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Abstract

One of the long-standing challenges in photography is motion blur. Blur artifacts are gen-

erated from relative motion between a camera and a scene during exposure. While blur can

be reduced by using a shorter exposure, this comes at an unavoidable trade-off with increased

noise. Therefore, it is desirable to remove blur computationally.

To remove blur, we need to (i) estimate how the image is blurred (i.e. the blur kernel or

the point-spread function) and (ii) restore a natural looking image through deconvolution. Blur

kernel estimation is challenging because the algorithm needs to distinguish the correct image–

blur pair from incorrect ones that can also adequately explain the blurred image. Deconvolution

is also difficult because the algorithm needs to restore highfrequency image contents attenuated

by blur. In this dissertation, we address a few aspects of these challenges.

We introduce an insight that a blur kernel can be estimated byanalyzing edges in a blurred

photograph. Edge profiles in a blurred image encode projections of the blur kernel, from which

we can recover the blur using the inverse Radon transform. This method is computationally

attractive and is well suited to images with many edges. Blurred edge profiles can also serve

as additional cues for existing kernel estimation algorithms. We introduce a method to inte-

grate this information into a maximum-a-posteriori kernelestimation framework, and show its

benefits.

Deconvolution algorithms restore information attenuatedby blur using an image prior that

exploits a heavy-tailed gradient profile of natural images.We show, however, that such a sparse

prior does not accurately model textures, thereby degrading texture renditions in restored im-

ages. To address this issue, we introduce a content-aware image prior that adapts its charac-

teristics to local textures. The adapted image prior improves the quality of textures in restored
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images. Sometimes even the content-aware image prior may beinsufficient for restoring rich

textures. This issue can be addressed by matching the restored image’s gradient distribution

to its original image’s gradient distribution, which is estimated directly from the blurred im-

age. This new image deconvolution technique called iterative distribution reweighting (IDR)

improves the visual realism of reconstructed images.

Subject motion can also cause blur. Removing subject motionblur is especially challenging

because the blur is often spatially variant. In this dissertation, we address a restricted class

of subject motion blur: the subject moves at a constant velocity locally. We design a new

computational camera that improves the local motion estimation and, at the same time, reduces

the image information loss due to blur.

Thesis Supervisor: William T. Freeman

Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

MOTION blur is one of the salient sources of degradation in photographs. Although

motion blur can sometimes be desirable for artistic purposes, it often severely limits

the image quality. Blur artifacts result from relative motion between a camera and a scene

during exposure. While blur can be reduced using a faster shutter speed, this comes with an

unavoidable trade-off with increased noise.

One source of a motion blur is camera shake. When a camera moves during exposure, it

blurs the captured image according to its trajectory. We canmitigate the camera shake blur by

using a mechanical image stabilization hardware [40]. However, a camera shake can be too

large for assistive devices to accommodate when a camera takes a long exposure shot of a dark

scene and/or when a camera uses a telephoto lens. A second source of blur is a movement of

objects in the scene, and this type of blur is harder to avoid.Therefore it is often desirable to

remove blur computationally.

Motion blur removal, often called motion deblurring or blind deconvolution, is challenging

in two aspects. The first challenge is estimating blur kernels, or point-spread functions (PSF),

from blurred images. Because many blur–image pairs can explain the observed blurry image,

kernel estimation is a difficult problem. Blur estimation can be especially difficult if the blur

is spatially variant, for instance due to a dynamic scene or acamera rotation. The second

challenge is removing the blur to recover a blur-free image.Motion blur averages neighboring

pixels and attenuates high frequency information of the scene. Consequently, recovering a

blur-free image is an ill-posed problem which needs to be addressed by deblurring systems or

algorithms.

This thesis explores both hardware and software solutions to address a few of these chal-

lenges. We introduce (i) a spatially-invariant blur kernelestimation method using blurred edge

profiles, (ii) an adaptive image prior for improving the rendition of textures in restored images,
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(iii) an image deconvolution technique that matches gradient distributions to improve visual re-

alism of textures, and (iv) a new computational camera that near-optimally captures the image

information of moving objects.

� 1.1 Overview of techniques and contributions

This section provides a preview of techniques and contributions.

� 1.1.1 Chapter 2: Blur kernel estimation from blurred edge profiles

We present a method to recover a spatially invariant blur kernel from a single blurry photo-

graph. The key idea is that blur kernel projections can be estimated by analyzing blurred edge

profiles. These projections are also known as theRadon Transform. Blur kernel projections

are useful because we can apply the inverse Radon transform to restore the blur kernel. This

method is computationally attractive because we do not needto estimate the latent image in

order to iteratively refine the kernel and because most of thecomputation is performed at the

scale of the blur kernel. Although this technique applies only to images with a sufficient num-

ber of straight edges in many orientations, these encompassa large set of images including

many man-made scenes. Kernel projections can also provide additional cues to improve the

kernel estimation performance of existing algorithms. We propose a method to integrate kernel

projection information in a MAP based kernel estimation framework.

� 1.1.2 Chapter 3: A content-aware image prior for image restoration

Even if we could accurately estimate the blur kernel, restoring a blur-free image from a blurry

photograph is still challenging because we lose high frequency information during a blurry

observation process. To “fill-in” the missing information,we often exploit prior knowledge

about natural images. One of the most popular image priors isa heavy-tailed gradient distribu-

tion of natural images. A MAP estimator, when used with a heavy-tailed, or sparse, gradient

prior, reconstructs images with piecewise smooth characteristics. While a sparse gradient prior

removes ringing and noise artifacts, it also removes mid-frequency textures, degrading visual

quality. We can attribute such degradations to imposing an incorrect image prior. As is seen

in Fig. 1.1, the gradient profile in fractal-like textures, such as trees, is close to a Gaussian dis-

tribution, therefore a sparse gradient prior would penalize small gradients from such regions,

over-smoothing textures.
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Figure 1.1: The gradient profile of natural images is often used as an image prior in image
restoration tasks. Oftentimes, we use a single heavy-tailed gradient profile as an image prior
for the entire image. However, this figure shows that gradient profiles differ significantly in
response to underlying textures. This observation suggests that we should adapt the image
prior to the image content. This so called a content-aware image prior improves the visual
realism of restored images.

To address this issue, we introduce an image prior thatadaptsto local texture. We adapt

the prior to both low-level local structures as well as mid-level textural characteristics. We

demonstrate improvements on deblurring and denoising tasks.
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Figure 1.2: The gradient distribution of images restored using a MAP estimator can differ from
that of the original images, and this manifests itself as smoothed textures. In Chapter4, we
present an alternative deconvolution method that matches the reconstructed image’s gradient
distribution to its reference distribution (i.e. the gradient distribution of the original image) to
restore visually pleasing textures.

� 1.1.3 Chapter 4: Image restoration by matching gradient distributions

Even with a content-aware image prior, a MAP estimator does not always reliably reconstruct

rich textures. We present an alternative image restorationmethod callediterative distribution

reweighting (IDR)to improve the rendition of rich textures. IDR imposes a global constraint on

image gradients: the restored image should have a gradient distribution close to a reference dis-

tribution. As is explored in Chapter3, a reference distribution not only varies from one image

to another, but also within an image depending on texture. Therefore, we estimate a reference

distribution directly from an input image for each texture segment. We show through experi-

ments that IDR is able to restore rich mid-frequency textures that are visually more appealing

than MAP estimates. User studies support our claim that IDR improves the visual realism of

reconstructed images compared to MAP estimates.



Sec. 1.2. Other work not included in the thesis 27

Sensor

Actuators

Static camera image Orthogonal parabolic camera: input Orthogonal parabolic camera: deblurred output

Figure 1.3: In Chapter5, we address spatially variant motion blurs induced by subject mo-
tions. We address two challenges associated with motion blur removal, namely the blur kernel
estimation and the reduction of information loss, by developing a new computational camera
that takes two consecutive images of a moving scene.Left: An image captured by a static cam-
era. Middle: Our solution takes two consecutive images of a scene using a parabolic camera
moving in two orthogonal directions.Right: The restored image.

� 1.1.4 Chapter 5: Orthogonal parabolic exposures for motion deblurring

In this chapter, we address spatially variant blur induced by moving objects. Removing subject

motion blur is challenging because one has tolocally estimate the motion. Even if the motion

is successfully identified, blur inversion can still be unstable because the blur kernel attenuates

high frequency image content.

We present a computational camera to address above challenges. We assume that the object

is moving at constant velocities in arbitrary 2D directionsparallel to the imaging plane. This

assumption is often satisfied when the exposure time is relatively short. Our solution captures

two images of a scene with a parabolic camera motion in two orthogonal directions. We show

that this strategy near-optimally preserves the image content of moving objects, which allows

for a stable blur inversion. Taking two images of a scene alsohelps us estimate spatially varying

object motions. We present a prototype camera and demonstrate successful motion deblurring

on real world motions.

� 1.2 Other work not included in the thesis

During the PhD studies, I also had a chance to contribute to disciplines other than deblurring. In

collaboration with Dr. Hensin Tsao and Prof. William Freeman, I developed an automatic skin
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mole localization method [16] that can be used as a front-end system for automatic melanoma

detection. With Prof. Shai Avidan and Prof. William Freeman, I developed a new image

editing framework called “The Patch Transform” [17, 19]. We extended this framework to

solving image jigsaw puzzles consisting of square pieces [18].

� 1.3 Notes

Parts of the work presented in this thesis appeared previously at 2010 IEEE International Con-

ference on Computational Photography (ICCP) [21] and 2010 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) [20].

This work was supported in part by Samsung Scholarship Foundation, by NGA NEGI-

1582-04-0004, by ONR-MURI Grant N00014-06-1-0734, by giftfrom Microsoft, Google,

Adobe and Quanta.



Chapter 2

Blur kernel estimation from blurred

edge profiles

� 2.1 Introduction

MANY challenges in deblurring stem from the severely under-constrained nature of the

problem: many image–blur pairs can explain the blurred image. Fortunately, most

image–blur pairs are implausible because the corresponding images contain ringing and noise;

kernels are not continuous. Therefore, existing deblurring techniques exploit prior knowledge

about natural images and blur kernels to distinguish the correct solution pair from incorrect

ones. Although this prior knowledge is effective, it is often not strong enough to reliably dis-

tinguish the correct solution from others. In this chapter,we present additional cues to exploit

in blur kernel estimation.

Our algorithm estimates a blur kernel by analyzing blurred edges. Intuitively, edges along

different orientations are affected differently by blur, therefore we can consider different edge

profiles as “signatures” of a blur. We formalize this intuition and show how to use blurred

edges to recover theRadon transformof the blur kernel, that is, a set of projections of the blur

kernel in different orientations. We can restore the blur kernel by inverting the estimated Radon

transform. Advantages of our method are that (i) we do not deconvolve the blurred image to

refine the estimated kernel and that (ii) we perform a bulk of the computation at the size of the

kernel, which is often considerably smaller than the image.We demonstrate that our approach

is well-suited for scenes with numerous edges such as man-made environments.

Even if a blurred image does not contain many edges in different orientations, we can still

exploit kernel projections. We introduce a method to integrate Radon transform constraints in

a maximum-a-posteriori kernel estimation framework to improve the kernel estimation perfor-

29
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mance. This alternative method is computationally more expensive, but it is more stable than

simply inverting the Radon transform.

Contributions We can summarize the contributions of this chapter as follows:

• We demonstrate that the blur kernel can be estimated from blurred edge profiles using the

inverse Radon transform.

• We describe a method to detect stable edges for use in kernel estimation.

• We introduce a method to integrate blur kernel projection constraints in a maximum-a-

posteriori estimation framework to jointly estimate the blur kernel and the sharp image.

� 2.1.1 Related work

In this work, we consider spatially invariant blur. Spatially invariant blur arises when the scene

is static and the camera undergoes a small out-of-plane rotation or a translation (for a constant-

depth scene.) A spatially invariant blur model is popular because one can exploit a simple global

convolution model to describe an image formation process. Even with the spatially invariant

blur assumption, however, estimating the correct blur froma single image is a challenging task

due to inherent ambiguities: the observed blurry input image can be interpreted as a blurry

image of a sharp scene or a sharp image of a blurry scene. This ambiguity can be address

by taking multiple photos, each of which contains differentblur [9, 13, 15, 52, 64,90]. Taking

images with modified cameras [6, 79] can also improve the kernel estimation performance.

Oftentimes, however, we are provided only with a single blurry image from a conventional

camera, therefore a single-image blur kernel estimation problem received a lot of attention. To

resolve the inherent ambiguity, different assumptions on blur kernels and natural images have

been incorporated. Ferguset al. [31] exploit the knowledge that a histogram of gradients from

natural images exhibits a heavy-tailed profile and that a histogram of intensities in blur kernels

is sparse. They use a variational inference technique to first estimate a blur kernel, which is then

used to restore a blur-free image using the Richardson-Lucydeconvolution algorithm [54, 65].

Shanet al. [74] introduce a local prior, in addition to a sparse gradient prior of natural images,

to detect and smooth surfaces. Caiet al. [10] assume that a blur kernel should be sparse in

the Curvelet domain and an image should be sparse in the Framelet domain. These techniques

solve a large system of equations to find the sharp image and/or the blur kernel that satisfy the

observation model while conforming to prior knowledge about blur and natural images.
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Several prior work explicitly leverage blurred edges to estimate blur, as in our method.

Jia [41] estimates an alpha matte from user-selected edges, and subsequently estimates the

blur kernel from the matte by minimizing a non-linear cost function consisting of an image

observation term as well as an image prior. Joshiet al. [42] predict sharp edges directly from

a blurry photo and estimate the blur kernelgiventhe location of predicted sharp edges. Their

edge prediction scheme assumes that the blur kernel is uni-modal; Choet al. [14] extend Joshi

et al. [42] in a multi-scale manner to estimate more general blur kernels with multiple modes.

Choet al. [14] reduce the computation by deblurring only edges in the gradient domain: their

GPU implementation runs in near real-time. Levinet al. [50] compare the performance of

several single-image blind deconvolution algorithms, andempirically show that the algorithm

introduced by Ferguset al. [31] is the state-of-the-art in single-image blur kernel estimation1.

� 2.2 Kernel estimation from edges

We model the image formation as a convolution of a blur kernelk and a sharp latent imageI :

B = k⊗ I +n (2.1)

whereB is an observed, blurry image andn is input noise. Our goal is to reconstruct a sharp,

natural-looking latent imageI from the observed imageB.

� 2.2.1 The Radon transform and blurred line profiles

We briefly review the Radon transform for two-dimensional signals and illustrate how it is

related to blur. For an in-depth review of the Radon transform, we refer the readers to [25, 81].

The Radon transform of a signalf (x,y) is an integral of the signal along a straight line:

φ f
θ (ρ) =

∫ ∞

−∞

∫ ∞

−∞
f (x,y)δ (ρ −xcos(θ)−ysin(θ))dxdy (2.2)

whereθ is the orientation of the straight line that we integrate over andρ is the offset of that

line from the origin of thex− y coordinate (See Fig.2.1). φ f
θ can be viewed as a projection

of the signalf along the direction orthogonal to orientationθ . If we take enough projections

of the signalf in all possible orientations, asymptotically we can recover the original signalf

using the inverse Radon transform [81].

1Levin et al. [50] do not consider Choet al. [14].
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Figure 2.1: The Radon transformφ f
θ (ρ) of a signal f (i.e. the star) is an integral of the signal

along the lineρ = xcos(θ)+ysin(θ) (i.e the dotted line).

Interestingly, we can relate the Radon transform to our imaging model in Eq.2.1. The

imaging model in Eq.2.1can be expressed in the continuous domain:

B(ρx,ρy) =

∫ ∞

−∞

∫ ∞

−∞
k(x,y)I(ρx−x,ρy−y)dxdy (2.3)

If the latent image is an ideal straight line along orientation θ , we can parameterize the latent

imageI asδ (ρ −xcos(θ)−ysin(θ)), whereρ =
√

ρ2
x + ρ2

y . Therefore,

BL(ρx,ρy) =

∫ ∞

−∞

∫ ∞

−∞
k(x,y)δ (ρ −xcos(θ)−ysin(θ))dxdy

= φk
θ (ρ)

(2.4)

In other words, every orthogonal slice of a blurred line, taken along the orientationθ , is a

projection of the blur kernelφk
θ (ρ). Fig. 2.2 shows graphically thatBL(ρx,ρy), evaluated at a

fixed point[ρx,ρy], is a sum of intersections between the blur kernel and the line: BL(ρx,ρy) is

a projection of the blur kernel.

To illustrate this concept numerically, we blur lines in different orientations and compare
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Figure 2.2: The value of the convolved image at the green dot is a sum of intersections of the
blur kernel (the black line) and the line (the red line). The dotted green circles indicate the
intersections.

orthogonal slices of blurred lines to explicit projectionsof the blur kernel in those orientations.

Fig. 2.3 shows the results. As expected, the orthogonal line profilesare very close to explicit

kernel projections.

This relationship between the Radon transform and blurred line profiles implies that we can

estimate blur kernel projections and use them for kernel estimation if we can detect blurred

lines. However, detecting lines reliably from a blurred image is a challenging problem, espe-

cially when the blur is multi-modal. Furthermore, many lines in images are not ideal: each line

has a finite width, therefore blurred line profiles are no longer perfect projections of the blur

kernel2.

Fortunately, a blurred edge can provide information similar to a blurred line. An ideal

binary step edge with orientationθ can be modeled as an integral of a line alongθ :

e(ρ) =

∫ ρ

−∞
δ (τ −xcos(θ)−ysin(θ))dτ (2.5)

Therefore, a blurred edge profile can be modeled as follows:

2We can show that a slice of a blurred line of a finite width is a projection of the kernel convolved with a box
filter of that width.
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Blurred line  - 0 degree Blurred line  - 45 degrees Blurred line  - 135 degrees

Slice of blurry line Projection of blur kernel

Figure 2.3: We show experimentally that a slice (shown dotted-red) orthogonal to a blurred
line is the same as an explicit projection of the blur kernel along the line.

BE(ρx,ρy)

=

∫ ∞

−∞

∫ ∞

−∞
k(x,y)

∫ ρ

−∞
δ (τ −xcos(θ)−ysin(θ))dτdxdy

=

∫ ρ

−∞

{

∫ ∞

−∞

∫ ∞

−∞
k(x,y)δ (τ −xcos(θ)−ysin(θ))dxdy

}

dτ

=

∫ ρ

−∞
φk

θ (τ)dτ

(2.6)

In other words, an orthogonal slice of a blurred edge is an integral of a blurred line profile.

Therefore, blurred line profiles can be recovered by differentiating blurred edge profiles.

Extracting edge profiles from color images To extract blur kernel projections from a color

image, we assume a color-line image model [59] within a local neighborhood of an edge: a

local region in a natural image has two dominant colors. Two dominant colors for a given pixel

are estimated by averaging pixels at two ends of the slice (Fig. 2.4). Given the two dominant

colorsW,Z, we can represent each pixel on the orthogonal sliceci as a linear combination of

W,Z:
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slice 

Pixels for 

color estimation

Figure 2.4: To find two dominant colors on either side of an edge, we average the pixels
separated from the edge by3/4 the assumed size of the blur kernel.

ci = αiW +(1−αi)Z (2.7)

We useα ’s as the blurred binary edge slice.

� 2.2.2 Recovering the blur kernel from its projections

Recovering a two-dimensional signal from its one-dimensional projections, also known as the

inverse Radon transform, has been studied extensively in literature [25, 81]. In this work, we

view the inverse Radon transform as maximizing the posterior probability of the blur kernelk

given the observed imageB. This framework allows us to incorporate prior knowledge onk.

From the Bayes’ rule,
p(k|B) ∝ p(B|k)p(k) (2.8)

We directly model each term as follows. We model the likelihood termp(B|k) from the con-

straint that explicit projections of the blur kernelk should match its projectionsφθi estimated

from blurred edge slices:

p(B|k) =
N

∏
i=1

p(φθi |k)

∝ exp

(

−∑N
i=1‖φθi −Rθik‖2

2η2
p

) (2.9)

wherei indexes edge samples,N is the total number of edge samples,Rθi is a projection operator
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alongith sample’s dominant orientationθi , andη2
p is the variance of observation noise. We set

the noise varianceη2
p as(2+ α)η2

n whereη2
n is the variance of the imaging noise. The factor

of 2 results from differentiating edge slices (see Eq.2.6) andα models orientation estimation

error, which increases with the image noise level. The algorithm is robust to the value ofα ; we

setα = 1 through cross validation.

The number of edge samples (i.e.N in Eq. 2.9) affects the speed of our algorithm:N

depends on the size of the image and/or the image content. We observe, however, that having

many edge samples in similar orientations is beneficial mostly in terms of reducing noise of the

projection along that orientation. In light of this observation, we average out the noise “off-line”

in order to accelerate the kernel reconstruction. In particular, we approximate∑N
i ‖φθi −Rθi k‖2

as a sum over binned angles:

N

∑
i=1

‖φθi −Rθi k‖2 ≈
360

∑
j=1

w j‖φ̃θ j −Rθ j k‖2 (2.10)

where j indexes angles in steps of 1o, φ̃θ j is the average of kernel projections that have the same

binned orientationθ j , andw j is the number of samples that have the same binned orientation

θ j . This approximation allows us to efficiently recover the kernel even for images with many

edge samples.

In addition to kernel projection constraints, we incorporate the knowledge that intensity

profiles of blur kernels, as well as gradient profiles of blur kernels, are sparse:

p(k) ∝ exp{−(λ1‖k‖γ1 + λ2‖∇k‖γ2)} (2.11)

We use the same parameters for all experiments, determined through cross-validation:λ1 =

1.5,γ1 = 0.9,λ2 = 0.1,γ2 = 0.5.

Given this model, we can recover the blur kernel by minimizing the negative log-posterior:

k̂ = argmin
k

{

∑360
j=1w j‖φ̃θ j −Rθ j k‖2

2η2
p

+ λ1‖k‖γ1 + λ2‖∇k‖γ2

}

(2.12)

We use an iterative reweighted least squares method [48,78] to minimize the energy in Eq.2.12.

Aligning blur kernel projections In order to reconstruct an accurate blur kernel, it is important

that blur kernel projections are aligned: the center of projection among all kernel projections

should be the same. If the center of projection are not aligned, details of the blur kernel could

be smeared out.
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: Center of gravity

Figure 2.5: The center of gravity within an object’s projection is equivalent to the projection
of the object’s center of gravity.

To align blur kernel projections, we exploit the fact that the center of gravity in an object’s

projection is equivalent to the projection of the object’s center of gravity, as shown in Fig.2.5.

We shift the edge slices such that the center of gravity in each projection is at the center of the

projection. This ensures that the center of projection among all kernel projections is aligned.

Comparison to Joshi et al. [42] Joshiet al. [42] minimize the following energy function to

estimate the blur kernel:

k̂ = argmin
k

‖M(B−k⊗ I)‖2

2η2 + λ‖∇k‖2 (2.13)

whereB is an input blurry photograph,k is a blur kernel,I is an image with predicted location

of sharp edges, andM is a function to mask predicted edges and their neighborhood. We can

distinguish our algorithm from Joshiet al.[42] on two fronts: (i) using only perpendicular slices

of blurred edges and (ii) using centroid constraints to align blurred edges to enable multi-modal

blur kernel estimation.

The likelihood term∑i∈E ‖φθi−Rθi k‖
2

2η2 in our algorithm (Eq.2.12) ensures that when we explic-

itly project the restored blur kernel we recover projections similar to those estimated from the

blurred imageB. We could rewrite this likelihood term as follows:

∑i∈E ‖φθi −Rθi k‖2

2η2 = ∑
i∈E

Sθi

(

(M(B)−M(k⊗ I))2

2η2

)

(2.14)
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whereSθi is a “slicing” operator that returns a slice of the argument along the perpendicular

orientation of the edgei. From this, we observe that our algorithm essentially reduces the

dimensionality of the data. Joshiet al. [42] in effect establish slicing constraints in virtually

all possible orientations using the observation constraint B− k⊗ I . Instead of using slicing

constraints from virtually all possible orientations, we use only the relevant information (i.e.

perpendicular slices) for blur estimation, which improvesthe computational efficiency. This

computational efficiency comes at a price of using just straight edges, as opposed to using

curved edges. Because Joshiet al. use an observation constraint, they can use curved step

edges in addition to straight edges.

Despite this drawback, using only the perpendicular slicesactually has an added benefit

that it can handle multi-modal blur kernels, as opposed to only uni-modal kernels as in Joshi

et al. [42]. They predict the location of the sharp edge by propagatingthe flat region into the

blurred edge. If the predicted location of the sharp edge is inaccurate, it will cause error in the

latent image estimation (i.e.I ), which would lead to blur kernel estimation error. This problem

is more pronounced when the algorithm considers multi-modal blur because the sharp edge

prediction becomes more challenging. The error in the sharpedge location in the context of

[42] is equivalent to the misalignment of blur kernel projections in the context of our work.

We address this issue by aligning the blur kernel projections through aligning the center of

projections, which can address multi-modal blur kernels aswell.

Choet al. [14] extend the idea from Joshiet al. [42] in a multi-scale manner to deal with

complex kernels. Therefore, quantitative comparisons between Choet al. [14] and our work,

presented in the experimental section, would also hold for comparisons between Joshiet al.[42]

and our work.

Synthetic experiments We analyze the performance of our kernel estimation algorithm using

a synthetically blurred test pattern. We generated a test pattern with ideal lines and ideal step

edges in 12 orientations, shown in Fig.2.6. We blur this test pattern using a blur kernel shown

at the top of Fig.2.6, and add 0.5% Gaussian noise to the blurred pattern.

As a first experiment, shown in Fig.2.6(a-c), we take 120 slices of blurred lines (at edge

samples indicated with green dots) and recover a blur kernelfrom those slices using three differ-

ent inverse Radon transform algorithms. We consider a back projection algorithm in Fig.2.6(a),

a filtered back projection algorithm in Fig.2.6(b), and our algorithm in Fig.2.6(c). We add

different amount of Gaussian noise to the ground-truth orientation of each slice to stress-test
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(a) Kernel estimation from lines using 

back projection - 120 slices, 12 orientations

(d) Kernel estimation from edges

- 120 slices, 12 orientations

(e) Kernel estimation from edges

- 60 slices, 12 orientations

(f) Kernel estimation from edges

- 60 slices, 6 orientations

σo= 0 σo= 5 σo= 10 σo= 20

Legend

Original

blur kernel

(b) Kernel estimation from lines using 

filtered back projection

(c) Kernel estimation from lines

using a sparse prior

Figure 2.6: We estimate a blur kernel from a synthetically blurred test pattern. We blur the
test pattern using the blur kernel shown on the top left. As a first experiment, we compare three
different inverse Radon transform algorithms: (a) the backprojection algorithm (b) the filtered
back projection algorithm (c) our algorithm in Eq.2.12. We estimate the blur kernel from 120
slices of lines in 12 orientations. Green dots correspond topixels at which we take the slices.
We add different amount of orientation noise, of standard deviation σo (in terms of degrees),
to the ground-truth orientation, and show reconstructed blur kernels in each case. We observe
that our algorithm faithfully reconstructs the kernel across all orientation noise levels, whereas
other algorithms reconstruct kernels that are too “blurred” or that have streaks. We test the
stability of our kernel reconstruction algorithm by varying the number of edge slices and the
number of orientations. (d) 120 slices of edges in 12 orientations (e) 60 slices of edges in 12
orientations (f) 60 slices of edges in 6 orientations. We observe that it is important to sample
enough edges in many orientations.
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algorithms to orientation estimation error. Recovered kernels under different orientation noise

levels are shown in colored boxes. We observe that our algorithm faithfully reconstructs the

blur kernel at all orientation noise level, whereas other algorithms reconstruct kernels that are

too “blurred” or that have streaks even at a low orientation noise level. This shows that a sparse

prior on blur kernels improves the kernel reconstruction performance.

As a second experiment, shown in Fig.2.6(d), we take 120 slices of blurrededgesand

recover the blur kernel from the derivatives of blurred edgeprofiles. Again, we add different

amount of Gaussian noise to the ground-truth orientation. The kernel estimation performance

deteriorates slightly since differentiation of edge profiles doubles the observation noise vari-

ance. However, recovered kernels are close to the ground-truth kernel across all orientation

noise levels. In Fig.2.6(e), we reduce thenumberof edge slices for kernel estimation while

sampling edges in all 12 orientations. Reducing the number of slices by a factor of 2 increases

the noise variance by a factor of
√

2, but even in this case the estimated kernels are still quite

accurate. When we reduce the number of orientations by a factor of two Fig.2.6(f) while using

60 slices as in Fig.2.6(e), however, our algorithm is less stable. This experimentshows that, if

possible, we should take many edge samples in many orientations.

� 2.2.3 Detecting reliable edges from a blurry image

For an accurate kernel reconstruction, we need to find stable, isolated step edges. We introduce

an image analysis technique that selects stable edges from ablurry image. As a first step, we

run an edge detector to find an edge mapE of candidate edge samples.

Our goal is to sieve isolated step edges that satisfy four desired characteristics. First, se-

lected pixels should correspond to a step edge with enough contrast on either side, which en-

sures that the signal to noise ratio of the blurred profile is high. We enforce this constraint

by discarding edge samples with a small color difference between two locally dominant colors

(Sec.2.2.1). In RGB space, if‖W −Z‖ < 0.03, we discard that edge sample. Second, the

blurred edge profile should not be contaminated by adjacent edges. To ensure that two adjacent

step edges are sufficiently separated, we take an orthogonalslicesE of the edge mapE at each

edge candidate, and we discard edge samples with∑sE > 1. Third, a local neighborhood of

an edge candidate should conform to a color-line image model. In other words, blurred edge

profiles (i.e. α ’s from Eq.2.7) should lie between 0 and 1. An edge sample with a slice that

lies outside of 0− ε and 1+ ε , whereε = 0.03, is discarded. Lastly, the edge should be locally

straight. The “straightness” is measured as the norm of the average orientation phasor in the
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complex domain. At each edge candidatel , we compute the following measure:

‖∑ j∈N(l) exp(−i2θ j)‖
∑ j∈N(l) 1

(2.15)

wherei =
√
−1, andN(l) indicates edge candidates in the neighborhood of pixell . If this norm

is close to 1, then the edge is locally straight in the neighborhood of pixell . We discard edge

samples with the norm less than 0.97.

Our edge selection algorithm depends on the blur kernel size, which is estimated by users.

If the estimated blur kernel size is too large, the second andthird step of our edge selection

algorithm would reject many edges since (i) more slices of the edge mapE would contain

more than one edge (ii) the size of the neighborhood in which the color-line model should hold

increases. Therefore, users should ensure that the estimated blur size is just enough to contain

the blur.

� 2.3 Experimental results

This section provides experimental results that illustrate the performance of our deblurring

algorithm. We compare our algorithm’s performance to threecompeting methods: Ferguset

al. [31], Shanet al. [74], and Choet al. [14]. In order to compare just the kernel estimation

performance, we used the same deconvolution algorithm [48] to restore images.

Fig. 2.7 shows deblurred images. In most test images, our algorithm performs favorably

compared to prior art. As long as we can find enough stable edges in many orientations, our

algorithm can reliably estimate the kernel. Fig.2.8shows more comparisons.

Our algorithm sometimes recover blur kernels with spurious“islands”, as in Fig.2.8(a),

when the edge selection algorithm erroneously includes unstable edges at which edge slices

intersect other neighboring edges. A better edge selectionalgorithm should reduce such error.

Another limitation of this algorithm is that it can be unstable when there are not enough

edges, as shown in Fig.2.9(a), and/or when there are not enough edges in different orientations,

as shown in Fig.2.9(b). When there are not enough edges, there simply isn’t muchinformation

to estimate the kernel with; when there are only few dominantorientations in selected edges,

we can only constrain the blur in those orientations and cannot recover meaningful blur kernel

in other orientations. In some cases, this is less problematic. An interesting aspect of estimating

the blur kernel explicitly from blurred edge profiles is thatthe estimated blur kernel contains
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Blurry image Fergus et al. Shan et al. Cho et al. Ours

(a)

(b)

(c)

Figure 2.7: This figure compares our algorithm’s kernel estimation performance to three pre-
vious work: Fergus et al. [31], Shan et al. [74], and Cho et al. [14]. In most examples, our
algorithm compares favorably to prior art.

enough information to properly deblur edges in those orientations, even if the blur kernel is not

entirely correct. For instance, if an image is a single step edge, as in Fig.2.10, we do not need
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Blurry image Fergus et al. Shan et al. Cho et al. Ours

(a)

(b)

(c)

Figure 2.8: This figure shows more comparisons of our kernel estimation algorithm and prior
art.

to recover the original blur kernel to adequately remove theblur. We can remove the blur from

the stripes as long as we recover the horizontal component ofthe blur kernel, and this is what
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Blurry image Ours
Selected 

edge samples

(a)

(b)

Figure 2.9: Our kernel estimation algorithm is sensitive (a) when thereare not enough edges
and/or (b) when there are not enough edges in different orientations. This figure illustrates
these failure modes.

our algorithm does.

Kernel projection constraints in Eq.2.9 assume that the imageB is a “linear” image. In

other words, the blurred imageB is not processed by any non-linear operators such as non-

linear tone maps. We observe experimentally that our algorithm is vulnerable to non-linearities

in B, therefore it is important to properly linearize the input imageB. in this work, we used

only raw images as our test set in order to factor out artifacts from non-linearities. We observe

that while competing algorithms are less susceptible to non-linearities, using raw images also

improves their performance.
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(a) (b)

(c)

(d)

Figure 2.10: (a) A blurred stripe (b) The deblurred stripe using the kernel estimated from our
algorithm (c) Estimated blur kernel (d) The ground-truth blur kernel. Our kernel estimation
algorithm only recovers the “horizontal” component of the ground-truth blur kernel, but the
deblurred image is still crisp and is free of ringing.

Chromatic aberration from a camera lens may also affect kernel estimation performance.

When chromatic aberration is significant, our edge selection algorithm will discard most edge

samples because an edge slice would not be explain by two dominant colors (Sec.2.2.1).

� 2.4 The joint estimation of the blur kernel and the sharp image

As discussed in the previous section, our kernel estimationalgorithm is less stable when there

are not enough edges in many orientations. To handle images that do not have enough isolated

edges, we develop a method to incorporate kernel projectionconstraints in a more general

deblurring framework.

One method to estimate a blur kernelk and a sharp imageI is by maximizing the joint

distribution ofk andI [14, 74]:

[k̂, Î ] = argmax
k,I

p(k, I |B)

= argmax
k,I

p(B|k, I)p(k)p(I) (2.16)

[k̂, Î ] is called a maximum-a-posteriori (MAP) of the joint distribution p(k, I |B).

One often models the likelihood termp(B|k, I) using the image observation model (Eq.2.1):
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p(B|k, I) ∝ exp

(

−‖B−k⊗ I‖2

2η2
n

)

(2.17)

The image priorp(I) favors a piecewise-smooth latent image:

p(I) ∝ exp(−λ‖∇I‖γ) (2.18)

The blur kernel priorp(k) favors blur kernels with sparse intensity profiles as well assparse

gradient profiles (Eq.2.11). Because maximizingp(k, I |B) with respect tok, I jointly is chal-

lenging, we can resort to an alternating maximization algorithm to solve Eq.2.16: we first

maximize the joint distributionp(k, I |B) with respect to the blur kernelk while keeping the im-

ageI fixed, and then we maximizep(k, I |B) with respect toI while holdingk fixed. We iterate

these two steps until convergence.

Despite the simplicity, Levinet al. [50] argue that the joint estimation of the kernel and the

sharp image is not a good idea because the joint probability Eq.2.16is often maximized whenk

is an impulse function (i.e. no-blur) andI is the input blurry imageB. For instance, the no-blur

solution pair maximizes the likelihood (Eq.2.17), an impulse function is not penalized by the

blur kernel prior, and a blurry version of an image is sometimes favored by the image prior over

its original version [50].

To resolve this issue, we augment the likelihood term in Eq.2.17using the Radon transform

constraint in Eq.2.10:

p(B|k, I) ∝ exp

(

−
{

‖B−k⊗ I‖2

2η2
n

+
∑360

j=1w j‖φ̃θ j −Rθ j k‖2

2η2
p

})

(2.19)

The Radon transform term bases on a strong assumption that natural images consist of step

edges and that every detected edge should be an ideal step edge. It effectively penalizes the no-

blur solution, and steers the joint distributionp(k, I |B) to favor the correct solution. Algorithm1

shows the pseudocode for the joint estimation algorithm. Wename this algorithm RadonMAP.

Notice that we filter the latent image estimateÎ using a bilateral filter before re-estimating

the kernel, as in [14]. The bilateral filter step is important for improving the kernel estimation

performance.̂I usually contains visually disturbing ringing and noise because the initial kernel

estimate is inaccurate. If we directly useÎ to refine the blur kernel, we would be seeking a blur

kernel that would reconstructÎ from B. To improve the blur kernel, we bilateral-filter the latent

image so that the refined blur kernel restores an image with less ringing and noise.
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% Initial kernel estimation
k̂⇐ argmink Eq.2.12
for l = 1 to 5do

Î ⇐ argmaxI p(k̂, I |B) % Latent image estimation
Î ⇐ bilateralFiltering(̂I )
k̂⇐ argmaxk p(k, Î |B) % Kernel re-estimation

end for
Î ⇐ argmaxI p(k̂, I |B)

Algorithm 1: The RadonMAP blur estimation algorithm

Experimental results Fig. 2.11(a-b) show how the RadonMAP algorithm improves the failure

cases shown in Fig.2.9. The images deblurred using the MAP kernel estimation algorithm are

more crisp and have less ringing compared to those of our original kernel estimation algorithm.

In general, the MAP kernel estimation algorithm cleans up spurious “islands” in estimated ker-

nels and improves the quality of deblurred images. Fig.2.12shows more examples comparing

the performance of competing deblurring algorithms.

To double-check that the new posterior probability models the problem better than the con-

ventional posterior probability, we compare the negative log-posterior of our MAP solution and

the no-blur solution. The negative log-posterior of our solution in Fig.2.11(a) is 2.29× 104,

whereas that of the no-blur solution is 7.95×105: the Radon transform constraint effectively

penalizes the no-blur solution.

� 2.4.1 Quantitative evaluation

We quantify the performance of blur estimation algorithms using cumulative error ratio [50].

Error ratio (ER) measures the deconvolution error of using the estimated blur kernel compared

to the deconvolution error of using the ground-truth kernel. In particular, ER is defined as

follows:
ER=

‖I −Dest‖2

‖I −Dgt‖2 (2.20)

whereDest is the image restored using the estimated blur kernel, andDgt is the image restored

using the ground-truth blur kernel. Levinet al.[50] provide a set of test images and blur kernels

for comparisons. However, the test images are too small (255× 255 pixels) and do not have

salient step edges. To address these issues, we have hand-selected 6 images (each with about 1

mega pixels) of different contents, and computed ER for eachblur kernel provided in Levinet

al. ’s dataset. Figure Fig.2.13shows the test images and blur kernels: each algorithm is tested
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Blurry image Fergus et al. Shan et al. Cho et al.
Ours -

Radon Transform

Ours - 

MAP

(a)

(b)

(c)

Figure 2.11: By integrating kernel projection constraints to a MAP kernel estimation method,
we can improve the kernel estimation performance. We name this algorithm RadonMap. (a-b)
show that even when there are not enough edges in different orientations (as shown in Fig.2.9),
the RadonMAP algorithm can reliably reconstruct the kernel.

with 48 blurred images. Images 1–3 contain many edges in different orientations, whereas

images 4–6 do not. Therefore, we can conjecture that our algorithms would perform better on

images 1–3 than on images 4–6.

Figure Fig.2.14shows the cumulative error ratio for each deblurring algorithm. The inverse

Radon transform of blur projections performs better than the algorithms presented in Ferguset

al. [31] and Shanet al. [74], but performs worse than the algorithm in Choet al. [14]. Aug-
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Blurry image Fergus et al. Shan et al. Cho et al.
Ours -

Radon Transform

Ours - 

MAP

(b)

(c)

(a)

Figure 2.12: We show more examples in which the MAP kernel estimation algorithm improves
the estimated blur kernels.

menting the blur kernel projection constraints in a MAP framework (the RadonMAP algorithm)

improves the performance of our algorithm, but it still falls short of Choet al. ’s algorithm.

To gain more insight, we have plotted the cumulative error ratio for images 1–3 and images

4–6 separately in Fig.2.15. This figure shows an interesting trend that for piecewise smooth

images with enough edges in many orientations (i.e. images 1–3), the RadonMAP algorithm

outperforms all existing algorithms, but if images lack such edges (i.e. images 4–6), Cho’s

algorithm performs the best. Still, even in such scenarios our algorithms compare favorably to

Ferguset al. ’s and Shanet al. ’s algorithms.

We have also observed that the size of the blur also affects the performance of our algorithm.
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Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Kernel 1 Kernel 2 Kernel 3 Kernel 4

Kernel 5 Kernel 6 Kernel 7 Kernel 8

Figure 2.13: We evaluate the blur estimation performance of five different blur estimation
algorithms. We synthetically blur each image with each blurkernel shown in this figure, and
estimate blur kernels from each of them using five competing algorithms. The algorithms’
performance is measured using cumulative error ratio.
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Figure 2.14: This figure shows the cumulative error ratio for five blur estimation algorithms:
Fergus et al. [31], Shan et al. [74], Cho et al. [14], the inverse Radon transform based blur
estimation in Sec.2.2.2(named Radon in the legend), and the MAP algorithm augmentedwith
the Radon transform constraints in this section (named RadonMAP in the legend). From the
cumulative error ratio, the algorithm in Cho et al. performsthe best, closely followed by the
MAP algorithm augmented with the Radon transform.

Therefore, we have plotted the cumulative error ratio for blur kernel 1–4 and 5–7 in Fig.2.13

separately in Fig.2.16. Blur kernels 5–8 have larger spatial supports compared to blur kernels

1–4. Interestingly, when the blur kernel support is small, the Radon transform based algorithms

perform slightly better than Cho’s algorithm, but when the blur kernel support is large, our

algorithms suffer. This issue can be attributed to edge detection: (i) the number of stable

edges decreases as the blur kernel support increases because more edges are contaminated by

otherwise isolated neighboring edges (ii) the stable edge detection becomes more challenging

because a single isolated edge is often interpreted as two edges that starts at one end of the

blurred profile and stops at the other end. We could reduce such blur size dependencies by

extending our algorithms in a multi-scale manner.
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CER of  images 1-3 CER of images 4-6
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Figure 2.15: In this figure, we plot the cumulative error ratio for images 1–3 and images
4–6 separately. The inverse Radon transform of kernel projections (named Radon) and the
MAP estimation with kernel projection constraints (named RadonMAP) both perform well when
images contain many edges in different orientations as in images 1–3, but their performance
drops drastically when images do not contain enough edges asin images 4–6.
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Figure 2.16: The performance of the inverse Radon transform of kernel projections (named
Radon) and the MAP estimation with kernel projection constraints (named RadonMAP) depend
on the size of the blur. In this figure, we plot the cumulative error ratio for kernels 1–4 and
kernels 5–8 in Fig.2.13separately. We observe that both Radon and RadonMAP are state-of-
the-art when blur kernels are small, but their performance drops drastically when blur kernels
are large.
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� 2.5 Conclusion

In this work, we introduce a new insight to the blur kernel estimation problem: blur kernels

can be estimated by analyzing blurred edge profiles. Our technique is especially well suited

to images that have many step edges in different orientations, such as man-made scenes. Our

insight can also be useful for existing blur estimation methods. We presented a method to inte-

grate kernel projection constraints in a MAP based kernel estimation framework. Experimental

results show that our kernel estimation algorithm comparesfavorably to prior art.



54 CHAPTER 2. BLUR KERNEL ESTIMATION FROM BLURRED EDGE PROFILES



Chapter 3

A content-aware image prior for

image restoration

� 3.1 Introduction

EVEN if we could perfectly estimate the blur kernel from a blurry photograph, restoring

a clean, sharp image is still a challenging problem because blur attenuates information

about the original image. Image enhancement algorithms often resort to image priors to hallu-

cinate the lost information.

Natural images often consist of smooth regions with abrupt edges, and this characteristic

leads to a heavy-tailed gradient profile. In recent years, a heavy-tailed gradient profile has

been extensively exploited as an image prior: the gradient statistics are represented by fitting a

flexible parametric distribution to gradient samples. Fitted parameters are often kept uniform

for the entire image, effectively imposing the same image prior everywhere [31, 48, 71]. Un-

fortunately, different textures have different gradient statistics even within an image, therefore

imposing a single image prior for the entire image is inappropriate (Fig.3.1).

We introduce an algorithm that adapts the image prior to bothlow-level local structures as

well as mid-level texture cues, thereby imposing an adaptedprior for each texture.1 Adapting

the image prior to the image content improves the image restoration performance. In Sec.3.3,

we analyze a large database of natural images and present an empirical result that gradient

statistics in certain textures are not sparse. This observation justifies our argument that we

should adapt the image prior to underlying textures. We provide algorithmic details of the

content-aware image prior in Sec.3.4, and show image restoration results in Sec.3.5.

1Strictly speaking, an estimate of image statistics made after examining the image is no longer a “prior” proba-
bility. But the fitted gradient distributions play the same role as an image prior in image reconstruction equations,
and we keep that terminology.

55
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Figure 3.1: Colored histograms represent gradient statistics of regions with the same color
mask. In many images, the steered gradient profile is spatially variant. Therefore, an image
prior should adapt to the image content. Insets illustrate how steered gradients adapt to local
structures.

� 3.2 Related work

Image prior research revolves around finding a good image transform or basis functions under

which a transformed natural image exhibits unique characteristics. Transforms derived from

signal processing have been exploited in the past, including the Fourier transform [34], the

Wavelet transform [83], the Curvelet transform [11], and the Contourlet transform [26].

Basis functions learned from natural images have also been introduced. Most techniques
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learn filters that lie in the null-space of the natural image manifold [66, 86, 87, 91]. Aharon

et al. [4] learn a vocabulary that a natural image is composed of. However, none of these

techniques adapt the basis functions to the image.

Edge-preserving smoothing operators do adapt to local structures. Anisotropic diffusion

operators [8] detect edges, and smooth along edges but not across them. A similar idea ap-

peared in a probabilistic framework called a Gaussian conditional random field [80]. A bilat-

eral filter [82] is also closely related to anisotropic operators. Elad [27] and Barash [5] discuss

relationships between edge-preserving operators.

Some image models adapt to edge orientation as well as magnitude. Hammondet al. [38]

present a Gaussian scale mixture model that captures statistics of gradients that are adaptively

steered in the dominant orientation within an image patch. Roth et al. [67] extends this idea to

a random field to model oriented structures in images.

Adapting the image prior to textural characteristics was investigated for gray-scale images

consisting of a single texture [71]. Bishop et al. [7] present a variational image restoration

framework that breaks an image into square blocks and adaptsthe image prior to each block

independently (i.e. the image prior is fixed within the block). However, Bishopet al. [7] do not

address the stability issues at texture boundaries.

� 3.3 Image characteristics

We analyze statistics of gradients adaptively steered in the dominant orientation of local struc-

tures. Rothet al. [67] observe that the gradient profile of orthogonal gradients∇oI show a

higher variance compared to that of aligned gradients∇aI , thereby they propose imposing dif-

ferent priors on∇oI and∇aI . We show that different textures within the same image also have

distinct gradient profiles, therefore we propose adapting the prior to local textures.

We parameterize gradient profiles using a generalized Gaussian distribution:

p(∇I ;γ ,λ ) =
γλ ( 1

γ )

2Γ(1
γ )

exp(−λ‖∇I‖γ ) (3.1)

whereΓ is a Gamma function, andγ ,λ are shape parameters. Qualitatively,γ determines

the peakiness andλ determines the width of a distribution. We assume that∇oI and∇aI are

independent:p(∇oI ,∇aI) = p(∇oI)p(∇aI).
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� 3.3.1 The distribution of γ,λ in natural images

Different textures give rise to different gradient profilesand thus differentγ ,λ . This section

investigates thedistribution of the shape parametersγ ,λ in image patches. About 110,000

image patches of 41× 41 pixels are sampled from 500 high quality natural images, and their

gradient profiles are fitted to a generalized Gaussian distribution to associate each patch with

γ ,λ . We fit the distribution by minimizing the Kullback-Leibler(KL) divergence between the

empirical gradient distribution and the model distribution p. We can show that this is equivalent

to minimizing the negative log-likelihood of the model distribution evaluated over gradient

samples:

[γ̃ , λ̃ ] = argmin
γ ,λ

{

− 1
N

N

∑
i=1

ln(p(∇Ii ;γ ,λ ))

}

(3.2)

Claim 1. Suppose xi , i = 1...N are samples from an unknown distribution, and we would liketo

fit a parametric distribution q to the samples xi . Let qE(x) = 1
N ∑N

i=1δ (x− xi) be an empirical

distribution of the samples xi , and let p be a generalized Gaussian distribution parameterized

by shape parametersλ ,γ . We show that a distribution p that best parameterizes the empirical

distribution qE (in the KL divergence sense) minimizes the sum of negative log-likelihood over

samples xi :

min
λ ,γ

KL(qE||p) = min
λ ,γ

{

− 1
N

N

∑
i=1

ln(p(xi ;γ ,λ ))

}

(3.3)

Proof. We can show that the KL divergence betweenpE andq takes the following form:

KL(qE||p) =

∫

x
qE(x) ln

(

qE(x)
p(x)

)

dx

=

∫

x

1
N
{

N

∑
i=1

δ (x−xi)} ln

(

1
N{∑N

i=1 δ (x−xi)}
p(x)

)

dx

=
1
N

N

∑
i=1

ln

(

1
N

p(xi)

)

(3.4)

Therefore,

min
λ ,γ

KL(qE||p) = min
λ ,γ

{

− 1
N

N

∑
i=1

ln(p(xi ;γ ,λ ))

}

(3.5)

We use a Nelder-Mead optimization method [45] to solve Eq.3.2.

Figure3.2 shows the Parzen-window fit to sampledγ̃ , ln(λ̃ ) for ∇oI ,∇aI . For orthogonal

gradients∇oI , there exists a large cluster nearγ = 0.5, ln(λ ) = 2. This cluster corresponds
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Figure 3.2: The distribution ofγ , ln(λ ) for ∇oI ,∇aI in natural images. While the density is the
highest aroundγ = 0.5, the density tails off slowly with significant density around γ = 2. We
show, as insets, some patches from Fig.3.1that are representative of differentγ , ln(λ ).

to smooth patches with abrupt edges or patches from texture boundaries. This observation

supports the fallen - leaves image model – an image is a collage of overlapping instances [46,

55]. However, we also observe a significant density even whenγ is greater than 1. Samples

nearγ = 2 with largeλ correspond to flat regions such as sky, and samples nearγ = 2 with

small λ correspond to fractal-like textures such as tree leaves or grass. We observe similar

characteristics for aligned gradients∇aI as well. The distribution of shape parameters suggests

that a significant portion of natural images is not piecewisesmooth, which justifies adapting the

image prior to the image content.

� 3.3.2 Spatially variant gradient statistics

Local gradient statistics can be different from global gradient statistics. Fig.3.1 shows the

gradient statistics of colored regions. Two phenomena are responsible for spatially variant

gradient statistics: the material and the viewing distance. For example, a building is noticeably

more piecewise smooth than a gravel path due to material properties, whereas the same gravel

path can exhibit different gradient statistics depending on the viewing distance.

To understand the implication of spatially variant gradient statistics, we consider using the

gradient profile of a specific region as an image prior for the entire image in restoring a blurry

photo of Fig.3.1. Fig. 3.3 illustrates the experiment. When we use gradient statistics from

the sky to deblur the entire image, we recover the smooth sky,but over-smooth other regions.
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Original image Using sky prior Using road prior

Blurred input Using tree prior Using building prior

Figure 3.3: We render a blurry photo of the sharp image in Fig.3.1, and deblur it using priors
fitted to gradient statistics of different regions. We show cropped patches of deblurred images
for comparison. The prior from the sky over-smoothes all other regions to generate smooth
sky; the prior from grass hallucinates high frequencies in grass at the expense of noise in other
regions. While the prior from buildings generates reasonable renditions in all regions, the
reconstructed image is generally piecewise smooth, which is disturbing in textured area such
as trees.

When we use the statistics from trees, we hallucinate high frequency texture in trees, but we fail

remove noise from other regions. While the prior from the building does recover reasonable

renditions in all regions, the reconstructed image is piecewise smooth and has visual artifacts

in textured area such as trees. This experiment implies thatby locally adapting the image prior

to underlying textures, we can restore an image that is visually pleasing everywhere.

� 3.3.3 Scale dependence of gradient histograms

The scale invariance of natural images has been studied extensively [68]. Two models embrace

the scale invariance: an occlusion model (a.k.a. a fallen-leaves model [46, 55]) and a pink-noise
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Figure 3.4: Different textures exhibit different gradient statistics. For some textures the shape
of the gradient histogram is roughly scale invariant. The gradient statistics after deconvolution
also remain quite similar after down-sampling. First row: texture images. Second row: the
Fourier spectrum of a 1D slice through the center of the corresponding sharp image. Third row:
the gradient histogram of the corresponding sharp image. Fourth row: the gradient histogram
of the deconvolved image. The dotted black line correspondsto the gradient distribution of a
sharp image at the full resolution. Fifth row: the Fourier spectrum of a 1D slice through the
center of the corresponding deconvolved image.
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model, which stipulates that a Fourier spectrum of a naturalimage falls off as a function of 1/ f .

Srivastavaet al. [77] experimentally show that the scale invariance holds only for an ensemble

of images and not necessarily within each image.

In this section, we analyze the scale invariance of gradienthistograms withineachimage.

We assume that there are three dominant types of textures in natural scenes: a random natural

texture such as grass, a man-made scene, and a structured texture such as a brick wall (Fig.3.4).

We can view a random natural texture as an instance of a pink-noise, and we can consider

an image of man-made objects as an instance of an occlusion image model. We analyze the

gradient profile of these textures as we vary the scale.

We first analyze the Fourier spectrum of a central row of the image. The Fourier spectra

(shown in the second row of Fig.3.4) of the grass and the chair scene (first two columns) fall off

inversely proportional to frequencyf , whereas that of a brick wall image, which exhibit struc-

tured textures, show humps at high frequencies (in additionto the harmonics) that correspond

to structural details. From the Fourier spectrum, we can conjecture that the gradient histogram

of structured textures may not be scale invariant since suchstructural details in high frequencies

will be lost through down-sampling.

The third row of Fig.3.4shows the gradient histogram of each image across scale. Thered

line corresponds to the histogram at full resolution; the green line at one-half the full resolution;

the blue line at one-quarter the full resolution. We notice that the gradient profile is roughly

scale invariant for a random texture and a man-made scene, but that of structured textures is

not. As is conjectured earlier, we can attribute the scale variance of structured textures to the

loss of high frequency details from down-sampling.

To observe how deconvolution modifies gradient statistics,we blur the images and decon-

volve them using a fixed image prior (γo = 0.8,γa = 0.6). The blur is about 5 pixels in width.

The fourth row of Fig.3.4 shows the gradient histogram of images after deconvolution. The

dotted black line corresponds to the gradient distributionof the sharp image at the full resolu-

tion. The sparse deconvolution tends to preserve the gradient distribution of random textures

and man-made scenes, but greatly modifies the gradient profile of structured textures because

blur low-pass filters high frequency details.

Another interesting observation is that the gradient of thedeconvolved image at one-half

the original resolution mimics that of the original image atfull resolution in the case of ran-

dom texture and man-made objects. We leverage this observation in estimating the gradient

distribution from the blurry input image.
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Figure 3.5: This figure illustrates the pipeline of our image restoration method. Detailed
descriptions of each block are provided in Sec.3.4.

� 3.4 The image prior estimation

The goal of this work is to identify the correct image prior for each pixel in the image. If we are

given a sharp image, one way to identify the image prior at each pixel is to fit gradients in each

sliding window to a generalized Gaussian distribution, andassign the fitted shape parameters

to the central pixel of each window, as shown in Fig.3.5. However, fitting gradients to a gen-

eralized Gaussian distribution requires a large amount of computation, rendering this operation

for each sliding window intractable. Furthermore, we do nothave a sharp image to estimate the

image prior with.

This section presents our solution to this challenging problem: (i) we introduce a method

to estimate the image prior directly from a blurry input image, and (ii) we present a regression-

based technique to estimate the image prior. Our method is computationally more attractive

compared to fitting gradients within each sliding window to ageneralized Gaussian distribution.

� 3.4.1 Image model

Let B be an observed degraded image,k be a blur kernel (a point-spread function or a PSF), and

I be a latent image. Image degradation is modeled as a convolution process:

B = k⊗ I +n (3.6)

where⊗ is a convolution operator, andn is an observation noise. The goal of (non-blind) image

restoration is to recover a clean imageI from a degraded observationB given a blur kernelk and

a standard deviation of noiseη , both of which can be estimated through stand-alone techniques
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[31, 53].

We introduce a conditional random field (CRF) model to incorporate texture variations

within the image restoration framework. Typically, a CRF restoration model can be expressed

as follows:

p(I |B,k,η) =
1
M ∏

i
ψB(I ;Bi,k,η)ψI (I) (3.7)

whereM is a partition function andi is a pixel index. ψB is derived from the observation

process;ψI from the assumed image prior:

ψB(I ;Bi ,k,η) ∝ exp(−(Bi − (k⊗ I)i)
2

2η2 ) (3.8)

ψI (I) ∝ exp(−λ‖∇I‖γ ) (3.9)

To model spatially variant gradient statistics, we introduce an additional hidden variablez,

called texture, to the conventional CRF model.z controls the shape parameters of the image

prior:

p(I ,z|B,k,η) =
1
M ∏

i
ψB(I ;Bi ,k,η)ψI ,z(I ,z) (3.10)

whereψI ,z(I ,z) ∝ exp(−λ (z)‖∇I‖γ(z)). We modelzas a continuous variable since the distribu-

tion of [γ ,λ ] is heavy-tailed and does not form tight clusters (Fig.3.2).

We maximizep(I |B,k,η) to estimate a clean imageÎ . To do so, we approximatep(I |B,k,η)

by the functionp(I ,z|B,k,η) at the mode ˆz:

p(I |B,k,η) =

∫

z
p(I ,z|B,k,η)dz≈ p(I , ẑ|B,k,η) (3.11)

Sec.3.4.2discusses how we estimate ˆz for each pixel.

� 3.4.2 Estimating the texture ẑ

A notable characteristic of a zero-mean generalized Gaussian distribution is that the variancev

and the fourth momentf completely determine the shape parameters[γ ,λ ] [75]:

v =
Γ(3/γ)

λ
2
γ Γ(1/γ)

, f =
Γ(5/γ)

λ
4
γ Γ(1/γ)

(3.12)
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To take advantage of these relationships, we define a variable called a local texture around each

pixel i, ẑi , as a two dimensional vector. The first dimension is the variancevi of gradients in the

neighborhood of a pixeli, and the second dimension is the fourth momentfi of gradients in the

neighborhood of a pixeli:
ẑi = [vi(∇I), fi(∇I)] (3.13)

Qualitatively, the variance of gradientsvi(∇I) encodes the width of the distribution, and the

fourth momentfi(∇I) encodes the peakiness of the distribution. Note that we can easily com-

putevi , fi through convolution.

Estimating the texture ẑ from the observe image B We should ideally estimate the texture ˆz

from sharp imageI , but I is not available when estimating ˆz. We address this issue by estimat-

ing the texture ˆz from an image reconstructed using a spatially invariant image prior. We hand-

select the spatially invariant prior with a weak gradient penalty so that textures are reasonably

restored at the expense of slightly noisy smooth regions:[γo = 0.8,λo = 6.5], [γa = 0.6,λa = 6.5].

A caveat is that the fixed prior deconvolution may contaminate the gradient profile of the re-

constructed image, which could induce texture estimation error. To reduce such deconvolution

noise, we down-sample the deconvolved image by a factor of 2 before estimating the texture ˆz.

As investigated in Sec.3.3.3, a gradient profile of natural images is often scale invariant due to

fractal properties of textures and piecewise smooth properties of surfaces [46, 55], whereas that

of the deconvolution noise tends to be scale variant. Therefore, the texture ˆzestimated from the

down-sampled deconvolved image is close to the texture of the original sharp image.

� 3.4.3 Estimating the shape parameters γ,λ from ẑ

We could numerically invert Eq.3.12to directly compute the shape parameters[γ ,λ ] from the

variance and fourth moment [75]. However, a numerical inversion is computationally expensive

and is sensitive to noise. We instead use a kernel regressionmethod that maps the log of the

texture ln(ẑ) to shape parameters[γ , ln(λ )].

We should train the regressor to learn how to map the texture ˆzof the down-sampleddecon-

volvedimage to shape parameters to account for the effect of residual deconvolution noise in

textureẑ. Since the deconvolved image, thus ˆz, depends on the blur kernel and the noise level,

we would ideally have to train regressors discriminativelyfor each degradation scenario, which

is intractable. However, we empirically observe in Fig.3.6that the variance and fourth moment

of the deconvolved, down-sampled image are close to those ofthe down-sampled original im-
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Figure 3.6: We observe that the local variance and fourth moments of gradients computed
from the deconvolved, down-sampled image of Fig.3.1 are close to those computed from the
down-sampledoriginal image.

age. Therefore we can afford to learn asingleregressor from the variance and fourth moment

of the sharp, down-sampled image to the shape parameters. The estimated shape parameters

are reasonably accurate for our purpose.

To learn the regression function, we sample∼ 125,000 patches of size 17×17 pixels from

500 high quality natural images. We fit the gradient profile ofeach patch to a generalized

Gaussian distribution, and associate each fit with the variance and fourth moment of gradients

in the down-sampled version of each patch (9×9 pixels). We use the collected data to learn the

mapping from[ln(v), ln( f )] to [γ , ln(λ )] using LibSVM [12]. We use a 10-fold cross validation

technique to avoid over-fitting.

� 3.4.4 Handling texture boundaries

If multiple textures appear within a single window, the estimated shape prior can be inaccurate.

Suppose we want to estimate the image prior for a 1-dimensional slice of an image (Fig.3.7(a)).

Ideally, we should recover two regions with distinct shape parameters that abut each other by a

thin band of shape parameters corresponding to an edge. However, the estimated image prior

becomes “sparse” (i.e. smallγ) near the texture boundary even if pixels do not correspond to

an edge (the green curve in Fig.3.7(c)). This occurs because we use a finite-size window for

computingv and f causes this issue.

To recover appropriate shape parameters near texture boundaries, we regularize the esti-
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Figure 3.7: We regularize the estimated shape parameters using a GCRF such that the texture
transition mostly occurs at a texture boundary. We model theobservation noise in the GCRF
as thevarianceof the variance and fourth moments estimated from two Gaussian windows of
different standard deviations – 2-pixel and 4-pixel, as shown in (b). This reduces the shape
parameter estimation error at texture boundaries, as shownin (c) (compare green and red
curves).

mated shape parameters using a Gaussian conditional randomfield (GCRF) [80]. Conceptu-

ally, we want to smooth shape parameters only near texture boundaries. A notable observation
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at texture boundaries is that ˆz’s estimated from two different window sizes tend to be different

from each other: the large window could span two different textures while the smaller window

spans a homogenous texture, generating different ˆz’s. We exploit this observation to smooth

only near texture boundaries.

To be more specific, we maximize the following probability toregularizeγ̃ returned by the

regressor:

p(γ ; γ̃) ∝ ∏
i, j∈N(i)

ψ(γ̃i |γi)Ψ(γi ,γ j) (3.14)

whereN(i) denotes the neighborhood ofi, ψ is the observation model andΨ is the neighbor-

hood potential:

ψ(γ̃i |γi) ∝ exp

(

−(γ̃i − γi)
2

2σ2
l

)

Ψ(γi ,γ j) ∝ exp

(

−(γi − γ j)
2

2σ2
n(i, j)

)
(3.15)

We setσl andσn adaptively. We set the varianceσ2
n(i, j) of the neighboringγ asσ2

n(i, j) =

α(I(i)− I( j))2, whereα = 0.01 controls how smooth neighboring estimates should be.σn

encourages the discontinuity at strong edges of the imageI [80]. The observation noiseσ2
l is

themean varianceof the variancev and of the fourth momentf estimated from windows of two

different sizes (Gaussian windows with 2-pixel and 4-pixelstandard deviations.) If this value

is large, the central pixel is likely to be near a texture boundary, thus we allow its estimated

parameter to be smoothed. We use the same GCRF model to regularize ln(λ ) with α = 0.001.

Fig. 3.7(c) shows the estimated shape parameters before and after regularization along with

the estimated GCRF observation noise. After regularization, two textures are separated by a

small band of sparse image prior corresponding to an edge, asdesired.

Fig. 3.8 shows the estimated shape parameters for orthogonal gradients of Fig.3.1. In

Fig. 3.8(a,b), the parameters are estimated from the image reconstructed from 5% noise and the

blur in Fig.3.11. In Fig. 3.8(a) we show the estimated shape parameters before texture bound-

ary handling, and in Fig.3.8(b) we show the result after texture boundary handling. Without

texture boundary handling, estimated shape parameters show “ringing” at texture boundaries.

After texture boundary handling, we correctly estimate theshape parameters even at texture

boundaries. We observe that the estimated prior in the tree region is close to Gaussian (i.e.
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Figure 3.8: (a) The shape parameters for orthogonal gradients, estimated from the down-
sampled deconvolved image of Fig.3.1, before texture boundary handling. We observe “ring-
ing” at texture boundaries. (b) The estimated shape parameters after texture boundary han-
dling. Parameters are more consistent at texture boundaries. (c) The shape parameters esti-
mated from the down-sampledoriginal image. (c) is quite close to (b), which implies that our
kernel estimation method is accurate.

γ = 2∼ 3), whereas the estimated prior in the building region is sparse (i.e.γ < 1). The esti-

mated shape parameters are similar to parameters estimatedfrom the down-sampled, original

image, shown in Fig.3.8(c). This supports the claim that shape parameters estimated from a

degraded input image are reasonably accurate.
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� 3.4.5 Implementation details

We minimize the negative log-posterior to reconstruct a clean imageÎ :

Î = argmin
I

{(B−k⊗ I)2

2η2 +w
N

∑
i=1

(λo(ẑi)‖∇oI(i)‖γo(ẑi) + λa(ẑi)‖∇I‖γa(ẑi))} (3.16)

where[γo,λo], [γa,λa] are estimated parameters for orthogonal and aligned gradients, respec-

tively, andw is a weighting term that controls the gradient penalty.w = 0.025 in all examples.

We minimize Eq.3.16 using an iterative reweighted least squares algorithm [48, 78]. Algo-

rithm 2 shows the pseudocode of the entire system.

γo ⇐ 0.8,λo ⇐ 6.5,γa ⇐ 0.6,λa ⇐ 6.5
Ĩ ⇐ argminI Eq.3.16
for Orthogonal and aligned gradients ofĨ do

% For every pixel in the image
for i = 1 to Ndo

vi ⇐ 1
M ∑M

l∈N(i)(∇Ĩ)2

fi ⇐ 1
M ∑M

l∈N(i)(∇Ĩ)4

zi ⇐ [vi , fi]
[γo(i), ln(λo(i))] ⇐ regressiono(zi)
[γa(i), ln(λa(i))] ⇐ regressiona(zi)

end for
end for
[γo,λo,γa,λa] ⇐ GCRFRegularize([γo,λo,γa,λa])
Î ⇐ argminI Eq.3.16

Algorithm 2: Image reconstruction algorithm

� 3.5 Experimental results

We evaluate the performance of the content-aware image prior by applying the prior in image

restoration tasks. The use of the content-aware image priorin image restoration tasks improves

the rendition of textures.

� 3.5.1 Image restoration

We evaluate the performance of the content-aware image prior for deblurring and denoising

tasks. We compare our results to those reconstructed using asparse unsteered gradient prior
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Figure 3.9: We compare the image restoration performance on 21 natural images with spatially
variant texture characteristics.

[48] and a sparse steered gradient prior [67], using peak signal-to-noise ratio (PSNR) and gray-

scale structural similarity (SSIM) [85] as quality metrics. We have augmented the steerable

random fields [67], which introduced denoising and image in-painting as applications, to per-

form deconvolution. In all experiments, we use the first order and the second order gradient

filters [32]. We can augment these algorithms with higher order gradient filters to improve

reconstruction qualities, but it is not considered in this work. The test set, shown in Fig.3.9,

consists of 21 high quality images downloaded from LabelMe [69] with enough texture varia-

tions.

Non-blind deconvolution The goal of non-blind deconvolution is to reconstruct a sharp im-

age from a blurred, noisy image given a blur kernel and a noiselevel. We generate our test

set by blurring images with the kernel shown in Fig.3.11, and adding 5% noise to blurred im-

ages. Fig.3.10shows the measured PSNR and SSIM for different deconvolution methods. The

content-aware prior performs favorably compared to the competing methods, both in terms of
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Figure 3.10: Image deconvolution results : PSNR and SSIM. Mean PSNR: unsteered gradient
prior – 26.45 dB, steered gradient prior – 26.33 dB,content-aware prior – 27.11 dB. Mean
SSIM: unsteered gradient prior – 0.937, steered gradient prior – 0.940,content-aware prior
– 0.951.

PSNR and SSIM. The benefit of using a spatially variant prior is more pronounced for images

with large textured regions. If the image consists primarily of piecewise smooth objects such as

buildings, the difference between the content-aware imageprior and others is minor. Fig.3.11

compares the visual quality of restored images.

Denoising The goal of denoising is to reconstruct a sharp image from a noisy observation

given a noise level. We consider reconstructing clean images from degraded images at two noise

levels: 5% and 10%. Fig.3.12shows the measured PSNR and SSIM for the denoising task.
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Blurry/Noisy image

Content-aware priorOriginal image

Unsteered gradient prior Steered gradient prior

PSNR: 25.59dB, SSIM: 0.960 PSNR: 25.48dB, SSIM: 0.962

PSNR: 26.45dB, SSIM: 0.970

Figure 3.11: Adapting the image prior to textures leads to better reconstructions. The red box
indicate the cropped regions.

When the noise level is low (5%), the content-aware prior reconstructs images with lower PSNR

compared to competing methods. One explanation is that the content-aware prior may not

remove all the noise in textured regions (such as trees) because the gradient statistics of noise

is similar to that of the underlying texture. Such noise, however, does not disturb the visual

quality of textures. The SSIM measure, which is better correlated with the perceptual quality

[85], indicates that the content-aware image prior performs slightly worse, if not comparably,

compared to other methods at a 5% noise level. The top row of Fig. 3.13shows that at a 5%

noise level, reconstructed images are visually similar. It’s worth noting that when the noise

level is low, image degradation is only moderate so that reconstructed images do not depend
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Figure 3.12: Image denoising results : PSNR and SSIM. At5%noise = Mean PSNR: unsteered
gradient prior – 32.53 dB, steered gradient prior – 32.74 dB,content-aware prior – 31.42 dB.
Mean SSIM: unsteered gradient prior – 0.984, steered gradient prior – 0.984,content-aware
prior – 0.982. At 10% noise = Mean PSNR: unsteered gradient prior – 28.54 dB, steered
gradient prior – 28.43 dB,content-aware prior – 28.52 dB. Mean SSIM: unsteered gradient
prior – 0.950, steered gradient prior – 0.953,content-aware prior – 0.959

heavily on the image prior.

When the noise level is high (10%), SSIM clearly favors images reconstructed using the

content-aware prior. In this case, the observation term is weak, thus the image prior plays an

important role in the quality of reconstructed images. The bottom row of Fig.3.13shows de-

noising results at a 10% noise level, supporting our claim that the content-aware image prior

generates more visually pleasing textures. Fig.3.14shows more denoising performance com-

parisons.

Fig. 3.15shows the result of deblurring a blurry image captured with ahandheld camera.

We estimate the blur kernel using Ferguset al. [31]. Again, textured regions are better recon-

structed using our method.

User study We conducted a user study on Amazon Mechanical Turk to compare the visual

quality of reconstructed images. Each user views two images, one reconstructed using the

content-aware prior and another reconstructed using either the unsteered gradient prior or the

steered gradient prior. The user has a choice of selecting the more visually pleasing image or

selecting a“There is no difference”option.

We gathered about 20 user opinions for each comparison. In Fig.3.16, we show the average
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Noisy image Unsteered gradient prior

Content-aware prior

Steered gradient prior

PSNR : 30.74dB, SSIM: 0.995 PSNR : 30.85dB, SSIM: 0.995

PSNR : 29.27dB, SSIM: 0.995

10% noise

PSNR : 29.49dB, SSIM: 0.957 PSNR : 29.33dB, SSIM: 0.960

PSNR : 29.41dB, SSIM: 0.965

Original image

Noisy image Unsteered gradient prior Steered gradient prior

Content-aware priorOriginal image

5% noise

Figure 3.13: The visual comparison of denoised images. The red box denotes the cropped
region. At a5% noise level, while the PSNR of our result is lower than those of competing
algorithms, visually the difference is imperceptible. At a10% noise level, the content-aware
prior outperforms the others both in terms of the PSNR and theSSIM. Furthermore, the content-
aware image prior restores visually more pleasing images.
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Noise = 10%

Blurry/Noisy image Unsteered gradient prior Steered gradient prior

Content-aware priorOriginal image

Figure 3.14: More visual comparison of denoised images.

user preference in each degradation scenario. Consistent with our expectations, users did not

have a particular preference when the degradation was small(e.g. 5% noise), but at a high

image degradation level users clearly favored the content-aware image prior over others.

� 3.5.2 Discussions

A limitation of our algorithm, which is shared by algorithmsusing a conditional random field

model with hidden variables [43, 67, 80], is that hidden variables, such as the magnitude and/or

orientation of an edge, or texture of a region, are estimatedfrom the degraded input image or

the image restored through other means. Any error from this preprocessing step induces error

in the final result.

Although our algorithm improves the rendition of textures in restored images, the quality

of the restored textures still depends on the weighting termw in Eq. 3.16. If w is too small,
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Blurry/Noisy image Content-aware priorUnsteered gradient prior Steered gradient prior

Figure 3.15: The deconvolution of a blurred image taken with a hand-held camera. We estimate
the blur kernel using Fergus et al. [31]. The red box denotes the cropped region. The textured
region is better reconstructed using the content-aware image prior.
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Figure 3.16: This figure summarizes the user study results. The blue region corresponds to
the fraction of users that favored our reconstructions. At alow degradation level, users do not
prefer one method over another, but as the level of degradation increases, users clearly favor
the content-aware image prior.

smooth regions may become noisy, whereasw is too large, even the content-aware image prior

could over-smooth textures. Also, while reconstructed images contain richer texture compared
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to those of previous techniques, textures are still smoother than that of the original image.

In Chapter4, we introduce a different deconvolution algorithm capableof synthesizing rich

textures.

Another way to estimate a spatially variant prior is to segment the image into regions and

assume a single prior within each segment. Unless we segmentthe image into many pieces, the

estimated prior can be inaccurate. Also, the segmentation may inadvertently generate artificial

boundaries in reconstructed images. Therefore, we estimate a distinct image prior for each

pixel in the image.

� 3.6 Conclusion

We have explored the problem of estimating spatially variant gradient statistics in natural im-

ages, and exploited the estimated gradient statistics to adaptively restore different textural char-

acteristics in image restoration tasks. We show that the content-aware image prior can restore

piecewise smooth regions without over-smoothing texturedregions, improving the visual qual-

ity of reconstructed images as verified through user studies. Adapting to textural characteristics

is especially important when the image degradation is significant.



Chapter 4

Image restoration by matching

gradient distributions

� 4.1 Introduction

THE content-aware image prior improves texture restoration. However, as discussed in

Sec.3.5.2, the restored texture is often not as rich as the original texture. We attribute

this shortcoming to the use of a MAP estimator. When we use a MAP estimator to restore

a degraded image, the gradient distribution of the reconstructed image is quite different from

that of the original image. Most of the times, as shown in Fig.4.1, the restored image has

more gradients with small magnitude compared to the original image, which indicates that the

restored image is smoother.

To address this issue, we introduce an alternative image restoration strategy that is capable

of synthesizing rich textures. The main idea is that the difference between gradient distribu-

tions is an indication that the restored image is not as natural as the original image. Therefore,

our deconvolution algorithm matches the reconstructed image’s gradient distribution to its ref-

erence distribution (i.e. the gradient distribution of theoriginal image). Essentially, our method

imposes a global constraint on gradients, as opposed to imposing local constraints by simply

penalizing individual gradient as in a MAP estimator. To estimate the reference distribution

directly from a degraded input image, we adapt the method introduced in Chapter3. User

study substantiates the claim that images reconstructed bymatching gradient distributions are

visually more pleasing compared to those reconstructed using MAP estimators.

79
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Figure 4.1: When we use a MAP estimator restore a degraded image, the gradient distribution
of the reconstructed image can be quite different from that of the original image. We consider
the difference in gradient distributions as an indicator that the restored image is not as natural-
looking. We present a method that matches the reconstructedimage’s gradient distribution to
its reference distribution (i.e. the gradient distribution of the original image) to hallucinate
visually pleasing textures.

� 4.2 Related work

Matching gradient distributions has been well investigated in the texture synthesis literature.

Heeger and Bergen [39] synthesize textures by matching wavelet sub-band histograms to those

of a desired texture. Portilla and Simoncelli [62] match joint statistics of wavelet coefficients

to synthesize homogeneous textures. Kopfet al. [44] introduce an inhomogeneous texture

synthesis technique by matching histograms of texels (texture elements).

Matching gradient distributions in image restoration is not entirely new. Li and Adelson

[51] introduce a two-step image restoration algorithm that first reconstructs an image using an

exemplar-based technique similar to Freemanet al. [33], and warp the reconstructed image’s

gradient distribution to a reference gradient distribution using Heeger and Bergen’s method

[39]. Woodfordet al. [89] propose a MAP estimation framework called a marginal probability



Sec. 4.3. Characteristics of MAP estimators 81

field (MPF) that matches a histogram of low-level features, such as gradients or texels, for

computer vision tasks including denoising. MPF requires that one bins features to form a

discrete histogram; we propose a distribution matching method that by-passes this binning

process. Also, Woodfordet al.[89] use an image prior estimated from a database of images and

use the same global prior to reconstruct images with different textures. In contrast, we estimate

the image prior directly from the degraded image for each textured region. Schmidtet al. [72]

match the gradient distribution through sampling. As with Woodfordet al. [89], Schmidtet

al. also use a single global prior to reconstruct images with different textures, which causes

noisy renditions in smooth regions. HaCohenet al. [37] explicitly integrate texture synthesis

to image restoration, specifically for an image up-samplingproblem. To restore textures, they

segment a degraded image and replace each texture segment with textures in a database of

images.

� 4.3 Characteristics of MAP estimators

In this section, we illustrate why MAP estimators with a sparse prior recover unrealistic, piece-

wise smooth renditions as illustrated in Fig.4.1. Let B be a degraded image,k be a blur kernel,

⊗ be a convolution operator, andI be a latent image. A MAP estimator solves the following

regularized problem:

Î = argmin
I

{‖B−k⊗ I‖2

2η2 +w∑
m

ρ(∇mI)

}

(4.1)

whereη2 is an observation noise variance,m indexes gradient filters, andρ is a robust function

that favors sparse gradients. We parameterize the gradientdistribution using a generalized

Gaussian distribution. In this case,ρ(∇I) = − ln(p(∇I ;γ ,λ )), where the priorp(∇I ;γ ,λ ) is

given as follows:

p(∇I ;γ ,λ ) =
γλ ( 1

γ )

2Γ(1
γ )

exp(−λ‖∇I‖γ ) (4.2)

Γ is a Gamma function and shape parametersγ ,λ determine the shape of the distribution. In

most MAP-based image reconstruction algorithms, gradients are assumed to be independent

for computational efficiency:p(∇I ;γ ,λ ) = 1
Z ∏N

i=1 p(∇Ii ;γ ,λ ), wherei is a pixel index,Z is a

partition function, andN is the total number of pixels in an image.

A MAP estimator balances two competing forces: the reconstructed imagêI should satisfy

the observation model while conforming to the image prior. Counter-intuitively, the image prior
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term, assuming independence among gradients,alwaysfavors a flat image to any other images,

even a natural image. Therefore, the more the MAP estimator relies on the image prior term,

which is often the case when the image degradation is severe,the more the reconstructed image

becomes piecewise smooth.

One way to explain this property is that the independence among local gradients fails to

capture the global statistics of gradients for the whole image. The image prior tells us that gra-

dients in a natural imagecollectivelyexhibit a sparse gradient profile, whereas the independence

assumption of gradients forces us to minimize each gradientindependently, always favoring a

flat image. Nikolova [58] provides a theoretic treatment of MAP estimators in general to show

its deficiency.

We could remove the independence assumption and impose a joint prior on all gradients,

but this approach is computationally expensive. This paperintroduces an alternative method

to impose a global constraint on gradients – that a reconstructed image should have a gradient

distribution similar to a reference distribution.

� 4.4 Image reconstruction

In this section, we develop an image reconstruction algorithm that minimizes the KL diver-

gence between the reconstructed image’s gradient distribution and its reference distribution.

This distance penalty plays the role of a global image prior that steers the solution away from

piecewise smooth images.

Let qE(∇I) be an empirical gradient distribution of an imageI , andqR be a reference dis-

tribution. We measure the distance between distributionsqE andqR using the Kullback-Leibler

(KL) divergence:

KL(qE||qR) =
∫

∇I
qE(∇I) ln

(

qE(∇I)
qR(∇I)

)

d(∇I) (4.3)

An empirical distributionqE is parameterized using a generalized Gaussian distribution

p(∇I ;γ ,λ ) (Eq. 4.2). Given gradient samples,∇Ii , where i indexes samples, we estimate

the shape parametersγE,λE of an empirical gradient distributionqE by minimizing the log-

likelihood:

[γE,λE] = argmin
γ ,λ

{

−
N

∑
i=1

1
N

ln(p(∇Ii ;γ ,λ ))

}

(4.4)

This is equivalent to minimizing the KL divergence between gradient samples∇I and a gen-

eralized Gaussian distribution (see Sec.3.3.1). We use the Nelder-Mead optimization method
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% Initial image estimate to start iterative minimization

Î0 = argminI

{

‖B−k⊗I‖2

2η2 +w1λR‖∇I‖γR

}

UpdateqE
0 using Eq.4.4

% Iterative minimization
for l = 1 ... 10do

% KL distance penalty term update

ρ l
G(∇I) = 1

N ln
(

qE
(l−1)(∇I)
qR(∇I)

)

% Image reconstruction

Î l = argminI

{

‖B−k⊗I‖2

2η2 +w1λR‖∇I‖γR +w2ρ l
G(∇I)

}

UpdateqE
l using Eq.4.4

end for
Î = Î10

Algorithm 3: MAP with KL penalty

[45] to solve Eq.4.4.

� 4.4.1 Failure of penalizing KL divergence directly

To motivate our algorithm in Sec.4.4.2, we first introduce a method that penalizes the KL

divergence between an empirical gradient distributionqE and a reference distributionqR. We

show that the performance of this algorithm is sensitive to the parameter setting and that the

algorithm may not always converge. In Sec.4.4.2, we extend this algorithm to a more stable

algorithm called Iterative Distribution Reweighting (IDR).

First, we augment the MAP estimator (Eq.4.1) with KL divergence:

Î = argmin
I

{‖B−k⊗ I‖2

2η2 +w1λR‖∇I‖γR +w2KL(qE||qR)

}

(4.5)

wherew2 determines how much to penalize the KL divergence.1 It’s hard to directly solve

Eq. 4.5 because the KL divergence is a non-linear function of a latent imageI . Therefore we

solve Eq.4.5 iteratively.

Algorithm 3, shown in pseudocode, solves Eq.4.5iteratively. We can describe Algorithm3

qualitatively as follows: ifqE has more gradients of a certain magnitude thanqR, ρG penalizes

those gradientsmorein the following iteration; ifqE has fewer gradients of a certain magnitude

1 In Eq.4.5, we have replaced the summation over multiple filters in Eq.4.1, i.e. ∑mλm‖∇mI‖γm, with a single
derivative filter to reduce clutter, but the derivation can easily be generalized to using multiple derivative filters. We
use four derivative filters in this work: x, y derivative filters and x-y, and y-x diagonal derivative filters.
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thanqR, ρG penalizes those gradientslessin the following iteration. Therefore, at each iteration,

the solution will move in the “correct” direction. Fig.4.2 illustrates the procedure. The full

derivation of the algorithm details is available in Appendix A.

We can show that the penalty functionρG in Algorithm 3 is one way to evaluate the KL

divergence between the empirical distributionqE and the reference distributionqR.

Claim 2. Let qE be a parametric distribution of samples xi , i = 1...N and let qR be a fixed

parametric distribution. Then we can represent the KL divergence between samples qE and qR

as follows:

KL(qE||qR) =
N

∑
i

ρG(xi) =
N

∑
i

{

1
N

ln

(

qE(xi)

qR(xi)

)}

(4.6)

Proof. The KL divergence betweenqE andqR is defined as follows:

KL(qE||qR) =
∫

z
qE(z) ln

(

qE(z)
qR(z)

)

dz (4.7)

There are different ways to represent the the parametric distribution qE. We can parameter-

ize the distribution of samples using a generalized Gaussian distribution as follows:

qE(z) =
γEλE

(

1
γE

)

2Γ( 1
γE

)
exp(−λE‖z‖γE ) (4.8)

where the shape parametersγE,λE are fitted to samplesxi using Eq.4.4. We can also parame-

terize the distribution of samplesxi as follows:

q̃E(z) =
1
N

N

∑
i

δ (z−xi) (4.9)

Therefore,

KL(qE||qR) =

∫

z
qE(z) ln

(

qE(z)
qR(z)

)

dz

=
∫

z
q̃E(z) ln

(

qE(z)
qR(z)

)

dz

=
N

∑
i

{

1
N

ln

(

qE(xi)

qR(xi)

)}

=
N

∑
i

ρG(xi)

(4.10)
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(a) MAP estimate (b) Gradient distribution
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Figure 4.2: This figure illustrates Algorithm3. Suppose we deconvolve a degraded image using
a MAP estimator. (b) shows that the x-gradient distributionof the MAP estimate in (a) does
not match that of the original image. (c) Our algorithm adds the log ratio of qE and qR to the
original penalty (i.e.λR‖∇I‖γR) such that the weighted sum of the two penalty terms encourages
a better distribution match in the following iteration.

Algorithm analysis The behavior of Algorithm3 depends on the value ofw2. Whenw2 is

small, the reconstructed image is similar to the MAP estimate. On the other hand, whenw2

is large, the algorithm oscillates around the desired solution (Fig. 4.3): the algorithm “ping-

pong’s” between a noisy solution and a piecewise smooth solution. For instance, suppose the

current image estimate is piecewise smooth. The algorithm would then encourage more pixels

with larger derivatives in the next iteration, which makes the subsequent solution noisier. In

the following iteration, to reduce the derivative magnitudes to smooth noise, the algorithm

penalizes gradients more severely to better match the reference distribution, in which case the

image becomes piecewise smooth again, exhibiting an oscillatory behavior. In fact, whenw2

is very large, the linearized system (in Appendix A, Eq.15) becomes indefinite, in which case

the minimum residual method [70] cannot be used to solve the linearized system. To mitigate

the reliability issue and to damp possible oscillations around the desired solution, we develop

an iterative distribution reweighting algorithm.

� 4.4.2 The iterative distribution reweighting (IDR)

We extend Algorithm3 to reduce oscillations around the correct solution and to reduce sensitiv-

ity to parameter values. We achieve this by modifying the regularization functionρG in Algo-

rithm 3. Our technique is motivated by perceptron algorithms that iteratively adjust a decision
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(a) Progression of Gamma (b) Progression of Lambda
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Figure 4.3: We illustrate the operation of Algorithm3 in terms of theγE,λE progressions. Dif-
ferent colors correspond to different gradient filters. Oftentimes, Algorithm3 does not converge
to a stable point, but oscillates around the desired solution.

(a) IDR estimate (b) Gradient distribution (c) E�ective penalty
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Figure 4.4: The IDR deconvolution result. (a) shows the deconvolved image using IDR, and (b)
compares the gradient distribution of images reconstructed using the MAP estimator and IDR.

(c) The effective penalty after convergence (i.e. w1λR‖∇I‖γR +w2∑10
l=1

1
N ln

(

qE(∇I)
qR(∇I)

)

) penalizes

gradients with small and large magnitude more than gradients with moderate magnitude.

boundary to minimize classification error. In our case, we iteratively adjust the regularization

function to match the empirical gradient distribution to the reference gradient distribution.

To do so, instead of using the KL divergence as a regularization termρG as in Algorithm3,

we setρG as thesumof the KL divergences over previous iterations. Algorithm4 shows the

pseudocode for IDR.

IDR iteratively adjusts the penalty functionρG by the ratio of distributionsqE andqR, thus

the name theiterative distribution reweighting (IDR). The benefit of IDR is that it reaches
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% Initial image estimate to start iterative minimization

Î0 = argminI

{

‖B−k⊗I‖2

2η2 +w1λR‖∇I‖γR

}

UpdateqE
0 using Eq.4.4

% Iterative minimization
for l = 1 ... 10do

% Accumulating the KL divergence

ρ l
G(∇I) = ρ (l−1)

G (∇I)+ 1
N ln

(

qE
(l−1)(∇I)
qR(∇I)

)

% Image reconstruction

Î l = argminI

{

‖B−k⊗I‖2

2η2 +w1λR‖∇I‖γR +w2ρ l
G(∇I)

}

UpdateqE
l using Eq.4.4

end for
Î = Î10

Algorithm 4: The iterative distribution reweighting (IDR)

(a) Progression of Gamma (b) Progression of Lambda
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Figure 4.5: This figure shows how theγE,λE progress from one iteration to the next. Different
colors correspond to different gradient filters. We observethat the algorithm converges to a
stable point in about 8 iterations.

convergence whenqE = qR. 2 We can also view theρG update equation as damping the KL

divergence with the sum of previous KL divergences, therebysmoothing oscillations. We can

easily modify derivations in Appendix A to derive details for Algorithm 4. We illustrate the

operation of IDR in Fig.4.4, and show howγE,λE changes from one iteration to the next in

Fig. 4.5. Observe thatγE,λE no longer oscillate as in Fig.4.3.

In Fig. 4.6, we test IDR for deblurring a single texture, assuming that the reference distri-

2This statement does not mean that the algorithm will converge only if qE = qR; the algorithm can converge to
a local minimum.
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Original image MAP estimator IDR Gradient distribution
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Figure 4.6: We compare the deblurring performance of a MAP estimator andIDR. IDR recon-
structs visually more pleasing mid-frequency textures compared to a MAP estimator.

bution qR is known a priori. We synthetically blur the texture using the blur kernel shown in

Fig. 4.8and add 5% Gaussian noise to the blurred image. We deblur the image using a MAP es-

timator and using IDR, and compare the reconstructions. Forall examples in this paper, we use

w1 = 0.025,w2 = 0.0025. We observe that the gradient distribution of the IDRestimate matches

the reference distribution better than that of the MAP estimate, and visually, the texture of the

IDR estimate better matches the original image’s texture. Although visually superior, the peak

signal-to-noise ratio (PSNR) / gray-scale SSIM [85] of the IDR estimate are lower than those

of the MAP estimate. This occurs because IDR may not place thegradients at exactly the right

position. Degraded images do not strongly constrain the position of gradients, in which case

our algorithm disperses gradients to match the gradient distribution, which would lower the

PSNR / SSIM.

Algorithm analysis IDR matches aparametrizedgradient distribution, and therefore the algo-

rithm is inherently limited by the accuracy of the fit. The behavior of IDR is relatively insen-

sitive to the weighting termw2, but a largew2 can destabilize the minimum residual algorithm

[70] that solves the linearized system in Eq.15.

In most cases, IDR reliably reconstructs images with the reference gradient distribution.

However, there are cases in which the algorithm settles at a local minimum that does not cor-

respond to the desired texture. This usually occurs when thesupport of derivative filters is

large and when we use many derivative filters to regularize the image. For instance, suppose

we want to match the gradient histogram of a 3× 3 filter. The algorithm needs to update 9

pixels to change the filter response at the center pixel, but updating 9 pixels also affects filter

responses of 8 neighboring pixels. Having to match multiplegradient distributions at the same
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time increases the complexity. To control the complexity, we match four two-tap derivative

filters. Adapting derivative filters to local image structures using steerable filters [20, 32, 67]

may further improve the rendition of oriented textures, butit is not considered in this work.

� 4.4.3 Reference distribution qR estimation

We parameterize a reference distributionqR using a generalized Gaussian distribution. Unfor-

tunately, one often does not knowa priori whatqR should be. Previous work estimatesqR from

a database of natural images [31, 89] or hand-picksqR through trial and error [48]. We adopt the

image prior estimation technique introduced in Sec.3.4to estimateqR directly from a degraded

image, as we will now describe.

We first deconvolve a degraded imageB using a MAP estimator (Eq.4.1) with a hand-

picked image prior, tuned to restore different textures reasonably well at the expense of a

slightly noisy image reconstruction (i.e. a relatively small gradient penalty). In this paper,

we set the parameters of the image prior as[γ = 0.8,λ = 4,w1 = 0.01] for all images. To re-

duce deconvolution noise, we down-sample the reconstructed image. We fit gradients from the

down-sampled image to a generalized Gaussian distribution, as in Eq.4.4, to estimate the ref-

erence distributionqR. While fine details can be lost through down-sampling, empirically, the

estimated reference distributionqR is accurate enough for our purpose.

Our image reconstruction algorithm assumes that the texture is homogeneous (i.e. a single

qR). In the presence of multiple textures within an image, we segment the image and esti-

mate separate reference distributionqR for each segment: we use the EDISON segmentation

algorithm [22] to segment an image into about 20 regions. Fig.4.7 illustrates the image decon-

volution process for spatially varying textures.

� 4.5 Experiments

Deconvolution experiments We synthetically blur sharp images with the blur kernel shown

in Fig. 4.8, add 2% noise, and deconvolve them using competing methods.We compare the

performance of IDR against four other competing methods: (i) a MAP estimator with a sparse

gradient prior [48], (ii) a MAP estimator with a sparse prior adapted to each segment (iii) a

MAP estimator with a two-color prior [43] (iv) a MAP estimator with a content-aware image

prior. We blur a sharp image using the kernel shown on the right, add 2% noise to it, and restore

images using the competing methods. Fig.4.8 shows experimental results. As mentioned in
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Figure 4.7: For an image with spatially varying texture, our algorithm segments the image into
regions of homogeneous texture and matches the gradient distribution in each segment inde-
pendently. Compared to MAP estimators, our algorithm reconstructs visually more pleasing
textures.

Sec.4.4.2, IDR does not perform the best in terms of PSNR / SSIM. Nevertheless, IDR recon-

structs mid-frequency textures better, for instance fur details. Another interesting observation

is that the content-aware image prior performs better, in terms of PSNR/SSIM, than simply

adjusting the image prior to each segment’s texture. By using segment-adjusted image prior,

we observe segmentation boundaries that are visually disturbing. Another set of comparisons

is shown in Fig.4.9.

In Fig.4.10, we compare the denoising performance of IDR to that of a marginal probability

field (MPF) by Woodfordet al. [89] at two noise levels (their implementation only handles

grayscale, square images). Using MPF for denoising has two drawbacks. First, MPF quantizes

intensity levels and gradient magnitudes to reduce computation. MPF quantizes 256 (8-bit)

intensity levels to 64 intensity levels (6-bit), and it bins256 (8-bit) gradient magnitudes to 11

slots. These quantizations would accentuate spotty noise in reconstructed images. IDR adopts

a continuous optimization scheme that does not require any histogram binning or intensity

quantization, therefore it does not suffer from quantization noise. Second, Woodfordet al. [89]

estimate the reference gradient distribution from a database of images, and use thesameprior

to denoise different images. This can be problematic because different images have different

reference distributionsqR, but MPF would enforce the same gradient profile on them. Also,

MPF does not adapt the image prior to the underlying texture,treating different textures the

same way. Therefore, MPF distributes gradients uniformly across the image, even in smooth

regions, which can be visually disturbing. IDR addresses these issues by estimating a reference
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MAP estimate - Fixed sparse prior

PSNR : 28.60dB, SSIM : 0.757

MAP estimate - Adjusted sparse prior

PSNR : 28.68dB, SSIM : 0.759

IDR reconstruction

PSNR : 27.91dB, SSIM : 0.741

Original image

MAP estimate - two-color prior

PSNR : 28.30 dB, SSIM : 0.741

MAP estimate - Content-aware prior

PSNR : 29.08dB, SSIM : 0.761

Figure 4.8: We compare the performance of IDR against four other competing methods: (i)
a MAP estimator with a sparse gradient prior [48], (ii) a MAP estimator with a sparse prior
adapted to each segment (iii) a MAP estimator with a two-color prior [ 43] (iv) a MAP estimator
with a content-aware image prior. The red box indicate the cropped regions. Although the
PSNR and the SSIM of our results are often lower than those of MAP estimators, IDR restores
more visually pleasing textures (see bear furs).

distributionqR from an input image and by adaptingqR to spatially varying texture.

At a high degradation level, such as a noise level of 31.4%, our reference distribution es-

timation algorithm can be unstable. In Fig.4.10, our qR estimation algorithm returns a distri-

bution that has more “large” derivatives and less “small” derivatives (dotted line in Fig.4.10),

which manifests itself as a noisy IDR reconstruction. In contrast, MPF restores a plausible
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PSNR : 26.73 dB, SSIM : 0.811

MAP estimate - two-color prior

PSNR : 26.74dB, SSIM : 0.815

MAP estimate - Fixed sparse prior

PSNR : 26.88dB, SSIM : 0.814

MAP estimate - Adjusted sparse prior

PSNR : 26.35dB, SSIM : 0.801

IDR reconstruction

Original image

PSNR : 27.09 dB, SSIM : 0.821

MAP estimate - Content-aware prior

Figure 4.9: This figure provides another set of deconvolution performance comparisons.

image, but this is somewhat coincidental in that the reference distribution that MPF imposes is

quite similar to that of the original image.

At a more reasonable degradation level (15% noise), as shownin Fig. 4.11, our algorithm

estimates a reference distribution that is very similar to that of the original image. Given a more

accurate reference distribution, IDR restores a visually pleasing image. On the other hand, MPF

restores a noisy rendition because the reference distribution is quite different from that of the

original image. Also note that the gradient distribution ofthe restored image is very similar to

that of the restored image in Fig.4.10, which illustrates our concern that using a single image

prior for different images would degrade the image quality.
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Figure 4.10: We compare the denoising performance of IDR and the marginalprobability field
(MPF) [89] at a high noise level (31.4%). At such a high noise level, ourdistribution estimation
algorithm is not reliable, thus IDR restores a noisy rendition compared to MPF.

Segmenting images to regions and deconvolving each region separately may generate ar-

tificial texture boundaries, as in Fig.4.12. While this rarely occurs, we could mitigate these

artifacts using a texture-based segmentation algorithm rather than EDISON [22], which is a

color-based segmentation algorithm.

User study IDR generates images with rich texture but with lower PSNR/SSIM than MAP

estimates. To test our impression that images reconstructed by IDR are more visually pleasing,

we performed a user study on Amazon Mechanical Turk.

We considered seven image degradation scenarios: noisy observations with 5%, 10%, 15%

noise, blurry observations with a small blur and 2%,5%,7% noise, and a blurry observation

with a moderate-size blur and 2% noise. For each degradationscenario, we randomly selected

4 images from a dataset of 13 images (roughly 700× 500 pixels), and reconstructed images

using a MAP estimator with a fixed sparse prior (i.e. the same sparse prior across the whole

image), an adjusted sparse prior, and IDR.

As in Sec.3.5, we showed users two images side-by-side, one reconstructed using our algo-

rithm and another reconstructed using one of the two MAP estimators (i.e. fixed or adjusted).
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Figure 4.11: In this figure, we compare the denoising performance of IDR and the MPF [89]
at a moderate noise level (15%). At this noise level, the predicted gradient distribution matches
the underlying image well, and the IDR restores a more natural image.

We asked users to select an image that is more visually pleasing and give reasons for their

choice. Users were also given a“There is no difference.”option. We randomized the order in

which we place images side by side.

We collected more than 25 user inputs for each comparison, and averaged user responses for

each degradation scenario (Fig.4.13). When the degradation level is low (5% noise or a small

blur with 2% noise), users did not prefer a particular algorithm. In such cases, the observation

term is strong enough to reconstruct visually pleasing images regardless of the prior and/or

the reconstruction algorithm. When the degradation level is high, however, many users clearly

favored our results. User comments pointed out that realistic textures in trees, grass, and even in

seemingly flat regions such as gravel paths are important forvisual realism. Users who favored

MAP estimates preferred clean renditions of flat regions andwere not disturbed by piecewise

smooth textures (some even found it artistic.) Individual users consistently favored either our

result or MAP estimates, suggesting that image evaluation is subjective in nature.
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MAP estimator - �xed prior IDR

Figure 4.12: We could observe an artificial boundary when the estimated prior is different
in adjacent segments that have similar textures. While thisrarely occurs, we could remove
such artifacts using a texture segmentation algorithm instead of a color-based segmentation
algorithm.

� 4.6 Conclusion

We have developed an iterative deconvolution algorithm that matches the gradient distribu-

tion. Our algorithm bridges the energy minimization methods for deconvolution and texture

synthesis. We show through a user study that matching derivative distribution improves the

perceived quality of reconstructed images. The fact that a perceptually better image receives

lower PSNR/SSIM suggests that there is a room for improvement in image quality assessment.
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Figure 4.13: We conducted a user study to test our impression that IDR reconstructions are
visually more pleasing than MAP estimates. The blue region corresponds to the fraction of users
that favored IDR over MAP estimators. When the image degradation level is small, users did
not show a particular preference, but as the image degradation level increases, users favored
images reconstructed using IDR.



Chapter 5

Orthogonal parabolic exposures for

motion deblurring

� 5.1 Introduction

IN previous chapters, we addressed spatially invariant blur due to handshake. This chapter

addresses a different class of blur: a subject motion blur. Because subjects can move in

different directions, images are often blurred in a spatially variant manner. Therefore, the

subject motion blur removal often requires spatially variant motion estimation. Even if we

could perfectly identify the motion, however, blur removalis still challenging because we lose

high frequency information about the image due to blur.

This chapter provides a solution that addresses these challenges for a restricted class of

subject motions. We assume that the scene consists of objects moving at a constant speed

in arbitrary directions parallel to the image plane and thatthe camera is placed on a tripod.

Spatially variant subject motion blur is therefore locallypiecewise constant (in contrast to in-

plane camera rotations that induce continuous spatially variant blur.)

Our solution takes two successive images using a moving sensor: one moving in a hor-

izontal parabolic displacement path and another moving in avertical parabolic path. From

these two images, we recover one sharp image by locally estimating motions (i.e. blur kernels)

(Sec.5.4.2) and by deconvolving input images using a multi-image deconvolution algorithm

(Sec.5.4.1). We show that the kernel estimation error is negligible andthat the image informa-

tion loss due to motion blur is provably near minimal (Sec.5.3).

97
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� 5.2 Related work

Some previous methods handle spatially variant blur by restricting the type of spatially variant

blur [23, 24, 42, 47,49, 73]: Levin [47] considers a piecewise constant spatially variant blur;

Shanet al. [73] assume that the relative motion between the camera and the scene is purely

rotational; Whyteet al. [88] and Guptaet al. [36] estimate a spatially variant blur by modeling

camera shake as a rigid body motion. To aide spatially variant blur estimation, additional

hardware could be used to record the relative movement between the camera and the scene

during exposure, from which one can estimate the spatially variant blur [6, 79]. Levin et al.[49]

introduce a new camera that makes the blur invariant to 1D subject motions. Users could assist

spatially varying blur estimation by specifying blurred edges that should be sharp [41] or by

specifying regions with different amount of blur [24]. Taking two images also helps estimate

spatially variant blur [15,76].

Most of aforementioned methods do not address information loss due to blur. Typical

motion blur kernels correspond to box filters in the motion direction, therefore blurs attenuate

high spatial frequencies and make the blur inversion ill-posed. One technique addressing this

issue is a flutter shutter camera [63]. By opening and closing the shutter multiple times during

exposure, one can significantly reduce the high frequency image information loss. Another

method takes two images, each with different exposure lengths [90]. The short-exposure image

contains high frequency information that supplements the missing information in the long-

exposure, blurred image. Agrawalet al. [3] take multiple shots of a moving object, each with

different exposures, and deconvolve the moving object using all the shots. The multi-shot

strategy is beneficial because the information lost in one ofthe shots is captured by another.

However, their strategy does not offer guarantees on the worst-case performance. Levinet

al. [49] propose a parabolic motion camera to minimize the information loss for 1D constant

velocity motions, but the solution is invalid if a 2D motion is present. Agrawal and Raskar [1]

analyze the performance of a flutter-shutter camera and a parabolic camera and conclude that a

flutter shutter camera performs better for handling a 2D constant velocity motion blur. Agrawal

and Xu [2] introduce a new code for a flutter shutter camera with a better trade-off between blur

estimation and information capture.
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� 5.3 Sensor motion design and analysis

Consider an object moving at a constant velocity and letsx,y = [sx,sy] be its 2D velocity vector.

Suppose we captureJ imagesB1, ..BJ of this object usingJ translating cameras. Locally, the

blur is a convolution:

B j = k j
sx,y

⊗ I +n j (5.1)

whereI is an ideal sharp image,n j imaging noise, andk j
sx,y a blur kernel (point spread function,

PSF).k j
sx,y is a function of the relative motion between the sensor and the scene. The convolution

is a multiplication in the frequency domain:

B̂ j(ωx,y) = k̂ j
sx,y

(ωx,y)Î(ωx,y)+ n̂ j(ωx,y) (5.2)

whereωx,y = [ωx,ωy] is a 2D spatial frequency, and theˆ indicates the Fourier transform of the

corresponding signal.

To deblur images successfully, we need to increase the spectral content of blur kernels

‖k̂ j
sx,y(ωx,y)‖2. Qualitatively, a deblurring algorithm divides the Fourier transformB̂ j of the

image by that of the blur kernelk̂ j
sx,y at every spatial frequency. If‖k̂ j

sx,y(ωx,y)‖2 is small for all

cameras, the deblurring algorithm amplifies noise and degrades the quality of restored image.

We show in Sec.5.4.1that the reconstruction performance of the Wiener filter deconvolution

method is inversely related to the summed spectra:

‖ ˜̂ksx,y(ωx,y)‖2 = ∑
j

‖k̂ j
sx,y

(ωx,y)‖2 (5.3)

Therefore, we should maximize the joint spectrum‖ ˜̂ksx,y(ωx,y)‖2 of an imaging device for every

ωx,y and for everysx,y. This goal is formally stated as follows:

Given a time budget T , find a set of J camera motions that maximizes the minimum of the

summed power spectrum‖ ˜̂ksx,y(ωx,y)‖2 over every spatial frequencyωx,y and every motion vec-

tor ‖sx,y‖ < Sob j.

We introduce thefirst solution that provides the worst-case spectral power guarantee for 2D

constant velocity motions. To prove our claim, we start witha brief review of space time motion

blur analysis. We show that a set of PSFs for all 2D constant velocity motions‖sx,y‖ < Sob j
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Figure 5.1: The integration curvesφ (a-e), the point spread functions ksx,y (f-j) and their log-
power spectra (k-o) for a few cameras. In (f-o), the outer axes correspond to x,y directional
speed. In (f-j), the inner axes correspond to x–y coordinates, and in the spectra plots (k-o),
the inner axes correspond toωx–ωy coordinates. All spectra plots are normalized to the same
scale.

occupies the complementary volume of an inverted double cone in the Fourier domain, and

that the camera motion design can be formulated as maximizing the spectral content in this

volume. We show analytically that the best worst-case spectral coverage of any camera motions

is bounded and that our design approaches the bound up to a constant multiplicative factor.

� 5.3.1 Motion blur in the space-time volume

We represent light received by the sensor as a 3D space-time volumeL(x,y,t). That is,L(x,y,t)

denotes the light ray hitting thex,y coordinate of a static detector at a time instancet. A static

camera forms an image by integrating these light rays over a finite exposure timeT:

B(x,y) =
∫ T

2

− T
2

L(x,y,t)dt (5.4)
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Assume the camera is translating during exposure on thex–y plane, and letf be its displacement

path:

{f : [x,y,t] = [ fx(t), fy(t),t]} (5.5)

Then the rays hitting the detector are spatially shifted:

B(x,y) =

∫ T
2

− T
2

L(x+ fx (t) ,y+ fy(t) ,t)dt+n (5.6)

wheren is imaging noise. For example, for a static camera the integration curve is a vertical

straight line fx(t) = fy(t) = 0 (Fig. 5.1(a)). The integration curve of a camera moving at a

constant velocity is a slanted linefx(t) = sxt, fy(t) = syt (Fig. 5.1(c)). For horizontal parabolic

motion, fx(t) = at2, fy(t) = 0 and for a vertical parabolafx(t) = 0, fy(t) = at2 (Fig. 5.1(d-e)).

We can represent the integration curvef as a 3D integration kernelφ :

φ(x,y,t) = δ (x− fx(t))·δ (y− fy(t)) (5.7)

whereδ is a Dirac delta function.

If an object motion is locally constant, we can express the integrated image as a convolution

of a sharp image at one time instance (e.g.L(x,y,0)) with a point spread functionksx,y. The PSF

ksx,y of a constant velocity motionsx,y = [sx,sy] is a sheared projection of the 3D integration

kernelφ :

ksx,y(x,y) =

∫

t
φ(x−sxt,y−syt,t)dt (5.8)

Some PSFs of different integration kernels are shown in the second row of Fig.5.1.

The Fourier transform̂ksx,y of the PSFksx,y is a slice from the Fourier transform̂φ of the

integration kernelφ [49,56]:

k̂sx,y(ωx,ωy) = φ̂ (ωx,ωy,sxωx +syωy) (5.9)

k̂sx,y for several object motions for different integration kernels φ are shown in the bottom row

of Fig. 5.1. Fig. 5.2(a) shows Fourier slices corresponding to horizontal object motions at

varying velocities, the case considered in [49]. Slices occupy a 3D double wedge. When the

motion direction changes (e.g.sx = sy in Fig. 5.2(b)), slices occupy a rotated 3D double wedge.

In general, 2D Fourier slices corresponding to all motion directions‖sx,y‖ < Sob j lie in the
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Figure 5.2: (a) The union of horizontal motion PSF slices at all velocitiesk̂s forms a 3D double
wedge. (b) A union of diagonal motion PSF slices forms a rotated 3D double wedge. (c) The
spectra of all 2D constant velocity PSF slices comprise a wedge of revolution.

complementary volume of an inverted double cone (Fig.5.2(c)). We refer to this volume asa

wedge of revolution, defined as a set:

C≡ {(ωx,ωy,ωt)|ωt < Sob j‖ωx,y‖} (5.10)

To see this, note that the Fourier transform of a PSF is a slicefrom φ̂ at ωt = sxωx +syωy, and

if ‖sx,y‖ ≤ Sob j, sxωx +syωy ≤ Sob j‖ωx,y‖.

Bounding spectral content Suppose we captureJ images of a scene and let‖ ˜̂φ‖2 be the joint

power spectrum‖ ˜̂φ (ωx,ωy,ωt)‖2 = ∑J
j ‖φ̂ j(ωx,ωy,ωt)‖2. As mentioned earlier, our goal is to

design a set of camera motions that maximizes the joint kernel spectrum‖ ˜̂ksx,y‖2 (Eq.5.3) for all

object motions‖sx,y‖< Sob j. Since PSFs of all bounded 2D linear motions occupy the wedgeof

revolution (Eq.5.10), designing PSFs with high spectral power for allsx,y < Sob j is equivalent

to maximizing the spectral content of‖ ˜̂φ‖2 within the wedge of revolution.

We can derive an upper bound on the worst-case spectral content of any camera motions.

The amount of photon energy collected by a camera within a fixed exposure timeT is bounded.

Therefore, by Parseval’s theorem, the norm of everyωx0,y0 slice of ˜̂φ (i.e. ˜̂φ (ωx0,ωy0,ωt)) is

bounded [49]:
∫

‖ ˜̂φ (ωx0,ωy0,ωt)‖2dωt ≤ T (5.11)

Everyωx0,y0-slice intersects the wedge of revolution for a segment of length 2Sob j‖ωx0,y0‖. To

maximize the worst-case spectral power, the optimal camerawould spread the captured energy
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uniformly in this intersection. Therefore, we can derive anupper bound on the worst-case

spectral power by dividing the captured energy by the segment length:

min
ωt

‖ ˜̂φ (ωx0,ωy0,ωt)‖2 ≤ T
2Sob j‖ωx0,y0‖

. (5.12)

Since the PSFs spectrak̂ j
sx,y are slices througĥφ j , this bound also applies for the PSFs’ spectral

power:

min
sx,y

‖ ˜̂ksx,y(ωx0,ωy0)‖2 ≤ T
2Sob j‖ωx0,y0‖

. (5.13)

The optimal bound Eq.5.12applies to any types of integration kernelφ regardless of the num-

ber of shots taken during the time budgetT.

� 5.3.2 Orthogonal parabolic motions

We seek a motion path whose spectrum covers the wedge of revolution and approaches the

bound in Eq.5.12. We also seek to cover the spectrum with the fewest images, because as

we take more images within the time budget, the delay betweensubsequent shots reduces the

effective time budget, degrading the spectral performance.

We could compute the optimal camera motion by inverting the Fourier transform of the

bound in Eq.5.12. However, the inverse Fourier transform of this bound is nota physically

valid motion of the form in Eq.5.7. To illustrate this, we invert the bound for 1D motions [49]

in Fig. 5.31. We can see that the corresponding optimal motion in the spatial domain is not

a realizable motion: the inverse Fourier transform is densein the spatial domain and contains

negative pixel values. If we invert the bound for 2D motions in Eq.5.12, we observe the same

phenomenon in 3D: the optimal path is not a realizable motion.

Our solution captures two images of a scene with two orthogonal parabolic motions. We

show analytically that the orthogonal parabolic motions capture the wedge of revolution with

the worst-case spectral power greater than 2−1.5 of the upper bound.

Camera motion Let φ1,φ2 be the 3D integration kernels of x and y parabolic camera motions.

The kernels are defined by the integration curvesf1, f2:

f1(t) = [ax(t +T/4)2,0,t], t = [−T/2...0]

f2(t) = [0,ay(t −T/4)2,t], t = [0...T/2]
(5.14)

1The bound for 1D motions in the Fourier space is the slice of the wedge of revolution on theωx−ωt plane.
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Spectral bound - 1D motions

(in log domain)

Inverse Fourier transform

(in log domain)

Figure 5.3: We explicitly invert the spectral bound for 1D motions to illustrate that the explicit
inversion of the spectral bound in Eq.5.12does not result in a physically realizable motion of
the form in Eq.5.7. Both the spectrum and the motion (i.e. the inverse Fourier transform) are
shown in the log-domain.

At time t, the derivative of the x-parabolic camera motionf1(t) is 2ax(t − T/4), therefore

the camera essentially tracks an object moving with velocity 2ax(t −T/4) alongx axis. Dur-

ing exposure, the x-parabolic camera tracksonceevery moving object with velocity within

the range[−2axT/4...2axT/4]. Similarly, the y-parabolic camera covers the velocity range

[−2ayT/4...2ayT/4]. For the reason that will be clarified below, we set

ax = ay =
2
√

2Sob j

T
(5.15)

The maximal velocity of the sensor becomesSsens=
√

2Sob j. That is, the velocity range covered

by these parabolas is[−Ssens...Ssens].

Fig. 5.1(i-j) show PSFs of different object motions captured by the orthogonal parabolic

camera. PSFs take the form of a truncated and sheared parabola that depends on the object

speed.

Optimality As mentioned earlier, to make the blur easily invertible, wewant to maximize

the spectral power of the camera motion paths within the wedge of revolution (Eq.5.10). We
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Figure 5.4: (a) The spectrumφ̂1 captured by a x-parabolic camera. (b) The spectrumφ̂2

captured by a y-parabolic camera. (c) The sum of spectra captured by the two orthogonal
parabolic cameras approximates the wedge of revolution.

show that the orthogonal parabolic motions capture the wedge of revolution with the worst-case

spectral power greater than 2−1.5 of the optimal bound in Eq.5.13.

We first derive the joint spectral coverage‖ ˜̂φ‖2 of the two orthogonal parabolic motions.

Levin et al. [49] show that a parabolic motion’s spectrum is approximately adouble wedge.

Since a x-parabolic motionφ1 is a Dirac delta along they axis, the 3D kernel spectrum‖φ̂1‖2

spreads energy in a 3D double wedge and is constant along theωy axis (Fig.5.4(a)). The

y-parabolic motion spreads energy in the orthogonal 3D double wedge (Fig.5.4(b)). Mathe-

matically speaking,

‖φ̂1(ωx,ωy,ωt)‖2 ≈ T
4Ssens‖ωx‖

H(Ssens‖ωx‖−‖ωt‖)

‖φ̂2(ωx,ωy,ωt)‖2 ≈ T
4Ssens‖ωy‖

H(Ssens‖ωy‖−‖ωt‖)
(5.16)

whereH(·) is a Heaviside step function.

The 2D PSF spectra are slices from the 3D double wedge‖φ̂ j‖2. Fig.5.1(n-o) show the log-

spectrum of PSFŝk j
s for parabolic exposures as we sweep the object velocity. Forx-directional

motions (sy = 0), the x-parabolic camera covers all spatial frequencies without zeros. This

agrees with the 1D optimality argument in Levinet al. [49]. However, as y-directional mo-

tion increases, the x-parabolic camera fails to capture a double wedge of frequencies near the

ωy axis. In other words, the x-parabolic camera misses spectral contents in the presence of

a y-directional motion, and the blur inversion is unstable.The y-parabolic camera, however,

covers the frequencies missed by the x-parabolic camera, therefore thesumof these two spec-
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sx
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Figure 5.5: The summed spectrum coverage of the two orthogonal parabolic motions for dif-
ferent object velocities sx,y. While each parabolic motion has zeros in a range of spatial fre-
quencies (see Fig.5.1(n-o)), their summed spectrum does not have zeros in any spatial fre-
quencies. The log-spectrum plots in this figure are normalized to the same scale as that of the
log-spectrum plots in Fig.5.1(k-o).

tra (Fig. 5.5) does not have any zeros in any spatial frequencies. Therefore, by taking two

orthogonal parabolic exposures, we can reliably invert theblur for all 2D object motions.

Fig. 5.4(c) visualizes the joint spectrum covered by the orthogonalparabolic motions, sug-

gesting that the sum of orthogonal 3D wedges is an approximation of the wedge of revolution.

In fact, the sum of double wedges subsumes the wedge of revolution if the maximal sensor

speedSsensis set to
√

2Sob j.

Claim 3. Let Ssens be the maximum sensor speed of the parabolic camera, and Sob j be the

maximum object speed. If Ssens≥
√

2Sob j, the joint power spectrum‖ ˜̂φ‖2 of an orthogonal

parabolic camera subsumes the wedge of revolution. When Ssens=
√

2Sob j, the worst-case

spectral power of the orthogonal parabolic camera, at any frequency, is at least1
2
√

2
of the

optimal bound.

Proof. The power spectrum of each parabolic camera is given in Eq.5.16. The joint power

spectrum of the orthogonal parabolic camera is non-zero in the set{(ωx,ωy,ωt)|ωt ≤Ssensmax(‖ωx‖,‖ωy‖)}.
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Figure 5.6: The joint spectrum of orthogonal parabolic motions subsumes the wedge of revo-
lution if Ssens≥

√
2Sob j.

If (ωx,ωy,ωt) lies in the wedge of revolution, thenωt ≤Sob j‖ωx,y‖. Since‖ωx,y‖2 ≤ 2max(‖ωx‖2,‖ωy‖2),

ωt ≤ Sob j‖ωx,y‖

≤
√

2Sob j max(‖ωx‖,‖ωy‖)

≤ Ssensmax(‖ωx‖,‖ωy‖) (5.17)

In other words, the joint spectrum of the orthogonal parabolic cameras subsumes the wedge of

revolution. This is illustrated in Fig.5.6.

The spectral power of the joint spectrum at(ωx,ωy,ωt) is at least the minimum of the 3D

wedge spectra:

min

(

T
4Ssens‖ωx‖

+
T

4Ssens‖ωy‖

)

(5.18)

Since‖ωx,y‖ ≥ max(‖ωx‖,‖ωy‖),

min

(

T
4Ssens‖ωx‖

+
T

4Ssens‖ωy‖

)

≥ T
4Ssens‖ωx,y‖

=
T

4
√

2Sob j‖ωx,y‖

(5.19)

Therefore, the worst-case spectral power of the orthogonalparabolic camera is at least 2−1.5 of
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the upper bound.

Fig. 5.5shows the log spectrum of the orthogonal parabolic cameras.Zeros present in one

camera are compensated by its orthogonal counterpart for all object motions. At each veloc-

ity sx,y, information for some spatial frequencies is better preserved than others, but Claim3

guarantees that at each frequency, the spectral content is at least 2−1.5 of the optimal bound.

Discussions The orthogonal parabolic camera deblurs diagonally movingobjects better than

objects moving along the camera motion axis because x-parabolic and y-parabolic shots both

capture information from diagonally moving objects. Note that if we know before the image

capture that object motions are primarily x-directional, one could increase the exposure length

of the x parabolic shot to improve the deblurring performance in expectation.

The spectral bound in Eq.5.19assumes that the image information at each spatial frequency

is independent. Therefore, our bound holds only if the restoration method treats each spatial

frequency as independent. One such restoration method is the Wiener filter (introduced in

Eq. 5.30) that imposes a Gaussian prior on image gradients. In a strict sense, the use of a

non-linear image reconstruction algorithm would require adifferent analysis method, which

takes into account correlations between different spatialfrequencies. However, our framework

still provides a concrete construction for comparing different camera designs, which we present

below.

� 5.3.3 Discussion of other cameras

We compare the performance of the orthogonal parabolic camera to those of other designs

available in literature.

A static camera The integration kernel of a static camera isφstatic(t) = [0,0,t], for t ∈
[−T/2...T/2] (Fig. 5.1(a)). Since the integration curve does not vary along thex or y axis,

the power spectrum is constant alongωx andωy:

‖φ̂static(ωx,ωy,ωt)‖2 = T2sinc2(ωtT) (5.20)

The Fourier transform of the PSF is a slice of the 3D spectrumφ̂ , and is a sinc whose width

depends on the object velocity‖k̂static
sx,y

‖2 = T2sinc2((sxωx + syωy)T). For fast object motions

this sinc highly attenuates high frequencies. In fact, if the object motion is fast it is better to

reduce the exposure time (this increases the width of the sinc) despite reducing the total amount
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of energy collected.

A flutter shutter camera In a flutter shutter camera [63], the integration curve of a static

camera is temporally modulated (Fig.5.1(b)). Therefore, the spectrum of the integration curve

φ f lutter is constant alongωx,ωy and is modulated alongωt :

‖φ̂ f lutter(ωx,ωy,ωt)‖2 = ‖m̂(ωt)‖2 (5.21)

wherem̂ is the Fourier transform of the shutter code. This code can bedesigned to be more

broadband than the sinc function in a static camera. However, the spectrum is constant along

ωx,ωy. Therefore, the worst-case spectral performance is bounded as follows:

min
s

‖k̂ f lutter
s (ωx,ωy)‖2 = T/(2Sob jΩ) (5.22)

for all (ωx,ωy) [49], whereΩ is the spatial bandwidth of the camera. As a result, the flutter

shutter poorly captures the low frequency image contents.

A linearly moving camera If the camera moves at a constant velocity (Fig.5.1third column),

the integration curve is a slanted straight lineφ linear(t) = [sxt,syt,t] (Fig. 5.1(c)). By linearly

moving the camera, we can track the object that moves at the camera’s speed, but we still suffer

from a sinc fall-off for objects whose velocities are different from the camera’s velocity.

A parabolic camera with a single exposure Blur kernels from a single-exposure parabolic

camera are invariant to 1D constant-velocity motions, and can be shown to approach the optimal

bound for a set of 1D linear motions with bounded speed [49]. A single parabolic camera,

however, is neither motion invariant nor optimal for 2D motions. When an object moves in a

direction orthogonal to the camera movement axis (i.e. a x-parabolic camera imaging an object

moving in they direction), the spectral coverage along the orthogonal frequencies (i.e.ωy)

is poor. We have shown in Fig.5.1 (n-o) several Fourier slices in which the captured spectra

contain zeros.

A camera with parametric motions We design other cameras with parametric motions and

analyze their performance. Although we cannot analytically derive the spectral performance of

each camera, we can compare each design numerically. We define four cameras: (i) a camera

with a raised-cosine motion, (ii) a camera with a circular motion with a constant angular speed,

(iii) a camera with a circular motion with a constant angularacceleration, and (iv) a camera
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(a) A parabolic camera (b) A raised-cosine camera (c) A circular motion camera (d) A circular-acceleration

motion camera

(e) A spiral camera
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Figure 5.7: We numerically analyze the spectral performance of five different cameras: (a) a
camera with a parabolic motion, (b) a camera with a raised-cosine motion, (c) a camera with
a circular motion with a constant angular speed, (d) a camerawith a circular motion with a
constant angular acceleration, and (e) a camera with a spiral motion. This figure shows that
even a two-image solution of cameras (b-e) cannot capture all frequencies without zeros for all
object motions, as a two-image solution of a parabolic camera (a) does.

with a spiral motion. Each camera moves in the defined camera path φ during the exposure

t ∈ [−T/2...T/2].

(i) A camera with a raised-cosine motion: The parametric motion for a raised-cosine

motion is:
{φ : [x,y,t] = [α (1+cos(ωt)) ,0,t]} (5.23)

whereω = π/(T/2) and α = Sob j/ω . This camera moves in 1D and covers each velocity

twice as opposed to once as in a parabolic camera. Fig.5.7(b) shows the blur kernel spectra

for different object motions. The zero pattern is quite similar to that of a parabolic camera in

Fig. 5.7(a), but zeros also appear in frequencies that are well covered by a parabolic camera.

This observation suggests that even a two-image solution ofa raised-cosine camera cannot

cover all frequencies without zeros, as a pair of orthogonally-moving parabolic camera does.

(ii) A camera with a circular motion with a constant angular speed: We can define the

motion of this camera as:

{φ : [x,y,t] = [α cos(ωt),α sin(ωt),t]} (5.24)

whereω = π/(T/2) and α = Sob j/(2ω). The camera sensor moves along a circular path

at a predetermined speed (Sob j/2), therefore the camera essentially tracks each object motion

with this particular speed in all possible orientations. However, this camera fails to capture

other motions, and consequently we observe many zeros in blur kernel spectra, as shown in

Fig. 5.7(c).
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(iii) A camera with a circular motion with a constant angular acceleration: We can

modify the above camera to track each object speed once, eachin different orientations. The

idea is to move the camera circularly but at a constant angular acceleration:

{

φ : [x,y,t] = [α cos(ω(t +T/2)2),α sin(ω(t +T/2)2),t]
}

(5.25)

whereω = 2π/(T)2 and α = Sob j/(2ωT). While this camera performs well for many ob-

ject velocities, the blur spectra still contain many zeros due to phase coupling, as shown in

Fig. 5.7(d).

(iv) A camera with a spiral motion:

{φ : [x,y,t] = [αt cos(ωt),αt sin(ωt),t]} (5.26)

whereω = kπ/(T/2) andα = Sob j/
√

(1+ ω2T2/4). k determines the number of “spirals”

during exposure. Here, we setk = 3. This camera tracks each speed once during exposure, but

not in all directions. Fig.5.7(e) shows that blur kernels for different object velocitiescontain

substantial amount of zeros.

Two shots Taking two images with cameras defined above can simplify thekernel estimation

task, but it does not substantially enhance the spectral coverage of these cameras. Optimizing

the exposure lengths of each shot [3], and in the case of a flutter shutter camera also optimizing

the random codes in each shot, do not eliminate their fundamental limitations: their power

spectra are constant alongωx,y and hence they spend the energy budget outside the wedge

of revolution. Previous two-image solutions to deblurring, such as [13, 15, 64, 90], fall into

the category of taking two images with a static or a linearly moving camera. These methods

can correctly find the motion kernels, but the image reconstruction quality is limited since the

spectrum coverage is low.

Synthetic simulation We compare the deblurring performance of (i) a pair of staticcameras,

(ii) a pair of flutter shutter cameras, (iii) a single parabolic camera and (iv) an orthogonal

parabolic camera through simulations (Fig.5.8). For all cameras, we fix the total exposure time

T and assume that the object motion is known. The orthogonal parabolic camera is setup to

deblur objects moving at speed less thanSob j. To give previous solutions the favor of doubt, we

optimized their parameters foreachmotion independently: for a pair of static camera, we use

the optimal split of the exposure timeT into two shots; for a pair of flutter shutter camera, we

use the optimal split of the exposure timeT andthe optimal code combinations. In a realistic

taegsang
Highlight

taegsang
Highlight
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Figure 5.8: Synthetic visualizations of the reconstruction quality. We optimized the exposure
lengths of each camera. First column: The object motion during the exposure. The green disc
denotes the velocity range covered by the orthogonal parabolic camera, and the red arrow
denotes the object velocity. Other columns show images deconvolved using the Wiener filter
(Eq. 5.30). The orthogonal parabolic camera outperforms the other optimized solutions in
deblurring the moving object.

scenario we cannot optimize the split of the exposure timeT nor flutter-shutter codes because

the object motion is not known a priori.

We render images of a moving object seen by these cameras: zero-mean Gaussian noise

with standard deviationη = 0.01 is added to the rendered blurry images. We deblur rendered

images using the Wiener deconvolution and compare the reconstruction performance. Fig.5.8

shows deconvolution results and their peak signal-to-noise ratio (PSNR). Each row corresponds

to a different object velocity. When the object is static, a pair of static camera restores visually

the most pleasing deconvolution result. This is intuitively satisfying since the static camera is

optimized for static object motions. The image quality froma flutter shutter camera is slightly

worse than that of a static camera due to the loss of light. Formoving objects, the orthog-

onal parabolic camera restores visually the most pleasing deconvolution results. While the

orthogonal parabolic camera deblurs moving objects betterthan other cameras, its performance

degrades as the object moves faster. However, the worst-case spectral performance across all

velocitiessx,y of interest is at least 2−1.5 of the optimal bound.

We put the synthetic experiment in the context of previous blur removal techniques. The
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performance of previous two-image motion deblurring techniques, such as [13, 15, 64, 90] can

be approximated by the deconvolution result of the static camera pair in Fig.5.8. Even if

these solutions correctly estimate the motion, inverting the blur kernel is still hard since high

frequencies are attenuated. Blind motion deblurring solutions, such as [31, 74], attempt to

resolve an even harder problem, since they estimate the blurkernel from a single input image.

� 5.4 Image reconstruction

We review a Bayesian method for image deconvolution and kernel estimation, and extend the

result to accomodate two input images. We derive a closed form solution to estimate blur

kernels from input images, and present an equivalent representation to estimate motion locally.

Also, we experimentally show that an image reconstruction error due to kernel misclassification

is small.

� 5.4.1 Non-blind deconvolution

A non-blind deconvolution algorithm recovers a blur-free imageI from a blurry imageB j and

an estimated blur kernelk j . Let B̄, k̄ beB̄= [B1,B2], k̄ = [k1,k2]. We recover the blur-free image

by maximizing the posterior probability. Using Bayes rule:

Ĩ = argmax
I

p(I |B̄, k̄)

∝ argmax
I

p(I ,B̄|k̄)

= argmax
I

p(I)
2

∏
j=1

p(B j |k j , I)

(5.27)

where we can define each term as follows:

logp(B j |k j , I) = − 1
η2 |B

j −k j ⊗ I |2 +C1 (5.28)

logp(I) = −β ∑
i

(ρ(|gx,i(I)|)+ ρ(|gy,i(I)|))+C2 (5.29)

η2 is the imaging noise variance,β = 0.002 controls the variance of the gradient profile,C1,C2

are constants,gx,i ,gy,i arex,y directional gradient operators at pixeli, andρ(z) = zα is a robust

norm. Whenα = 2, we impose a Gaussian prior on the image gradients, and whenα ≤ 1, we

impose a sparse prior.
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Eq.5.27is essentially a joint deconvolution model, stating that weseek an imagẽI that fits

the convolution constraints of bothB1 andB2. In other words, the deconvolved imageĨ should

be able to synthesize the input imagesB1 andB2 using the pair of kernels that reconstructed

Ĩ . Although not presented in Bayesian terms, Rav-Acha and Peleg [64] essentially deblur two

input images by maximizing the likelihood term (Eq.5.28), and Chenet al. [13] augment it

with the prior term Eq.5.29. Using a sparse prior leads to visually pleasing results with crisp

edges, but it is worth considering a Gaussian prior because we can derive closed form solutions.

We can efficiently solve Eq.5.27using the Wiener filter (i.e. a Gaussian image prior) [35]:

˜̂I(ωx,y) =
¯̂k∗(ωx,y)

¯̂B(ωx,y)
1

η2‖¯̂k(ωx,y)‖2 + σ−2(ωx,y)
. (5.30)

where∗ is a complex conjugate operator,σ2(ωx,y) is the variance of the image prior in the

frequency domain:σ−2(ωx,y) = β (‖Ĝx‖2 + ‖Ĝy‖2) whereĜx,Ĝy are the Fourier transform of

derivative filters. We use the Wiener filter to restore imagesfor kernel estimation, but use a

sparse deconvolution to restore the final blur-free image.

We can explicitly compute the expected reconstruction error using a Gaussian image prior

by taking expectation over the space of natural images and over image noise:

EI ,n
[

‖Ĩ − I‖2]= ∑
ωx

∑
ωy

η2

∑ j ‖k̂ j
sx,y(ωx,ωy)‖2 + η2σ−2(ωx,ωy)

(5.31)

Eq.5.31highlights that the image reconstruction error decreases monotonically as the summed

power spectrum∑ j ‖k̂ j
sx,y(ωx,ωy)‖2 increases. This justifies our PSF design goal in Eq.5.3.

� 5.4.2 Kernel estimation

A critical step in motion deblurring is estimating the correct blur kernelk̄. For that we seek

k̄ = argmax
k

p(k̄|B̄) = argmax
k

p(B̄|k̄)p(k̄) (5.32)

where p(k̄) is a prior on blur kernels (which we assume uniform). We derive the likelihood

p(B̄|k̄) by marginalizing over all latent imagesI :

p(B̄|k̄) =

∫

p(B̄, I |k̄)dI (5.33)
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wherep(B̄, I |k̄) is defined in Eq.5.28,5.29. If the prior p(I) is Gaussian,p(B̄|k̄) is also Gaus-

sian. If p(I) ∼ N(0,σ2), we can evaluatep(B̄|k̄) explicitly in the Fourier domain:

logp( ¯̂B|¯̂k) = C3−

1
2N

N

∑
ωx,y

(

‖B̂1k̂2∗− B̂2∗k̂1‖2 + η2σ−2
(

‖B̂1‖2 +‖B̂2‖2
)

‖B̂1‖2 +‖B̂2‖2 + η2σ−2

)

(5.34)

We have omitted the dependence onωx,y for clarity. When there is only one observed image (i.e.

k̂2 = 0,B̂2 = 0), Eq.5.34reduces to a zero-frequency test which favors kernels with similar zero

patterns as that of the blurry imageB̂1 [48]. When there are two observed images, the difference

term‖B̂1k̂2∗− B̂2∗k̂1‖2 supplements the zero frequency test: this term favors a pairof kernels

that satisfies the commutative property of convolution. This phase term drastically improves

the reliability of the kernel estimation measure. While Rav-Acha and Peleg [64], Chenet

al. [13] and Agrawalet al.[3] introduce kernel estimation methods that explicitly instantiate the

commutative property of convolution, what we introduce here is a Bayesian kernel estimation

method that balances the contribution of the commutative property of convolution and the image

prior.

We can rewrite logp( ¯̂B|¯̂k) in an equivalent representation that is more attractive forcom-

putational reasons. This involves solving for the latent imageĨ using Eq.5.27, and expressing

p(B̄|k̄) as follows2:

logp(B̄|k̄) = logp(Ĩ ,B̄|k̄)+ Ψ̃+C4 (5.35)

whereΨ̃ = ∑ω logΨω , andΨω = 1
η2 ∑ j ‖k̂ j

ω‖2+σ−2
ω is the variance ofp( ¯̂Bω |¯̂kω). This variance

term plays a critical role in distinguishing Eq.5.35from a standard MAP scorep(I , k̄|B̄) since

Eq. 5.35accounts for the overall probability volume around the modeand not only the mode

itself [50].

Qualitatively, logp(Ĩ ,B̄|k̄) penalizes kernel pairs̄k that restore an imagẽI which would not

fit the convolution constraints in Eq.5.28. To satisfy the convolution constraints, the kernel

pair k̄ should “undo” the blur present in input images̄B and respect the spatial shift between

input images (i.e. satisfy the commutative property of convolution.) Fig.5.9shows a synthetic

example. We blur a sharp image with a pair of blur kernels, anddeconvolve the blurred images

using the correct/incorrect kernel pair. When we use an incorrect kernel pair, we observe ghost-

2This is a Laplace approximation of logp( ¯̂B|¯̂k), which is equivalent to logp( ¯̂B|¯̂k) since logp( ¯̂B|¯̂k) is a Gaussian
distribution.
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Deconvolution with correct kernel pairDeconvolution with wrong kernel pair

Figure 5.9: An image is synthetically blurred, and is deconvolved usingthe correct blur kernel
pair and an incorrect blur kernel pair. An incorrect blur kernel pair has a spatial shift incom-
patible with input images, leading to ghosting and ringing in the restored image, whereas the
correct kernel pair restores a sharp, artifact free image.

ing artifacts due to an incompatible spatial shift. Therefore, this image is unable to regenerate

the input images, and logp(Ĩ ,B̄|k̄) penalizes that. On the other hand, ghosting artifacts are not

visible when we use the correct kernel to deblur the input images.

Most PSF estimation algorithms [31, 74] are designed to estimate blur kernels that are uni-

form across the image, and are not well suited to subject motion blur because these algorithms

search over the full space of possible motions. In our scenario, object motions are assumed to

be constant velocity. Since constant velocity motions comprise only a small subset of general

motions, we can constrain the motion search space (i.e. the blur kernel search space) to con-

stant velocity motions. This subsequently reduces the kernel estimation error. In this work, we

estimatek̄ by evaluating the log likelihood Eq.5.35 on a set of PSF pairs that correspond to

discretized 2D constant velocity motions, and by choosing the pair with the highest log likeli-

hood.

� 5.4.3 Local kernel estimation

If there are multiple motions in the scene, we need to locallyestimate the motion. Let̃Is be

images generated by deconvolvinḡB with the blur kernel pair̄ks, and letB̃ j
s = k j

s ⊗ Ĩs be a
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% Variable definitions
B̄≡ Blurred input images.
Sk ≡ A set of blur kernel candidates.
i ≡ A pixel index.
f (B̄, k̄) ≡ Eq.5.36

C⇐ 0.15% penalty for single-image explanations
B̄i ⇐ 15×15 window around the pixeli in B̄.
% Compute the log-likelihood
for every kernel candidatēk∈ Sk do

if k2 = 0 then
cost(̄k) ⇐ f (B̄i , k̄)+C % A single-image explanation

else
cost(̄k) ⇐ f (B̄i , k̄)

end if
end for
% The kernel estimate maximizes the log-likelihood
Kernel estimate at i⇐ argmin cost(̄k)

Algorithm 5: Blur kernel estimation at pixel i

re-convolved image. The log-likelihoodlog(p(B̄|k̄s)) at pixel i is:

logp(B̄(i)|k̄s) ≈− 1
2η2

2

∑
j=1

|B j(i)− B̃ j
s(i)|2

−ρ(gx,i(Ĩs))−ρ(gy,i(Ĩs))+
1
N

Ψ̃

(5.36)

whereN = 15×15 is the size of the local window centered around the pixeli.

Handling motion boundaries Because we take two images sequentially, there are motion

boundaries that are visible in one image but not in the other.In such regions the observation

model (Eq.5.28) is inconsistent and the joint deconvolution leads to visual artifacts. Therefore,

we use an image deblurred using only one of the two input images to fill in motion bound-

aries. We can automatically detect where to use a single-image explanation by also considering

kernel candidates that consist of a single image observation (i.e. B2 = 0,k2 = 0). We add an ad-

ditional fixed penalty C (set to 0.15 for all experiments, determined through cross validation) to

those kernel candidates; otherwise, the log-likelihood (Eq. 5.36) always favors a single image

solution. Algorithm5 provides a pseudocode for blur kernel estimation at pixeli.
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% Variable definitions
k j ≡ the kernel estimate atjth scale. j indexes the scale 1 to 3, from coarse to fine.
B̄ j ≡ Input image pyramids atjth scale.
S1

k ≡ 2×4500/42 kernel candidates at the coarsest scale.

Generate a 3-level image pyramid down-sampled in octaves.
% Estimate the blur at the coarsest scale
for every pixeli do

k1(i) ⇐ EstimateBlurPixel(̄B1,S1
k, i)

end for
% Regularize the estimate using MRF
k1 ⇐ MRFRegularize(k1)
% Loop over scales
for j = 2 : 3do

for every pixeli do
% Velocity candidate reduction
Sj

k(i) ⇐ 9 velocity neighbors ofk j−1(i)

k j(i) ⇐ EstimateBlurPixel(̄B j ,Sj
k(i), i)

end for
k j ⇐ MRFRegularize(k j )

end for

Algorithm 6: Multi-scale blur estimation

Multi-scale blur kernel estimation The quality of restored images depends on how finely

we sample the space of 2D constant velocity motions. With ourcurrent camera setup, we

discretize the space into 4500 samples. We quantize the space such that a step in the velocity

space results in roughly a one-pixel blur at the maximum object velocity. Searching over 4500

velocity samples to find the correct kernel pair at the full image resolution is computationally

expensive. We resort to a coarse-to-fine strategy to mitigate the computational burden. We

first down-sample the input images̄B by a factor of 4 in both width and height to reduce the

number of pixels and also the motion search space: blur kernels from two adjacent velocity

samples are essentially identical at a coarser resolution.At the coarsest scale, we search through

2× 4500/(42) velocity samples (single-image explanations incur the factor of 2). We then

propagate the estimated motion to a finer resolution to refinethe estimates.

At each spatial scale, we regularize the log-likelihood in Eq. 5.36using a Markov random

field (MRF). Algorithm6 provides a pseudocode for our multi-scale kernel estimation strategy.

We use the regularized kernel map to reconstruct the blur free imageĨ . First, we deconvolve



Sec. 5.4. Image reconstruction 119

5 10 15 20 25
0

1

2

3

4

5

6

7
x 10

−3

The window size

M
e

a
n

 s
q

u
a

re
d

 e
rr

o
r

 

 

Deconvolution error with the correct kernel

Deconvolution error with the estimated kernel

Figure 5.10: This figure evaluates the amount of deconvolution error contributed by the local
kernel estimation algorithm. When the local window is larger than 15×15 pixels, the decon-
volution error from kernel estimation negligible.

input imagesB̄ using all blur kernels̄ksx,y that appear in the estimated kernel map. Given the

set of deconvolved images̃Isx,y, we reconstruct the blur free image from̃Isx,y by selecting, at

each pixel, the pixel value from the image deblurred using the estimated blur kernel. We blend

different motion layers using a Poisson blending method [61] to reduce artifacts at abutting

motion layers.

Quantifying the kernel estimation error Fig. 5.10quantifies the image reconstruction error

introduced by kernel estimation. We blur a sharp natural image using a blur kernel pair, and we

deblur the rendered images using the correct kernel pair. Then we compute the base-line mean-

squared error (MSE). The mean-squared error is not zero because we lose information through

the blurry observation process, thus the restored image is not exactly the same as the original

image. We also deblur the rendered images using kernels locally estimated by maximizing the

log-likelihood in Eq.5.36, and compute its MSE. For this experiment, we compute the MSE

as we increase the window size, shown as a green curve in Fig.5.10. On the same plot, we

show the base-line MSE (a dotted blue curve). The base-line MSE isindependentof the kernel

estimation error, therefore the difference between the green curve and the dotted blue curve

is the deconvolution error from kernel misidentification. We observe that the additional error
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Figure 5.11: (a) A diagram of our prototype. (b) A photograph of the actuators and the camera
sensor.

from kernel estimation is negligible when the window size isgreater than 15×15. This result

suggests that it is reasonable to focus on finding a camera motion that maximizes the spectral

power of blur kernels.

� 5.5 Experiments

� 5.5.1 Prototype camera

We built a prototype camera consisting of a sensor, two motion stages and their controllers.

We mounted a light-weight camera sensor (Point Grey Research Flea 2 Camera) on two mo-

tion stages (Physik Instrumente M-663 pair), where each canmove the camera sensor along

orthogonal axes (See Fig.5.11(a)). In each image capture, one of the motion stages undergoes

parabolic motion, approximated by 19 segments of constant velocity due to control constraints.

In practice, we could replace the motion stages with an imagestabilization hardware. The cam-
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x-parabolic camera y-parabolic camera

Input images Estimated motion Deblurred image From a static camera

sx

sy

Figure 5.12: This figure shows the pipeline of our system. We take two images using the
orthogonal parabolic camera, and we locally estimate motion. The estimated motion is shown
with the color coding scheme in the inset, and the detected motion boundaries are represented
with black bounding boxes. We deblur the captured image pairusing the estimated motion map.
For reference, we also show the image taken with a synchronized static camera with a 500ms
exposure.

era lens is affixed to the camera lid, and does not move during exposure. The total exposure

time for taking two images is 500ms: 200ms for each image, with a delay of 100ms between

exposures. 100ms delay is incurred by switching the controlfrom one motion stage to another,

and can be reduced by using an improved hardware.

We rendered PSFs of our imaging system for different object speed using a parameterized

actuator motion model, and used them for deconvolution. We validated the accuracy of rendered

PSFs by physically calibrating blur kernels at several object velocities and by comparing them

to rendered kernels. For calibration, we place a high-frequency calibration pattern on a motion

rail, take a sharp image of the static calibration pattern with a static camera, and take an image

of the moving pattern with a camera undergoing a parabolic motion. We solve for the kernelk

that minimizes‖B−k⊗ I‖2, whereI is the sharp image of the static calibration pattern, andB

is the image of the moving pattern taken with a parabolic camera.

� 5.5.2 Results

Fig. 5.12 illustrates the deblurring pipeline. First, we capture twoimages successively while

the sensor undergoes parabolic motions in two orthogonal directions. From the two images, we

locally estimate the motion and restore the blur-free imageusing blur kernels that correspond to

the estimated motion. Automatically detected motion boundaries are shown by black bounding

boxes. Our kernel estimation algorithm sometimes misclassifies motions in un-textured regions,

but this does not lead to visual artifacts. For reference we show an image taken with a static
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Figure 5.13: We compare the deblurring performance of a two-shot static camera and an
orthogonal parabolic camera. We optimize the split of the exposure for the static camera,
assuming that we know the object motion: 40ms for the first shot and 360ms for the second
shot. The blur kernel is estimated manually to compare just the amount of information captured
by these cameras. The static camera reconstructs static objects well, but at the expense of a
degraded rendition of the moving object, whereas the orthogonal parabolic camera restores a
reasonable rendition of both the static and moving parts.

camera with 500ms exposure, synchronized to the first shot ofthe orthogonal parabolic camera.

This reference image reveals the object motion during exposure.

In Fig. 5.13, we compare the deconvolution performance of a two-shot static camera and

an orthogonal parabolic camera. A toy train is moving at a constant velocity, assumed known

for this comparison. For the static camera, we optimize the split of the exposure for this known

train motion: 40ms for the first shot, and 360ms for the secondshot. Using the static camera,

we can reliably reconstruct the static part of the scene at the expense of degraded renditions

of moving parts. On the other hand, our camera enables reliable reconstructions of both static

and moving parts, although static regions are slightly moredegraded compared to static regions

restored using the static camera. An orthogonal parabolic camera spreads the energy budget

over all velocities of interest, whereas a static camera concentrates the energy budget for the

static motion.

We present more deblurring results on human motions in Fig.5.14, using parabolic expo-
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Figure 5.14: We show the deblurring performance of the orthogonal parabolic camera. Images
from a static camera with 500ms exposure are shown for reference. Arrows on reference images
show the direction and magnitude of motion.

sure to capture motions in non-horizontal directions3. Images from the static camera (500ms

exposure) reveal the motions during exposure, shown by red arrows. We can observe some

artifacts at motion boundaries at which the joint convolution model does not hold. In general,

however, the reconstructions are visually pleasing. In thethird column of Fig.5.14, we show

how an orthogonal parabolic camera handles a perspective motion. While a perspective motion

does not conform to our assumption on object motions, our system still recovers a reasonably

sharp image.

Our image reconstruction algorithm treats an occluded region as a motion boundary. When

a moving object is seen only in one of the two images due to occlusion, as in Fig.5.15, an

image deblurred using only one of the input images is used to fill in the occluded region.

3The camera body is tilted for this purpose.
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x-parabolic camera y-parabolic camera

Estimated motion Deblurred image

Figure 5.15: Our image reconstruction algorithm handles occlusion boundaries in a manner
similar to motion boundaries. In the occluded region, an image deblurred using only one of the
two input images is used.

� 5.5.3 Discussion

Kernel estimation takes 30 min - 1 hour on a single, serial machine: the running time depends

on the size of the image. A by-product of kernel estimation isa blur free image deblurred using

the Wiener filter. The running time of the sparse deconvolution algorithm is roughly 6 hours.

We assume that objects move at a constant velocity within theexposure time, which is

a limitation shared by most previous work that deals with object motion [47, 49]. Camera

shake, which typically exhibits complex kernels, needs to be handled separately. Our camera

design captures image information almost optimally, but itdoes not provide guarantees for

kernel estimation performance. While taking two images certainly helps kernel estimation,
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designing a sensor motion that optimizes both kernel estimation and information capture is an

open problem. Our image reconstruction takes into account occlusions by allowing some pixels

to be reconstructed from a single images, but a full treatment of occlusion for deconvolution

remains an open challenge.

� 5.6 Conclusion

This chapter presented a two-exposure solution to removingconstant velocity object motion

blur. We showed that the union of PSFs corresponding to 2D linear motions occupy a wedge of

revolution in the Fourier space, and that the spectral content of the orthogonal parabolic camera

approaches the optimal bound up to a multiplicative constant within the wedge of revolution.
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Chapter 6

Conclusions and future work

This thesis investigated solutions to a long-standing problem in photography: motion blur re-

moval. Motion blur removal is challenging because many blur– image pairs could have gen-

erated the blurry photograph and we need to pick the correct pair from them. The challenge is

aggravated since the blur can be spatially variant depending on the relative motion between the

camera and the scene.

This thesis proposed both hardware and software solutions to address a few aspects of these

challenges. Chapter2 introduced the idea of analyzing blurred edge profiles for estimating a

blur kernel from a single image. We showed that (i) it is possible to estimate blur kernel projec-

tions by analyzing blurred edge profiles and that (ii) we can reconstruct a blur kernel from these

blur kernel projections using the inverse Radon transform.This method is conceptually simple

and computationally attractive, but is applicable only to images with many edges in different

orientations. To address this concern, we also proposed an alternative technique that integrates

kernel projection constraints in a MAP blur kernel estimation framework. We experimentally

showed that this technique is stable even for images withoutmany isolated edges in different

orientations.

Even if we could perfectly estimate the blur kernel, blur removal is still challenging because

a blur attenuates high frequency information about the original image. To hallucinate the lost

information, a sparse gradient profile of natural images hasbeen extensively exploited as an

image prior. We showed in Chapter3, however, that a sparse gradient prior is not a good model

for textures. Our result showed that we should adapt the image prior to local textures. While

this technique improves the quality of restored images, restored textures were not as rich as the

original texture. To address this issue, we developed a new image restoration technique called

iterative distribution reweighting (IDR) (in Chapter4). IDR matches the gradient distribution

of restored images to their reference distribution. We experimentally demonstrated that IDR

127
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restores visually more pleasing images compared to MAP restoration methods.

Chapter5 addressed subject motion blur. Removing subject motion blur is challenging

because the blur is spatially variant. However, we can simplify the problem by assuming that

the subject is moving at a constant velocitylocally. This assumption not only simplified the

kernel estimation problem, but also allowed us to modify theimaging system to reduce the

image information loss due to blur.

There are two concrete ideas to extend ideas presented in this thesis. The following sections

explore these ideas in detail.

� 6.1 Blur kernel estimation from blurred line profiles

In Chapter2, we showed that we can recover a blur kernel by analyzing blurred edge profiles.

One of the assumptions is that an image consists of isolated step edges oriented in different

directions, and this assumption limits the algorithm’s applicability. In fact, even piecewise

smooth logos sometimes have thin bands at boundaries, making our algorithm inappropriate.

We would like to extend our method to incorporate blurred line profiles as well as blurred

edge profiles. Because there are generally more lines than step edges, we foresee that using

information from lines would improve the kernel estimationaccuracy and stability.

There are two ways to incorporate blurred line profiles. The first method models a line

profile as a box filter of unknown width. If the blur kernel was known, we can estimate the line

widths; if the line widths were known, we can estimate the blur kernel from the blurred line

profiles using a modified inverse Radon transform (see Eq.6.6). Therefore, we iteratively try

to estimate the line width and the blur kernel from blurred line profiles. The second method

is more general: we assume that a line profile is a more generalsignal. We attempt to recover

both the blur kernel and thedeblurredline profiles from blurry line profiles. We explain both

ideas in detail.

� 6.1.1 Modeling lines as a box filter

A line of finite widthzparallel to they axis can be representedLz(x,y) = S(x)−S(x−z), where

S(x) is a step function along thex axis. Lz(x,y) is equivalent to a convolution of an ideal line

δ (x) with a box filter of widthz. A step edge is a special case of a line wherez= ∞.

We can show that a blurred profile ofLz is a projection of a blur kernelblurred by a box

filter of width z. To show this, we note that a blurred edge profile is an integral of a blur kernel
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projection:

BE(ρx,ρy) = BE(ρ) =
∫ ρ

−∞
φk

θ (τ)dτ (6.1)

whereφk
θ (ρ) is a blur kernel projection along orientationθ andρ =

√

ρ2
x + ρ2

y (these variables

are defined more rigorously in Chapter2). SinceLz is a difference between edges separated by

z and since these operations are linear, the blurred profile ofa line of widthz along orientation

θ is:
χz

θ (ρ) =

∫ ρ

−∞
(φk

θ (τ)−φk
θ (τ −z))dτ (6.2)

We can rewrite Eq.6.2 in a different form:

χz
θ (ρ) =

∫ ρ

−∞

{

∫ ∞

−∞
φk

θ (ζ )(δ (τ −ζ )−δ (τ −z−ζ ))dζ
}

dτ (6.3)

Now, by changing the order of integration,

χz
θ (ρ) =

∫ ∞

−∞
φk

θ (ζ )

{

∫ ρ

−∞
(δ (τ −ζ )−δ (τ −z−ζ ))dτ

}

dζ

=
∫ ∞

−∞
φk

θ (ζ ){S(ρ −ζ )−S(ρ −z−ζ )}dζ

= φk
θ (ρ)⊗ (S(ρ)−S(ρ −z))

(6.4)

Therefore, a blurred profile ofLz in orientationθ is a blur kernel projectionφk
θ (ρ) convolved

with a box filter of widthz.

This finding implies that if we know the width of the line, we can use the blurred line

profiles for kernel estimation. To do so, we need to re-define the likelihood termp(B|k) in the

posterior probabilityp(k|B) ∝ p(B|k)p(k). In Sec.2.2.2, we definedp(B|k) as follows:

p(B|k) =
N

∏
i=1

p(φθi |k)

∝
N

∏
i=1

{

exp

(

−‖φθi −Rθi k‖2

2η2
p

)} (6.5)

whereRθi is a projection operator alongθi . We redefine this likelihood in terms of blurred line

profilesχ :
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p(B|k) =
N

∏
i=1

p(χθi ,zi |k)

=
N

∏
i=1

p(χθi |k,zi)p(z)

∝
N

∏
i=1

{

exp

(

−‖χθi −W(zi)Rθi k‖2

2η2
p

)}

p(z)

(6.6)

whereW(zi) is a convolution matrix that blurs the kernel projection by the width of the line

zi . Becausezi ’s are unknown, we also need to inferzi during kernel estimation.zi ’s have a

structural regularity: edges from the same line are likely to have the same width. This can

be represented as a smoothness priorp(z). Given this model, we can either perform (i) an

alternating maximization with respect tok andzor (ii) an Expectation-Maximization by treating

line widthszas a hidden variable.

� 6.1.2 Recovering both the line profiles as well as the blur kernel from the

blurred line profiles

The idea in the previous section is conceptually simple, butis still restrictive since it makes a

strong assumption that line profiles are box filters. Lines may have complex structures that can-

not be adequately represented using a box-filter model. Therefore, as a more general method,

we eliminate such assumptions on line profiles. Instead, we attempt to recover both line profiles

Li ’s as well as the blur kernelk from blurred line profilesχθi ’s extracted from the blurred image.

In other words, we want to recoverk andLi ’s that maximize the following probability:

N

∏
i=1

p(Li ,k|χθi ) =
N

∏
i=1

p(χθi |Li,k)p(Li)p(k) (6.7)

We can model the likelihood termp(χθi |Li ,k) as follows:

p(χθi |Li,k) ∝ exp

(

−‖χθi −sθi (L⊗k)‖2

2η2
p

)

(6.8)

wheresθi is a slicing operator orthogonal to orientationθi . To learn the line priorp(Li), we

can sample 1D slices of lines from natural images and investigate structural regularities. Since

analyzing 1-dimensional structures should be easier than analyzing 2-dimensional images, this

should be a feasible task. Given these models, we can maximize the posterior probability

∏N
i=1 p(Li,k|χθi ) with respect tok andLi ’s to recover both the blur kernelk and the line profiles
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Li.

� 6.2 Blur kernel estimation using phase information

While Chapter2 introduced a computationally attractive kernel estimation method, another

way to reduce the computational complexity is to develop a closed form solution to kernel

estimation. Levinet al. [48] derive a closed form solution for kernel estimation by maximizing

the posterior probabilityp(k|B) that assumes a Gaussian image priorp(I) ∼ N(0,σ2) and a

uniform prior on blur kernels. Levinet al. [48, 50] show thatp(k|B) ∼ N(0,Kσ2KT + η2I),

whereK is a convolution matrix ofk andI is an identity matrix. Therefore, we can find the blur

kernel estimate by minimizing the log-posterior as follows:

k̂ = argmin
K

B̃T(Kσ2KT + η2I)−1B̃ (6.9)

whereB̃ is a rasterized version ofB. We can rewrite this expression in the Fourier domain:

˜̂k(ωx,y) = argmin
k̂

‖B̂(ωx,y)‖2

‖k̂(ωx,y)‖2‖σ(ωx,y)‖2 + η2
(6.10)

This kernel estimation strategy is simple and enables a rapid blur kernel estimation.

One drawback of Eq.6.10is that it ignores the phase information, and the blur kerneltends

to be smooth [50]. It’s well known that a Gaussian prior cannot disambiguatea signalf (t) from

its time-inverted versionf (−t). The importance of phase has been recognized early in the sig-

nal processing community [60]. Also, in Sec.5.4.2, we have observed how phase information

from two input images helps kernel estimation. We expect that integrating phase information

by using a non-Gaussian image prior would improve the kernelestimation performance.

We foresee two directions to incorporate the phase information.

• Using higher-order spectra

Higher-order spectra (HOS) analysis techniques analyze a signal’s phase information [57].

HOS techniques have been successfully applied to various computer vision tasks: remov-

ing a gamma correction [28], removing a radial lens distortion [30], and estimating planar

surface orientation [29]. HOS could provide similar benefits to blur kernel estimation.

• Using local phase coherence

Wang and Simoncelli [84] present an interesting observation that a natural image has lo-
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cally coherent phase across scale. Wang and Simoncelli [84] present a theoretical justifica-

tion of the local phase coherence using scale-invariance ofa multiscale Wavelet/steerable

pyramid. We could use this information as an image prior to develop a kernel estimation

algorithm. In other words, we can formulate the blur kernel estimation problem as finding

a blur kernel that would maximally correlate the local phaseof images across scale.
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Appendix A: Algorithm details of IDR

We derive the details of the KL divergence penalty algorithmin Chapter4.4.1. We can rewrite

the image reconstruction optimization function as follows:

‖B−k⊗ I‖2

2η2 +w1λR‖∇I‖γR +w2(λR‖∇I‖γR −λE‖∇I‖γE )+ ln

(

γEλE
1/γE

2Γ(1/γE)

2Γ(1/γR)

γRλR
1/γR

)

(11)

The shape parameters of the empirical distributionqE are functions ofI , but dependences are

omitted to reduce clutter.

First three terms Eq.11 are similar in form to the ordinary MAP estimator, thereforethey

can be minimized using a gradient descent technique. If we can compute the derivative of

ln
(

γEλE
1/γE

2Γ(1/γE)
2Γ(1/γR)

γRλR
1/γR

)

with respect toI , we can minimize the entire function in Eq.11 using a

gradient descent method. We show that it indeed is the case.

Let Ĩ be a rasterized vector of the imageI . The derivative of ln
(

γEλE
1/γE

2Γ(1/γE)
2Γ(1/γR)

γRλR
1/γR

)

with

respect tõI takes the following form:

∂
∂ Ĩ

ln

(

γEλE
1/γE

2Γ(1/γE)

2Γ(1/γR)

γRλR
1/γR

)

= α
∂γE

∂ Ĩ
+ β

∂λE

∂ Ĩ
(12)

where

α =





1
γE

− ln(λE)

γE
2 +

Ψ
(

1
γE

)

γE
2





β =

(

1
γEλE

)

(13)

Ψ is a digamma function.∂γE

∂ Ĩ
and ∂λE

∂ Ĩ
can be derived as follows:

∂γE

∂ Ĩ
=

γE
2λE

( 2
γE

)Γ( 1
γE

)

NΓ( 3
γE

)
(

Ψ( 1
γE

)−3Ψ( 3
γE

)+2ln(λE)
)2GTGĨ

∂λE

∂ Ĩ
= −Γ(1/γE)γEλE

(1+2/γE)

NΓ(3/γE)
GTGĨ

(14)

We show the proofs in following subsections. Since ln
(

γEλE
1/γE

2Γ(1/γE)
2Γ(1/γR)

γRλR
1/γR

)

is differentiable, we

can optimize Eq.11 using a gradient descent technique. Furthermore, at fixed[γE,λE], Eq.12
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is linear inĨ , suggesting that we can use an iterative reweighted least squares (IRLS) method to

minimize Eq.11.

Let B̃ be a rasterized vector of the observed imageB, andK be the convolution matrix of

the blur kernelk. We take the derivative of the optimization function Eq.11 with respect tõI :

−KT(B̃−KĨ)
η2 +2w1λRγRGT‖GĨ‖γR−1 +w2

(

2λRγRGT‖GĨ‖γR−1−2λEγEGT‖GĨ‖γE−1

+
(

α −λE|GĨ |γE ln(|GĨ |)
)

◦ ∂γE

∂ Ĩ
+
(

β −|GĨ |γE
)

◦ ∂λE

∂ Ĩ

)

= 0
(15)

whereG is a gradient operator, and◦ is a Hadamard element-wise matrix multiplication opera-

tor.

IRLS algorithm approximates the solution of a non-linear equation Eq.15 by iteratively

solving a linear equation that approximates Eq.15. We approximateγGT‖GĨ‖γ−1 as follows:

γGT‖GĨ‖γ−1 = γGTWGĨ (16)

whereW is a reweighting matrix. We updateW iteratively such that minimizingγGT‖GĨ‖γ−1

matches minimizingγGTWGĨ .

We handle the non-linearity due toλE|GĨ |γE ln(|GĨ |) and |GĨ |γE by evaluating them once

with the image reconstructed from the previous iteration, and fixing these coefficientsduring

the actual minimization with respect tõI . We iterate this process until convergence. We use a

minimum residual method to solve thelinear system in Eq.15.

We can easily modify this algorithm to derive the IDR algorithm details.

The derivative of ln
(

γEλE
1/γE

2Γ(1/γE)
2Γ(1/γR)

γRλR
1/γR

)

We note thatγR,λR are constants, so we can focus on taking the derivative ofγE,λE. We can

rewrite ln
(

γEλE
1/γE

2Γ(1/γE)

)

as follows:

ln

(

γEλE
1/γE

2Γ(1/γE)

)

= ln(γE)+
1
γE

ln(λE)− ln

(

2Γ(
1
γE

)

)

(17)

There exists a relationship between the Gamma functionΓ and the digamma functionΨ:

dΓ(z)
dz

= Γ(z)Ψ(z) (18)
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We can use this relationship to show that

∂
∂ Ĩ

ln

(

γEλE
1/γE

2Γ(1/γE)

2Γ(1/γR)

γRλR
1/γR

)

=
1
γE

∂γE

∂ Ĩ
+

1
γEλE

∂λE

∂ Ĩ
− 1

γE
2 ln(λE)

∂γE

∂ Ĩ
+

1
γE

2Ψ(
1
γE

)
∂γE

∂ Ĩ

= α
∂γE

∂ Ĩ
+ β

∂λE

∂ Ĩ

(19)

The derivative of λE with respect to Ĩ

We show that
∂λE

∂ Ĩ
= −Γ(1/γE)γEλE

(1+2/γE)

NΓ(3/γE)
GTGĨ (20)

whereN is the total number of samples.

We can compute the second momentm2 of gradient samples of̃I as follows:

m2 =
1
N

ĨTGTGĨ (21)

whereG is a gradient operator, and we assume that the mean of gradients GĨ is zero.

The second momentm2 is related to generalized Gaussian shape parametersγE,λE as fol-

lows:
m2 =

Γ(3/γE)

λE
2

γE Γ(1/γE)
(22)

We take the derivative ofm2 with respect tõI . From Eq.21,

∂m2

∂ Ĩ
=

2
N

GTGĨ (23)

For tractability, we assume thatγE is independent of̃I . From, Eq.22,

∂m2

∂ Ĩ
=

Γ(3/γE)

Γ(1/γE)

2
γE

λE
− 2

γE
−1∂λE

∂ Ĩ
(24)

From Eq.23 and Eq.24, we can show that

∂λE

∂ Ĩ
= −Γ(1/γE)γEλE

(1+2/γE)

NΓ(3/γE)
GTGĨ (25)

The derivative of γE with respect to Ĩ

We show that
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∂γE

∂ Ĩ
=

γE
2λE

( 2
γE

)Γ( 1
γE

)

NΓ( 3
γE

)
(

Ψ( 1
γE

)−3Ψ( 3
γE

)+2ln(λE)
)2GTGĨ (26)

whereN is the total number of samples.

Again, we use the relationship:

m2 =
Γ(3/γE)

λE
2

γE Γ(1/γE)
(27)

We take the derivative ofm2 with respect tõI assuming thatm2 is independent ofλE.

∂m2

∂ Ĩ
=

1
(

γE

(

2
γE

)

Γ
(

1
γE

)

)2 ×
{

Γ(
3
γE

)Ψ(
3
γE

)(− 3
γE

2 )λE
2

γE Γ(
1
γE

) −Γ(
3
γE

)

(

∂
∂γE

(

λE
2

γE Γ(
1
γE

)

))}

(28)

We can show that
(

∂
∂γE

(

λ
2

γE Γ(
1
γE

)

))

= −λE
2

γE Γ(
1
γE

)

(

1
γE

2

)(

Ψ(
1
γE

)+2ln(λE)

)

(29)

Using above relationships and the derivative ofm2 with respect tõI (Eq.23), we can show

that
∂γE

∂ Ĩ
=

γE
2λE

( 2
γE

)Γ( 1
γE

)

NΓ( 3
γE

)
(

Ψ( 1
γE

)−3Ψ( 3
γE

)+2ln(λE)
)2GTGĨ (30)
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