
Blur Kernel Estimation using Straight Edges

Abstract

Camera shake induces unsightly blur in photographs, and
is a common source of quality degradation in images. We
describe a method to recover the blur kernel from a single
image. We analyze edges in the blurry photograph to esti-
mateprojectionsof the blur kernel. These projections are
also known as theRadon Transform. We apply the Inverse
Radon Transform to recover a kernel suitable for non-blind
deconvolution. We impose sparsity priors in the Inverse
Radon Transform to account for the sparse nature of blur
kernels.

Our method does not require the latent image estimation
step to iteratively refine the kernel estimation, therefore
the algorithm is computationally attractive. Although our
approach applies only to images with a sufficient number
of straight edges in many orientations, these encompass a
broad range of scenes including many man-made scenes.
We show through experiments that our algorithm performs
favorably compared to prior art.

1. Introduction

Many challenges in deblurring stem from the severely
under-constrained nature of the problem: many image–blur
pairs can explain the blurred image. Fortunately, most
image–blur pairs are implausible because the correspond-
ing images contain ringing and noise; kernels are not con-
tinuous. Therefore, existing deblurring techniques exploit
prior knowledge about natural images and blur kernels to
distinguish the correct solution pair from incorrect ones.
Although this prior knowledge is effective, it is often not
strong enough to reliably distinguish the correct solution
from others. In this chapter, we present additional cues to
exploit in blur kernel estimation.

Our algorithm estimates a blur kernel by analyzing blurred
edges. Intuitively, edges along different orientations are af-
fected differently by blur, therefore we can consider differ-
ent edge profiles as “signatures” of a blur. We formalize this
intuition and show how to use blurred edges to recover the
Radon transformof the blur kernel, that is, a set of projec-
tions of the blur kernel in different orientations. We can re-

store the blur kernel by inverting the estimated Radon trans-
form. Advantages of our method are that (i) we do not de-
convolve the blurred image to refine the estimated kernel
and that (ii) we perform a bulk of the computation at the
size of the kernel, which is often considerably smaller than
the image. We demonstrate that our approach is well-suited
for scenes with numerous edges such as man-made environ-
ments.

Even if a blurred image does not contain many edges in dif-
ferent orientations, we can still exploit kernel projections.
We introduce a method to integrate Radon transform con-
straints in a maximum-a-posteriori kernel estimation frame-
work to improve the kernel estimation performance. This
alternative method is computationally more expensive, but
it is more stable than simply inverting the Radon transform.

Contributions We can summarize the contributions of
this chapter as follows:

• We demonstrate that the blur kernel can be estimated
from blurred edge profiles using the inverse Radon
transform.

• We describe a method to detect stable edges for use in
kernel estimation.

• We introduce a method to integrate blur kernel projec-
tion constraints in a maximum-a-posteriori estimation
framework to jointly estimate the blur kernel and the
sharp image.

1.1. Related work

In this work, we consider spatially invariant blur. Spatially
invariant blur arises when the scene is static and the camera
undergoes a small out-of-plane rotation or a translation (for
a constant-depth scene.) A spatially invariant blur model is
popular because one can exploit a simple global convolu-
tion model to describe an image formation process. Even
with the spatially invariant blur assumption, however, esti-
mating the correct blur from a single image is a challenging
task due to inherent ambiguities: the observed blurry input
image can be interpreted as a blurry image of a sharp scene
or a sharp image of a blurry scene. This ambiguity can be
address by taking multiple photos, each of which contains
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different blur [16, 6, 22, 4, 3, 13]. Taking images with mod-
ified cameras [1, 20] can also improve the kernel estimation
performance.

Oftentimes, however, we are provided only with a sin-
gle blurry image from a conventional camera, therefore a
single-image blur kernel estimation problem received a lot
of attention. To resolve the inherent ambiguity, different
assumptions on blur kernels and natural images have been
incorporated. Ferguset al. [8] exploit the knowledge that
a histogram of gradients from natural images exhibits a
heavy-tailed profile and that a histogram of intensities in
blur kernels is sparse. They use a variational inference tech-
nique to first estimate a blur kernel, which is then used to
restore a blur-free image using the Richardson-Lucy decon-
volution algorithm [17, 14]. Shanet al. [18] introduce a
local prior, in addition to a sparse gradient prior of natu-
ral images, to detect and smooth surfaces. Caiet al. [2]
assume that a blur kernel should be sparse in the Curvelet
domain and an image should be sparse in the Framelet do-
main. These techniques solve a large system of equations
to find the sharp image and/or the blur kernel that satisfy
the observation model while conforming to prior knowledge
about blur and natural images.

Several prior work explicitly leverage blurred edges to esti-
mate blur, as in our method. Jia [9] estimates an alpha matte
from user-selected edges, and subsequently estimates the
blur kernel from the matte by minimizing a non-linear cost
function consisting of an image observation term as well as
an image prior. Joshiet al. [10] predict sharp edges directly
from a blurry photo and estimate the blur kernelgiventhe
location of predicted sharp edges. Their edge prediction
scheme assumes that the blur kernel is uni-modal; Choet
al. [5] extend Joshiet al. [10] in a multi-scale manner to es-
timate more general blur kernels with multiple modes. Cho
et al. [5] reduce the computation by deblurring only edges
in the gradient domain: their GPU implementation runs in
near real-time. Levinet al. [12] compare the performance
of several single-image blind deconvolution algorithms, and
empirically show that the algorithm introduced by Ferguset
al. [8] is the state-of-the-art in single-image blur kernel es-
timation1.

2. Kernel estimation from edges

We model the image formation as a convolution of a blur
kernelk and a sharp latent imageI:

B = k ⊗ I + n (1)

whereB is an observed, blurry image andn is input noise.
Our goal is to reconstruct a sharp, natural-looking latent im-

1Levin et al. [12] do not consider Choet al. [5].
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Figure 1: The Radon transformφf
θ (ρ) of a signalf (i.e.

the star) is an integral of the signal along the lineρ =
x cos(θ) + y sin(θ) (i.e the dotted line).

ageI from the observed imageB.

2.1. The Radon transform and blurred line profiles

We briefly review the Radon transform for two-dimensional
signals and illustrate how it is related to blur. For an in-
depth review of the Radon transform, we refer the readers
to [7, 21]. The Radon transform of a signalf(x, y) is an
integral of the signal along a straight line:

φf
θ (ρ) =

∫

∞

−∞

∫

∞

−∞

f(x, y)δ (ρ − x cos(θ) − y sin(θ)) dxdy

(2)
whereθ is the orientation of the straight line that we inte-
grate over andρ is the offset of that line from the origin of
thex − y coordinate (See Fig. 1).φf

θ can be viewed as a
projection of the signalf along the direction orthogonal to
orientationθ. If we take enough projections of the signalf
in all possible orientations, asymptotically we can recover
the original signalf using the inverse Radon transform [21].

Interestingly, we can relate the Radon transform to our
imaging model in Eq. (1). The imaging model in Eq. (1)
can be expressed in the continuous domain:

B(ρx, ρy) =

∫

∞

−∞

∫

∞

−∞

k(x, y)I(ρx−x, ρy−y)dxdy (3)

If the latent image is an ideal straight line along ori-
entation θ, we can parameterize the latent imageI as

δ (ρ − x cos(θ) − y sin(θ)), whereρ =
√

ρ2
x + ρ2

y. There-

fore,

BL(ρx, ρy) =

∫

∞

−∞

∫

∞

−∞

k(x, y)δ (ρ − x cos(θ) − y sin(θ)) dxdy

= φk
θ (ρ)

(4)



Figure 2: The value of the convolved image at the green dot
is a sum of intersections of the blur kernel (the black line)
and the line (the red line). The dotted green circles indicate
the intersections.

Blurred line  - 0 degree Blurred line  - 45 degrees Blurred line  - 135 degrees

Slice of blurry line Projection of blur kernel

Figure 3: We show experimentally that a slice (shown
dotted-red) orthogonal to a blurred line is the same as an
explicit projection of the blur kernel along the line.

In other words, every orthogonal slice of a blurred line,
taken along the orientationθ, is a projection of the blur
kernel φk

θ(ρ). Fig. 2 shows graphically thatBL(ρx, ρy),
evaluated at a fixed point[ρx, ρy], is a sum of intersections
between the blur kernel and the line:BL(ρx, ρy) is a pro-
jection of the blur kernel.

To illustrate this concept numerically, we blur lines in dif-
ferent orientations and compare orthogonal slices of blurred
lines to explicit projections of the blur kernel in those orien-
tations. Fig. 3 shows the results. As expected, the orthogo-
nal line profiles are very close to explicit kernel projections.

This relationship between the Radon transform and blurred
line profiles implies that we can estimate blur kernel pro-
jections and use them for kernel estimation if we can de-
tect blurred lines. However, detecting lines reliably froma
blurred image is a challenging problem, especially when the
blur is multi-modal. Furthermore, many lines in images are
not ideal: each line has a finite width, therefore blurred line
profiles are no longer perfect projections of the blur kernel

slice 

Pixels for 

color estimation

Figure 4: To find two dominant colors on either side of an
edge, we average the pixels separated from the edge by3/4
the assumed size of the blur kernel.

2.

Fortunately, a blurred edge can provide information similar
to a blurred line. An ideal binary step edge with orientation
θ can be modeled as an integral of a line alongθ:

e(ρ) =

∫ ρ

−∞

δ (τ − x cos(θ) − y sin(θ)) dτ (5)

Therefore, a blurred edge profile can be modeled as follows:

BE(ρx, ρy)

=

∫

∞

−∞

∫

∞

−∞

k(x, y)

∫ ρ

−∞

δ (τ − x cos(θ) − y sin(θ)) dτdxdy

=

∫ ρ

−∞

{
∫

∞

−∞

∫

∞

−∞

k(x, y)δ (τ − x cos(θ) − y sin(θ)) dxdy

}

dτ

=

∫ ρ

−∞

φk
θ(τ)dτ

(6)

In other words, an orthogonal slice of a blurred edge is an
integral of a blurred line profile. Therefore, blurred line pro-
files can be recovered by differentiating blurred edge pro-
files.

Extracting edge profiles from color images To extract
blur kernel projections from a color image, we assume a
color-line image model [15] within a local neighborhood of
an edge: a local region in a natural image has two dominant
colors. Two dominant colors for a given pixel are estimated
by averaging pixels at two ends of the slice (Fig. 4). Given
the two dominant colorsW, Z, we can represent each pixel
on the orthogonal sliceci as a linear combination ofW, Z:

ci = αiW + (1 − αi)Z (7)

We useα’s as the blurred binary edge slice.

2We can show that a slice of a blurred line of a finite width is a projec-
tion of the kernel convolved with a box filter of that width.



2.2. Recovering the blur kernel from its projections

Recovering a two-dimensional signal from its one-
dimensional projections, also known as the inverse Radon
transform, has been studied extensively in literature [7, 21].
In this work, we view the inverse Radon transform as max-
imizing the posterior probability of the blur kernelk given
the observed imageB. This framework allows us to incor-
porate prior knowledge onk.

From the Bayes’ rule,

p(k|B) ∝ p(B|k)p(k) (8)

We directly model each term as follows. We model the like-
lihood termp(B|k) from the constraint that explicit projec-
tions of the blur kernelk should match its projectionsφθi

estimatedfrom blurred edge slices:

p(B|k) =
N
∏

i=1

p(φθi
|k)

∝ exp

(

−
∑N

i=1 ‖φθi
− Rθi

k‖2

2η2
p

) (9)

where i indexes edge samples,N is the total number of
edge samples,Rθi

is a projection operator alongith sam-
ple’s dominant orientationθi, andη2

p is the variance of ob-
servation noise. We set the noise varianceη2

p as(2 + α)η2
n

whereη2
n is the variance of the imaging noise. The factor of

2 results from differentiating edge slices (see Eq. (6)) and
α models orientation estimation error, which increases with
the image noise level. The algorithm is robust to the value
of α; we setα = 1 through cross validation.

The number of edge samples (i.e.N in Eq. (9)) affects the
speed of our algorithm:N depends on the size of the image
and/or the image content. We observe, however, that hav-
ing many edge samples in similar orientations is beneficial
mostly in terms of reducing noise of the projection along
that orientation. In light of this observation, we average out
the noise “off-line” in order to accelerate the kernel recon-
struction. In particular, we approximate

∑N
i ‖φθi

−Rθi
k‖2

as a sum over binned angles:

N
∑

i=1

‖φθi
− Rθi

k‖2 ≈
360
∑

j=1

wj‖φ̃θj
− Rθj

k‖2 (10)

wherej indexes angles in steps of 1o, φ̃θj
is the average of

kernel projections that have the same binned orientationθj ,
andwj is the number of samples that have the same binned
orientationθj . This approximation allows us to efficiently
recover the kernel even for images with many edge samples.

In addition to kernel projection constraints, we incorporate
the knowledge that intensity profiles of blur kernels, as well

: Center of gravity

Figure 5: The center of gravity within an object’s projec-
tion is equivalent to the projection of the object’s center of
gravity.

as gradient profiles of blur kernels, are sparse:

p(k) ∝ exp {− (λ1‖k‖γ1 + λ2‖∇k‖γ2)} (11)

We use the same parameters for all experiments, deter-
mined through cross-validation:λ1 = 1.5, γ1 = 0.9, λ2 =
0.1, γ2 = 0.5.

Given this model, we can recover the blur kernel by mini-
mizing the negative log-posterior:

k̂ = argmink

{

∑360
j=1 wj‖φ̃θj

− Rθj
k‖2

2η2
p

+ λ1‖k‖γ1 + λ2‖∇k‖γ2

}

(12)
We use an iterative reweighted least squares method [11, 19]
to minimize the energy in Eq. (12).

Aligning blur kernel projections In order to reconstruct
an accurate blur kernel, it is important that blur kernel pro-
jections are aligned: the center of projection among all ker-
nel projections should be the same. If the center of pro-
jection are not aligned, details of the blur kernel could be
smeared out.

To align blur kernel projections, we exploit the fact that the
center of gravity in an object’s projection is equivalent to
the projection of the object’s center of gravity, as shown
in Fig. 5. We shift the edge slices such that the center of
gravity in each projection is at the center of the projection.
This ensures that the center of projection among all kernel
projections is aligned.

Synthetic experiments We analyze the performance of
our kernel estimation algorithm using a synthetically
blurred test pattern. We generated a test pattern with ideal
lines and ideal step edges in 12 orientations, shown in
Fig. 6. We blur this test pattern using a blur kernel shown
at the top of Fig. 6, and add0.5% Gaussian noise to the
blurred pattern.



(a) Kernel estimation from lines using 

back projection - 120 slices, 12 orientations

(d) Kernel estimation from edges

- 120 slices, 12 orientations

(e) Kernel estimation from edges

- 60 slices, 12 orientations

(f) Kernel estimation from edges

- 60 slices, 6 orientations

σo= 0 σo= 5 σo= 10 σo= 20

Legend

Original

blur kernel

(b) Kernel estimation from lines using 

filtered back projection

(c) Kernel estimation from lines

using a sparse prior

Figure 6: We estimate a blur kernel from a synthetically blurred test pattern. We blur the test pattern using the blur kernel
shown on the top left. As a first experiment, we compare three different inverse Radon transform algorithms: (a) the back
projection algorithm (b) the filtered back projection algorithm (c) our algorithm in Eq. (12). We estimate the blur kernel from
120 slices of lines in 12 orientations. Green dots correspond to pixels at which we take the slices. We add different amount
of orientation noise, of standard deviationσo (in terms of degrees), to the ground-truth orientation, andshow reconstructed
blur kernels in each case. We observe that our algorithm faithfully reconstructs the kernel across all orientation noise levels,
whereas other algorithms reconstruct kernels that are too “blurred” or that have streaks. We test the stability of our kernel
reconstruction algorithm by varying the number of edge slices and the number of orientations. (d) 120 slices of edges in 12
orientations (e) 60 slices of edges in 12 orientations (f) 60slices of edges in 6 orientations. We observe that it is important to
sample enough edges in many orientations.

As a first experiment, shown in Fig. 6(a-c), we take 120
slices of blurred lines (at edge samples indicated with green
dots) and recover a blur kernel from those slices using three
different inverse Radon transform algorithms. We consider

a back projection algorithm in Fig. 6(a), a filtered back pro-
jection algorithm in Fig. 6(b), and our algorithm in Fig. 6(c).
We add different amount of Gaussian noise to the ground-
truth orientation of each slice to stress-test algorithms to



orientation estimation error. Recovered kernels under dif-
ferent orientation noise levels are shown in colored boxes.
We observe that our algorithm faithfully reconstructs the
blur kernel at all orientation noise level, whereas other algo-
rithms reconstruct kernels that are too “blurred” or that have
streaks even at a low orientation noise level. This shows
that a sparse prior on blur kernels improves the kernel re-
construction performance.

As a second experiment, shown in Fig. 6(d), we take 120
slices of blurrededgesand recover the blur kernel from the
derivatives of blurred edge profiles. Again, we add dif-
ferent amount of Gaussian noise to the ground-truth ori-
entation. The kernel estimation performance deteriorates
slightly since differentiation of edge profiles doubles the
observation noise variance. However, recovered kernels are
close to the ground-truth kernel across all orientation noise
levels. In Fig. 6(e), we reduce thenumberof edge slices
for kernel estimation while sampling edges in all 12 ori-
entations. Reducing the number of slices by a factor of 2
increases the noise variance by a factor of

√
2, but even

in this case the estimated kernels are still quite accurate.
When we reduce the number of orientations by a factor of
two Fig. 6(f) while using 60 slices as in Fig. 6(e), however,
our algorithm is less stable. This experiment shows that, if
possible, we should take many edge samples in many orien-
tations.

2.3. Detecting reliable edges from a blurry image

For an accurate kernel reconstruction, we need to find sta-
ble, isolated step edges. We introduce an image analysis
technique that selects stable edges from a blurry image. As
a first step, we run an edge detector to find an edge mapE
of candidate edge samples.

Our goal is to sieve isolated step edges that satisfy four
desired characteristics. First, selected pixels should corre-
spond to a step edge with enough contrast on either side,
which ensures that the signal to noise ratio of the blurred
profile is high. We enforce this constraint by discarding
edge samples with a small color difference between two
locally dominant colors (Section 2.1). In RGB space, if
‖W − Z‖ < 0.03, we discard that edge sample. Second,
the blurred edge profile should not be contaminated by ad-
jacent edges. To ensure that two adjacent step edges are
sufficiently separated, we take an orthogonal slicesE of the
edge mapE at each edge candidate, and we discard edge
samples with

∑

sE > 1. Third, a local neighborhood of an
edge candidate should conform to a color-line image model.
In other words, blurred edge profiles (i.e.α’s from Eq. (7))
should lie between0 and1. An edge sample with a slice that
lies outside of0− ǫ and1+ ǫ, whereǫ = 0.03, is discarded.
Lastly, the edge should be locally straight. The “straight-

ness” is measured as the norm of the average orientation
phasor in the complex domain. At each edge candidatel,
we compute the following measure:

‖∑j∈N(l) exp(−i2θj)‖
∑

j∈N(l) 1
(13)

wherei =
√
−1, andN(l) indicates edge candidates in the

neighborhood of pixell. If this norm is close to 1, then the
edge is locally straight in the neighborhood of pixell. We
discard edge samples with the norm less than 0.97.

Our edge selection algorithm depends on the blur kernel
size, which is estimated by users. If the estimated blur ker-
nel size is too large, the second and third step of our edge
selection algorithm would reject many edges since (i) more
slices of the edge mapE would contain more than one edge
(ii) the size of the neighborhood in which the color-line
model should hold increases. Therefore, users should en-
sure that the estimated blur size is just enough to contain
the blur.

3. Experimental results

This section provides experimental results that illustrate the
performance of our deblurring algorithm. We compare our
algorithm’s performance to three competing methods: Fer-
guset al. [8], Shanet al. [18], and Choet al. [5]. In order
to compare just the kernel estimation performance, we used
the same deconvolution algorithm [11] to restore images.

Fig. 7 shows deblurred images. In most test images, our al-
gorithm performs favorably compared to prior art. As long
as we can find enough stable edges in many orientations,
our algorithm can reliably estimate the kernel. Fig. 8 shows
more comparisons.

Our algorithm sometimes recover blur kernels with spurious
“islands”, as in Fig. 8(a), when the edge selection algorithm
erroneously includes unstable edges at which edge slices
intersect other neighboring edges. A better edge selection
algorithm should reduce such error.

Another limitation of this algorithm is that it can be unsta-
ble when there are not enough edges, as shown in Fig. 9(a),
and/or when there are not enough edges in different orien-
tations, as shown in Fig. 9(b). When there are not enough
edges, there simply isn’t much information to estimate the
kernel with; when there are only few dominant orientations
in selected edges, we can only constrain the blur in those
orientations and cannot recover meaningful blur kernel in
other orientations. In some cases, this is less problematic.
An interesting aspect of estimating the blur kernel explic-
itly from blurred edge profiles is that the estimated blur ker-
nel contains enough information to properly deblur edges



Blurry image Fergus et al. Shan et al. Cho et al. Ours
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(b)
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Figure 7: This figure compares our algorithm’s kernel estimation performance to three previous work: Ferguset al. [8],
Shanet al. [18], and Choet al. [5]. In most examples, our algorithm compares favorably toprior art.

in those orientations, even if the blur kernel is not entirely
correct. For instance, if an image is a single step edge, as in

Fig. 10, we do not need to recover the original blur kernel to
adequately remove the blur. We can remove the blur from



Blurry image Fergus et al. Shan et al. Cho et al. Ours
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Figure 8: This figure shows more comparisons of our kernel estimation algorithm and prior art.
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Figure 9: Our kernel estimation algorithm is sensitive (a) when thereare not enough edges and/or (b) when there are not
enough edges in different orientations. This figure illustrates these failure modes.

the stripes as long as we recover the horizontal component
of the blur kernel, and this is what our algorithm does.

Kernel projection constraints in Eq. (9) assume that the im-
ageB is a “linear” image. In other words, the blurred im-
ageB is not processed by any non-linear operators such
as non-linear tone maps. We observe experimentally that
our algorithm is vulnerable to non-linearities inB, there-
fore it is important to properly linearize the input imageB.
in this work, we used only raw images as our test set in
order to factor out artifacts from non-linearities. We ob-
serve that while competing algorithms are less susceptible
to non-linearities, using raw images also improves their per-
formance.

Chromatic aberration from a camera lens may also affect
kernel estimation performance. When chromatic aberration
is significant, our edge selection algorithm will discard most
edge samples because an edge slice would not be explain by
two dominant colors (Section 2.1).

4. The joint estimation of the blur kernel and
the sharp image

As discussed in the previous section, our kernel estimation
algorithm is less stable when there are not enough edges
in many orientations. To handle images that do not have



(a) (b)

(c)
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Figure 10: (a) A blurred stripe (b) The deblurred stripe us-
ing the kernel estimated from our algorithm (c) Estimated
blur kernel (d) The ground-truth blur kernel. Our kernel
estimation algorithm only recovers the “horizontal” com-
ponent of the ground-truth blur kernel, but the deblurred
image is still crisp and is free of ringing.

enough isolated edges, we develop a method to incorporate
kernel projection constraints in a more general deblurring
framework.

One method to estimate a blur kernelk and a sharp imageI
is by maximizing the joint distribution ofk andI [18, 5]:

[k̂, Î] = argmaxk,I p(k, I|B)

= argmaxk,I p(B|k, I)p(k)p(I) (14)

[k̂, Î] is called a maximum-a-posteriori (MAP) of the joint
distributionp(k, I|B).

One often models the likelihood termp(B|k, I) using the
image observation model (Eq. (1)):

p(B|k, I) ∝ exp

(

−‖B − k ⊗ I‖2

2η2
n

)

(15)

The image priorp(I) favors a piecewise-smooth latent im-
age:

p(I) ∝ exp (−λ‖∇I‖γ) (16)

The blur kernel priorp(k) favors blur kernels with sparse in-
tensity profiles as well as sparse gradient profiles (Eq. (11)).
Because maximizingp(k, I|B) with respect tok, I jointly
is challenging, we can resort to an alternating maximization
algorithm to solve Eq. (14): we first maximize the joint dis-
tribution p(k, I|B) with respect to the blur kernelk while
keeping the imageI fixed, and then we maximizep(k, I|B)
with respect toI while holdingk fixed. We iterate these two
steps until convergence.

Despite the simplicity, Levinet al. [12] argue that the joint
estimation of the kernel and the sharp image is not a good
idea because the joint probability Eq. (14) is often maxi-
mized whenk is an impulse function (i.e. no-blur) andI is
the input blurry imageB. For instance, the no-blur solution
pair maximizes the likelihood (Eq. (15)), an impulse func-
tion is not penalized by the blur kernel prior, and a blurry

Algorithm 1 The RadonMAP blur estimation algorithm

% Initial kernel estimation
k̂ ⇐ argmink Eq. (12)
for l = 1 to 5do

Î ⇐ argmaxI p(k̂, I|B) % Latent image estimation
Î ⇐ bilateralFiltering(̂I)
k̂ ⇐ argmaxk p(k, Î|B) % Kernel re-estimation

end for
Î ⇐ argmaxI p(k̂, I|B)

version of an image is sometimes favored by the image prior
over its original version [12].

To resolve this issue, we augment the likelihood term in
Eq. (15) using the Radon transform constraint in Eq. (10):

p(B|k, I) ∝ exp

(

−
{

‖B − k ⊗ I‖2

2η2
n

+

∑360
j=1 wj‖φ̃θj

− Rθj
k‖2

2η2
p

})

(17)

The Radon transform term bases on a strong assumption
that natural images consist of step edges and that every de-
tected edge should be an ideal step edge. It effectively pe-
nalizes the no-blur solution, and steers the joint distribution
p(k, I|B) to favor the correct solution. Algorithm 1 shows
the pseudocode for the joint estimation algorithm. We name
this algorithm RadonMAP.

Notice that we filter the latent image estimateÎ using a bi-
lateral filter before re-estimating the kernel, as in [5]. The
bilateral filter step is important for improving the kernel es-
timation performance.̂I usually contains visually disturb-
ing ringing and noise because the initial kernel estimate is
inaccurate. If we directly usêI to refine the blur kernel,
we would be seeking a blur kernel that would reconstructÎ
from B. To improve the blur kernel, we bilateral-filter the
latent image so that the refined blur kernel restores an image
with less ringing and noise.

Experimental results Fig. 11(a-b) show how the Radon-
MAP algorithm improves the failure cases shown in Fig. 9.
The images deblurred using the MAP kernel estimation al-
gorithm are more crisp and have less ringing compared to
those of our original kernel estimation algorithm. In gen-
eral, the MAP kernel estimation algorithm cleans up spuri-
ous “islands” in estimated kernels and improves the quality
of deblurred images. Fig. 12 shows more examples compar-
ing the performance of competing deblurring algorithms.

To double-check that the new posterior probability models
the problem better than the conventional posterior probabil-
ity, we compare the negative log-posterior of our MAP so-
lution and the no-blur solution. The negative log-posterior
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Figure 11: By integrating kernel projection constraints to a MAP kernel estimation method, we can improve the kernel
estimation performance. We name this algorithm RadonMap. (a-b) show that even when there are not enough edges in
different orientations (as shown in Fig. 9), the RadonMAP algorithm can reliably reconstruct the kernel.

of our solution in Fig. 11(a) is2.29 × 104, whereas that
of the no-blur solution is7.95 × 105: the Radon transform
constraint effectively penalizes the no-blur solution.

4.1. Quantitative evaluation

We quantify the performance of blur estimation algorithms
using cumulative error ratio [12]. Error ratio (ER) measures
the deconvolution error of using the estimated blur kernel

compared to the deconvolution error of using the ground-
truth kernel. In particular, ER is defined as follows:

ER =
‖I − Dest‖2

‖I − Dgt‖2
(18)

whereDest is the image restored using the estimated blur
kernel, andDgt is the image restored using the ground-truth
blur kernel. Levinet al. [12] provide a set of test images and
blur kernels for comparisons. However, the test images are
too small (255 × 255 pixels) and do not have salient step
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Figure 12: We show more examples in which the MAP kernel estimation algorithm improves the estimated blur kernels.

edges. To address these issues, we have hand-selected 6
images (each with about 1 mega pixels) of different con-
tents, and computed ER for each blur kernel provided in
Levin et al.’s dataset. Figure Fig. 13 shows the test images
and blur kernels: each algorithm is tested with 48 blurred
images. Images 1–3 contain many edges in different ori-
entations, whereas images 4–6 do not. Therefore, we can
conjecture that our algorithms would perform better on im-
ages 1–3 than on images 4–6.

Figure Fig. 14 shows the cumulative error ratio for each de-
blurring algorithm. The inverse Radon transform of blur
projections performs better than the algorithms presented

in Ferguset al. [8] and Shanet al. [18], but performs
worse than the algorithm in Choet al. [5]. Augmenting the
blur kernel projection constraints in a MAP framework (the
RadonMAP algorithm) improves the performance of our al-
gorithm, but it still falls short of Choet al.’s algorithm.

To gain more insight, we have plotted the cumulative error
ratio for images 1–3 and images 4–6 separately in Fig. 15.
This figure shows an interesting trend that for piecewise
smooth images with enough edges in many orientations (i.e.
images 1–3), the RadonMAP algorithm outperforms all ex-
isting algorithms, but if images lack such edges (i.e. im-
ages 4–6), Cho’s algorithm performs the best. Still, even in
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Figure 13: We evaluate the blur estimation performance of five different blur estimation algorithms. We synthetically blur
each image with each blur kernel shown in this figure, and estimate blur kernels from each of them using five competing
algorithms. The algorithms’ performance is measured usingcumulative error ratio.
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Figure 14: This figure shows the cumulative error ratio for five blur estimation algorithms: Ferguset al. [8], Shanet al.
[18], Cho et al. [5], the inverse Radon transform based blur estimation in Section 2.2 (named Radon in the legend), and the
MAP algorithm augmented with the Radon transform constraints in this section (named RadonMAP in the legend). From the
cumulative error ratio, the algorithm in Choet al. performs the best, closely followed by the MAP algorithm augmented with
the Radon transform.

such scenarios our algorithms compare favorably to Fergus
et al.’s and Shanet al.’s algorithms.

We have also observed that the size of the blur also affects
the performance of our algorithm. Therefore, we have plot-
ted the cumulative error ratio for blur kernel 1–4 and 5–7 in
Fig. 13 separately in Fig. 16. Blur kernels 5–8 have larger
spatial supports compared to blur kernels 1–4. Interestingly,
when the blur kernel support is small, the Radon transform
based algorithms perform slightly better than Cho’s algo-
rithm, but when the blur kernel support is large, our algo-
rithms suffer. This issue can be attributed to edge detection:
(i) the number of stable edges decreases as the blur kernel
support increases because more edges are contaminated by
otherwise isolated neighboring edges (ii) the stable edge de-
tection becomes more challenging because a single isolated
edge is often interpreted as two edges that starts at one end
of the blurred profile and stops at the other end. We could
reduce such blur size dependencies by extending our algo-
rithms in a multi-scale manner.

5. Conclusion

In this work, we introduce a new insight to the blur kernel
estimation problem: blur kernels can be estimated by an-
alyzing blurred edge profiles. Our technique is especially
well suited to images that have many step edges in differ-
ent orientations, such as man-made scenes. Our insight can
also be useful for existing blur estimation methods. We pre-
sented a method to integrate kernel projection constraintsin
a MAP based kernel estimation framework. Experimental
results show that our kernel estimation algorithm compares
favorably to prior art.
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