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I. INTRODUCTION

In the motion invariant photography work, our main goal was to make the blur PSF invariant to object motion
while making the PSF easy to invert. In this work, we pursue a rather opposite goal: we are interested in making the
blur PSF as different as possible for different object motion while making the PSF easy to invert. The motivation
here is analogous to the coded aperture camera. Because we make the PSF as different as possible for different
object motions, we hope to easily identify the correct object motion given the input blurred image.

II. EASY TO INVERT VS. EASY TO IDENTIFY

In this section, we more rigorously define what it means for a PSF to be easily invertible and what it means to
be easily identifiable. As we show in a moment, these are somewhat conflicting criteria.

A. Easy to invert

When an image blurred with an easily invertible kernel k is deblurred to give an estimate x̂ of the original sharp
image x, the squared error between x̂ and x (i.e. ‖x̂ − x‖2) is expected to be small. With an observation model
y = k ∗x+n, where y is the input blurry image, n is the observation noise, we can show that an expected squared
error for all images - assuming a Gaussian image prior - is:

Ex,n

[‖x̂− x‖2
]

=
1
N

∑
wx,wy

η2

‖K(wx, wy)‖2 + η2Σ−1(wx, wy)
(1)

where η2 is the observation noise variance, Ex,n[· ] is an expectation of the argument with respect to x and n,
‖K(wx, wy)‖2 is the Fourier transform of the blur kernel k, Σ is the covariance matrix under a Gaussian prior, and
N is the dimension of the image x. Σ−1(wx, wy) = α(‖Gx(wx, wy)‖2 + ‖Gy(wx, wy)‖2), where Gx(wx, wy) and
Gy(wx, wy) are the Fourier transform of [−1, 1] and [−1; 1], respectively. Note that Eq.(1) assumes that the blur
kernel has been somehow correctly identified.

We normally like to work with an expected reconstruction error Ex,n [‖x̂− x‖], which we define as:

Ex,n [‖x̂− x‖] =
√

Ex,n [‖x̂− x‖2] (2)

Eq.(1) tells us that in order to reduce the reconstruction error, we want ‖K(wx, wy)‖2 to be large when Σ−1(wx, wy)
is small. Since Σ−1(wx, wy) is small for low frequencies, we want ‖K(u, v)‖2 to be as large as possible at low
frequencies. The tricky rule of the game is: we want k to be easily invertible for “all” object motions of interest.
While a static camera results in an easily invertible PSF for a static object, it results in a hard-to-invert PSF for
moving objects because the spectrum of a box kernel has many zeros in the frequencies where Σ−1(wx, wy) is
small. While a parabolic camera results in an easily invertible PSF for all object motions that are aligned with the
camera motion, the PSF is not easily invertible for motions in other directions due to zero trenches in the spectrum.
There’s still some room for more improvements.

B. Easy to identify

Until now, we have assumed that the blur estimation has been done already, and ended up in a conclusion that we
don’t want any zeros in ‖K(wx, wy)‖2 for all object motions. However, the blur estimation is not an independent
problem, and has a say in how we want ‖K(wx, wy)‖2.

Blur estimation can be formulated as the following: given a blurry image y and a set of kernels ki, i = 1...M
corresponding to different object motions, we want to find k̂ that maximizes p(y|ki). If we use a Gaussian image
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prior p(x) with zero mean and covariance matrix Σ, we can easily show that p(y|ki) ∼ N(0,KiΣKT
i + η2I),

where Ki is the convolution matrix of kernel ki, and η2 is the variance of the observation noise. Denoting Ψ =
KiΣKT

i + η2I ,

ln (p(y|ki)) = −1
2
yT Ψ−1y − 1

2
ln (det Ψ) + C

= −
∑

wx,wy

1
2N

Σ−1(wx, wy)‖Y (wx, wy)‖2

‖Ki(wx, wy)‖2 + η2Σ−1(wx, wy)
− 1

2
ln (det Ψ) + C

(3)

where C is a constant independent of y and ki, Y (wx, wy) is the FT of y, Ki(wx, wy) is the FT of ki, and N
is the dimension of y. Because Σ−1 is not positive definite, it’s inverse is not defined, but with some algebraic
manipulation - shown below -, we can still evaluate ln (det Ψ).

We call yT Ψ−1y term an estimation error, and ln (det Ψ) term a log determinant. In order to easily identify the
correct kernel, p(y|ki) for wrong ki should be much lower than p(y|k̂). How can we design ki’s in order to ensure
this?

Let’s first focus on the estimation error. The estimation error is evaluated with the following:
∑
u,v

1
N

Σ−1(wx, wy)‖Y (wx, wy)‖2

‖Ki(wx, wy)‖2 + η2Σ−1(wx, wy)
(4)

We want this term to be as small as possible for the correct kernel k̂, and as large as possible for all other kernels.
Recall that Y (wx, wy) = K̂(wx, wy)X(wx, wy), and thus Y (wx, wy) will have zeros at places where K̂(wx, wy)
and X(wx, wy) have zeros. Now, let’s suppose that kj is a wrong kernel, and thus we want to maximize the
estimation error for this kernel. From Eq.(4), we want Kj(wx, wy) to have zeros at frequencies Y (wx, wy) is “not”
zero, and preferably we want Σ−1(wx, wy) to be close to zero at those frequencies. In other words, we want the
zeros in the spectrum of different kernels to lie at different frequencies.

The log determinant term biases the estimation error to favor the blur kernel with more zeros in the spectrum.
This can be seen from the following relationship:

ln (det Ψ) = ln
(
det(KiΣKT

i + η2I)
)

=
∑

wx,wy

ln(Σ(wx, wy)‖Ki(wx, wy)‖2 + η2)

=
∑

wx,wy

ln
(

η2Σ(u, v)(
1
η2
‖Ki(wx, wy)‖2 + Σ−1(wx, wy))

)

=
∑

wx,wy

ln
(
η2Σ(wx, wy)

)
+ ln

(
1
η2
‖Ki(wx, wy)‖2 + Σ−1(wx, wy)

)

=
∑

wx,wy

ln
(

1
η2
‖Ki(wx, wy)‖2 + Σ−1(wx, wy)

)
+ D

(5)

where D is a constant independent of K. Note that ln (p(y|ki)) is increased by reducing the value of ln (det Ψ),
hence reducing

∑
wx,wy

ln
(

1
η2 ‖Ki(wx, wy)‖2

)
. Therefore, the log determinant term favors kernels with many zeros

in the spectrum. This term is essentially the Occam’s factor: favoring a simpler, lower capacity explanation over
solutions with higher capacity. Since kernels with less zeros in the spectrum have higher capacity to capture
information over those with many zeros, it makes sense that the log determinant term favors kernels with more
zeros in the spectrum.

One desirable characteristic of a camera is a constant log determinant for all ki’s. This is desirable in two aspects:
A constant log determinant means that the information capacity of kernels for different object motions is kept the
same, thereby not favoring a single object motion; and more importantly, we can estimate the object motion solely
from the estimation error in Eq.(3). Separating the solutions into different subspaces is a more reliable way to
discriminate kernels than relying on the capacity argument of the kernels. While a constant log determinant term
does not guarantee that the solutions of different kernels will lie in different subspaces, it’s quite likely in images.

To summarize, the zeros in the spectrum are actually helping us to identify the correct blur kernels, and preferably
we want those zeros at low frequencies, which conflicts with our previous result that we don’t want any zeros in the
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(a)

Fig. 1. This figure illustrates how a random camera covers the velocity space during one integration time.

low frequencies for low reconstruction error. Therefore, we should seek for a camera that covers as much frequency
content as possible, while generating zeros at different frequencies for different object motions. Also, we want to
find a camera that has a roughly constant log determinant for all object motions. We show that a random camera
satisfies these characteristics.

III. ANALYSIS ON THE RANDOM CAMERA

In this work, we assume that we are interested in object speed less than Smo in all directions. This is shown by the
yellow velocity cover in Figure 1. Since we don’t know apriori what the object velocity is, we want a camera motion
that can adequately capture the object content moving in every velocity within the yellow cover. In this section,
we introduce the random camera, and analyze its characteristics. In short, we show that the expected spectrum of
the random camera falls off with T

2Sms

√
w2

x+w2
y

, where Sms is the maximum sensor speed. This spectrum fall-off is

optimal in terms of spectrum coverage, and we also show that the random camera introduces zeros differently for
different object movements, which is needed for accurate object motion identification.

A. What is a random camera?

A random camera moves in a trajectory that’s similar to a Brownian motion. The camera divides the integration
time T into Ns segments, and moves at a constant velocity within each segment. The camera moves with different
velocities in each time segment, and the way camera samples the velocity space is shown in Figure 1. The figure
is in the velocity space, and the x axis denotes the speed in the x direction, and y axis denotes the speed in the y
direction. The yellow region denotes the object velocity range, and the green region denotes the sensor movement
velocity range.

Since we don’t know apriori what the object motion is, we should sample the object velocity range (yellow
region) as uniformly as possible. In most cases, we let Sms be greater than Smo -we will elaborate on this point
in the later section.

There can be many ways to sample the velocity space as in Figure 1. Here, we assume that each segment is
disconnected, and the start of each segment is randomly selected from a possible range of locations in the sensor.
Figure 2 shows some PSFs corresponding to static and moving objects and their log spectrums. The number of
segments (Ns) is 50. Keep in mind that the camera movement is the same for all these kernels: only the object
velocity differs.

One thing to note from Figure 2 is that the envelope of the log spectrums look very similar, although the zero
locations differ from one spectrum to the other. Can we predict these characteristics of a random camera?
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Ns is 50 for this figure. Top row: the PSF of the random camera for a static object, for a moderate diagonal object movement, for
a very fast diagonal object movement, respectively. Bottom row: the log spectrum of the random camera for a static object, for a moderate
diagonal object movement, for a very fast diagonal object movement, respectively. The low spectrums are normalized to the same scale.

wt

wx

wy

slope = smo

(a)

Fig. 3. This figure shows that the image content of interest all lie outside of the double cone with slope Smo. Therefore, the 3D Fourier
transform of the camera trajectory should be a superset of the 3D Fourier transform shown in this figure. We show in this section that the
random camera optimally covers this Fourier volume.
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B. Optimality

In terms of 3D Fourier transform, the image content we are interested in all lie outside of the double cone shown
in Figure 3. The slope of the cone is determined by Smo. To answer how this 3D Fourier transform is related to
the 2D PSFs we get for different object motion, we can resort to the Fourier Slice Theorem.

The Fourier transform of a PSF for a dot moving with velocity (sx, sy) is a 2D slice - that passes through the
origin - of the Fourier transform of the camera trajectory. Therefore, we want the 3D Fourier transform of the
camera trajectory to be a super-set of the 3D Fourier transform we showed in Figure 3.

The 2D Fourier slice that corresponds to a dot moving with velocity (sx, sy) can be derived as the following:
Let’s denote the camera trajectory as f(x, y, t), and the Fourier transform of f as F . When the object in the scene
moves at speed (sx, sy), the PSF becomes:

φ(sx,sy)(x, y) =
∫

f(x− sxt, y − syt, t)dt (6)

Now, the Fourier transform of φ(sx,sy)(x, y) can be computed from the following:

Φ(sx,sy)(wx, wy) =
∫

φ(sx,sy)(x, y) exp(−j(wxx + wyy))dxdy

=
∫

f(x− sxt, y − syt, t) exp(−j(wxx + wyy))dtdxdy

=
∫

f(x′, y′, t) exp(−j(wxx′ + wyy
′ + (wxsx + wysy)t))dtdx′dy′

= F (wx, wy, wxsx + wysy)

(7)

Therefore, the FT of φ(sx,sy)(x, y) is a slice along F (wx, wy, wxsx + wysy). In other words, as the x-directional
speed changes, the slice rotates about wy axis, and as the y-directional speed changes, the slice rotates about wx

axis.
We can follow the conservation of energy argument in the motion invariant photography paper to show that the

optimal fall-off in the 2D wx −wy slice of the 3D power spectrum of the 3D space-time camera trajectory should
be proportional to T

2Sms

√
w2

x+w2
y

. Notice that this spectrum has the same shape as in Figure 3! We can show that

if Sms → ∞, the random camera in expectation achieves the optimal fall-off, regardless of Ns, the number of
segments during the integration time.

To show this, we consider a 2D version of the problem with the space-time trajectory shown in Figure 4. The
black lines denote the camera trajectory, and the red blocks denote the projected trajectory (i.e. the 1D PSF.) The
slope of each black lines is the speed of the camera, and the width of the PSF that corresponds to this black line
is a function of that speed. For a trajectory with infinite speed, the black line would be horizontal.

We can show that the width l of the projected box filter is Sseg
T
Ns

, where Sseg is the speed within the segment,
by noting that the length of the time segment is fixed to T

Ns
, and Sseg = tan(φ) = l

T

Ns

. The PSF is just a sum of
all the projected box filters with corresponding lengths:

k(x) =
∑

i

bi(x) (8)

where bi(x) is a box filter that corresponds to the projection of ith segment. The power spectrum of k can be
shown to be:

‖K(wx)‖2 =
∑

i

‖Bi(wx)‖2 +
∑

i6=j

B∗
i (wx)Bj(wx) (9)

where Bi(wx) is the Fourier transform of bi(x), and ∗ is a complex conjugate.
∑

i6=j B∗
i (wx)Bj(wx) manifests

itself as a constructive/destructive addition of spectrum to
∑

i ‖Bi(wx)‖2 depending on the phase between B∗
i (wx)

and Bj(wx).
Since the camera speed within each segment is randomly selected within the green velocity cover in Figure 1,

we want to compute the expected power spectrum of the kernel with respect to the segment speed. The expected
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Fig. 4. 2D space-time trajectory of a random camera, and the projected PSF (shown by red blocks.)

power spectrum of k is:

Es[‖K(wx)‖2] = Es[
∑

i

‖Bi(wx)‖2 +
∑

i6=j

B∗
i (wx)Bj(wx)]

=
∑

i

Es[‖Bi(wx)‖2] + Es[
∑

i6=j

B∗
i (wx)Bj(wx)]

(10)

Since each segments are made statistically independent by randomly choosing velocities for each segment as
well as the starting position of each segment,

Es[
∑

i6=j

B∗
i (wx)Bj(wx)] =

∑

i 6=j

Es[B∗
i (wx)]Es[Bj(wx)] = µ(wx)2 (11)

If the kernel has a large support, µ(wx) ≈ δ(wx) and does not affect the spectrum at high frequencies.
To compute Es[‖Bi(wx)‖2], note that a box filter in the spatial domain is a sinc in the frequency domain.

Therefore, the expected power spectrum of individual segment (assuming that a uniform probability distribution on
s) becomes:

Es[‖Bi(wx)‖2] =
(

1
2Sms

∫ Sms

−Sms

ε2sinc2(εswx)ds

)
(12)

where ε = T
Ns

. Therefore,
∑

i Es[‖Bi(wx)‖2] becomes:

∑

i

Es[‖Bi(wx)‖2] =
T

ε

(
1

2Sms

∫ Sms

−Sms

ε2sinc2(εswx)ds

)
(13)

As we let Sms increase indefinitely,
∑

i Es[‖Bi(wx)‖2] approaches T
2Smswx

, independent of ε. In other words, if∑
i6=j Es[B∗

i (wx)Bj(wx)] is sufficiently small for all frequencies (except for wx = 0), the power spectrum of the
random camera falls off proportional to T

2Smswx
as Sms → ∞. We can extend this result to the 3D space-time

trajectory as well to show that the wx − wy slice of the random camera’s 3D spectrum falls off proportional to
T

2Sms

√
w2

x+w2
y

.

For practical reasons, Sms cannot be made ∞, so we want to see how Es[‖K(wx)‖2] behaves with finite Sms.
We can in fact analytically compute Es[‖K(wx)‖2] with finite Sms:

Es[‖K(wx)‖2] =
Tε

S2
msε

2π2w2
x

(
−0.5 + 0.5 cos(2πεSmswx) + (πεSmswx)

∫ 2πεSmswx

0

sin(x)
x

dx

)
(14)
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Fig. 5. The green curve at the top is the upper bound derived for Sms →∞, and the curves at the bottom correspond to Es[‖K(wx)‖2]
for different ε.
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121.123 121

61

(a)

Fig. 6. 121 motions considered in this report. The numbers on the vx − vy axis denote the motion numbers: motion 1 denotes a very
fast diagonal object movement, motion 61 denotes a static object movement etc... For each horizontal speed, there are 11 different vertical
speeds, and vice versa.

To see how Es[‖K(wx)‖2] with finite Sms behaves with finite number of velocity samples, we set Sms to be the
value used in the experiments, and vary ε. We increase ε in T

Ns
steps, where Ns = 20, and compute Es[‖K(wx)‖2].

The computed spectrum is plotted in Figure 5. The green curve at the top is 1
wx

for Sms → ∞, and the curves
at the bottom correspond to Sms

T Es[‖K(wx)‖2] for different ε. One thing to notice is that as we decrease ε (i.e.
increase the number of segments) the spectrum approximates 1

wx
bound better. In other words, with finite Sms, the

number of random segments within the integration time does matter, and to approach the spectrum proportional to
1

wx
we need to increase the number of random segments within the integration time as much as possible. As we

increase Sms we need less number of segments to approach the spectrum proportional to 1
wx

, but then we would
be spreading the spectrum for larger set of velocities, which is undesirable.

Until now we only considered a PSF of a static object. In the case of a moving object, as long as the maximum
sensor velocity (Sms) is large enough to make the effective velocity contribution from the object irrelevant, the
above results still hold.

In short, there are two important parameters for a random camera: Sms and Ns. We will have to search over
these parameters to find a practical camera.
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C. The weighted reconstruction error and the log determinants

In this section, we show the weighted reconstruction error, the estimation error and the log determinants of a
random camera for different object motions. In the earlier section, we showed that the reconstruction error can be
computed with the following relationship:

Ex,n

[‖x̂− x‖2
]

=
1
N

∑
wx,wy

η2

‖K(wx, wy)‖2 + η2Σ−1(wx, wy)
(15)

Because we assumed the Gaussian image prior when deriving Eq.(15), the reconstruction error measure favors
kernels with large low-frequency Fourier coefficients. However, we are more interested in favoring kernels that can
capture high frequency contents (we are interested in capturing edges!). Therefore, we modify the reconstruction
error term by adding a weight that’s proportional to the frequency:

Ex,n [‖x̂− x‖] =

√√√√ 1
N

∑
wx,wy

(√
w2

x + w2
y

) η2

‖K(wx, wy)‖2 + η2Σ−1(wx, wy)
(16)

We consider 121 different motions, each numbered as in Figure 6. For each horizontal speed, there are 11 different
vertical speeds, and vice versa. We fix Ns to be 50, Sms = 2 × Smo, and sample 5 different camera movements
(i.e. 5 different sets of velocities to be covered.) We plot the weighted reconstruction error and the log determinant
of the kernels corresponding to different motions in Figure 7(a, d).

One thing to notice is that the weighted reconstruction error plots for 5 different camera movement samples
are quite flat. Also, as we expect, the log determinant plots are quite flat as well. We compared the weighted
reconstruction error and the log determinants with that of a static camera and a vertical parabolic camera, shown in
Figure 7(b, c, e, f). Note the scale difference. The variation of these measures in a static camera is much larger than
that of a random camera: while the weighted reconstruction error performance is extremely good for a static object
(motion 61), the performance degrades quickly for other motions, especially fast ones. Also, the variation of these
measures in a parabolic camera is greater than that of random cameras. When the parabolic camera movement is
aligned with the object movement, the parabolic camera does a great job capturing the image content, but when
the camera and the object movements are not aligned, the performance degrades.

Interestingly, the parabolic camera does quite well even if is not aligned with the object motion. In fact, when we
look at the Fourier spectrum of a PSF when the camera is not aligned with the motion, the zero trench of the PSF’s
spectrum is not completely zero, and there’s spectrum spillage into the wedge that helps in reconstructing those
frequencies. Also, the angle of the wedge is less than 45o even when the object moves at its maximum orthogonal
speed so the spectrum loss is quite small. On the other hand, the zeros in the spectrum of random cameras degrade
the weighted reconstruction performance more than we expected. We show later that the correct PSF estimation
with parabolic cameras is extremely hard, and the overall performance is better with the random camera. If we take
the average spectrum of multiple random kernels (to approximate the expectation), the weighted reconstruction is
better with the random camera than with the single parabolic camera.

We want to see how flat the log determinant of a random camera is compared with its estimation error. If the
variation of the log determinant is significantly smaller than that of the estimation error, we may be able to estimate
the PSF using only the estimation error. Figure 8 shows the estimation error, the log determinant, and the sum of
the two for 3 different object motions. We can immediately see that the variation in the log determinant term is
insignificant compared to the variation in the estimation error term. This suggests that the PSF estimation could be
done solely with the estimation error term.
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Fig. 7. (a) Weighted reconstruction errors of a random camera when Ns = 50. (b) The weighted reconstruction error of a static camera.
(c) The weighted reconstruction error of a vertical parabolic camera. (d) Log determinants of a random camera when Ns = 50. (e) The
log determinants of a static camera. (f) The log determinants of a vertical parabolic camera. Note the scale difference in these plots.
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Fig. 8. (a) The estimation error, the log determinant, and the sum of the two for a very fast diagonal object motion (motion 1.) (b) The
estimation error, the log determinant, and the sum of the two for a slow horizontal object motion (motion 55.) (c) The estimation error, the
log determinant, and the sum of the two for a diagonal object motion (motion 99.) (d) The log determinant normalized to fit [0,1] scale and
rearranged to a 11 x 11 motion grid. (e) The estimation error in (b) normalized to fit [0,1] scale and rearranged to a 11 x 11 motion grid.
(f) The sum of unnormalized log determinant and the estimation error in (b) normalized and rearranged to a 11 x 11 motion grid.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Top row: the PSF of the random camera for motion 1 (very fast diagonal) when (a) Sms = 1.2× Smo, (b) Sms = 1.5× Smo,
(c) Sms = 2× Smo, (d) Sms = 3× Smo. Bottom row: the log spectrum of the kernels in the top row.
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Fig. 10. Top row: The weighted reconstruction error of the random camera when (a) Sms = 1.2 × Smo, (b) Sms = 1.5 × Smo,
(c) Sms = 2 × Smo, (d) Sms = 3 × Smo. Bottom row: the log determinant of the random camera when (e) Sms = 1.2 × Smo, (f)
Sms = 1.5× Smo, (g) Sms = 2× Smo, (h) Sms = 3× Smo.

D. The performance dependence on Sms and Ns

In the previous section, we fixed Sms and Ns in computing the weighted reconstruction error and the log
determinant. In this section, we want to analyze how Sms and Ns affect the performance of a random camera. We
can anticipate that as we increase Sms, the “average” (over object motions) weighted reconstruction error will go up
(since the spectral power is shared among larger range of velocities), but the variation of the weighted reconstruction
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error among different object motions will decrease, especially for fast object motions. As we increase Ns, the
variation of the weighted reconstruction error among different object motions will decrease, and also the “average”
(over object motions) weighted reconstruction error will decrease. However, we cannot indefinitely increase Ns due
to lens blur, finite sensor resolution, physical implementation constraints etc...

1) Sweeping Sms: To verify the performance dependence on Sms, we vary the value of Sms and plot the weighted
reconstruction error and the log determinant. Again, for each Sms value we sampled 4 different camera movements.
Values of Sms considered are 1.2× Smo, 1.5× Smo, 2× Smo, and 3× Smo. We fix Ns to 50 in this section. The
noise variance is assumed to be 0.01. Figure 9 shows some random PSF’s and their respective log spectrums for
a fast diagonal object movement. The log spectrums all fall off proportional to the distance from the origin, and
have distinguishable zero structures.

It’s hard to quantify the characteristic just by looking at the log spectrums. So we plot the weighted recon-
struction error and the log determinants for the random camera in Figure 10. One evident feature in the weighted
reconstruction error is that as we increase Sms, the average weighted reconstruction error increases as well. The
variation in the weighted reconstruction error doesn’t seem to change much as we sweep Sms: the variation of the
weighted reconstruction error is more strongly affected by Ns once Sms sufficiently large. Another reason for the
minor effect of Sms is that each segments are all disconnected. The reason for increasing Sms is that the kernel
support (or the randomness in the kernel) does not get affected by the object movement. If the camera trace is all
disconnected, it’s more likely that the kernel support will be less affected by the object movement than the case
where the camera trace is all connected. We will explore this issue more in the later section.

2) Sweeping Ns: To verify the performance dependence on Ns, we vary the value of Ns and plot the weighted
reconstruction error and the log determinant. Again, for each Ns value we sampled 5 different camera movements.
Values of Ns considered are 10, 30, 50, and 70. We fix Sms to 2 × Smo in this section. The noise variance is
assumed to be 0.01. Figure 11 shows some random PSF’s and their respective log spectrums for a fast diagonal
object movement. When Ns is small, we can observe the elongated directional structure in the spectrum, and the
zero structures are quite large. As we increase Ns, the elongated structure in the spectrum disappears, and the zero
structures become much finer since more segments interact to give constructive/destructive phase coherence.

The weighted reconstruction error and the log determinant plots as we sweep Ns are shown in Figure 12. As
we increase Ns, the variation in the weighted reconstruction error and the log determinants becomes smaller,
but the average value of the weighted reconstruction error slightly increases. While this increase in the weighted
reconstruction error is somewhat unexpected, it can be attributed to finer zeros in the spectrum.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Top row: the PSF of the random camera for motion 1 (very fast diagonal) when (a) Ns = 10, (b) Ns = 30, (c) Ns = 50, (d)
Ns = 70. Bottom row: the log spectrum of the kernels in the top row.
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Fig. 12. Top row: the weighted reconstruction error of the random camera when (a) Ns = 10, (b) Ns = 30, (c) Ns = 50, (d) Ns = 70.
Bottom row: the log determinant of the random camera when when (e) Ns = 10, (f) Ns = 30, (g) Ns = 50, (h) Ns = 70.
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(a) (b)

Fig. 13. Red signifies a high value, and blue signifies a low value. (a) A confusion matrix using the estimation error measure. (b) A
confusion matrix using the log likelihood measure

E. Identifying the PSF from the input image

The analysis from the previous section taught us that it’s reasonable to make Sms = 2×Smo, and make Ns = 50.
We will now examine how this parameter setting performs in estimating the PSF from the input image. We use
both the full log likelihood Eq.(3) and the estimation error Eq.(4) to estimate the PSF. We consider two scenarios
in the PSF estimation: the whole image has been blurred with the same kernel; different parts of the image have
been blurred with different blur kernels.

1) PSF estimation using the whole image: We estimate the PSF assuming a single blur kernel across the whole
image. 1% noise was added to all blurred images. The image size is in the range of 600 x 800 for the next two
examples. The PSF estimation using the entire image is an easier problem than trying to estimate the PSF using
local patches since we have more data samples to average over. We will explore the PSF estimation using local
patches in the next section.

In this setup, we get 100% PSF estimation performance using both the estimation error based measure and the
full log likelihood based measure. We plot the confusion matrices for the estimation error based classification and
the log likelihood based classification in Figure 13. The confusion matrix is row-wise normalized. The confusion
matrix is 121 x 121, and the (i, j) entry is the score given to the hypothesis that the image originally blurred with
ith kernel is identified as being blurred with jth kernel. Higher score means that the algorithm thinks it’s more
likely. Some slices of these confusion matrices appeared in Figure 8. As you can see from Figure 8, the estimation
error alone gets the PSF estimation correct!

2) PSF estimation using local patches: In this paragraph, we consider the PSF estimation using small localized
neighborhoods. This allows us to detect different motions within the same image. The resolution of the estimated
layer can be increased by reducing the size of the neighborhood (i.e. the patch size), but we cannot indefinitely
decrease the patch size because we need enough data samples to make the decisions. Therefore, we set the patch
size to be 41 x 41. 1% noise was added to all blurred images.

We use both the estimation based measure and the full log likelihood based measure to locally estimate the PSF
in two images. Each image was blurred with the same kernel across the whole image. For each blurry image, we
compare the reconstructed image with that of the static camera and the parabolic camera.

There are a few points to make in this section. First, the quality of the reconstructed image knowing the correct
PSF using a random camera (Figure 14(d), Figure 17(d)) is much better than that of a static camera (Figure 15(d),
Figure 18(d)) and similar to a parabolic camera (Figure 16(d), Figure 19(d)). This was expected from the weighted
reconstruction error. Secondly, the PSF estimation performance of the random camera also surpasses that of the
static camera and the parabolic camera. With the random camera, the estimation error is enough to accurately
estimate the blur kernel (Figure 14(b)), but the estimation error always favors a no motion explanation in the static
camera (Figure 15(e)). Log determinant does help in estimating the PSF for the static camera case, but even with
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the log determinant, the blur kernel estimation performance (Figure 15(f)) is worse than that of a random camera
(Figure 15(c)). Interestingly, for the static camera, the log likelihood based measure still cannot distinguish two
motions moving at the same velocity, but in different directions. Such misclassification does not result in artifacts,
though, since the blur kernel looks the same in those two cases.

With the parabolic camera, the PSF estimation pretty much does not work. One of the reasons for this failure
is that there is too much ambiguity among kernels in the same directions. Another type of ambiguity comes from
kernels that corresponds to different orthogonal speeds. When there’s no orthogonal movement (say y directional
movement) in the object, there isn’t any zero trench in the wy axis, and the Fourier transform will have a long
elongated structure in the wy axis. When there’s a y-directional movement, however, you will see a zero trench in
the wy axis, and the ambiguity comes from the fact that the kernel without zero trench is always a superset of a
kernel with the zero trench in the wy axis, and the ambiguity among them can only be resolved through the log
determinant term. In other words, the solutions lie on the same subspace in the case of parabolic cameras that it’s
hard to separate them out.

One downside of a random camera is that when the PSF estimation is wrong, the reconstructed image contains
visible boundaries. The main reason for such visible boundaries is that the center point of a blur kernel drifts as the
object motion changes. In other words, the kernel is not symmetric about the origin. This is different from a static
camera since the center point of all blur kernels is the same. In order to reduce such artifacts, we may have to
apply a graph-cut based blur layer smoothing to reduce the kernel estimation error before generating the deblurred
image.
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(a) (b) (c)

(d) (e) (f)

Fig. 14. (a) Input blurry image taken with a random camera when the object motion is 45. (b) Estimated kernel using the estimation error
based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using the log likelihood
error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (d) Deblurred image with the correct
kernel. (e) Deblurred image using the estimation error based measure generated by taking pixels from the corresponding deblurred image.
(f) Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred image.

(a) (b) (c)

(d) (e) (f)

Fig. 15. (a) Input blurry image taken with a static camera when the object motion is 45. (b) Estimated kernel using the estimation error
based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using the log likelihood
error based measure. The correct kernel is light blue, and the zero motion explanation is light green. The kernel that corresponds to the
same speed, but in the opposite direction is yellow. (d) Deblurred image with the correct kernel. (e) Deblurred image using the estimation
error based measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log likelihood based
measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 16. (a) Input blurry image taken with a vertical parabolic camera when the object motion is 45. (b) Estimated kernel using the
estimation error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using
the log likelihood error based measure. The correct kernel is light blue, and the zero motion explanation is light green. The kernel that
corresponds to the same speed, but in the opposite direction is yellow. (d) Deblurred image with the correct kernel. (e) Deblurred image
using the estimation error based measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the
log likelihood based measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 17. (a) Input blurry image taken with a random camera when the object motion is 103. (b) Estimated kernel using the estimation error
based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using the log likelihood
error based measure. The correct kernel is light red, and the zero motion explanation is light green. (d) Deblurred image with the correct
kernel. (e) Deblurred image using the estimation error based measure generated by taking pixels from the corresponding deblurred image.
(f) Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred image.

(a) (b) (c)

(d) (e) (f)

Fig. 18. (a) Input blurry image taken with a static camera when the object motion is 103. (b) Estimated kernel using the estimation error
based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using the log likelihood
error based measure. The correct kernel is light red, and the zero motion explanation is light green. The kernel that corresponds to the same
speed, but in the opposite direction is blue. (d) Deblurred image with the correct kernel. (e) Deblurred image using the estimation error based
measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log likelihood based measure
generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 19. (a) Input blurry image taken with a vertical parabolic camera when the object motion is 103. (b) Estimated kernel using the
estimation error based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using
the log likelihood error based measure. The correct kernel is light red, and the zero motion explanation is light green. The kernel that
corresponds to the same speed, but in the opposite direction is blue. (d) Deblurred image with the correct kernel. (e) Deblurred image using
the estimation error based measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log
likelihood based measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 20. (a) Input blurry image taken with a random camera when the object motion is 45. (b) Estimated kernel using the estimation error
based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using the log likelihood
error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (d) Deblurred image with the correct
kernel. (e) Deblurred image using the estimation error based measure generated by taking pixels from the corresponding deblurred image.
(f) Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred image.

(a) (b) (c)

(d) (e) (f)

Fig. 21. (a) Input blurry image taken with a static camera when the object motion is 45. (b) Estimated kernel using the estimation error
based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using the log likelihood
error based measure. The correct kernel is light blue, and the zero motion explanation is light green. The kernel that corresponds to the
same speed, but in the opposite direction is yellow. (d) Deblurred image with the correct kernel. (e) Deblurred image using the estimation
error based measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log likelihood based
measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 22. (a) Input blurry image taken with a vertical parabolic camera when the object motion is 45. (b) Estimated kernel using the
estimation error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using
the log likelihood error based measure. The correct kernel is light blue, and the zero motion explanation is light green. The kernel that
corresponds to the same speed, but in the opposite direction is yellow. (d) Deblurred image with the correct kernel. (e) Deblurred image
using the estimation error based measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the
log likelihood based measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 23. (a) Input blurry image taken with a random camera when the object motion is 103. (b) Estimated kernel using the estimation error
based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using the log likelihood
error based measure. The correct kernel is light red, and the zero motion explanation is light green. (d) Deblurred image with the correct
kernel. (e) Deblurred image using the estimation error based measure generated by taking pixels from the corresponding deblurred image.
(f) Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred image.

(a) (b) (c)

(d) (e) (f)

Fig. 24. (a) Input blurry image taken with a static camera when the object motion is 103. (b) Estimated kernel using the estimation error
based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using the log likelihood
error based measure. The correct kernel is light red, and the zero motion explanation is light green. The kernel that corresponds to the same
speed, but in the opposite direction is blue. (d) Deblurred image with the correct kernel. (e) Deblurred image using the estimation error based
measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log likelihood based measure
generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 25. (a) Input blurry image taken with a vertical parabolic camera when the object motion is 103. (b) Estimated kernel using the
estimation error based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using
the log likelihood error based measure. The correct kernel is light red, and the zero motion explanation is light green. The kernel that
corresponds to the same speed, but in the opposite direction is blue. (d) Deblurred image with the correct kernel. (e) Deblurred image using
the estimation error based measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log
likelihood based measure generated by taking pixels from the corresponding deblurred image.
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Fig. 26. Velocities covered by the proposed cameras. (a) The random dot camera At the start of each segment, the camera randomly
chooses a point in the velocity space within the green circle, and moves with that velocity. (b) The random trace camera At the start of
each segment, the camera randomly chooses a point in the velocity space within the green circle, and moves at a velocity determined by
linking velocity chosen in the previous random draw and the current draw. (c) The random parabolic camera. At the start of each segment,
the camera randomly chooses a velocity within the green cover, and randomly chooses another velocity along the line through the center.
The camera moves at a velocity determined by linking those two velocity points. (d) The spiral camera. The camera traces the velocity
space in a spiral fashion.

IV. PRACTICAL CAMERA DESIGN

Until now we have evaluated the performance of a rather unrealistic camera that can “hop” - with zero time loss
- to generate disconnected camera traces. This is equivalent to arguing that we allow the camera to have a flutter
shutter on top of a random “Brownian” motion, and allow more time budget to make up for the time lost during
the closed shutter. In this section, we consider more realistic camera designs by assuming that such “hopping”
is not allowed, and the camera trace should be continuous. Although this violates the assumption in Eq.(11) that
each trace segments are statistically uncorrelated, we show that the performance degradation from violating such
an assumption is minimal.

We consider four new cameras, three of which are random in nature: a random dot camera, a random trace camera,
and a random parabolic camera, and one of which is deterministic: spiral camera. These names are attributed to
the way they cover the velocity space.

A. Camera definitions

Cameras we analyze differ in the way they cover the velocity space. Ideally we want to move the camera in
such a way that we will cover the entire velocity space equally. Given a finite time budget and physical constraints,
we choose to cover the velocity space with only a small number of velocity samples. Now, the camera design
problem becomes how to sample the velocity space dense enough such that ∀vx, vy, there exists v̂x, v̂y sampled by
the camera within a ball size of ε centered at vx, vy. If ε is small, the reconstruction error will be small as well.

As in the previous section, we break the integration period into Ns segments, and move with a randomly chosen
velocity within each time segments. The random dot camera moves with a constant velocity within each time
segment (Figure 26(a)). Unlike the random camera considered in Sec. III, every segment starts at the location the
previous segment ended. The random trace camera moves at a speed determined by connecting two random points
in the velocity space during each time segment (Figure 26(b)). The random parabolic camera moves at a speed
determined by choosing a random point in the velocity space and extending a line through the center during each
time segment (Figure 26(c)). The spiral camera moves at a speed determined by covering the velocity space with
an Archimedes spiral (Figure 26(d) - note that this spiral is NOT an Archimedes spiral). An Archimedes spiral can
be parametrized by (x, y) = (tcos(t), tsin(t)).

We choose an Archimedes spiral because the distance between two consecutive layers is always fixed, resulting
in small maximum ε at all velocities. Unfortunately, as t increases, the camera spends “less” time at each velocity
since it has to encircle roughly 2πt of circumference within 2π of time - the period of the cosine and sine. In other
words, the spiral spends more time on small velocities and less on large velocities.
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Now, for simulation, instead of linearly changing t, we can non-linearly change t such that the length of the spiral
stays the same within each non-linearly sampled time interval. This is quite hard, however, because the length of
the spiral is a nonlinear function of t:

s(t) =
1
2

{
t
√

1 + t2 + ln
(
t +

√
1 + t2

)}
(17)

What we want is s(t + ∆t)− s(t) = const, and this is hard to solve analytically. Rather than exactly solving for
∆t in s(t + ∆t)− s(t) = const, we Taylor-expand s(t) and get

∆s(t) ≈ ∆t +
1
6

(
(t + ∆t)3 − t3

)

=
1
6

(
(∆t)3 + 3t(∆t)2 + 3t2∆t + 6∆t

) (18)

If ∆t → 0, we can ignore (∆t)3:

∆t ≈
√

(3t2 + 6)2 + 18∆st− (3t2 + 6)
6t

(19)

where ∆s is the constant length of the spiral. We can now trace the velocity space roughly equally at all velocities
using this t parametrization. Since that’s still an approximation, we will see some variation in the weighted
reconstruction error when using the spiral camera.

We can immediately analyze the performance of these cameras: the random trace camera will do slightly
better than the random dot camera, especially when Ns is small, because it covers more velocities; the weighted
reconstruction error in the random parabolic camera will favor small velocities since each velocity segments are
directed towards the center, covering more “small” motions (i.e. ε for small vx, vy will be smaller than that of
large vx, vy); the spiral camera expects to do well in terms of weighted reconstruction error, but the PSF estimation
performance is expected to be poor since blur kernels can be expected to be quite similar as the object motion
changes. We address these issues experimentally in the next few sections. We fix Sms = 2× Smo, Ns = 50 in all
experiments shown in this section.

B. The PSF and the spectrum

In this section, we show some PSFs and their log spectrums for the random dot camera, the random trace camera,
the random parabolic camera, and the spiral camera.
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(a) (b) (c)

(d) (e) (f)

Fig. 27. Top row: the PSF of the random dot camera with object motion 1 (very fast diagonal), 26 (moderate diagonal), 61 (static),
respectively. Bottom row: the log spectrum of the random dot camera with object motion 1 (very fast diagonal), 26 (moderate diagonal), 61
(static), respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 28. Top row: the PSF of the random trace camera with object motion 1 (very fast diagonal), 26 (moderate diagonal), 61 (static),
respectively. Bottom row: the log spectrum of the random trace camera with object motion 1 (very fast diagonal), 26 (moderate diagonal),
61 (static), respectively.
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(a) (b) (c)

(d) (e) (f)

Fig. 29. Top row: the PSF of the random parabolic camera with object motion 1 (very fast diagonal), 26 (moderate diagonal), 61 (static),
respectively. Bottom row: the log spectrum of the random trace camera with object motion 1 (very fast diagonal), 26 (moderate diagonal),
61 (static), respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 30. Top row: the PSF of the spiral camera with object motion 1 (very fast diagonal), 26 (moderate diagonal), 61 (static), respectively.
Bottom row: the log spectrum of the spiral camera with object motion 1 (very fast diagonal), 26 (moderate diagonal), 61 (static), respectively.
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Fig. 31. (a) Weighted reconstruction errors for a random dot camera. (b) Weighted reconstruction errors for a random trace camera.
(c) Weighted reconstruction errors for a random parabolic camera. (d) Weighted reconstruction errors for a spiral camera.
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Fig. 32. (a) Log determinants for a random dot camera. (b) Log determinants for a random trace camera. (c) Log determinants for a
random parabolic camera. (d) Log determinants for a spiral camera.

C. Weighted reconstruction error and the log determinants

We show the weighted reconstruction error and the log determinants for the proposed cameras in Figure 31 and
Figure 32, respectively. The weighted reconstruction errors for a random dot camera (Figure 31) has more variations
than the disconnected counterpart, but on average the weighted reconstruction error is a bit better than that of the
disconnected counterpart. The correlation term in Eq.(15) should be helping the weighted reconstruction error. The
maximum weighted reconstruction error is smaller than the maximum error of the parabolic camera.

The variation in the weighted reconstruction is less with a random trace camera, and its performance is also
better than that of a disconnected random dot camera. The reduced variation can be attributed to the fact that we
cover more velocities within the integration time. As expected, the random parabolic camera favors small motions
and achieves a very small error near (in 2D distance in the motion matrix) motion 61. However, the variation in
the weighted reconstruction error is much larger than the random dot camera and the random trace camera. The
weighted reconstruction error for the spiral camera is somewhat large as well. The approximation may not be
accurate, and another form of spiral may seem to be tried. However, the spiral camera doesn’t do well in terms of
PSF estimation either, as we show later, and thus it seems justifiable to reject the spiral camera anyhow.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 33. Top row: the PSF of the random camera for motion 1 (very fast diagonal) when (a) Sms = 1.5 × Smo, (b) Sms = 2 × Smo,
(c) Sms = 3× Smo, (d) Sms = 4× Smo, (3) Sms = 5× Smo. Bottom row: the log spectrum of the kernels in the top row.
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Fig. 34. Top row: The weighted reconstruction error of the random camera when (a) Sms = 1.5 × Smo, (b) Sms = 2 × Smo,
(c) Sms = 3 × Smo, (d) Sms = 4 × Smo, (e) Sms = 5 × Smo. Bottom row: the log determinant of the random camera when (f)
Sms = 1.5× Smo, (g) Sms = 2× Smo, (h) Sms = 3× Smo, (i) Sms = 4× Smo, (j) Sms = 5× Smo.

D. Varying Sms and Ns in the random trace camera

In the previous section, we fixed Sms and Ns in computing the weighted reconstruction error and the log
determinant. In this section, we want to analyze how Sms and Ns affect the performance of a random trace camera.
As with the random camera with disconnected paths, we can anticipate that as we increase Sms, the “average”
(over object motions) weighted reconstruction error will increase (since the spectral power is shared among larger
range of velocities), but the variation of the weighted reconstruction error among different object motions will
decrease, especially for fast object motions. As we increase Ns, the variation of the weighted reconstruction error
among different object motions will decrease, and also the “average” (over object motions) weighted reconstruction
error will decrease. However, we cannot indefinitely increase Ns due to lens blur, finite sensor resolution, physical
implementation constraints etc...

1) Sweeping Sms: To verify the performance dependence on Sms, we vary the value of Sms and plot the weighted
reconstruction error and the log determinant. Again, for each Sms value we sampled 5 different camera movements.
Values of Sms considered are 1.5 × Smo, 2 × Smo, 3 × Smo, and 4 × Smo and 5 × Smo. We fix Ns to 50 in this
section. The noise level was 0.01 in this experiment. Figure 33 shows some random PSF’s and their respective log
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 35. Top row: the PSF of the random trace camera for motion 1 (very fast diagonal) when (a) Ns = 10, (b) Ns = 30, (c) Ns = 50,
(d) Ns = 70. Bottom row: the log spectrum of the kernels in the top row.
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Fig. 36. Top row: the weighted reconstruction error of the random trace camera when (a) Ns = 10, (b) Ns = 30, (c) Ns = 50, (d)
Ns = 70. Bottom row: the log determinant of the random camera when when (e) Ns = 10, (f) Ns = 30, (g) Ns = 50, (h) Ns = 70.

spectrums for a fast diagonal object movement. The log spectrums all fall off proportional to the distance from the
origin, and have distinguishable zero structures.

It’s hard to quantify the characteristic just by looking at the log spectrums. So we plot the weighted reconstruction
error and the log determinants for the random trace camera in Figure 34. One evident feature in the weighted
reconstruction error is that as we increase Sms, the average weighted reconstruction error increases as well. Unlike
the random dot camera with disconnected paths, the random trace camera is more severely affected by Sms: at
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TABLE I
KERNEL SELECTION ACCURACY AT η = 0.01

Camera type % of correct selections
Est. Err. based Log Like. based

Random dot camera 121 / 121 121 / 121
Random trace camera 121 / 121 121 / 121

Random parabolic camera 113 / 121 121 / 121
Spiral camera 68 / 121 121 / 121

Sms ≈ 1.5 × Smo, the variation in the weighted reconstruction error is quite large, although Sms = 1.5 × Smo

was large enough for the random dot camera with disconnected paths. One reason for this observation is that it’s
harder to overcome the elongated shape of the kernel generated by the object motion when the camera traces are
connected. The reason for increasing Sms is that the kernel support (or the randomness in the kernel) does not
get affected by the object movement. If the camera trace is all connected, it’s harder to make the kernel to be
unbiased to the object movement, as you can see from Figure 33. From the graphs, we see that the variation of
the reweighted reconstruction is tolerable once Sms ≈ 2× Smo.

2) Sweeping Ns: To verify the performance dependence on Ns, we vary the value of Ns and plot the weighted
reconstruction error and the log determinant. Again, for each Ns value we sampled 5 different camera movements.
Values of Ns considered are 10, 30, 50, and 70. We fix Sms to 2× Smo in this section. The noise level was 0.01
in this experiment. Figure 35 shows some random PSF’s and their respective log spectrums for a fast diagonal
object movement. When Ns is small, we can observe the elongated directional structure in the spectrum, and the
zero structures are quite large. As we increase Ns, the elongated structure in the spectrum disappears, and the zero
structures become much finer as well.

The weighted reconstruction error and the log determinant plots as we sweep Ns are shown in Figure 36. As we
increase Ns, the variation in the weighted reconstruction error and the log determinants becomes smaller, but the
average value of the weighted reconstruction error stays pretty much the same. From these results, we fix Ns = 50
and Sms = 2× Smo for the subsequent experiments.

E. Identifying the PSF from the input image

In this section, we estimate the object motion (i.e. the PSF) from the input blurry image. Again, we consider
both the whole image based and local patch based PSF estimation. 1% noise was added to all blurred images. The
whole image based PSF estimation is more stable because there are more observations.

1) PSF estimation using the whole image: The PSF estimation performance of each camera is summarized in
Table I. For images blurred with every 121 kernels in the pool, the algorithm chose the PSF - from a pool of 121
different kernels - that the algorithm believes was used in blurring the image. As expected, the estimation error
based measure works reasonable well in most cameras, and works perfectly for the random dot camera and the
random trace camera. The random parabolic camera does well, but is not perfect even given the whole image. The
possible PSF identification error could be from the fact that all velocity segments are directed towards/away from
the origin, and that may result in similar zeros for similar object motions. The estimation error based measure
doesn’t work too well with the spiral camera. This can be intuitively understood by noting that the PSF shape
doesn’t change much as the object motion varies slightly. Therefore the zeros in the spectrum are likely to lie at
similar locations for similar motions, leading to ambiguities. When the log determinant based measure is used, the
random parabolic camera, as well as the spiral camera correctly identify all kernels.

We plot the confusion matrices for the estimation error based classification and the log likelihood based classi-
fication in Figure 37. The confusion matrix is row-wise normalized. The confusion matrix is 121 x 121, and the
jth column of the ith row is the score given to the hypothesis that the image originally blurred with ith kernel is
identified as being blurred with jth kernel. Higher score means that the algorithm thinks it’s more likely. Ideally
we want to have a single dark red diagonal component and the rest dark blue. We can observe from the first row
of Figure 37 that the random dot camera and the random trace camera are very stable in estimating the correct
kernel from the estimation error based measure. What’s interesting is the spiral camera’s confusion matrix. The
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 37. Red signifies a high value, and blue signifies a low value. Top row: Confusion matrices for PSF identification using the estimation
error based measure (a) The random dot camera, (b) The random trace camera, (c) The random parabolic camera, (d) The spiral camera.
Bottom row: Confusion matrices for PSF identification using the log likelihood based measure (e) The random dot camera, (f) The random
trace camera, (g) The random parabolic camera, (h) The spiral camera.

spiral camera has a hard time discriminating the correct object motion from the the motion in the opposite direction
- note the two diagonal lines in the confusion matrix.

2) PSF estimation from local patches: In this section, we estimate the PSF from the image using local patches.
Our test set is two images, each blurred with two different PSFs, and our goal is to correctly identify the PSF that
blurred the two images from a pool of 121 blur kernels. For each test case, we test the random dot camera with
connected camera movement, the random trace camera, the random parabolic camera, and the spiral camera. The
previous section tells us that the random dot camera and the random trace camera will be better in estimating the
correct kernel than the other two cameras. The patch size is 41 x 41 in this experiment.

The PSF estimation results are shown in the subsequent pages. One thing to notice is that the PSF estimation
performance of these cameras is worse than that of the random dot camera with disconnected camera movement.
Using the log determinant does help in correctly identifying the kernels in these new cameras, but the estimation
performance is still not comparable to that of the random dot camera with disconnected paths. One way to explain
this observation is that by connecting different segments we are introducing regularities, making the kernel not
entirely random. We can reduce the regularity of connected paths by varying the length of each segment, but this
hasn’t been tried yet.

The misclassification usually occurs when there’s a change in the texture. We may be able to reduce small islands
of errors by using the graph-cut based motion layer smoothing, but such large error around the texture boundaries
is hard to reduce. We could increase the size of the neighborhood patch, but this hasn’t been tried yet.
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(a) (b) (c)

(d) (e) (f)

Fig. 38. (a) Input blurry image taken with a random dot camera when the object motion is 45. (b) Estimated kernel using the estimation
error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using the log
likelihood error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (d) Deblurred image with the
correct kernel. (e) Deblurred image using the estimation error based measure generated by taking pixels from the corresponding deblurred
image. (f) Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred image.

(a) (b) (c)

(d) (e) (f)

Fig. 39. (a) Input blurry image taken with a random trace camera when the object motion is 45. (b) Estimated kernel using the estimation
error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using the log
likelihood error based measure. The correct kernel is light blue, and the zero motion explanation is light green. The kernel that corresponds to
the same speed, but in the opposite direction is yellow. (d) Deblurred image with the correct kernel. (e) Deblurred image using the estimation
error based measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log likelihood based
measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 40. (a) Input blurry image taken with a random parabolic camera when the object motion is 45. (b) Estimated kernel using the
estimation error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using
the log likelihood error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (d) Deblurred image
with the correct kernel. (e) Deblurred image using the estimation error based measure generated by taking pixels from the corresponding
deblurred image. (f) Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred
image.

(a) (b) (c)

(d) (e) (f)

Fig. 41. (a) Input blurry image taken with a spiral camera when the object motion is 45. (b) Estimated kernel using the estimation error
based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using the log likelihood
error based measure. The correct kernel is light blue, and the zero motion explanation is light green. The kernel that corresponds to the
same speed, but in the opposite direction is yellow. (d) Deblurred image with the correct kernel. (e) Deblurred image using the estimation
error based measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log likelihood based
measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 42. (a) Input blurry image taken with a random dot camera when the object motion is 103. (b) Estimated kernel using the estimation
error based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using the log
likelihood error based measure. The correct kernel is light red, and the zero motion explanation is light green. (d) Deblurred image with the
correct kernel. (e) Deblurred image using the estimation error based measure generated by taking pixels from the corresponding deblurred
image. (f) Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred image.

(a) (b) (c)

(d) (e) (f)

Fig. 43. (a) Input blurry image taken with a random trace camera when the object motion is 103. (b) Estimated kernel using the
estimation error based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using
the log likelihood error based measure. The correct kernel is light red, and the zero motion explanation is light green. The kernel that
corresponds to the same speed, but in the opposite direction is blue. (d) Deblurred image with the correct kernel. (e) Deblurred image using
the estimation error based measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log
likelihood based measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 44. (a) Input blurry image taken with a random parabolic camera when the object motion is 103. (b) Estimated kernel using the
estimation error based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using
the log likelihood error based measure. The correct kernel is light red, and the zero motion explanation is light green. (d) Deblurred image
with the correct kernel. (e) Deblurred image using the estimation error based measure generated by taking pixels from the corresponding
deblurred image. (f) Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred
image.

(a) (b) (c)

(d) (e) (f)

Fig. 45. (a) Input blurry image taken with a spiral camera when the object motion is 103. (b) Estimated kernel using the estimation error
based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using the log likelihood
error based measure. The correct kernel is light red, and the zero motion explanation is light green. The kernel that corresponds to the same
speed, but in the opposite direction is blue. (d) Deblurred image with the correct kernel. (e) Deblurred image using the estimation error based
measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log likelihood based measure
generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 46. (a) Input blurry image taken with a random dot camera when the object motion is 45. (b) Estimated kernel using the estimation
error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using the log
likelihood error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (d) Deblurred image with the
correct kernel. (e) Deblurred image using the estimation error based measure generated by taking pixels from the corresponding deblurred
image. (f) Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred image.

(a) (b) (c)

(d) (e) (f)

Fig. 47. (a) Input blurry image taken with a random trace camera when the object motion is 45. (b) Estimated kernel using the estimation
error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using the log
likelihood error based measure. The correct kernel is light blue, and the zero motion explanation is light green. The kernel that corresponds to
the same speed, but in the opposite direction is yellow. (d) Deblurred image with the correct kernel. (e) Deblurred image using the estimation
error based measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log likelihood based
measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 48. (a) Input blurry image taken with a random parabolic camera when the object motion is 45. (b) Estimated kernel using the
estimation error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using
the log likelihood error based measure. The correct kernel is light blue, and the zero motion explanation is light green. (d) Deblurred image
with the correct kernel. (e) Deblurred image using the estimation error based measure generated by taking pixels from the corresponding
deblurred image. (f) Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred
image.

(a) (b) (c)

(d) (e) (f)

Fig. 49. (a) Input blurry image taken with a spiral camera when the object motion is 45. (b) Estimated kernel using the estimation error
based measure. The correct kernel is light blue, and the zero motion explanation is light green. (c) Estimated kernel using the log likelihood
error based measure. The correct kernel is light blue, and the zero motion explanation is light green. The kernel that corresponds to the
same speed, but in the opposite direction is yellow. (d) Deblurred image with the correct kernel. (e) Deblurred image using the estimation
error based measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log likelihood based
measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 50. (a) Input blurry image taken with a random dot camera when the object motion is 103. (b) Estimated kernel using the estimation
error based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using the log
likelihood error based measure. The correct kernel is light red, and the zero motion explanation is light green. (d) Deblurred image with the
correct kernel. (e) Deblurred image using the estimation error based measure generated by taking pixels from the corresponding deblurred
image. (f) Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred image.

(a) (b) (c)

(d) (e) (f)

Fig. 51. (a) Input blurry image taken with a random trace camera when the object motion is 103. (b) Estimated kernel using the
estimation error based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using
the log likelihood error based measure. The correct kernel is light red, and the zero motion explanation is light green. The kernel that
corresponds to the same speed, but in the opposite direction is blue. (d) Deblurred image with the correct kernel. (e) Deblurred image using
the estimation error based measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log
likelihood based measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

(d) (e) (f)

Fig. 52. (a) Input blurry image taken with a random parabolic camera when the object motion is 103. (b) Estimated kernel using the
estimation error based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using
the log likelihood error based measure. The correct kernel is light red, and the zero motion explanation is light green. (d) Deblurred image
with the correct kernel. (e) Deblurred image using the estimation error based measure generated by taking pixels from the corresponding
deblurred image. (f) Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred
image.

(a) (b) (c)

(d) (e) (f)

Fig. 53. (a) Input blurry image taken with a spiral camera when the object motion is 103. (b) Estimated kernel using the estimation error
based measure. The correct kernel is light red, and the zero motion explanation is light green. (c) Estimated kernel using the log likelihood
error based measure. The correct kernel is light red, and the zero motion explanation is light green. The kernel that corresponds to the same
speed, but in the opposite direction is blue. (d) Deblurred image with the correct kernel. (e) Deblurred image using the estimation error based
measure generated by taking pixels from the corresponding deblurred image. (f) Deblurred image using the log likelihood based measure
generated by taking pixels from the corresponding deblurred image.
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Fig. 54. (a) The trajectory of a horizontal camera (b) The trajectory of a vertical camera
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Fig. 55. The 3D Fourier transform of a horizontal parabolic camera. The dotted arrows are used to show that the spectrum is flat along
wx axis.

APPENDIX: TWO ORTHOGONALLY MOVING PARABOLIC CAMERAS

In this appendix, we analyze the performance of two orthogonally moving parabolic cameras, and compare it
with the random cameras. Since there are two cameras, we have halved the number of pixels in each camera to
appropriately normalize the performance.

F. Camera trajectories and the Fourier Transforms

In this note, we assume that the two parabolic cameras move in 3D space-time volume as shown in Figure 54.
The horizontal camera moves along the x axis at y = 0, and the vertical camera moves along the y axis at x = 0.
Let’s consider the 3D Fourier transform of a horizontal parabolic camera’s trajectory. Since y = 0, the Fourier
transform is flat along wy, and it’s parabolic in x− t axis so we get a wedged structure in the wx −wt axis. This
structure is shown in Figure 55. As was studied earlier, as the sx, the object velocity along the x axis, increases,
the slice of the resulting PSF rotates about wy axis through the origin. Such a slice will have a wedge along the
wy axis.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 56. (a) - (f) A slice of a log-FFT for the horizontal camera as we increase the horizontal velocity of the object. Note that the shape
of the Fourier spectrum does not change much (recall that this is the 1D case studied in Motion invariant photography.) (g) - (l) A slice of
a log-FFT for the horizontal camera as we increase the vertical velocity of the object. As the vertical velocity of the object increases, more
constent along the wy is lost, as expected.

To experimentally prove the theory, we took the Fourier transform of the 3D space-time trajectory of a horizontal
camera, and view the slices in Figure 56. Figure 56(a) - (f) show the slices of a log-FFT for the horizontal camera
as we increase the horizontal velocity of the object. Note that the shape of the Fourier spectrum does not change
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Fig. 57. (a) The weighted reconstruction error of a horizontal parabolic camera, a vertical parabolic camera, and two parabolic
cameras. Because each camera loses resolution due to less number of sensor elements, high frequency contents are severely lost, and the
weighted reconstruction error - which favors high frequencies - penalyzes that by a large amount. (b) The log determinant of a horizontal
parabolic camera, a vertical parabolic camera, and two parabolic cameras.

much (recall that this is the 1D case studied in Motion invariant photography.) Figure 56 (g) - (l) show slices of
a log-FFT for the horizontal camera as we increase the vertical velocity of the object. As the vertical velocity of
the object increases, more constent along the wy is lost, as expected.

From these slices, we can see the structure of the 3D Fourier transform (FT) of the trajectory: on the wx − wt

plane, the FT looks like the wedge structure - with 1
wx

fall-off in the wx direction - studied in Motion Invariant
Photography paper; on the wx−wy plane, the spectrum is virtually flat along the wy direction (this is because the
y position is an impulse in the spatial domain → the frequency content along wy is flat) modulus the Gaussian,
and the spectrum falls off with 1

wx
in the wx direction.

From the symmetry, we can also guess the structure of the 3D FT for the vertical motion camera. The 3D FT for
the vertical motion camera trajectory is the same as that of horizontal motion camera with the wx, wy axis swap.

When we use two orthogonally moving cameras to capture a 2D motion, we are approximating the inverted double
cone (Figure 3) with two wedged structures extending to infinity in each axis. When these wedged structures meet
near the origin, the resulting frequencies being covered becomes the two inverted pyramids: we are approximating
the inverted double cone with the inverted pyramid, and this is certainly not the optimum in distributing the signal
when we want to cover velocities only within Smo. However, one potential benefit in using two cameras is that
there isn’t any zeros in the spectrum induced by phase cancellations. Another benefit of using two cameras is that
we don’t need to rely on zeros to identify the correct blur kernel; instead we have the phase constraint between
two parabolic cameras, which is stronger than the constraints imposed by zeros.

G. The weighted reconstruction error and the log determinants

Figure 57 shows the weighted reconstruction error and the log determinants of a horizontal parabolic camera,
a vertical parabolic camera, and two parabolic cameras. Recall that each camera a resolution smaller than that
of a single parabolic camera. Reduced resolution implies that much of the high frequency contents are lost, and
the weighted reconstruction error, which favors high frequencies, penalyzes the lost high frequency more than the
normal reconstruction error. The two parabolic camera setup doesn’t perform as well as the random camera setup,
which achieves about 0.69 of average weighted reconstruction error.

The log determinants vary quite a bit as the object motion changes, and this is expected from the variation in
the weighted reconstruction error. Yet, as we show later, the variation in the log determinant is much less than the
estimation error, so we are still able to perform the PSF estimation using just the estimation error.

H. The PSF estimation from the input image

As in the random camera analysis, we consider both the whole image-based and the local patch based PSF
estimation. 1% noise was added to all blurred images.
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(a) (b)

Fig. 58. (a) A confusion matrix using the reconstruction error measure for the two parabolic cameras. (b) A confusion matrix using the
log likelihood measure for the two parabolic cameras.
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Fig. 59. Two parabolic cameras. (a) A slice of confusion matrices at motion 1 (very fast diagonal movement), along with the log det
term for each motion kernel. (b) A slice of confusion matrices at motion 55 (very slow horizontal movement), along with the log det term
for each motion kernel. (c) A slice of confusion matrices at motion 99 (very fast diagonal movement), along with the log det term for each
motion kernel.

1) A whole image based PSF estimation: Figure 58 shows the PSF confusion matrix when we use (a) the
estimation error based measure (b) the log likelihood based measure. The confusion matrix is row-wise normalized.
The confusion matrix is 121 x 121, and the jth column of the ith row is the score given to the hypothesis that the
image originally blurred with ith kernel is identified as being blurred with jth kernel. Higher score means that the
algorithm thinks it’s more likely.

The PSF estimation is perfect even with just the estimation error based measure. One salient feature in the
confusion matrix is that we get two prominent diagonal lines. This can be attributed to the fact that parabolic
cameras find it hard to discriminate two motions with same speed, but opposite directions (recall the motion
invariance.) Even if we use the log likelihood based measure, such ambiguity is hard to resolve. This attribute is
more evident when we look at the slices of the confusion matrix in Figure 59. The estimation error achieves sharp
minima at two motions that are of the same speed, but in different directions. When zoomed in, the estimation error
has a global minimum at the correct motion. Even if the PSF is misclassified to be the same speed but in different
motion, there wouldn’t be much visible artifact since the PSF is wrong only by the amount of tail clipping!

Another feature to note is that the variation in the estimation error is much larger than the variation of the log
determinant term. In other words, the log determinant term will play minimal role in estimating the correct object
motion, so the PSF estimation can be performed solely with the estimation error.

2) PSF estimation from local patches: In this section, we estimate the PSF from the image using local patches.
Our test set is two images, each blurred with the same PSF across the whole image, and our goal is to correctly
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identify the PSF that blurred the input images from a pool of 121 blur kernels. The patch size is 41 x 41 in this
experiment.

The PSF estimation results are shown in the subsequent pages. One thing to notice is that the two parabolic
cameras outperform other random cameras in estimating the correct PSF from local patches, even the random dot
camera with disconnected paths! This can be attributed to the phase constraint in the Fourier coefficients, as we
mentioned earlier.

The misclassified islands in the layers is much smaller than other random cameras, so we may be able to eliminate
most of the misclassified islands using the graph-cut algorithm. The log determinant term does help in correcting
some of the islands, and thus we should use the log determinant term when estimating the PSF in practice.

Another interesting, yet expected, result is that even if the PSF estimation is incorrect, the algorithm always opts
for the same speed in the opposite direction. This is expected from the confusion matrix and its slices. Therefore,
even if the PSF is misclassified, there isn’t any visible artifact at the output since the PSF is wrong only by the
amount of tail clipping!
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(a) (b) (c)

Fig. 60. Two parabolic cameras. (a) Input blurry image taken with a random dot camera when the object motion is 45. (b) Deblurred
image with the correct kernel.

(a) (b)

(c) (d)

Fig. 61. Two parabolic cameras. (a) Estimated kernel using the reconstruction error based measure. The correct kernel is light blue,
and the zero motion explanation is light green. (b) Estimated kernel using the log likelihood error based measure. The correct kernel is
light blue, and the zero motion explanation is light green. The kernel that corresponds to the same speed, but in the opposite direction
is yellow. (c) Deblurred image using the reconstruction error based measure generated by taking pixels from the corresponding deblurred
image. (d)Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

Fig. 62. Two parabolic cameras. (a) Input blurry image taken with a random dot camera when the object motion is 103. (b) Deblurred
image with the correct kernel.

(a) (b)

(c) (d)

Fig. 63. Two parabolic cameras. (a) Estimated kernel using the reconstruction error based measure. The correct kernel is light red, and
the zero motion explanation is light green. (b) Estimated kernel using the log likelihood error based measure. The correct kernel is light
red, and the zero motion explanation is light green. (c) Deblurred image using the reconstruction error based measure generated by taking
pixels from the corresponding deblurred image. (d)Deblurred image using the log likelihood based measure generated by taking pixels from
the corresponding deblurred image.
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(a) (b) (c)

Fig. 64. Two parabolic cameras. (a) Input blurry image taken with a random dot camera when the object motion is 45. (b) Deblurred
image with the correct kernel.

(a) (b)

(c) (d)

Fig. 65. Two parabolic cameras. (a) Estimated kernel using the reconstruction error based measure. The correct kernel is light blue,
and the zero motion explanation is light green. (b) Estimated kernel using the log likelihood error based measure. The correct kernel is
light blue, and the zero motion explanation is light green. The kernel that corresponds to the same speed, but in the opposite direction
is yellow. (c) Deblurred image using the reconstruction error based measure generated by taking pixels from the corresponding deblurred
image. (d)Deblurred image using the log likelihood based measure generated by taking pixels from the corresponding deblurred image.
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(a) (b) (c)

Fig. 66. Two parabolic cameras. (a) Input blurry image taken with a random dot camera when the object motion is 103. (b) Deblurred
image with the correct kernel.

(a) (b)

(c) (d)

Fig. 67. Two parabolic cameras. (a) Estimated kernel using the reconstruction error based measure. The correct kernel is light red, and the
zero motion explanation is light green. (b) Estimated kernel using the log likelihood error based measure. The correct kernel is light red, and
the zero motion explanation is light green. The kernel that corresponds to the same speed, but in the opposite direction is blue. (c) Deblurred
image using the reconstruction error based measure generated by taking pixels from the corresponding deblurred image. (d)Deblurred image
using the log likelihood based measure generated by taking pixels from the corresponding deblurred image.


