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Abstract

One of the long-standing challenges in photography is mdtiar. Blur artifacts are gen-
erated from relative motion between a camera and a scenegdexposure. While blur can
be reduced by using a shorter exposure, this comes at anidablotrade-off with increased
noise. Therefore, it is desirable to remove blur computziig.

To remove blur, we need to (i) estimate how the image is biu(re. the blur kernel or
the point-spread function) and (ii) restore a natural lagkinage through deconvolution. Blur
kernel estimation is challenging because the algorithndsi¢® distinguish the correct image—
blur pair from incorrect ones that can also adequately @éxhe blurred image. Deconvolution
is also difficult because the algorithm needs to restorefinggiuency image contents attenuated
by blur. In this dissertation, we address a few aspects sktkbhallenges.

We introduce an insight that a blur kernel can be estimateahiayyzing edges in a blurred
photograph. Edge profiles in a blurred image encode projestf the blur kernel, from which
we can recover the blur using the inverse Radon transfornis mikethod is computationally
attractive and is well suited to images with many edges. rBtledge profiles can also serve
as additional cues for existing kernel estimation algangh We introduce a method to inte-
grate this information into a maximum-a-posteriori kerestimation framework, and show its
benefits.

Deconvolution algorithms restore information attenudigdblur using an image prior that
exploits a heavy-tailed gradient profile of natural imag&'s.show, however, that such a sparse
prior does not accurately model textures, thereby deggaidixture renditions in restored im-
ages. To address this issue, we introduce a content-awaggeiprior that adapts its charac-
teristics to local textures. The adapted image prior imgsahe quality of textures in restored
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images. Sometimes even the content-aware image prior mansbiicient for restoring rich
textures. This issue can be addressed by matching theadstonge’s gradient distribution
to its original image’s gradient distribution, which is iesated directly from the blurred im-
age. This new image deconvolution technique called iteratistribution reweighting (IDR)
improves the visual realism of reconstructed images.

Subject motion can also cause blur. Removing subject motiaris especially challenging
because the blur is often spatially variant. In this diggEm, we address a restricted class
of subject motion blur: the subject moves at a constant itgldocally. We design a new
computational camera that improves the local motion esiimand, at the same time, reduces

the image information loss due to blur.

Thesis Supervisor: William T. Freeman
Title: Professor of Electrical Engineering and Computdece
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Chapter 1

Introduction

OTION blur is one of the salient sources of degradation in photggga Although
M motion blur can sometimes be desirable for artistic purpogeften severely limits
the image quality. Blur artifacts result from relative nootibetween a camera and a scene
during exposure. While blur can be reduced using a fasteteshgpeed, this comes with an
unavoidable trade-off with increased noise.

One source of a motion blur is camera shake. When a camerasrdavieg exposure, it
blurs the captured image according to its trajectory. Werndigate the camera shake blur by
using a mechanical image stabilization hardwa@.[ However, a camera shake can be too
large for assistive devices to accommodate when a cames #édlong exposure shot of a dark
scene and/or when a camera uses a telephoto lens. A secaund sbblur is a movement of
objects in the scene, and this type of blur is harder to avbiterefore it is often desirable to
remove blur computationally.

Motion blur removal, often called motion deblurring or lideconvolution, is challenging
in two aspects. The first challenge is estimating blur kernal point-spread functions (PSF),
from blurred images. Because many blur—-image pairs caraiexfiie observed blurry image,
kernel estimation is a difficult problem. Blur estimatiomdae especially difficult if the blur
is spatially variant, for instance due to a dynamic scene caraera rotation. The second
challenge is removing the blur to recover a blur-free imadetion blur averages neighboring
pixels and attenuates high frequency information of theneceConsequently, recovering a
blur-free image is an ill-posed problem which needs to beexsidd by deblurring systems or
algorithms.

This thesis explores both hardware and software solutiomsitiress a few of these chal-
lenges. We introduce (i) a spatially-invariant blur kereslimation method using blurred edge
profiles, (ii) an adaptive image prior for improving the réimh of textures in restored images,
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(i) an image deconvolution technique that matches gradiestributions to improve visual re-
alism of textures, and (iv) a new computational camera that-optimally captures the image
information of moving objects.

B 1.1 Overview of techniques and contributions

This section provides a preview of techniques and contabat

B 1.1.1 Chapter 2: Blur kernel estimation from blurred edge profiles

We present a method to recover a spatially invariant blunédefrom a single blurry photo-
graph. The key idea is that blur kernel projections can benastd by analyzing blurred edge
profiles. These projections are also known asRlaglon Transform Blur kernel projections
are useful because we can apply the inverse Radon transforestbre the blur kernel. This
method is computationally attractive because we do not teedtimate the latent image in
order to iteratively refine the kernel and because most o€timeputation is performed at the
scale of the blur kernel. Although this technique appliely tmimages with a sufficient num-
ber of straight edges in many orientations, these encongpdamge set of images including
many man-made scenes. Kernel projections can also prodidiéianal cues to improve the
kernel estimation performance of existing algorithms. \Wapse a method to integrate kernel
projection information in a MAP based kernel estimatiomfeavork.

B 1.1.2 Chapter 3: A content-aware image prior for image restoration

Even if we could accurately estimate the blur kernel, résgoa blur-free image from a blurry
photograph is still challenging because we lose high frequenformation during a blurry
observation process. To “fill-in” the missing informationge often exploit prior knowledge
about natural images. One of the most popular image pria$&avy-tailed gradient distribu-
tion of natural images. A MAP estimator, when used with a lgdailed, or sparse, gradient
prior, reconstructs images with piecewise smooth chatatitss. While a sparse gradient prior
removes ringing and noise artifacts, it also removes madtfency textures, degrading visual
quality. We can attribute such degradations to imposingnaarrect image prior. As is seen
in Fig. 1.1, the gradient profile in fractal-like textures, such asdrégclose to a Gaussian dis-
tribution, therefore a sparse gradient prior would peeasimall gradients from such regions,
over-smoothing textures.
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Figure 1.1: The gradient profile of natural images is often used as an ér@gpr in image
restoration tasks. Oftentimes, we use a single heavydtgjiadient profile as an image prior
for the entire image. However, this figure shows that gradpofiles differ significantly in
response to underlying textures. This observation suggést we should adapt the image
prior to the image content. This so called a content-awaragenprior improves the visual
realism of restored images.

To address this issue, we introduce an image priordlaptsto local texture. We adapt
the prior to both low-level local structures as well as neddl textural characteristics. We
demonstrate improvements on deblurring and denoisingtask
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Figure 1.2: The gradient distribution of images restored using a MAhestor can differ from
that of the original images, and this manifests itself as atmed textures. In Chaptet, we
present an alternative deconvolution method that matchegeconstructed image’s gradient
distribution to its reference distribution (i.e. the gradi distribution of the original image) to
restore visually pleasing textures.

B 1.1.3 Chapter 4: Image restoration by matching gradient distributions

Even with a content-aware image prior, a MAP estimator da¢shvays reliably reconstruct
rich textures. We present an alternative image restoratiethod calledterative distribution
reweighting (IDRYo improve the rendition of rich textures. IDR imposes a glatmnstraint on
image gradients: the restored image should have a gradgtribdtion close to a reference dis-
tribution. As is explored in Chapté&; a reference distribution not only varies from one image
to another, but also within an image depending on texturerdfbre, we estimate a reference
distribution directly from an input image for each textusgsent. We show through experi-
ments that IDR is able to restore rich mid-frequency texduhat are visually more appealing
than MAP estimates. User studies support our claim that IRRoves the visual realism of
reconstructed images compared to MAP estimates.
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Sensor

Static camera image Orthogonal parabolic camera:input Orthogonal parabolic camera: deblurred output

Figure 1.3: In Chapter5, we address spatially variant motion blurs induced by scibpao-
tions. We address two challenges associated with motiarrétnoval, namely the blur kernel
estimation and the reduction of information loss, by dgvelgp a new computational camera
that takes two consecutive images of a moving sdegfeé. An image captured by a static cam-
era. Middle: Our solution takes two consecutive images of a scene usigadplic camera
moving in two orthogonal direction®Right: The restored image.

B 1.1.4 Chapter 5: Orthogonal parabolic exposures for motion deblurring

In this chapter, we address spatially variant blur inducgthbving objects. Removing subject
motion blur is challenging because one hatotally estimate the motion. Even if the motion
is successfully identified, blur inversion can still be aié because the blur kernel attenuates
high frequency image content.

We present a computational camera to address above chedlewg assume that the object
is moving at constant velocities in arbitrary 2D directigregallel to the imaging plane. This
assumption is often satisfied when the exposure time iswehaishort. Our solution captures
two images of a scene with a parabolic camera motion in twwogidnal directions. We show
that this strategy near-optimally preserves the imageetdrdf moving objects, which allows
for a stable blur inversion. Taking two images of a scene lad$jos us estimate spatially varying
object motions. We present a prototype camera and demtmstracessful motion deblurring
on real world motions.

H 1.2 Other work not included in the thesis

During the PhD studies, | also had a chance to contributestoadines other than deblurring. In
collaboration with Dr. Hensin Tsao and Prof. William Freemideveloped an automatic skin
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mole localization methodlfg] that can be used as a front-end system for automatic melanom
detection. With Prof. Shai Avidan and Prof. William Freemameveloped a new image
editing framework called “The Patch Transforml'719]. We extended this framework to
solving image jigsaw puzzles consisting of square piet8ks [

H 1.3 Notes

Parts of the work presented in this thesis appeared prdyiati2010 IEEE International Con-
ference on Computational Photography (ICCP)| [and 2010 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR].

This work was supported in part by Samsung Scholarship Fdiord by NGA NEGI-
1582-04-0004, by ONR-MURI Grant NO0014-06-1-0734, by @é&m Microsoft, Google,
Adobe and Quanta.



Chapter 2

Blur kernel estimation from blurred

edge profiles

H 2.1 Introduction

ANY challenges in deblurring stem from the severely undericained nature of the
M problem: many image—blur pairs can explain the blurred enagortunately, most
image-blur pairs are implausible because the correspgridiages contain ringing and noise;
kernels are not continuous. Therefore, existing deblgrtéthniques exploit prior knowledge
about natural images and blur kernels to distinguish theecbisolution pair from incorrect
ones. Although this prior knowledge is effective, it is ofteot strong enough to reliably dis-
tinguish the correct solution from others. In this chaptex,present additional cues to exploit
in blur kernel estimation.

Our algorithm estimates a blur kernel by analyzing blurréges. Intuitively, edges along
different orientations are affected differently by bluretefore we can consider different edge
profiles as “signatures” of a blur. We formalize this intoiitiand show how to use blurred
edges to recover thieadon transfornof the blur kernel, that is, a set of projections of the blur
kernel in different orientations. We can restore the blunkEby inverting the estimated Radon
transform. Advantages of our method are that (i) we do nobileave the blurred image to
refine the estimated kernel and that (ii) we perform a bulbhefdcomputation at the size of the
kernel, which is often considerably smaller than the imalye.demonstrate that our approach
is well-suited for scenes with numerous edges such as mae-eravironments.

Even if a blurred image does not contain many edges in diffesgentations, we can still
exploit kernel projections. We introduce a method to irdégiRadon transform constraints in
a maximum-a-posteriori kernel estimation framework toriove the kernel estimation perfor-
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mance. This alternative method is computationally moreeegye, but it is more stable than
simply inverting the Radon transform.

Contributions We can summarize the contributions of this chapter as fallow

e We demonstrate that the blur kernel can be estimated fromelol@dge profiles using the
inverse Radon transform.

e We describe a method to detect stable edges for use in kestimala¢ion.

e We introduce a method to integrate blur kernel projectionst@ints in a maximum-a-
posteriori estimation framework to jointly estimate thardternel and the sharp image.

M 2.1.1 Related work

In this work, we consider spatially invariant blur. Spdyiahvariant blur arises when the scene
is static and the camera undergoes a small out-of-plangaiar a translation (for a constant-
depth scene.) A spatially invariant blur model is populareaese one can exploit a simple global
convolution model to describe an image formation procesenBvith the spatially invariant
blur assumption, however, estimating the correct blur feosingle image is a challenging task
due to inherent ambiguities: the observed blurry input ienegn be interpreted as a blurry
image of a sharp scene or a sharp image of a blurry scene. miigyaity can be address
by taking multiple photos, each of which contains differbhir [9, 13, 15,52, 64,90]. Taking
images with modified camera§,[79] can also improve the kernel estimation performance.
Oftentimes, however, we are provided only with a singledylimage from a conventional
camera, therefore a single-image blur kernel estimatioblpm received a lot of attention. To
resolve the inherent ambiguity, different assumptions lon kernels and natural images have
been incorporated. Fergesal.[31] exploit the knowledge that a histogram of gradients from
natural images exhibits a heavy-tailed profile and that@g@iam of intensities in blur kernels
is sparse. They use a variational inference technique t@fitsnate a blur kernel, which is then
used to restore a blur-free image using the Richardson-decgnvolution algorithm54, 65].
Shanet al.[74] introduce a local prior, in addition to a sparse gradiemmpof natural images,
to detect and smooth surfaces. @dial. [10] assume that a blur kernel should be sparse in
the Curvelet domain and an image should be sparse in the tagioenain. These techniques
solve a large system of equations to find the sharp image rathd/dlur kernel that satisfy the
observation model while conforming to prior knowledge aldglur and natural images.
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Several prior work explicitly leverage blurred edges taneate blur, as in our method.
Jia [4]1] estimates an alpha matte from user-selected edges, asdgudntly estimates the
blur kernel from the matte by minimizing a non-linear cosadtion consisting of an image
observation term as well as an image prior. Jashal. [42] predict sharp edges directly from
a blurry photo and estimate the blur kerig@&lenthe location of predicted sharp edges. Their
edge prediction scheme assumes that the blur kernel is adainChoet al.[14] extend Joshi
et al. [42] in a multi-scale manner to estimate more general blur kenwéh multiple modes.
Choet al.[14] reduce the computation by deblurring only edges in theigradlomain: their
GPU implementation runs in near real-time. Leenal. [50] compare the performance of
several single-image blind deconvolution algorithms, angpirically show that the algorithm
introduced by Fergust al.[31] is the state-of-the-art in single-image blur kernel estion *.

B 2.2 Kernel estimation from edges

We model the image formation as a convolution of a blur kekreetd a sharp latent imade
B=k®l+n (2.1)

whereB is an observed, blurry image ands input noise. Our goal is to reconstruct a sharp,
natural-looking latent imagefrom the observed imaga.

B 2.2.1 The Radon transform and blurred line profiles

We briefly review the Radon transform for two-dimensiongnsils and illustrate how it is
related to blur. For an in-depth review of the Radon tramsfare refer the readers t@%, 81].
The Radon transform of a signé{x,y) is an integral of the signal along a straight line:

a}(p)= | | 1(x)5(p—xcox) ~ysin(6))dxdy (2.2)

where8 is the orientation of the straight line that we integrateraed p is the offset of that
line from the origin of thex —y coordinate (See Fig.1). (pef can be viewed as a projection
of the signalf along the direction orthogonal to orientatién If we take enough projections
of the signalf in all possible orientations, asymptotically we can recdke original signalf
using the inverse Radon transforgt].

1l evin et al.[50] do not consider Chet al.[14].
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AN
o(p)

Figure 2.1: The Radon transfompg (p) of asignal f (i.e. the star) is an integral of the signal
along the linep = xcog ) + ysin(0) (i.e the dotted line).

Interestingly, we can relate the Radon transform to our intagnodel in Eg.2.1 The
imaging model in Eg2.1can be expressed in the continuous domain:

B(ox. py) = [ Z [ o; k(Y)I (px — X, py — y)dxdy (2.3)

If the latent image is an ideal straight line along oriemta®, we can parameterize the latent
imagel asd (p —xcog8) —ysin(6)), wherep = , / pZ + p2. Therefore,

BL(py) = [ [ Kixy)3(p—xcos(6) — ysin(9)) dxcly

= ¢(p)

(2.4)

In other words, every orthogonal slice of a blurred line etalalong the orientatio, is a
projection of the blur kerne{pg(p). Fig. 2.2 shows graphically thaB (py, py), evaluated at a
fixed point[px, py], is @ sum of intersections between the blur kernel and tlee Bp(py, py) is
a projection of the blur kernel.

To illustrate this concept numerically, we blur lines infdient orientations and compare
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Figure 2.2: The value of the convolved image at the green dot is a sumessattions of the
blur kernel (the black line) and the line (the red line). Thattdd green circles indicate the
intersections.

orthogonal slices of blurred lines to explicit projectiarfghe blur kernel in those orientations.
Fig. 2.3 shows the results. As expected, the orthogonal line pradiles/ery close to explicit
kernel projections.

This relationship between the Radon transform and blumeddrofiles implies that we can
estimate blur kernel projections and use them for kernénesibn if we can detect blurred
lines. However, detecting lines reliably from a blurred geds a challenging problem, espe-
cially when the blur is multi-modal. Furthermore, many 8rie images are not ideal: each line
has a finite width, therefore blurred line profiles are no kEmpgerfect projections of the blur
kernel?.

Fortunately, a blurred edge can provide information simitaa blurred line. An ideal
binary step edge with orientatidhcan be modeled as an integral of a line aléhg

ep) :[Zé(r—xcoqe)—ysin(e))dr (2.5)

Therefore, a blurred edge profile can be modeled as follows:

2We can show that a slice of a blurred line of a finite width is @jgrtion of the kernel convolved with a box
filter of that width.
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Blurred line - 0 degree Blurred line - 45 degrees  Blurred line - 135 degrees

Slice of blurry line Projection of blur kernel

b )

Figure 2.3: We show experimentally that a slice (shown dotted-red)ogdhal to a blurred
line is the same as an explicit projection of the blur kerrehg the line.
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In other words, an orthogonal slice of a blurred edge is aggratl of a blurred line profile.
Therefore, blurred line profiles can be recovered by difigagéing blurred edge profiles.

Extracting edge profiles from color images To extract blur kernel projections from a color
image, we assume a color-line image mods] [within a local neighborhood of an edge: a
local region in a natural image has two dominant colors. Temithant colors for a given pixel
are estimated by averaging pixels at two ends of the sliagp &4). Given the two dominant
colorsW, Z, we can represent each pixel on the orthogonal gli@s a linear combination of
W,Z:
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. e Vi
color estimation “:\

Figure 2.4: To find two dominant colors on either side of an edge, we aeethg pixels
separated from the edge By4 the assumed size of the blur kernel.

G=aW+(1—a)Z (2.7)

We usea’s as the blurred binary edge slice.

B 2.2.2 Recovering the blur kernel from its projections

Recovering a two-dimensional signal from its one-dimemaigrojections, also known as the
inverse Radon transform, has been studied extensivelyeirature 25, 81]. In this work, we
view the inverse Radon transform as maximizing the post@robability of the blur kernek
given the observed imadg This framework allows us to incorporate prior knowledgekon

From the Bayes’ rule,

p(k|B) O p(Blk) p(k) (2.8)

We directly model each term as follows. We model the likedthderm p(B|k) from the con-
straint that explicit projections of the blur kerreshould match its projectiongy, estimated
from blurred edge slices:

N
P(BK) =[] p(em )

N _ 2
mexp<_z._1u¢§.anaku )
p

(2.9)

wherei indexes edge samplds,is the total number of edge sampl&g, is a projection operator
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alongit" sample’s dominant orientatiof}, andng is the variance of observation noise. We set
the noise variancg? as(2+ a)nZ wheren? is the variance of the imaging noise. The factor
of 2 results from differentiating edge slices (see E) anda models orientation estimation
error, which increases with the image noise level. The #lyaoris robust to the value af; we
seta = 1 through cross validation.

The number of edge samples (i.&l in Eqg. 2.9) affects the speed of our algorithnN
depends on the size of the image and/or the image contentb®¥éev@, however, that having
many edge samples in similar orientations is beneficial inosterms of reducing noise of the
projection along that orientation. In light of this obsdiea, we average out the noise “off-line”
in order to accelerate the kernel reconstruction. In paleic we approximatg N ||gs — Rgk||?
as a sum over binned angles:

N 360
2 oo ~Rokl?~ Y willg, —Rek|l? (2.10)
i= =1

wherej indexes angles in steps cff,ﬁ)ej is the average of kernel projections that have the same
binned orientatiord;, andw; is the number of samples that have the same binned oriemtatio
;. This approximation allows us to efficiently recover therigreven for images with many
edge samples.

In addition to kernel projection constraints, we incorggerthe knowledge that intensity
profiles of blur kernels, as well as gradient profiles of blerriels, are sparse:

p(k) O exp{— (Ax[[K[I"* + A2|OK[|*)} (2.11)

We use the same parameters for all experiments, deterntimedgh cross-validationi; =
15y =09A,=0.1,o=0.5.
Given this model, we can recover the blur kernel by miningine negative log-posterior:

- [ 535 wj ||y, — Re;K|2
k= argkmln{ 2’7‘2 !
p

We use an iterative reweighted least squares med®)d@§| to minimize the energy in EQ.12

+)\1||k\|y1+)\zHDkH”} (2.12)

Aligning blur kernel projections In order to reconstruct an accurate blur kernel, it is imguatrt

that blur kernel projections are aligned: the center ofguiapn among all kernel projections
should be the same. If the center of projection are not aligdetails of the blur kernel could
be smeared out.
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@ : Center of gravity

\/
Figure 2.5: The center of gravity within an object’s projection is eql@nt to the projection
of the object’s center of gravity.

To align blur kernel projections, we exploit the fact that trenter of gravity in an object’s
projection is equivalent to the projection of the objeceénter of gravity, as shown in Fig.5.
We shift the edge slices such that the center of gravity it @agjection is at the center of the
projection. This ensures that the center of projection agradikernel projections is aligned.

Comparison to Joshi et al. [42] Joshiet al. [42] minimize the following energy function to
estimate the blur kernel:

- IM(B—ka1)|?
k=arg n|1m 202

+ A ||Ok||2 (2.13)

whereB is an input blurry photograplk is a blur kernel] is an image with predicted location
of sharp edges, and is a function to mask predicted edges and their neighborh@dsl can
distinguish our algorithm from Josht al.[42] on two fronts: (i) using only perpendicular slices
of blurred edges and (ii) using centroid constraints torelityrred edges to enable multi-modal
blur kernel estimation.

The likelihood tern1Z‘EE”qf+;R9'k”2 in our algorithm (Eq2.12 ensures that when we explic-
itly project the restored blur kernel we recover projectigimilar to those estimated from the
blurred imageB. We could rewrite this likelihood term as follows:

ZIEEH(?,-IZ RgK| :i;Sﬂ <(M(B) 2?2(k®l)) > (2.14)
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whereS; is a “slicing” operator that returns a slice of the argumedon@ the perpendicular
orientation of the edgé From this, we observe that our algorithm essentially redube
dimensionality of the data. Josét al. [42] in effect establish slicing constraints in virtually

all possible orientations using the observation congtriBinr k® I. Instead of using slicing
constraints from virtually all possible orientations, weewnly the relevant information (i.e.
perpendicular slices) for blur estimation, which improtles computational efficiency. This
computational efficiency comes at a price of using just ghtaedges, as opposed to using
curved edges. Because Joshial. use an observation constraint, they can use curved step
edges in addition to straight edges.

Despite this drawback, using only the perpendicular sladsally has an added benefit
that it can handle multi-modal blur kernels, as opposed tg oni-modal kernels as in Joshi
et al.[42]. They predict the location of the sharp edge by propagatiedfat region into the
blurred edge. If the predicted location of the sharp edgeasdurate, it will cause error in the
latent image estimation (i.¢), which would lead to blur kernel estimation error. Thislgeim
is more pronounced when the algorithm considers multi-rhbtla because the sharp edge
prediction becomes more challenging. The error in the skdge location in the context of
[42] is equivalent to the misalignment of blur kernel projensan the context of our work.
We address this issue by aligning the blur kernel projestitmough aligning the center of
projections, which can address multi-modal blur kernelwels

Choet al. [14] extend the idea from Joskt al. [42] in a multi-scale manner to deal with
complex kernels. Therefore, quantitative comparisong/éetn Choet al. [14] and our work,
presented in the experimental section, would also holddorgarisons between Jostial.[42]
and our work.

Synthetic experiments We analyze the performance of our kernel estimation algorising

a synthetically blurred test pattern. We generated a tdttrpavith ideal lines and ideal step
edges in 12 orientations, shown in F&36. We blur this test pattern using a blur kernel shown
at the top of Fig2.6, and add 0.5% Gaussian noise to the blurred pattern.

As a first experiment, shown in Fig.6(a-c), we take 120 slices of blurred lines (at edge
samples indicated with green dots) and recover a blur kénoralthose slices using three differ-
entinverse Radon transform algorithms. We consider a bag&giion algorithm in Fig2.6(a),

a filtered back projection algorithm in Fig.6(b), and our algorithm in Fig2.6(c). We add
different amount of Gaussian noise to the ground-truthntaigon of each slice to stress-test
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Legend

Original
blur kernel 6,=0 6o~ 3 6,= 10 6,=20

(a) Kernel estimation from lines using (b) Kernel estimation from lines using
back projection - 120 slices, 12 orientations filtered back projection

(c) Kernel estimation from lines (d) Kernel estimation from edges
using a sparse prior - 120 slices, 12 orientations

(e) Kernel estimation from edges (f) Kernel estimation from edges
- 60 slices, 12 orientations - 60 slices, 6 orientations

Figure 2.6: We estimate a blur kernel from a synthetically blurred testtgyn. We blur the
test pattern using the blur kernel shown on the top left. Assadkperiment, we compare three
different inverse Radon transform algorithms: (a) the baakection algorithm (b) the filtered
back projection algorithm (c) our algorithm in EQ.12 We estimate the blur kernel from 120
slices of lines in 12 orientations. Green dots correspongikels at which we take the slices.
We add different amount of orientation noise, of standardat®n g, (in terms of degrees),
to the ground-truth orientation, and show reconstructear lilernels in each case. We observe
that our algorithm faithfully reconstructs the kernel assoall orientation noise levels, whereas
other algorithms reconstruct kernels that are too “blurfear that have streaks. We test the
stability of our kernel reconstruction algorithm by vargithe number of edge slices and the
number of orientations. (d) 120 slices of edges in 12 origoa (e) 60 slices of edges in 12
orientations (f) 60 slices of edges in 6 orientations. Weeolss that it is important to sample
enough edges in many orientations.
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algorithms to orientation estimation error. Recoverech&kr under different orientation noise
levels are shown in colored boxes. We observe that our ghgoraithfully reconstructs the
blur kernel at all orientation noise level, whereas othgoathms reconstruct kernels that are
too “blurred” or that have streaks even at a low orientatioise level. This shows that a sparse
prior on blur kernels improves the kernel reconstructiorfggenance.

As a second experiment, shown in F6(d), we take 120 slices of blurreedgesand
recover the blur kernel from the derivatives of blurred edggfiles. Again, we add different
amount of Gaussian noise to the ground-truth orientatidre Kernel estimation performance
deteriorates slightly since differentiation of edge pesfidoubles the observation noise vari-
ance. However, recovered kernels are close to the grouttd-fernel across all orientation
noise levels. In Fig2.6(e), we reduce thaumberof edge slices for kernel estimation while
sampling edges in all 12 orientations. Reducing the numbslices by a factor of 2 increases
the noise variance by a factor of2, but even in this case the estimated kernels are still quite
accurate. When we reduce the number of orientations by erfattwo Fig.2.6(f) while using
60 slices as in Fig2.6(e), however, our algorithm is less stable. This experinseotvs that, if
possible, we should take many edge samples in many oriemsati

B 2.2.3 Detecting reliable edges from a blurry image

For an accurate kernel reconstruction, we need to find stsblated step edges. We introduce
an image analysis technique that selects stable edges fldunrg image. As a first step, we
run an edge detector to find an edge napf candidate edge samples.

Our goal is to sieve isolated step edges that satisfy fouretesharacteristics. First, se-
lected pixels should correspond to a step edge with enougtnash on either side, which en-
sures that the signal to noise ratio of the blurred profileighh We enforce this constraint
by discarding edge samples with a small color differencevéen two locally dominant colors
(Sec.2.2.1). In RGB space, ifijW — Z|| < 0.03, we discard that edge sample. Second, the
blurred edge profile should not be contaminated by adjackygs To ensure that two adjacent
step edges are sufficiently separated, we take an orthogliced: of the edge maj at each
edge candidate, and we discard edge samples Wah> 1. Third, a local neighborhood of
an edge candidate should conform to a color-line image mddeabther words, blurred edge
profiles (i.e. a’s from Eq.2.7) should lie between 0 and 1. An edge sample with a slice that
lies outside of O- € and 14 €, wheree = 0.03, is discarded. Lastly, the edge should be locally
straight. The “straightness” is measured as the norm of\ikeage orientation phasor in the
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complex domain. At each edge candidgtere compute the following measure:

I3 jeng) xp(—i26;) |
Yiennl

(2.15)

wherei = /-1, andN(l) indicates edge candidates in the neighborhood of pixéthis norm
is close to 1, then the edge is locally straight in the neighbdad of pixell. We discard edge
samples with the norm less than 0.97.

Our edge selection algorithm depends on the blur kerne) wilzieh is estimated by users.
If the estimated blur kernel size is too large, the secondthind step of our edge selection
algorithm would reject many edges since (i) more slices ef@étige mage would contain
more than one edge (ii) the size of the neighborhood in whietcblor-line model should hold
increases. Therefore, users should ensure that the estirnlair size is just enough to contain
the blur.

B 2.3 Experimental results

This section provides experimental results that illustridite performance of our deblurring
algorithm. We compare our algorithm’s performance to troempeting methods: Ferges
al. [31], Shanet al. [74], and Choet al.[14]. In order to compare just the kernel estimation
performance, we used the same deconvolution algorig8htd restore images.

Fig. 2.7 shows deblurred images. In most test images, our algoritarfops favorably
compared to prior art. As long as we can find enough stableseidgmany orientations, our
algorithm can reliably estimate the kernel. R2g8 shows more comparisons.

Our algorithm sometimes recover blur kernels with spuritislends”, as in Fig.2.8a),
when the edge selection algorithm erroneously includetables edges at which edge slices
intersect other neighboring edges. A better edge seleatgmrithm should reduce such error.

Another limitation of this algorithm is that it can be undwlwhen there are not enough
edges, as shown in Fig.9(a), and/or when there are not enough edges in differenttatiens,
as shown in Fig2.9b). When there are not enough edges, there simply isn’'t imfomation
to estimate the kernel with; when there are only few domimaigntations in selected edges,
we can only constrain the blur in those orientations and aaratover meaningful blur kernel
in other orientations. In some cases, this is less problenyan interesting aspect of estimating
the blur kernel explicitly from blurred edge profiles is thié estimated blur kernel contains
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Blurry image Fergus et al. Shan et al. Cho et al.

Figure 2.7: This figure compares our algorithm’s kernel estimation perfance to three pre-
vious work: Fergus et al.31], Shan et al. [f4], and Cho et al. L4]. In most examples, our
algorithm compares favorably to prior art.

enough information to properly deblur edges in those aaitgarts, even if the blur kernel is not
entirely correct. For instance, if an image is a single stigeeas in Fig2.10 we do not need
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Blurry image

Fergus et al. Shan et al. Cho et al. Ours

Figure 2.8: This figure shows more comparisons of our kernel estimatigorighm and prior
art.

to recover the original blur kernel to adequately removebiine We can remove the blur from
the stripes as long as we recover the horizontal componehedilur kernel, and this is what
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Selected

edge samples Ours

Blurry image

Figure 2.9: Our kernel estimation algorithm is sensitive (a) when theee not enough edges
and/or (b) when there are not enough edges in different tai@ns. This figure illustrates
these failure modes.

our algorithm does.

Kernel projection constraints in EQ.9 assume that the imadgis a “linear” image. In
other words, the blurred imag® is not processed by any non-linear operators such as non-
linear tone maps. We observe experimentally that our algaris vulnerable to non-linearities
in B, therefore it is important to properly linearize the inpuotaigeB. in this work, we used
only raw images as our test set in order to factor out arfdcm non-linearities. We observe
that while competing algorithms are less susceptible telim@arities, using raw images also
improves their performance.
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()

(d)

Figure 2.10: (a) A blurred stripe (b) The deblurred stripe using the kémestimated from our
algorithm (c) Estimated blur kernel (d) The ground-truthubkernel. Our kernel estimation
algorithm only recovers the “horizontal” component of theognd-truth blur kernel, but the
deblurred image is still crisp and is free of ringing.

Chromatic aberration from a camera lens may also affectekerstimation performance.
When chromatic aberration is significant, our edge seleaigorithm will discard most edge
samples because an edge slice would not be explain by twahdotgolors (Se@.2.1).

B 2.4 The joint estimation of the blur kernel and the sharp image

As discussed in the previous section, our kernel estimatigorithm is less stable when there
are not enough edges in many orientations. To handle imhgésgd not have enough isolated
edges, we develop a method to incorporate kernel projeciorstraints in a more general
deblurring framework.

One method to estimate a blur kerdeand a sharp imagkeis by maximizing the joint
distribution ofk andl [14, 74]:

[k, 1] = argmaxp(k, 1 |B)
kil

k. 1)p(k)p(l) (2.16)

= argmaxp(B
kI

[R, ﬂ is called a maximum-a-posteriori (MAP) of the joint distriton p(k, |

B).

One often models the likelihood terptB|k, 1) using the image observation model (2d):
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IB—kal]|?
p(Blk,1) O exp< 20z (2.17)
The image priop(l) favors a piecewise-smooth latent image:
p(h) Oexp(—AON]Y) (2.18)

The blur kernel priomp(k) favors blur kernels with sparse intensity profiles as welsparse
gradient profiles (EqR.11). Because maximizing(k, ||B) with respect td, | jointly is chal-
lenging, we can resort to an alternating maximization atlgor to solve Eq.2.16 we first
maximize the joint distributiorp(k, |

B) with respect to the blur kern&lwhile keeping the im-
agel fixed, and then we maximizp(k,||B) with respect td while holdingk fixed. We iterate
these two steps until convergence.

Despite the simplicity, Leviret al.[50] argue that the joint estimation of the kernel and the
sharp image is not a good idea because the joint probabiijt?.E6is often maximized wheh
is an impulse function (i.e. no-blur) amds the input blurry imag®. For instance, the no-blur
solution pair maximizes the likelihood (E&.17), an impulse function is not penalized by the
blur kernel prior, and a blurry version of an image is somesrfavored by the image prior over
its original version Q).

To resolve this issue, we augment the likelihood term inZij7 using the Radon transform
constraint in Eq2.10Q

- 2 5350w @, — Rek|2
p(B\k,I)Dexp(—{HB kol Zi7iles — Rok| }) (2.19)

2n3 2n3

The Radon transform term bases on a strong assumption theinenages consist of step
edges and that every detected edge should be an ideal seplieeffectively penalizes the no-
blur solution, and steers the joint distributiptk, | |B) to favor the correct solution. Algorithih
shows the pseudocode for the joint estimation algorithm.n@rae this algorithm RadonMAP.

Notice that we filter the latent image estimétesing a bilateral filter before re-estimating
the kernel, as in14]. The bilateral filter step is important for improving therkel estimation
performancel usually contains visually disturbing ringing and noisedese the initial kernel
estimate is inaccurate. If we directly us# refine the blur kernel, we would be seeking a blur
kernel that would reconstru€tfrom B. To improve the blur kernel, we bilateral-filter the latent
image so that the refined blur kernel restores an image va#hrlaging and noise.
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% Initial kernel estimation
k < argmin, Eq.2.12
for I=1to5do
[ < argmax p(k,1|B) % Latent image estimation
| < bilateralFiltering()
k < argmax, p(k,T|B) % Kernel re-estimation
end for
[ < argmax p(k,1|B)

Algorithm 1: The RadonMAP blur estimation algorithm

Experimental results Fig. 2.11(a-b) show how the RadonMAP algorithm improves the failure
cases shown in Fi@.9. The images deblurred using the MAP kernel estimation dlgorare
more crisp and have less ringing compared to those of ounaftigernel estimation algorithm.
In general, the MAP kernel estimation algorithm cleans wpisps “islands” in estimated ker-
nels and improves the quality of deblurred images. Eifj2shows more examples comparing
the performance of competing deblurring algorithms.

To double-check that the new posterior probability modeésgroblem better than the con-
ventional posterior probability, we compare the negatbgeposterior of our MAP solution and
the no-blur solution. The negative log-posterior of oumgioh in Fig.2.11(a) is 2.29x 10%,
whereas that of the no-blur solution is 7.93.0°: the Radon transform constraint effectively
penalizes the no-blur solution.

H 2.4.1 Quantitative evaluation

We quantify the performance of blur estimation algorithnsghg cumulative error ratios].
Error ratio (ER) measures the deconvolution error of udmgastimated blur kernel compared
to the deconvolution error of using the ground-truth kernkl particular, ER is defined as

follows:
[l — Desf®

Il = Dgt[[?
whereDegt is the image restored using the estimated blur kernel Dypds the image restored

ER= (2.20)

using the ground-truth blur kernel. Lev@ al.[50] provide a set of test images and blur kernels
for comparisons. However, the test images are too small X256 pixels) and do not have
salient step edges. To address these issues, we have hectéesé images (each with about 1
mega pixels) of different contents, and computed ER for &dahkernel provided in Leviret

al. 's dataset. Figure Fi@.13shows the test images and blur kernels: each algorithmtictes
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Ours - Ours -
Radon Transform MAP

Blurry image Fergus et al. Shan et al. Cho et al.

.A&W,A&W,A&W,AW‘},AN

Figure 2.11: By integrating kernel projection constraints to a MAP kdrestimation method,
we can improve the kernel estimation performance. We naimalgorithm RadonMap. (a-b)
show that even when there are not enough edges in differ@mttations (as shown in Fi@..9),
the RadonMAP algorithm can reliably reconstruct the kernel

with 48 blurred images. Images 1-3 contain many edges ierdift orientations, whereas
images 4-6 do not. Therefore, we can conjecture that ouritdges would perform better on
images 1-3 than on images 4—6.

Figure Fig.2.14shows the cumulative error ratio for each deblurring atgani The inverse
Radon transform of blur projections performs better thanalgorithms presented in Fergeis
al. [31] and Sharet al.[74], but performs worse than the algorithm in Cébal. [14]. Aug-
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Ours - Ours -
Radon Transform MAP

Blurry image Fergus et al. Shan et al. Cho et al.
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Figure 2.12: We show more examples in which the MAP kernel estimationigigoimproves
the estimated blur kernels.

menting the blur kernel projection constraints in a MAP feavork (the RadonMAP algorithm)
improves the performance of our algorithm, but it still $athort of Cheet al.’s algorithm.

To gain more insight, we have plotted the cumulative errtio far images 1-3 and images
4-6 separately in Fi2.15 This figure shows an interesting trend that for piecewiseatm
images with enough edges in many orientations (i.e. imag8} the RadonMAP algorithm
outperforms all existing algorithms, but if images lack ls@ziges (i.e. images 4-6), Cho’s
algorithm performs the best. Still, even in such scenariosatgorithms compare favorably to
Ferguset al.’s and Sharet al.’s algorithms.

We have also observed that the size of the blur also affegsatformance of our algorithm.
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Image 2

Image 4 Image 5
Kernel 1 Kernel 2 Kernel 3 Kernel 4

Kernel 5 Kernel 6 Kernel 7 Kernel 8

Figure 2.13: We evaluate the blur estimation performance of five diffebdmr estimation

algorithms. We synthetically blur each image with each leimel shown in this figure, and
estimate blur kernels from each of them using five competiggrithms. The algorithms’
performance is measured using cumulative error ratio.
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Figure 2.14: This figure shows the cumulative error ratio for five blur egttion algorithms:
Fergus et al. B1], Shan et al. [f4], Cho et al. [14], the inverse Radon transform based blur
estimation in Se.2.2(hamed Radon in the legend), and the MAP algorithm augmenmitixd
the Radon transform constraints in this section (named RGP in the legend). From the
cumulative error ratio, the algorithm in Cho et al. perforrtige best, closely followed by the
MAP algorithm augmented with the Radon transform.

Therefore, we have plotted the cumulative error ratio forr liernel 1-4 and 5-7 in Fi@.13
separately in Fig2.16 Blur kernels 5-8 have larger spatial supports comparetltdbrnels
1-4. Interestingly, when the blur kernel support is smbh#,Radon transform based algorithms
perform slightly better than Cho’s algorithm, but when thertkernel support is large, our
algorithms suffer. This issue can be attributed to edgectete (i) the number of stable
edges decreases as the blur kernel support increases éecaresedges are contaminated by
otherwise isolated neighboring edges (ii) the stable edgection becomes more challenging
because a single isolated edge is often interpreted as tgesdtat starts at one end of the
blurred profile and stops at the other end. We could reducle Bl size dependencies by
extending our algorithms in a multi-scale manner.
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CER of images 1-3

CER of images 4-6
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Figure 2.15: In this figure, we plot the cumulative error ratio for images3land images
4-6 separately. The inverse Radon transform of kernel gtiojes (named Radon) and the
MAP estimation with kernel projection constraints (named®& MAP) both perform well when
images contain many edges in different orientations as eg#s 1-3, but their performance
drops drastically when images do not contain enough edgésiasages 4—6.
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Figure 2.16: The performance of the inverse Radon transform of kerngégtions (named
Radon) and the MAP estimation with kernel projection caxists (named RadonMAP) depend
on the size of the blur. In this figure, we plot the cumulatirrereratio for kernels 1-4 and
kernels 5-8 in Fig2.13separately. We observe that both Radon and RadonMAP ae afat
the-art when blur kernels are small, but their performancepgd drastically when blur kernels
are large.
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M 2.5 Conclusion

In this work, we introduce a new insight to the blur kernelraation problem: blur kernels
can be estimated by analyzing blurred edge profiles. Ountgah is especially well suited
to images that have many step edges in different oriengtisinch as man-made scenes. Our
insight can also be useful for existing blur estimation mdt We presented a method to inte-
grate kernel projection constraints in a MAP based kerriehasion framework. Experimental
results show that our kernel estimation algorithm comptesrably to prior art.
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Chapter 3

A content-aware image prior for

image restoration

H 3.1 Introduction

VEN if we could perfectly estimate the blur kernel from a blurdyopograph, restoring
E a clean, sharp image is still a challenging problem becaligeatienuates information
about the original image. Image enhancement algorithnes eéisort to image priors to hallu-
cinate the lost information.

Natural images often consist of smooth regions with abrdges, and this characteristic
leads to a heavy-tailed gradient profile. In recent yearseavyrtailed gradient profile has
been extensively exploited as an image prior: the gradiatisics are represented by fitting a
flexible parametric distribution to gradient samples. geitparameters are often kept uniform
for the entire image, effectively imposing the same imagderpverywhere 31,48, 71]. Un-
fortunately, different textures have different gradieatistics even within an image, therefore
imposing a single image prior for the entire image is inapgede (Fig.3.1).

We introduce an algorithm that adapts the image prior to lmthlevel local structures as
well as mid-level texture cues, thereby imposing an adaptied for each texture! Adapting
the image prior to the image content improves the image nagio performance. In Se8.3
we analyze a large database of natural images and presem@ncal result that gradient
statistics in certain textures are not sparse. This observgustifies our argument that we
should adapt the image prior to underlying textures. We igeoalgorithmic details of the
content-aware image prior in S&4, and show image restoration results in S26.

1strictly speaking, an estimate of image statistics made aftamining the image is no longer a “prior” proba-
bility. But the fitted gradient distributions play the sanaéeras an image prior in image reconstruction equations,
and we keep that terminology.

55
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Orthogonal gradients , Aligned gradients
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Figure 3.1: Colored histograms represent gradient statistics of ragiavith the same color
mask. In many images, the steered gradient profile is spatia@riant. Therefore, an image
prior should adapt to the image content. Insets illustrabsvisteered gradients adapt to local
structures.

M 3.2 Related work

Image prior research revolves around finding a good imagefwem or basis functions under
which a transformed natural image exhibits unique chariatites. Transforms derived from
signal processing have been exploited in the past, inauthie Fourier transform3{], the
Wavelet transform§3], the Curvelet transformll], and the Contourlet transforn26.

Basis functions learned from natural images have also bdesdiiced. Most techniques



Sec. 3.3. Image characteristics 57

learn filters that lie in the null-space of the natural imagenifold [66, 86,87,91]. Aharon
et al. [4] learn a vocabulary that a natural image is composed of. Keweone of these
techniques adapt the basis functions to the image.

Edge-preserving smoothing operators do adapt to locattstes. Anisotropic diffusion
operators 8] detect edges, and smooth along edges but not across thenmilarsdea ap-
peared in a probabilistic framework called a Gaussian ¢mmdil random field §0]. A bilat-
eral filter [82] is also closely related to anisotropic operators. ERd &nd Barash¥] discuss
relationships between edge-preserving operators.

Some image models adapt to edge orientation as well as rmdgniHammondtt al. [38]
present a Gaussian scale mixture model that capturedistati§ gradients that are adaptively
steered in the dominant orientation within an image patathBt al. [67] extends this idea to
a random field to model oriented structures in images.

Adapting the image prior to textural characteristics wagstigated for gray-scale images
consisting of a single textureé/f]. Bishop et al. [7] present a variational image restoration
framework that breaks an image into square blocks and attapisnage prior to each block
independently (i.e. the image prior is fixed within the blpdiowever, Bishoget al.[7] do not
address the stability issues at texture boundaries.

B 3.3 Image characteristics

We analyze statistics of gradients adaptively steereddrdtminant orientation of local struc-
tures. Rothet al. [67] observe that the gradient profile of orthogonal gradidngs show a
higher variance compared to that of aligned gradiénfls thereby they propose imposing dif-
ferent priors orilgl and,l. We show that different textures within the same image a&s@h
distinct gradient profiles, therefore we propose adaptiegorior to local textures.

We parameterize gradient profiles using a generalized @audistribution:

V)\(y)
p(Hlv,A) = F(_l)exp(—)\HDI 1Y) (3.1)
y

wherel is a Gamma function, angb, A are shape parameters. Qualitativelydetermines
the peakiness andl determines the width of a distribution. We assume thgltand 0,1 are
independentp(Tol, Oal ) = p(Dol ) p(Tal ).
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H 3.3.1 The distribution of y,A in natural images

Different textures give rise to different gradient profilsd thus differeny,A. This section
investigates thalistribution of the shape parameteysA in image patches. About 110,000
image patches of 4% 41 pixels are sampled from 500 high quality natural imagesd, their
gradient profiles are fitted to a generalized Gaussian loligtoin to associate each patch with
v,A. We fit the distribution by minimizing the Kullback-LeibléKL) divergence between the
empirical gradient distribution and the model distribati@ We can show that this is equivalent
to minimizing the negative log-likelihood of the model distition evaluated over gradient
samples:

[7,5\] rgmln{——zlln (Ok;v,A)) } (3.2)

Claim 1. Supposeixi = 1..N are samples from an unknown distribution, and we wouldttike
fit a parametric distribution q to the samples ket ¢z (x) = & 51, 5(x—x) be an empirical
distribution of the samples xand let p be a generalized Gaussian distribution paranister
by shape parameterk, y. We show that a distribution p that best parameterizes thararal
distribution ¢ (in the KL divergence sense) minimizes the sum of negativikielihood over
samples x

N
minKL (el p) = ijﬂ{—%;ln(p(m:v,)\))} (3.3)

Proof. We can show that the KL divergence betwgenandq takes the following form:

KL(aelp) = [ ot (E ) ax

o)
_/N{Zléx X }In( bis 1()8( X')}>dx (3.4)
18 (n
N £ " (p(xl)>
Therefore, N
rp’iyKL(qellp) = T’iy{—%izlln(p(m;v,/\))} (3.5)
]

We use a Nelder-Mead optimization methdd][to solve Eq.3.2
Figure 3.2 shows the Parzen-window fit to samplfmn(}\) for Ool,O4l. For orthogonal
gradientsl,l, there exists a large cluster ngar 0.5,In(A) = 2. This cluster corresponds
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Figure 3.2: The distribution ofy,In(A) for Oyl , Oal in natural images. While the density is the
highest aroundy = 0.5, the density tails off slowly with significant density ardun= 2. We
show, as insets, some patches from Bid.that are representative of differeptin(A).

to smooth patches with abrupt edges or patches from textoweadaries. This observation
supports the fallen - leaves image model — an image is a eotdgverlapping instanceg,

55. However, we also observe a significant density even whengreater than 1. Samples
neary = 2 with largeA correspond to flat regions such as sky, and samplesynea? with
small A correspond to fractal-like textures such as tree leavegamsg We observe similar
characteristics for aligned gradierntgl as well. The distribution of shape parameters suggests
that a significant portion of natural images is not piecewiseoth, which justifies adapting the
image prior to the image content.

B 3.3.2 Spatially variant gradient statistics

Local gradient statistics can be different from global @gat statistics. Fig3.1 shows the
gradient statistics of colored regions. Two phenomena espansible for spatially variant
gradient statistics: the material and the viewing distafirce example, a building is noticeably
more piecewise smooth than a gravel path due to materiabpiep, whereas the same gravel
path can exhibit different gradient statistics dependinghe viewing distance.

To understand the implication of spatially variant gratligatistics, we consider using the
gradient profile of a specific region as an image prior for thire image in restoring a blurry
photo of Fig.3.1 Fig. 3.3 illustrates the experiment. When we use gradient stagigtmm
the sky to deblur the entire image, we recover the smoothlskypver-smooth other regions.
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Original image Using sky prior Using road prior

Blurred input Using tree prior Using building prior

Figure 3.3: We render a blurry photo of the sharp image in R3gl, and deblur it using priors
fitted to gradient statistics of different regions. We showpped patches of deblurred images
for comparison. The prior from the sky over-smoothes alkotiegions to generate smooth
sky; the prior from grass hallucinates high frequenciesriaisg at the expense of noise in other
regions. While the prior from buildings generates reasdeaenditions in all regions, the
reconstructed image is generally piecewise smooth, wisictisturbing in textured area such
as trees.

When we use the statistics from trees, we hallucinate higduiency texture in trees, but we fail
remove noise from other regions. While the prior from thdding does recover reasonable
renditions in all regions, the reconstructed image is pigse smooth and has visual artifacts
in textured area such as trees. This experiment impliedthktcally adapting the image prior

to underlying textures, we can restore an image that is \yspkeasing everywhere.

B 3.3.3 Scale dependence of gradient histograms

The scale invariance of natural images has been studiedsivety [68]. Two models embrace
the scale invariance: an occlusion model (a.k.a. a fatbends modeH6, 55]) and a pink-noise
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Figure 3.4: Different textures exhibit different gradient statistié®r some textures the shape
of the gradient histogram is roughly scale invariant. Thadjent statistics after deconvolution
also remain quite similar after down-sampling. First rovexture images. Second row: the
Fourier spectrum of a 1D slice through the center of the cgpnding sharp image. Third row:
the gradient histogram of the corresponding sharp imageirfforow: the gradient histogram
of the deconvolved image. The dotted black line corresptmtise gradient distribution of a
sharp image at the full resolution. Fifth row: the Fouriereggirum of a 1D slice through the
center of the corresponding deconvolved image.
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model, which stipulates that a Fourier spectrum of a natorage falls off as a function of/if .
Srivastaveet al. [77] experimentally show that the scale invariance holds oohah ensemble
of images and not necessarily within each image.

In this section, we analyze the scale invariance of gradiestbgrams withireachimage.
We assume that there are three dominant types of texturegunahscenes: a random natural
texture such as grass, a man-made scene, and a structured sexch as a brick wall (Fig.4).
We can view a random natural texture as an instance of a midenand we can consider
an image of man-made objects as an instance of an occlusageimodel. We analyze the
gradient profile of these textures as we vary the scale.

We first analyze the Fourier spectrum of a central row of thagen The Fourier spectra
(shown in the second row of Fig.4) of the grass and the chair scene (first two columns) fall off
inversely proportional to frequendy, whereas that of a brick wall image, which exhibit struc-
tured textures, show humps at high frequencies (in additiche harmonics) that correspond
to structural details. From the Fourier spectrum, we cafjecture that the gradient histogram
of structured textures may not be scale invariant since stwahtural details in high frequencies
will be lost through down-sampling.

The third row of Fig.3.4 shows the gradient histogram of each image across scaleetdhe
line corresponds to the histogram at full resolution; treegrline at one-half the full resolution;
the blue line at one-quarter the full resolution. We noticat the gradient profile is roughly
scale invariant for a random texture and a man-made scehéhdiuof structured textures is
not. As is conjectured earlier, we can attribute the scatenee of structured textures to the
loss of high frequency details from down-sampling.

To observe how deconvolution modifies gradient statistiesplur the images and decon-
volve them using a fixed image prioys(= 0.8,)5 = 0.6). The blur is about 5 pixels in width.
The fourth row of Fig.3.4 shows the gradient histogram of images after deconvolutidme
dotted black line corresponds to the gradient distributbthe sharp image at the full resolu-
tion. The sparse deconvolution tends to preserve the gradistribution of random textures
and man-made scenes, but greatly modifies the gradientegpodfditructured textures because
blur low-pass filters high frequency details.

Another interesting observation is that the gradient ofdbeonvolved image at one-half
the original resolution mimics that of the original imagefdt resolution in the case of ran-
dom texture and man-made objects. We leverage this obssmiatestimating the gradient
distribution from the blurry input image.
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Figure 3.5: This figure illustrates the pipeline of our image restoratimethod. Detailed
descriptions of each block are provided in Séel

B 3.4 The image prior estimation

The goal of this work is to identify the correct image prior é&ach pixel in the image. If we are
given a sharp image, one way to identify the image prior al @@l is to fit gradients in each
sliding window to a generalized Gaussian distribution, assign the fitted shape parameters
to the central pixel of each window, as shown in FB¢h. However, fitting gradients to a gen-
eralized Gaussian distribution requires a large amounbwipzitation, rendering this operation
for each sliding window intractable. Furthermore, we dolmte a sharp image to estimate the
image prior with.

This section presents our solution to this challenging lemb (i) we introduce a method
to estimate the image prior directly from a blurry input ireagnd (ii) we present a regression-
based technique to estimate the image prior. Our methodnipetationally more attractive
compared to fitting gradients within each sliding window tpemeralized Gaussian distribution.

H 3.4.1 Image model
Let B be an observed degraded imagbge a blur kernel (a point-spread function or a PSF), and
| be a latent image. Image degradation is modeled as a colrofutocess:

B=k®l+n (3.6)

where® is a convolution operator, amds an observation noise. The goal of (non-blind) image
restoration is to recover a clean imddeom a degraded observati@ygiven a blur kernek and
a standard deviation of noigg both of which can be estimated through stand-alone teabsiq
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[31,53.
We introduce a conditional random field (CRF) model to incogte texture variations

within the image restoration framework. Typically, a CRBtogation model can be expressed

as follows:

1

p(11B,k,n) = v

[]4s(l:Bikn)gi(l) (3.7)

whereM is a partition function and is a pixel index. Y is derived from the observation
processy from the assumed image prior:

L N2
we(l:Bi k) O exm—(a;%”% (3.8)
W) O exp—A|OIY) (3.9)

To model spatially variant gradient statistics, we introglan additional hidden variabie
calledtexture to the conventional CRF modet controls the shape parameters of the image
prior:

p(1,2B.k,1) = o [ (1B 1) (1,2) (3.10)

wherey ,(1,2) O exp(—A (2)]|01]"®). We modelz as a continuous variable since the distribu-
tion of [y,A] is heavy-tailed and does not form tight clusters (Bi@).

We maximizep(1|B,k, i) to estimate a clean imageTo do so, we approximatg(l|B,k,n)
by the functionp(l,

) at the modez”

ydz=~ p(l,2

p([B.kn) = [ pl, ) (3.11)

Sec.3.4.2discusses how we estimatéot each pixel.

B 3.4.2 Estimating the texture 2

A notable characteristic of a zero-mean generalized Gauskstribution is that the varianee
and the fourth momentt completely determine the shape paramefgrd| [75]:

_ E(B/V) . E(S/V)
AVI(1/y) AVT(1/y)

(3.12)
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To take advantage of these relationships, we define a varalied a local texture around each
pixeli, z, as a two dimensional vector. The first dimension is the waga; of gradients in the
neighborhood of a pixel and the second dimension is the fourth momigiof gradients in the
neighborhood of a pixet

z = [vi(On), fi(O)] (3.13)
Qualitatively, the variance of gradientg [l ) encodes the width of the distribution, and the
fourth momentf; (Ol ) encodes the peakiness of the distribution. Note that we asityecom-
putev;, f; through convolution.

Estimating the texture Z from the observe image B \We should ideally estimate the texture ~
from sharp image, butl is not available when estimatirg We address this issue by estimat-
ing the texturez from an image reconstructed using a spatially invariangenarior. We hand-
select the spatially invariant prior with a weak gradiengley so that textures are reasonably
restored at the expense of slightly noisy smooth regifggs: 0.8,Ao = 6.5],[ya = 0.6,A3 =6.5.

A caveat is that the fixed prior deconvolution may contangrthe gradient profile of the re-
constructed image, which could induce texture estimatioor.eTo reduce such deconvolution
noise, we down-sample the deconvolved image by a factor ef@&® estimating the textue ~
As investigated in Se@.3.3 a gradient profile of natural images is often scale invamae to
fractal properties of textures and piecewise smooth ptigsenf surfaces46, 55|, whereas that
of the deconvolution noise tends to be scale variant. Thezethe texture éstimated from the
down-sampled deconvolved image is close to the textureeobtiginal sharp image.

B 3.4.3 Estimating the shape parameters y,A from 2

We could numerically invert Eg.12to directly compute the shape parametgra ] from the
variance and fourth moment%]. However, a numerical inversion is computationally exgpes
and is sensitive to noise. We instead use a kernel regressitimod that maps the log of the
texture In(2) to shape parametefg, In(A)].

We should train the regressor to learn how to map the textaféhe down-sampledecon-
volvedimage to shape parameters to account for the effect of rasgiiiconvolution noise in
textureZ Since the deconvolved image, ttmygiépends on the blur kernel and the noise level,
we would ideally have to train regressors discriminativielyeach degradation scenario, which
is intractable. However, we empirically observe in B¢ that the variance and fourth moment
of the deconvolved, down-sampled image are close to thogeafown-sampled original im-
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Figure 3.6: We observe that the local variance and fourth moments ofignésl computed
from the deconvolved, down-sampled image of Bifj.are close to those computed from the
down-sampledriginal image.

age. Therefore we can afford to learsiagleregressor from the variance and fourth moment
of the sharp, down-sampled image to the shape parameteesesiimated shape parameters
are reasonably accurate for our purpose.

To learn the regression function, we samplé 25,000 patches of size ¥717 pixels from
500 high quality natural images. We fit the gradient profileeath patch to a generalized
Gaussian distribution, and associate each fit with the negi@nd fourth moment of gradients
in the down-sampled version of each patclx @ pixels). We use the collected data to learn the
mapping fromIn(v),In(f)] to [y,In(A)] using LibSVM [12]. We use a 10-fold cross validation
technique to avoid over-fitting.

B 3.4.4 Handling texture boundaries

If multiple textures appear within a single window, the estied shape prior can be inaccurate.
Suppose we want to estimate the image prior for a 1-dimeakshice of animage (Fig.7(a)).
Ideally, we should recover two regions with distinct shapeameters that abut each other by a
thin band of shape parameters corresponding to an edge. vdgwiee estimated image prior
becomes “sparse” (i.e. smaf) near the texture boundary even if pixels do not correspond t
an edge (the green curve in Fi§1.7(c)). This occurs because we use a finite-size window for
computingv and f causes this issue.

To recover appropriate shape parameters near texture aoesdwe regularize the esti-
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Figure 3.7: We regularize the estimated shape parameters using a GC&FRisat the texture
transition mostly occurs at a texture boundary. We modebthgervation noise in the GCRF
as thevarianceof the variance and fourth moments estimated from two Ganssindows of
different standard deviations — 2-pixel and 4-pixel, asvghan (b). This reduces the shape
parameter estimation error at texture boundaries, as shaw(c) (compare green and red
curves).

mated shape parameters using a Gaussian conditional rafieldn (iGCRF) B0]. Conceptu-
ally, we want to smooth shape parameters only near texturadasies. A notable observation
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at texture boundaries is thas estimated from two different window sizes tend to be défe
from each other: the large window could span two differextuiees while the smaller window
spans a homogenous texture, generating diffeent\We exploit this observation to smooth
only near texture boundaries.

To be more specific, we maximize the following probabilityrégularizey returned by the
regressor:

ply, )0 [1 vHIv)¥v.v) (3.14)

i,jeN()

whereN(i) denotes the neighborhood iofiy is the observation model and is the neighbor-
hood potential:

(¥ — w)?

207 )

_(w—w)2>
20%(i, )

Wil O exp(—
(3.15)

Y(y,v) Dexp(

We setoj and g, adaptively. We set the varianag(i, j) of the neighboringy as o2(i, j) =
a(1(i) = 1(j))?, wherea = 0.01 controls how smooth neighboring estimates should dyge.
encourages the discontinuity at strong edges of the ih§8@]. The observation noisel2 is
themean variancef the variancer and of the fourth momerit estimated from windows of two
different sizes (Gaussian windows with 2-pixel and 4-psteindard deviations.) If this value
is large, the central pixel is likely to be near a texture loarg, thus we allow its estimated
parameter to be smoothed. We use the same GCRF model toriegiéA ) with o = 0.001.

Fig. 3.7(c) shows the estimated shape parameters before and ajtdanization along with
the estimated GCRF observation noise. After regularinati’o textures are separated by a
small band of sparse image prior corresponding to an edgiesi®d.

Fig. 3.8 shows the estimated shape parameters for orthogonal gtadé Fig.3.1 In
Fig. 3.8(a,b), the parameters are estimated from the image reactedrfrom 5% noise and the
blur in Fig.3.11 In Fig. 3.8(@) we show the estimated shape parameters before textunebo
ary handling, and in Fig3.8(b) we show the result after texture boundary handling. @With
texture boundary handling, estimated shape parametews ‘simging” at texture boundaries.
After texture boundary handling, we correctly estimate shape parameters even at texture
boundaries. We observe that the estimated prior in the &gien is close to Gaussian (i.e.
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Figure 3.8: (a) The shape parameters for orthogonal gradients, est@ohdtom the down-
sampled deconvolved image of F&jl, before texture boundary handling. We observe “ring-
ing” at texture boundaries. (b) The estimated shape parameafter texture boundary han-
dling. Parameters are more consistent at texture boundari{g) The shape parameters esti-
mated from the down-samplediginal image. (c) is quite close to (b), which implies that our
kernel estimation method is accurate.

y =2 ~ 3), whereas the estimated prior in the building region isspé.e.y < 1). The esti-
mated shape parameters are similar to parameters estifnatedhe down-sampled, original
image, shown in Fig3.8(c). This supports the claim that shape parameters estinfistten a
degraded input image are reasonably accurate.
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B 3.4.5 Implementation details

We minimize the negative log-posterior to reconstruct artienage:
= argmm{( Cw Zi (Ao(2)[[Tol (D) + Aq(2) |01 || 2)} (3.16)

where [yo,Ao), [Ya; Aa] are estimated parameters for orthogonal and aligned gnadieespec-
tively, and