) 2008.30,109 111,112 113

[14] Sunghyun Cho and Seungyong Lee. Fast motion deblurriA@M Transactions on
Graphics (Proc. of SIGGRAPH ASIA8(5):article no. 145, 200914, 15, 31, 41, 42,
43 45, 46,48, 51

[15] Sunghyun Cho, Yasuyuki Matsushita, and Seungyong Rmamoving non-uniform mo-
tion blur from images. IProceedings of International Conference on Computer ¥isio
(ICCV), 2007.30, 96, 109 111

[16] Taeg Sang Cho, William T. Freeman, and Hensin Tsao. ialkd skin mole localization
scheme. IrProceedings of the IEEE Workshop on Mathematical Method&amedical
Image Analysis (MMBIAY007.28

[17] Taeg Sang Cho, Moshe Butman, Shai Avidan, and Williaferéeman. The patch trans-
form and its applications to image editing. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)08.28

[18] Taeg Sang Cho, Shai Avidan, and William T. Freeman. Abphilistic image jigsaw
puzzle solver. INEEE Conference on Computer Vision and Pattern Recogn{tiniPR)
2010.28



BIBLIOGRAPHY 137

[19] Taeg Sang Cho, Shai Avidan, and William T. Freeman. Tatlp transform. IEEE
Transactions on Pattern Analysis and Machine Intelliger@10. 28

[20] Taeg Sang Cho, Neel Joshi, C. Lawrence Zitnick, SinggBfang, Rick Szeliski, and
William T. Freeman. A content-aware image prior. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)P10.28, 87

[21] Taeg Sang Cho, Anat Levin, Frédo Durand, and William fedfman. Motion blur re-
moval with orthogonal parabolic exposures. Rroceedings of the IEEE International
Conference on Computational Photography (ICCF)10.28

[22] Christopher M. Christoudias, Bogdan Georgescu, arteriféeer. Synergism in low level
vision. InIEEE International Conference on Pattern Recognitia@02. 87, 91

[23] Shengyang Dai and Ying Wu. Motion from blur. Rroceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR)08.96

[24] Shengyang Dai and Ying Wu. Removing partial blur in aggrimage. InProceedings of
the IEEE Conference on Computer Vision and Pattern Redogni€CVPR) 2009.96

[25] Stanley Roderick DeansThe Radon Transform and some of its applicatiom&@ieger
Publishing Company, 19921, 35

[26] Minh N. Do and Matrtin Vetterli. The contourlet transfor an efficient directional mul-
tiresolution image representatiohEEE Transactions on Image Processirigec. 2005.
54

[27] Michael Elad. On the origin of the bilateral filter and ygato improve it.IEEE Transac-
tions on Image Processing1(10):1141 — 1151, Oct. 20085

[28] Hany Farid. Blind inverse gamma correctiolcEE Transactions on Image Processing
10(10):1428 — 1433, Oct. 200129

[29] Hany Farid and Jana Kosecka. Estimating planar surfai@ntation using bispectral
analysis.IEEE Transactions on Image Processid®(8):2154 — 2160, Aug. 20072.29

[30] Hany Farid and Alin C. Popescu. Blind removal of lengdaliions. Journal of the optical
society of Americal8(9):2072 — 2078, Sept. 200129



138 BIBLIOGRAPHY

[31] Rob Fergus, Barun Singh, Aaron Hertzmann, Sam Rowed Véilliam T. Freeman. Re-
moving camera shake from a single photograpltM Transactions on Graphics (Proc.
of SIGGRAPH)2006. 14, 15, 18, 30, 31, 41, 42, 43, 48,51, 53,62, 72, 75,87, 111, 114

[32] William T. Freeman and Edward H. Adelson. The designaselof steerable filterédEEE
Transactions on Pattern Analysis and Machine Intelligeri&91. 69, 87

[33] William T. Freeman, Egon C. Pasztor, and Owen T. Caraeth Learning low-level
vision. International Journal of Computer VisipA0(1):25 — 47, 200079

[34] Gonzalez and Wood®igital image processingPrentice Hall, 200854

[35] Rafael C. Gonzalez and Richard E. WoobBgital Image Processing (3rd EditionPren-
tice Hall, 2007.112

[36] Ankit Gupta, Neel Joshi, C. Lawrence Zitnick, Michaadlt&n, and Brian Curless. Single
image deblurring using motion density functions Pimceedings of European Conference
on Computer Vision (ECCY2010.96

[37] Yoav HaCohen, Raanan Fattal, and Dani Lischinski. lenagsampling via texture hal-
lucination. InProceedings of the IEEE International Conference on Coatparial Pho-
tography (ICCP)2010.79

[38] David K. Hammond and Eero P. Simoncelli. Image dengisiith an orientation-adaptive
Gaussian scale mixture model. Proceedings of the IEEE International Conference in
Image Processing (ICIRR006.55

[39] David J. Heeger and James R. Bergen. Pyramid-basedeeadalysis/synthesis. KCM
SIGGRAPH1995.78, 79

[40] Lens Group Canon IncorporatedEF LENS WORK Ill, The Eyes of EO&anon Inc,
1993.23

[41] Jiaya Jia. Single image motion deblurring using tramepcy. InProceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (®)Y2007.31, 96

[42] Neel Joshi, Rick Szeliski, and David J. Kriegman. PSthesion using sharp edge pre-
diction. InProceedings of the IEEE Conference on Computer Vision atefPaRecog-
nition (CVPR) 2008.31, 40, 41, 96



BIBLIOGRAPHY 139

[43] Neel Joshi, C. Lawrence Zitnick, Rick Szeliski, and @Y. Kriegman. Image deblurring
and denoising using color priors. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR09. 19, 74, 88, 89

[44] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, OliveruBgen, Dani Lischinski, and
Tien-Tsin Wong. Solid texture synthesis from 2D exemplaSCM Transactions on
Graphics (Proc. of SIGGRAPH26(3), 2007.78

[45] Jefferey C. Lagarias, James A. Reeds, Margaret H. Wragid Paul E. Wright. Conver-
gence properties of the Nelder-Mead simplex method in lanedisions.SIAM Journal
of Optimization 1998.56, 81

[46] Ann B. Lee, David Mumford, and Jinggang Huang. Occlaosimodels for natural im-
ages: a statistical study of a scale-invariant dead leaweieninternational Journal of
Computer Vision41:35-59, 200157, 58, 63

[47] Anat Levin. Blind motion deblurring using image stétis. In Proceedings of Neural
Information Processing Systems (NIPBgc. 2006.96, 122

[48] Anat Levin, Rob Fergus, Fredo Durand, and William T.dfrean. Image and depth from
a conventional camera with a coded apertud€M Transactions on Graphics (Proc. of
SIGGRAPH)2007.19, 36, 41, 53, 68, 69, 87, 88, 89, 113 129

[49] Anat Levin, Peter Sand, Taeg Sang Cho, Frédo DurandWaltidm T. Freeman. Motion-
invariant photographyACM Transactions on Graphics (Proc. of SIGGRAPZ)08. 96,
99 100 101, 103 107, 122

[50] Anat Levin, Yair Weiss, Frédo Durand, and William T. Enean. Understanding and
evaluating blind deconvolution algorithms. Rroceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPE)09. 31, 46, 47, 113 129

[51] Yuanzhen Liand Edward H. Adelson. Image mapping usieglland global statistics. In
SPIE E| 2008.79

[52] Yunpeng Li, Sing Bing Kang, Neel Joshi, Steve Seitz, Bradhiel Huttenlocher. Generat-
ing sharp panoramas from motion-blurred videosPtaceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR)10.30



140 BIBLIOGRAPHY

[53] Ce Liu, William T. Freeman, Rick Szeliski, and Sing Bikgng. Noise estimation from
a single image. IProceedings of the IEEE Conference on Computer Vision atieiifa
Recognition (CVPRR006.62

[54] L. B. Lucy. An iterative technique for the rectificatiasf observed distributions.The
astronomical journgl79:745 —754, 197430

[55] G. Matheron.Random Sets and Integral Geometdphn Wiley and Sons, 19757, 58,
63

[56] Ren Ng. Fourier slice photographyACM Transactions on Graphics (Proc. of SIG-
GRAPH) 2005.99

[57] Chrysostomos L. Nikias and Athina P. Petroputligher-order spectra analysis - A non-
linear signal processing framewarPrentice Hall, 1993129

[58] Mila Nikolova. Model distortions in Bayesian MAP recstruction. Inverse Problems
and Imaging 1(2):399-422, 200780

[59] Ido Omer and Michael Werman. Color lines: Image specifilor representation. IRro-
ceedings of the IEEE Conference on Computer Vision andrdaRecognition (CVPR)
2004.34

[60] Alan V. Oppenheim and Jae Soo Lim. The importance of phasignals.Proceedings
of the IEEE 69(5):529 — 541, May 1981129

[61] Patrick Perez, Michel Gangnet, and Andrew Blake. Rwigmage editing. ACM Trans-
actions on Graphics (Proc. of SIGGRARRD03.117

[62] Javier Portilla and Eero P. Simoncelli. A parametritiee model based on joint statistics
of complex wavelet coefficienténternational Journal of Computer Visiod0(1):49 — 71,
Oct. 2000.78

[63] Ramesh Raskar, Amit Agrawal, and Jack Tumblin. Codgumbsnre photography: Motion
deblurring using fluttered shuttehCM Transactions on Graphics (Proc. of SIGGRAPH)
2006.96, 107

[64] Alex Rav-Acha and Shmuel Peleg. Two motion-blurred giesare better than onPat-
tern Recognition Letter26:311 — 317, 200530, 109, 111, 112 113



BIBLIOGRAPHY 141

[65] William Hadley Richardson. Bayesian-based iterativethod of image restoratiodour-
nal of the optical society of Americ&2:55 — 59, 197230

[66] Stefan Roth and Michael J. Black. Fields of experts:aafework for learning image pri-
ors. InProceedings of the IEEE Conference on Computer Vision atteéfPaRecognition
(CVPR) June 200555

[67] Stefan Roth and Michael J. Black. Steerable randomdield Proceedings of the IEEE
International Conference on Computer Vision (ICC2007.55, 69, 74, 87

[68] Daniel L. Ruderman. The statistics of natural imagdstwork: Computation in Neural
Systems5(4):517-548, 199958

[69] Bryan Russell, Antonio Torralba, Kevin Murphy, and Wéim T. Freeman. LabelMe: a
database and web-based tool for image annotatlaternational Journal of Computer
Vision, 2008. 69

[70] Youcef Saad and Martin H. Schultz. GMRES: a generalirégimal residual algorithm
for solving nonsymmetric linear systentSIAM JSS(C1986.83, 86

[71] Suhail S. Saquib, Charles A. Bouman, and Ken Sauer. Miarpater estimation for
Markov random fields with applications to Bayesian tomogygpEEE Transactions on
Image Processing/(7):1029, 199853, 55

[72] Uwe Schmidt, Qi Gao, and Stefan Roth. A generative paigsge on MRFs in low-
level vision. InProceedings of the IEEE Conference on Computer Vision aritbiPa
Recognition (CVPRR010.79

[73] Qi Shan, Wei Xiong, and Jiaya Jia. Rotational motionldeing of a rigid object from
a single image. IfProceedings of International Conference on Computer Xigi€CV),
2007.96

[74] Qi Shan, Leo Jiaya Jia, and Aseem Agarwala. High-guafibtion deblurring from a
single image.ACM Transactions on Graphics (Proc. of SIGGRAPR)08. 14, 15, 30,
41,42, 43 45,48, 51, 111, 114

[75] Eero P. Simoncelli and Edward H. Adelson. Noise remaialbayesian wavelet coring.
In Proceedings of the IEEE International Conference in Imagec®ssing (ICIP)1996.
62, 63



142 BIBLIOGRAPHY

[76] Michal Sorel and Filip Sroubek. Space-variant delhgrusing one blurred and one
underexposed image. Rroceedings of the IEEE Conference on Image Processin@}JCl
2009.96

[77] A. Srivastava, A. B. Lee, E. P. Simoncelli, and S-C. Zh@n advances in statistical
modeling of natural imageslournal of Math Imaging and Visigri8(1):17-33, 200360

[78] Charles V. Stewart. Robust parameter estimation inmaaT vision. SIAM Reviews41
(3):513 — 537, Sept. 19926, 68

[79] Yu-Wing Tai, Hao Du, Michael S. Brown, and Stephen Limage/video deblurring using
a hybrid camera. IRroceedings of the IEEE Conference on Computer Vision attéiifa
Recognition (CVPRR008.30, 96

[80] Marshall F. Tappen, Ce Liu, Edward H. Adelson, and \&fiti T. Freeman. Learning
Gaussian conditional random fields for low-level vision. Rroceedings of the IEEE
Conference on Computer Vision and Pattern Recognition [&)EZ007.55, 65, 66, 74

[81] Peter Toft. The Radon Transform - Theory and Implementati®nD thesis, Technical
University of Denmark, 199631, 32, 35

[82] Carlo Tomasi and R. Manduchi. Bilateral filtering folagrand color images. IRroceed-
ings of the IEEE International Conference on Computer Vigi€eCV), 1998.55

[83] Martin Wainwright and Eero P. Simoncelli. Scale mixsarf Gaussians and the statistics
of natural images. IProceedings of Neural Information Processing Systems S)NIP
2000.54

[84] Zhou Wang and Eero P. Simoncelli. Local phase coherandehe perception of blur. In
Advances in Neural Information Processing Syste2083.129 130

[85] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. @welli. Image quality
assessment: from error visibility to structural simikarittEEE Transactions on Image
Processing2004.69, 71, 86

[86] Yair Weiss and William T. Freeman. What makes a good rhoftieatural images? IRro-
ceedings of the IEEE Conference on Computer Vision andrdaRecognition (CVPR)
2007.55



BIBLIOGRAPHY 143

[87]

[88]

[89]

[90]

[91]

Max Welling, Geoffrey Hinton, and Simon Osindero. Leiag sparse topographic repre-
sentations with products of student-t distributionsPhaceedings of Neural Information
Processing Systems (NIR3P02.55

Oliver Whyte, Josef Sivic, Andrew Zisserman, and Jeande. Non-uniform deblurring
for shaken images. IRroceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR2010.96

Oliver J. Woodford, Carsten Rother, and Vladimir Kolgooov. A global perspective on
MAP inference for low-level vision. IProceedings of the IEEE International Conference
on Computer Vision (ICCVYR009. 19, 79, 87, 88, 89, 91, 92

Lu Yuan, Jian Sun, Long Quan, and Heung-Yeung Shum. émadeblurring with
blurred/noisy image pairsACM Transactions on Graphics (Proc. of SIGGRAPERDO7.
30, 96,109 111

Song Chun Zhu, Yingnian Wu, and David Mumford. Filterepdom fields and maximum
entropy (FRAME): Towards a unified theory for texture mouglilnternational Journal
of Computer Vision1998.55



	List of Figures
	Introduction
	Overview of techniques and contributions
	Chapter 2: Blur kernel estimation from blurred edge profiles
	Chapter 3: A content-aware image prior for image restoration
	Chapter 4: Image restoration by matching gradient distributions
	Chapter 5: Orthogonal parabolic exposures for motion deblurring

	Other work not included in the thesis
	Notes

	Blur kernel estimation from blurred edge profiles
	Introduction
	Related work

	Kernel estimation from edges
	The Radon transform and blurred line profiles
	Recovering the blur kernel from its projections
	Detecting reliable edges from a blurry image
	Comparison to Joshi et al. 
	Experimental results

	The RadonMAP algorithm
	Experimental results

	Quantitative evaluation
	Conclusion

	A content-aware image prior for image restoration
	Introduction
	Related work
	Image characteristics
	The distribution of ,  in natural images
	Spatially variant gradient statistics
	Scale dependence of gradient histograms

	The image prior estimation
	Image model
	Estimating the texture  
	Estimating the shape parameters ,  from  
	Handling texture boundaries
	Implementation details

	Experimental results
	Image restoration
	Discussions

	Conclusion

	Image restoration by matching gradient distributions
	Introduction
	Related work
	Characteristics of MAP estimators
	Image reconstruction
	Failure of penalizing KL divergence directly
	The iterative distribution reweighting (IDR)
	Reference distribution qR estimation

	Experiments
	Conclusion

	Orthogonal parabolic exposures for motion deblurring
	Introduction
	Related work
	Sensor motion design and analysis
	Motion blur in the space-time volume
	Orthogonal parabolic motions
	Discussion of other cameras

	Image reconstruction
	Non-blind deconvolution
	Kernel estimation
	Local kernel estimation

	Experiments
	Prototype camera
	Results
	Discussion

	Conclusion

	Conclusions and future work
	Blur kernel estimation from blurred line profiles
	Modeling lines as a box filter
	Recovering both the line profiles as well as the blur kernel from the blurred line profiles

	Blur kernel estimation using phase information

	Bibliography

