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to maximizing the spectral content of ‖ ˜̂φ‖2 within the wedge of revolution.

We can derive an upper bound on the worst-case spectral content of any camera motions.

The amount of photon energy collected by a camera within a fixed exposure time T is bounded.

Therefore, by Parseval’s theorem, the norm of every ωx0,y0 slice of ˜̂φ (i.e. ˜̂φ(ωx0 ,ωy0 ,ωt)) is

bounded [49]: ∫
‖ ˜̂φ (ωx0 ,ωy0 ,ωt)‖2dωt ≤ T (1.11)

Every ωx0,y0-slice intersects the wedge of revolution for a segment of length 2Sob j‖ωx0,y0‖. To

maximize the worst-case spectral power, the optimal camera would spread the captured energy

uniformly in this intersection. Therefore, we can derive an upper bound on the worst-case

spectral power by dividing the captured energy by the segment length:

min
ωt
‖ ˜̂φ (ωx0 ,ωy0 ,ωt)‖2 ≤ T

2Sob j‖ωx0,y0‖
. (1.12)

Since the PSFs spectra k̂ j
sx,y are slices through φ̂ j, this bound also applies for the PSFs’ spectral

power:

min
sx,y
‖ ˜̂ksx,y(ωx0 ,ωy0)‖2 ≤ T

2Sob j‖ωx0,y0‖
. (1.13)

The optimal bound Eq. 1.12 applies to any types of integration kernel φ regardless of the num-

ber of shots taken during the time budget T .

� 1.1.2 Orthogonal parabolic motions

We seek a motion path whose spectrum covers the wedge of revolution and approaches the

bound in Eq. 1.12. We also seek to cover the spectrum with the fewest images, because as

we take more images within the time budget, the delay between subsequent shots reduces the

effective time budget, degrading the spectral performance.

We could compute the optimal camera motion by inverting the Fourier transform of the

bound in Eq. 1.12. However, the inverse Fourier transform of this bound is not a physically

valid motion of the form in Eq. 1.7. To illustrate this, we invert the bound for 1D motions [49]

in Fig. 1.3. We can see that the corresponding optimal motion in the spatial domain is not a

realizable motion. If we invert the bound for 2D motions in Eq. 1.12, we observe the same

phenomenon in 3D: the optimal path is not a realizable motion.

Our solution captures two images of a scene with two orthogonal parabolic motions. We

show analytically that the orthogonal parabolic motions capture the wedge of revolution with
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Spectral bound - 1D motions Inverse Fourier transform

Figure 1.3: We explicitly invert the spectral bound for 1D motions to illustrate that the explicit
inversion of the spectral bound in Eq. 1.12 does not result in a physically realizable motion of
the form in Eq. 1.7.

the worst-case spectral power greater than 2−1.5 of the upper bound.

Camera motion Let φ1,φ2 be the 3D integration kernels of x and y parabolic camera motions.

The kernels are defined by the integration curves f1, f2:

f1(t) = [ax(t +T/4)2,0, t], t = [−T/2...0]

f2(t) = [0,ay(t−T/4)2, t], t = [0...T/2]
(1.14)

At time t, the derivative of the x-parabolic camera motion f1(t) is 2ax(t − T/4), therefore

the camera essentially tracks an object moving with velocity 2ax(t−T/4) along x axis. Dur-

ing exposure, the x-parabolic camera tracks once every moving object with velocity within

the range [−2axT/4...2axT/4]. Similarly, the y-parabolic camera covers the velocity range

[−2ayT/4...2ayT/4]. For the reason that will be clarified below, we set

ax = ay =
2
√

2Sob j

T
(1.15)

The maximal velocity of the sensor becomes Ssens =
√

2Sob j. That is, the velocity range covered

by these parabolas is [−Ssens...Ssens].
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the power spectrum is constant along ωx and ωy:

‖φ̂ static(ωx,ωy,ωt)‖2 = T 2sinc2(ωtT ) (1.20)

The Fourier transform of the PSF is a slice of the 3D spectrum φ̂ , and is a sinc whose width

depends on the object velocity ‖k̂static
sx,y

‖2 = T 2sinc2((sxωx + syωy)T ). For fast object motions

this sinc highly attenuates high frequencies. In fact, if the object motion is fast it is better to

reduce the exposure time (this increases the width of the sinc) despite reducing the total amount

of energy collected.

A flutter shutter camera In a flutter shutter camera [63], the integration curve of a static

camera is temporally modulated (Fig. 1.1(b)). Therefore, the spectrum of the integration curve

φ f lutter is constant along ωx,ωy and is modulated along ωt :

‖φ̂ f lutter(ωx,ωy,ωt)‖2 = ‖m̂(ωt)‖2 (1.21)

where m̂ is the Fourier transform of the shutter code. This code can be designed to be more

broadband than the sinc function in a static camera. However, the spectrum is constant along

ωx,ωy. Therefore, the worst-case spectral performance is bounded as follows:

min
s
‖k̂ f lutter

s (ωx,ωy)‖2 = T/(2Sob jΩ) (1.22)

for all (ωx,ωy) [49], where Ω is the spatial bandwidth of the camera. As a result, the flutter

shutter poorly captures the low frequency image contents.

A linearly moving camera If the camera is moving at a constant velocity (Fig. 1.1 third col-

umn), the integration curve is a slanted straight line φ linear(t) = [sxt,syt, t] (Fig. 1.1(c)). By

linearly moving the camera, we can track the object that moves at the camera’s speed, but

we still suffer from a sinc fall-off for objects whose velocities are different from the camera’s

velocity.

A camera with parametric motions We design other cameras with parametric motions and

analyze their performance numerically. Although we cannot analytically compute the spectral

performance of each camera, we observe in the Fourier domain that the blur kernels contain

zeros. We define four cameras: (i) a camera with a raised-cosine motion, (ii) a camera with

a circular motion with a constant angular speed, (iii) a camera with a circular motion with a
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(a) A parabolic camera (b) A raised-cosine camera (c) A circular motion camera (d) A circular-acceleration
motion camera

(e) A spiral camera
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Figure 1.7: We numerically analyze the spectral performance of five different cameras: (i)
a camera with a raised-cosine motion, (ii) a camera with a circular motion with a constant
angular speed, (iii) a camera with a circular motion with a constant angular acceleration, and
(iv) a camera with a spiral motion. This figure shows that even a two-image solution of each of
these cameras cannot capture all frequencies without zeros for all object motions.

constant angular acceleration, and (iv) a camera with a spiral motion. Each camera moves in

the defined camera path φ during the exposure t ∈ [−T/2...T/2].

(i) A camera with a raised-cosine motion: The parametric motion that defines this camera

is as follows:
{φ : [x,y, t] = [α (1+ cos(ωt)) , 0, t]} (1.23)

where ω = π/(T/2) and α = Sob j/ω . This camera moves in 1D and covers each velocity twice

as opposed to once in a parabolic camera. Fig. 1.7(b) shows the blur kernel spectra for different

object motions. The zero pattern is quite similar to that of a parabolic camera in Fig. 1.7(a),

but the zeros also appear in frequencies that are well covered by a parabolic camera. From this,

we argue that even a two-image solution of a raised-cosine camera cannot cover all frequencies

without zeros, as in an orthogonal parabolic camera pair.

(ii) A camera with a circular motion with a constant angular speed: We can define the

motion of this camera as

{φ : [x,y, t] = [α cos(ωt),α sin(ωt), t]} (1.24)

where ω = π/(T/2) and α = Sob j/(2ω). The camera sensor moves along a circular path at

a constant speed (Sob j/2), and therefore the camera essentially tracks each object motion with

this speed in all possible angles. However, this camera fails to capture other motions, and

therefore we observe many zeros in blur kernel spectra, as shown in Fig. 1.7(c).

(iii) A camera with a circular motion with a constant angular acceleration: We can

modify the above camera to track each object speed twice, in two different orientations. The
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idea is to move the camera circularly but at a constant angular acceleration:

{
φ : [x,y, t] = [α cos(ωt2),α sin(ωt2), t]

}
(1.25)

where ω = π/(T/2)2 and α = Sob j/(2ω). While this camera performs well for many object

velocities, the blur spectra still contain many zeros, as shown in Fig. 1.7(d).

(iv) A camera with a spiral motion:

{φ : [x,y, t] = [αt cos(ωt),αt sin(ωt), t]} (1.26)

where ω = kπ/(T/2) and α = Sob j/
√

(1+ ω2T 2/4). This camera tracks each speed once

during exposure, but not in all directions. Fig. 1.7(e) shows that blur kernels for different object

velocities contain substantial amount of zeros.

Two shots Taking two images with cameras defined above can simplify the kernel estimation

task, but it does not substantially enhance the spectral coverage of these cameras. Optimizing

the exposure lengths of each shot [3], and in the case of a flutter shutter camera also optimizing

the random codes in each shot, do not eliminate their fundamental limitations: their power

spectra are constant along ωx,y and hence they spend the energy budget outside the wedge

of revolution. Previous two-image solutions to deblurring, such as [13, 15, 64, 90], fall into

the category of taking two images with a static or a linearly moving camera. These methods

can correctly find the motion kernels, but the image reconstruction quality is limited since the

spectrum coverage is low.

A parabolic camera with a single exposure Blur kernels from a single-exposure parabolic

camera are invariant to 1D constant-velocity motions, and can be shown to approach the optimal

bound for a set of 1D linear motions with bounded speed [49]. A single parabolic camera,

however, is neither motion invariant nor optimal for 2D motions. When an object moves in a

direction orthogonal to the camera movement axis (i.e. a x-parabolic camera imaging an object

moving in the y direction), the spectral coverage along the orthogonal frequencies (i.e. ωy)

is poor. We have shown in Fig. 1.1 (n-o) several Fourier slices in which the captured spectra

contain zeros.

Synthetic simulation We compare the deblurring performance of (i) a pair of static cameras,

(ii) a pair of flutter shutter cameras, (iii) a single parabolic camera and (iv) an orthogonal

parabolic camera through simulations (Fig. 1.8). For all cameras, we fix the total exposure time
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