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Orthogonal parabolic exposures
for motion deblurring
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Abstract—Relative motion between the camera and scene during exposure generates blur artifacts. Removing blur is challenging
because one has to estimate the motion kernels, which can spatially vary over the image. Even if the motion is successfully identified,
blur inversion can be unstable because the blur kernel attenuates high frequency image content. We present a computational camera
to address these challenges. Our solution captures two images of a scene with a parabolic camera motion in two orthogonal directions.
We show analytically that this strategy near-optimally preserves the image content of moving objects. This computational camera is the
first camera to provide a performance guarantee for capturing 2D object motions. Taking two images of a scene also helps us estimate
spatially varying object motions. We present a prototype camera and demonstrate successful motion deblurring on real world motions.

Index Terms—Computational photography, Motion deblurring, Blind deconvolution, Computational camera

✦

1 INTRODUCTION

RELATIVE motion between the camera and scene during
exposure generates blur artifacts in photographs. Al-

though motion blur can sometimes be desirable for artistic
purposes, it often severely limits the image quality. Whileblur
can be reduced using a shorter shutter speed,this comes withan
unavoidable trade-off of increased noise. One source of motion
blur is camera shake. We can mitigate the camera shake blur by
using a mechanical image stabilization hardware or by placing
the camera on a tripod during exposure. A second source of
blur is a movement of objects in the scene. This type of blur
is harder to control, therefore it is often desirable to remove
such blur computationally using blur deconvolution.

Motion blur removal, often called motion deblurring or blind
deconvolution, is challenging in two aspects. The first chal-
lenge is estimating blur kernels, or point-spread functions
(PSF), from blurred images, which entails estimating the
relative motion between the camera and scene. Blur estimation
can be especially difficult if the scene is dynamic or if the
camera undergoes a rotational motion, which would induce
spatially variant blur. The second challenge is removing the
blur to recover a blur-free image. Motion blur averages neigh-
boring pixels, attenuating high spatial frequency information.
Consequently, recovering a blur-free image is an ill-posed
problem which needs to be addressed by deblurring systems
or algorithms.

This paper provides a solution that addresses both challenges
for a restricted class of a deblurring problem. We assume that
the camera is placed on a tripod and the scene consists of
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objects moving at a constant speed in an arbitrary direction
parallel to the image plane. This setup corresponds to a
scenario in which the exposures are relatively short so that
an arbitrary object motion can be approximated as a constant
speed motion. Spatially variant blur induced by different object
motions is therefore piecewise constant (in contrast to in-
plane rotational camera motions that induce continuous spa-
tially variant blur.) Our solution takes two successive images
using a moving sensor: one moving in a horizontal parabolic
displacement path and another moving in a vertical parabolic
displacement path [7]. We recover one sharp image from
the two input images by estimating the spatially variant blur
(Sec. 4.2) and by deconvolving the input images using a multi-
image deconvolution algorithm (Sec. 4.1). We empirically
show that the image reconstruction error from blur kernel
estimation is negligible (Sec. 4.2), addressing the first chal-
lenge of deblurring. We also analytically prove that our image
capture strategy near-optimally minimizes the information loss
for 2D constant-speed motions in arbitrary directions (Sec. 3),
addressing the second challenge.

2 RELATED WORK

Some previous methods handle spatially variant blur by re-
stricting the type of spatially variant blur [8], [9], [14],[15],
[17], [24]: Levin [15] considers a piecewise constant spatially
variant blur; Shanet al. [24] assume that the relative motion
between the camera and the scene is purely rotational; Whyte
et al. [27] and Guptaet al. [12] estimate a spatially variant
blur by modeling camera shake as a rigid body motion. To aide
spatially variant blur estimation, additional hardware could be
used to record the relative movement between the camera and
the scene during exposure, from which one can estimate the
spatially variant blur [4], [26]. Levinet al. [17] introduce
a new camera that makes the blur invariant to 1D subject
motions. Users could assist spatially varying blur estimation
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by specifying blurred edges that should be sharp [13] or by
specifying regions with different amount of blur [9]. Taking
two images also helps estimate spatially variant blur [6], [25].

Most of aforementioned methods do not address information
loss due to blur. Typical motion blur kernels correspond to
box filters in the motion direction, therefore blurs attenuate
high spatial frequencies and make the blur inversion ill-posed.
One technique addressing this issue is a flutter shutter camera
[21]. By opening and closing the shutter multiple times during
exposure, one can significantly reduce the high frequency
image information loss. Another method takes two images,
each with different exposure lengths [28]. The short-exposure
image contains high frequency information that supplements
the missing information in the long-exposure, blurred image.
Agrawal et al. [3] take multiple shots of a moving object,
each with different exposures, and deconvolve the moving
object using all the shots. The multi-shot strategy is beneficial
because the information lost in one of the shots is captured
by another. However, their strategy does not offer guarantees
on the worst-case performance. Levinet al. [17] propose a
parabolic motion camera to minimize the information loss for
1D constant velocity motions, but the solution is invalid if
a 2D motion is present. Agrawal and Raskar [1] analyze the
performance of a flutter-shutter camera and a parabolic camera
and conclude that a flutter shutter camera performs better for
handling a 2D constant velocity motion blur. Agrawal and Xu
[2] introduce a new code for a flutter shutter camera with
a better trade-off between blur estimation and information
capture.

3 SENSOR MOTION DESIGN AND ANALYSIS

Consider an object moving at a constant velocity and letsx,y =
[sx,sy] be its 2D velocity vector. Suppose we captureJ images
B1, ..BJ of this object usingJ translating cameras. Locally, the
blur is a convolution:

B j = k j
sx,y

⊗ I +n j (1)

where I is an ideal sharp image,n j imaging noise, andk j
sx,y

a blur kernel (point spread function, PSF).k j
sx,y is a function

of the relative motion between the sensor and the scene. The
convolution is a multiplication in the frequency domain:

B̂ j(ωx,y) = k̂ j
sx,y

(ωx,y)Î(ωx,y)+ n̂ j(ωx,y) (2)

where ωx,y = [ωx,ωy] is a 2D spatial frequency, and the ˆ
indicates the Fourier transform of the corresponding signal.

To deblur images successfully, we need to increase the spectral
content of blur kernels‖k̂ j

sx,y(ωx,y)‖2. Qualitatively, a deblur-
ring algorithm divides the Fourier transform̂B j of the image
by that of the blur kernel̂k j

sx,y at every spatial frequency. If
‖k̂ j

sx,y(ωx,y)‖2 is small for all cameras, the deblurring algorithm
amplifies noise and degrades the quality of restored image. We
show in Sec. 4.1 that the reconstruction performance of the
Wiener filter deconvolution method is inversely related to the

summed spectra:

‖ ˜̂ksx,y(ωx,y)‖2 = ∑
j
‖k̂ j

sx,y
(ωx,y)‖2 (3)

Therefore, we should maximize the joint spectrum
‖ ˜̂ksx,y(ωx,y)‖2 of an imaging device for everyωx,y and
for everysx,y. This goal is formally stated as follows:

Given a time budget T , find a set of J camera motions that
maximizes the minimum of the summed power spectrum
‖ ˜̂ksx,y(ωx,y)‖2 over every spatial frequencyωx,y and every
motion vector‖sx,y‖ < Sob j.

We introduce thefirst solution that provides the worst-case
spectral power guarantee for 2D constant velocity motions.
To prove our claim, we start with a brief review of space
time motion blur analysis. We show that a set of PSFs for all
2D constant velocity motions‖sx,y‖ < Sob j occupies the com-
plementary volume of an inverted double cone in the Fourier
domain, and that the camera motion design can be formulated
as maximizing the spectral content in this volume. We show
analytically that the best worst-case spectral coverage ofany
camera motions is bounded and that our design approaches
the bound up to a constant multiplicative factor.

3.1 Motion blur in the space-time volume

We represent light received by the sensor as a 3D space-time
volumeL(x,y,t). That is,L(x,y,t) denotes the light ray hitting
the x,y coordinate of a static detector at a time instancet. A
static camera forms an image by integrating these light rays
over a finite exposure timeT:

B(x,y) =

∫ T
2

− T
2

L(x,y,t)dt (4)

Assume the camera is translating during exposure on thex–y
plane, and letf be its displacement path:

{

f : [x,y,t] = [ fx(t), fy(t),t]
}

(5)

Then the rays hitting the detector are spatially shifted:

B(x,y) =
∫ T

2

− T
2

L(x+ fx(t) ,y+ fy(t) ,t)dt+n (6)

wheren is imaging noise. For example, for a static camera the
integration curve is a vertical straight linefx(t) = fy(t) = 0
(Fig. 1(a)). The integration curve of a camera moving at
a constant velocity is a slanted linefx(t) = sxt, fy(t) =
syt (Fig. 1(c)). For horizontal parabolic motion,fx(t) =
at2, fy(t) = 0 and for a vertical parabolafx(t) = 0, fy(t) = at2

(Fig. 1(d-e)). We can represent the integration curvef as a 3D
integration kernelφ :

φ(x,y,t) = δ (x− fx(t))·δ (y− fy(t)) (7)

whereδ is a Dirac delta function.

If an object motion is locally constant, we can express the
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Fig. 1: The integration curvesφ (a-e), the point spread functions ksx,y (f-j) and their log-power spectra (k-o) for a few cameras.
In (f-o), the outer axes correspond to x,y directional speed. In (f-j), the inner axes correspond to x–y coordinates, andin the
spectra plots (k-o), the inner axes correspond toωx–ωy coordinates. All spectra plots are normalized to the same scale.
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Fig. 2: (a) The union of horizontal motion PSF slices at all
velocitiesk̂s forms a 3D double wedge. (b) A union of diagonal
motion PSF slices forms a rotated 3D double wedge. (c) The
spectra of all 2D constant velocity PSF slices comprise a
wedge of revolution.

integrated image as a convolution of a sharp image at one
time instance (e.g.L(x,y,0)) with a point spread functionksx,y.
The PSFksx,y of a constant velocity motionsx,y = [sx,sy] is a
sheared projection of the 3D integration kernelφ :

ksx,y(x,y) =
∫

t
φ(x−sxt,y−syt, t)dt (8)

Some PSFs of different integration kernels are shown in the
second row of Fig. 1.

The Fourier transform̂ksx,y of the PSFksx,y is a slice from the
Fourier transformφ̂ of the integration kernelφ [17], [19]:

k̂sx,y(ωx,ωy) = φ̂(ωx,ωy,sxωx +syωy) (9)

k̂sx,y for several object motions for different integration kernels
φ are shown in the bottom row of Fig. 1. Fig. 2(a) shows
Fourier slices corresponding to horizontal object motionsat
varying velocities, the case considered in [17]. Slices occupy
a 3D double wedge. When the motion direction changes (e.g.
sx = sy in Fig. 2(b)), slices occupy a rotated 3D double wedge.
In general, 2D Fourier slices corresponding to all motion
directions‖sx,y‖ < Sob j lie in the complementary volume of
an inverted double cone (Fig. 2(c)). We refer to this volume
asa wedge of revolution, defined as a set:

C≡ {(ωx,ωy,ωt)|ωt < Sob j‖ωx,y‖} (10)

To see this, note that the Fourier transform of a PSF is a slice
from φ̂ at ωt = sxωx+syωy, and if‖sx,y‖≤Sob j, sxωx+syωy ≤
Sob j‖ωx,y‖.

3.1.1 Bounding spectral content

Suppose we captureJ images of a scene and let‖ ˜̂φ‖2 be the
joint power spectrum‖ ˜̂φ(ωx,ωy,ωt)‖2 = ∑J

j ‖φ̂ j(ωx,ωy,ωt)‖2.
As mentioned earlier, our goal is to design a set of camera
motions that maximizes the joint kernel spectrum‖ ˜̂ksx,y‖2

(Eq. 3) for all object motions‖sx,y‖ < Sob j. Since PSFs of all
bounded 2D linear motions occupy the wedge of revolution
(Eq. 10), designing PSFs with high spectral power for all
sx,y < Sob j is equivalent to maximizing the spectral content
of ‖ ˜̂φ‖2 within the wedge of revolution.
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Spectral bound - 1D motions

(in log domain)

Inverse Fourier transform
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Fig. 3: We explicitly invert the spectral bound for 1D motions
to illustrate that the explicit inversion of the spectral bound
in Eq. 12 does not result in a physically realizable motion of
the form in Eq. 7. Both the spectrum and the motion (i.e. the
inverse Fourier transform) are shown in the log-domain.

We can derive an upper bound on the worst-case spectral
content of any camera motions. The amount of photon energy
collected by a camera within a fixed exposure timeT is
bounded. Therefore, by Parseval’s theorem, the norm of every
ωx0,y0 slice of ˜̂φ (i.e. ˜̂φ (ωx0,ωy0,ωt)) is bounded [17]:

∫

‖ ˜̂φ(ωx0,ωy0,ωt)‖2dωt ≤ T (11)

Every ωx0,y0-slice intersects the wedge of revolution for a
segment of length 2Sob j‖ωx0,y0‖. To maximize the worst-case
spectral power, the optimal camera would spread the captured
energy uniformly in this intersection. Therefore, we can derive
an upper bound on the worst-case spectral power by dividing
the captured energy by the segment length:

min
ωt

‖ ˜̂φ(ωx0,ωy0,ωt)‖2 ≤ T
2Sob j‖ωx0,y0‖

. (12)

Since the PSFs spectrak̂ j
sx,y are slices througĥφ j , this bound

also applies for the PSFs’ spectral power:

min
sx,y

‖ ˜̂ksx,y(ωx0,ωy0)‖2 ≤ T
2Sob j‖ωx0,y0‖

. (13)

The optimal bound Eq. 12 applies to any types of integration
kernel φ regardless of the number of shots taken during the
time budgetT.

3.2 Orthogonal parabolic motions

We seek a motion path whose spectrum covers the wedge of
revolution and approaches the bound in Eq. 12. We also seek
to cover the spectrum with the fewest images, because as we
take more images within the time budget, the delay between
subsequent shots reduces the effective time budget, degrading
the spectral performance.

We could compute the optimal camera motion by inverting
the Fourier transform of the bound in Eq. 12. However, the
inverse Fourier transform of this bound is not a physically
valid motion of the form in Eq. 7. To illustrate this, we invert
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Fig. 4: (a) The spectrum̂φ1 captured by a x-parabolic camera.
(b) The spectrumφ̂2 captured by a y-parabolic camera. (c)
The sum of spectra captured by the two orthogonal parabolic
cameras approximates the wedge of revolution.

the bound for 1D motions [17] in Fig. 31. We can see that
the corresponding optimal motion in the spatial domain is not
a realizable motion: the inverse Fourier transform is densein
the spatial domain and contains negative pixel values. If we
invert the bound for 2D motions in Eq. 12, we observe the
same phenomenon in 3D: the optimal path is not a realizable
motion.

Our solution captures two images of a scene with two or-
thogonal parabolic motions. We show analytically that the
orthogonal parabolic motions capture the wedge of revolution
with the worst-case spectral power greater than 2−1.5 of the
upper bound.

3.2.1 Camera motion

Let φ1,φ2 be the 3D integration kernels of x and y parabolic
camera motions. The kernels are defined by the integration
curves f1, f2:

f1(t) = [ax(t +T/4)2,0,t], t = [−T/2...0]

f2(t) = [0,ay(t −T/4)2,t], t = [0...T/2]
(14)

At time t, the derivative of the x-parabolic camera motion
f1(t) is 2ax(t−T/4), therefore the camera essentially tracks an
object moving with velocity 2ax(t−T/4) alongx axis. During
exposure, the x-parabolic camera tracksonce every moving
object with velocity within the range[−2axT/4...2axT/4].
Similarly, the y-parabolic camera covers the velocity range
[−2ayT/4...2ayT/4]. For the reason that will be clarified
below, we set

ax = ay =
2
√

2Sob j

T
(15)

The maximal velocity of the sensor becomesSsens=
√

2Sob j.
That is, the velocity range covered by these parabolas is
[−Ssens...Ssens].

Fig. 1(i-j) show PSFs of different object motions captured
by the orthogonal parabolic camera. PSFs take the form of
a truncated and sheared parabola that depends on the object
speed.

1. The bound for 1D motions in the Fourier space is the slice ofthe wedge
of revolution on theωx−ωt plane.
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sx

sy

Fig. 5: The summed spectrum coverage of the two orthogonal
parabolic motions for different object velocities sx,y. While
each parabolic motion has zeros in a range of spatial fre-
quencies (see Fig. 1(n-o)), their summed spectrum does not
have zeros in any spatial frequencies. The log-spectrum plots
in this figure are normalized to the same scale as that of the
log-spectrum plots in Fig. 1(k-o).

3.2.2 Optimality

As mentioned earlier, to make the blur easily invertible, we
want to maximize the spectral power of the camera motion
paths within the wedge of revolution (Eq. 10). We show
that the orthogonal parabolic motions capture the wedge of
revolution with the worst-case spectral power greater than
2−1.5 of the optimal bound in Eq. 13.

We first derive the joint spectral coverage‖ ˜̂φ‖2 of the two
orthogonal parabolic motions. Levinet al. [17] show that a
parabolic motion’s spectrum is approximately a double wedge.
Since a x-parabolic motionφ1 is a Dirac delta along they axis,
the 3D kernel spectrum‖φ̂1‖2 spreads energy in a 3D double
wedge and is constant along theωy axis (Fig. 4(a)). The y-
parabolic motion spreads energy in the orthogonal 3D double
wedge (Fig. 4(b)). Mathematically speaking,

‖φ̂1(ωx,ωy,ωt)‖2 ≈ T
4Ssens‖ωx‖

H(Ssens‖ωx‖−‖ωt‖)

‖φ̂2(ωx,ωy,ωt)‖2 ≈ T
4Ssens‖ωy‖

H(Ssens‖ωy‖−‖ωt‖)
(16)

whereH(·) is a Heaviside step function.

The 2D PSF spectra are slices from the 3D double wedge
‖φ̂ j‖2. Fig. 1 (n-o) show the log-spectrum of PSFsk̂ j

s for
parabolic exposures as we sweep the object velocity. For x-
directional motions (sy = 0), the x-parabolic camera covers
all spatial frequencies without zeros. This agrees with the
1D optimality argument in Levinet al. [17]. However, as y-
directional motion increases, the x-parabolic camera fails to
capture a double wedge of frequencies near theωy axis. In
other words, the x-parabolic camera misses spectral contents in
the presence of a y-directional motion, and the blur inversion
is unstable. The y-parabolic camera, however, covers the
frequencies missed by the x-parabolic camera, therefore the
sumof these two spectra (Fig. 5) does not have any zeros in
any spatial frequencies. Therefore, by taking two orthogonal

Ssens

ωx

ωy

ωt

ωy0�
2

ωy0

Sobj

ωt0

|ωy0 |

Fig. 6: The joint spectrum of orthogonal parabolic motions
subsumes the wedge of revolution if Ssens≥

√
2Sob j.

parabolic exposures, we can reliably invert the blur for all2D
object motions.

Fig. 4(c) visualizes the joint spectrum covered by the orthog-
onal parabolic motions, suggesting that the sum of orthogonal
3D wedges is an approximation of the wedge of revolution.
In fact, the sum of double wedges subsumes the wedge of
revolution if the maximal sensor speedSsens is set to

√
2Sob j.

Claim 1: Let Ssens be the maximum sensor speed of the
parabolic camera, andSob j be the maximum object speed.
If Ssens≥

√
2Sob j, the joint power spectrum‖ ˜̂φ‖2 of an or-

thogonal parabolic camera subsumes the wedge of revolution.
When Ssens=

√
2Sob j, the worst-case spectral power of the

orthogonal parabolic camera, at any frequency, is at least1
2
√

2
of the optimal bound.

Proof: The power spectrum of each parabolic cam-
era is given in Eq. 16. The joint power spectrum of
the orthogonal parabolic camera is non-zero in the set
{(ωx,ωy,ωt)|ωt ≤ Ssensmax(‖ωx‖,‖ωy‖)}. If (ωx,ωy,ωt) lies
in the wedge of revolution, thenωt ≤ Sob j‖ωx,y‖. Since
‖ωx,y‖2 ≤ 2max(‖ωx‖2,‖ωy‖2),

ωt ≤ Sob j‖ωx,y‖
≤

√
2Sob j max(‖ωx‖,‖ωy‖)

≤ Ssensmax(‖ωx‖,‖ωy‖) (17)

In other words, the joint spectrum of the orthogonal parabolic
cameras subsumes the wedge of revolution. This is illustrated
in Fig. 6.

The spectral power of the joint spectrum at(ωx,ωy,ωt) is at
least the minimum of the 3D wedge spectra:

min

(

T
4Ssens‖ωx‖

+
T

4Ssens‖ωy‖

)

(18)

Since‖ωx,y‖ ≥ max(‖ωx‖,‖ωy‖),

min

(

T
4Ssens‖ωx‖

+
T

4Ssens‖ωy‖

)

≥ T
4Ssens‖ωx,y‖

=
T

4
√

2Sob j‖ωx,y‖

(19)

Therefore, the worst-case spectral power of the orthogonal
parabolic camera is at least 2−1.5 of the upper bound.
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Fig. 5 shows the log spectrum of the orthogonal parabolic
cameras. Zeros present in one camera are compensated by
its orthogonal counterpart for all object motions. At each
velocity sx,y, information for some spatial frequencies is better
preserved than others, but Claim 1 guarantees that at each
frequency, the spectral content is at least 2−1.5 of the optimal
bound.

3.2.3 Discussions

The orthogonal parabolic camera deblurs diagonally moving
objects better than objects moving along the camera motion
axis because x-parabolic and y-parabolic shots both capture
information from diagonally moving objects. Note that if
we know before the image capture that object motions are
primarily x-directional, one could increase the exposure length
of the x parabolic shot to improve the deblurring performance
in expectation.

The spectral bound in Eq. 19 assumes that the image informa-
tion at each spatial frequency is independent. Therefore, our
bound holds only if the restoration method treats each spatial
frequency as independent. One such restoration method is the
Wiener filter (introduced in Eq. 30) that imposes a Gaussian
prior on image gradients. In a strict sense, the use of a non-
linear image reconstruction algorithm would require a different
analysis method, which takes into account correlations be-
tween different spatial frequencies. However, our framework
still provides a concrete construction for comparing different
camera designs, which we present below.

3.3 Discussion of other cameras

We compare the performance of the orthogonal parabolic
camera to those of other designs available in literature.

3.3.1 A static camera

The integration kernel of a static camera isφstatic(t) = [0,0,t],
for t ∈ [−T/2...T/2] (Fig. 1(a)). Since the integration curve
does not vary along thex or y axis, the power spectrum is
constant alongωx andωy:

‖φ̂static(ωx,ωy,ωt )‖2 = T2sinc2(ωtT) (20)

The Fourier transform of the PSF is a slice of the 3D spectrum
φ̂ , and is a sinc whose width depends on the object velocity
‖k̂static

sx,y
‖2 = T2sinc2((sxωx +syωy)T). For fast object motions

this sinc highly attenuates high frequencies. In fact, if the
object motion is fast it is better to reduce the exposure time
(this increases the width of the sinc) despite reducing the total
amount of energy collected.

3.3.2 A flutter shutter camera

In a flutter shutter camera [21], the integration curve of a
static camera is temporally modulated (Fig. 1(b)). Therefore,

the spectrum of the integration curveφ f lutter is constant along
ωx,ωy and is modulated alongωt :

‖φ̂ f lutter(ωx,ωy,ωt)‖2 = ‖m̂(ωt)‖2 (21)

where m̂ is the Fourier transform of the shutter code. This
code can be designed to be more broadband than the sinc
function in a static camera. However, the spectrum is constant
along ωx,ωy. Therefore, the worst-case spectral performance
is bounded as follows:

min
s

‖k̂ f lutter
s (ωx,ωy)‖2 = T/(2Sob jΩ) (22)

for all (ωx,ωy) [17], whereΩ is the spatial bandwidth of the
camera. As a result, the flutter shutter poorly captures the low
frequency image contents.

3.3.3 A linearly moving camera

If the camera is moving at a constant velocity (Fig. 1
third column), the integration curve is a slanted straight line
φ linear(t) = [sxt,syt,t] (Fig. 1(c)). By linearly moving the
camera, we can track the object that moves at the camera’s
speed, but we still suffer from a sinc fall-off for objects whose
velocities are different from the camera’s velocity.

3.3.4 A parabolic camera with a single exposure

Blur kernels from a single-exposure parabolic camera are
invariant to 1D constant-velocity motions, and can be shown
to approach the optimal bound for a set of 1D linear motions
with bounded speed [17]. A single parabolic camera, however,
is neither motion invariant nor optimal for 2D motions. When
an object moves in a direction orthogonal to the camera
movement axis (i.e. a x-parabolic camera imaging an object
moving in they direction), the spectral coverage along the
orthogonal frequencies (i.e.ωy) is poor. We have shown in
Fig. 1 (n-o) several Fourier slices in which the captured spectra
contain zeros.

3.3.5 A camera with parametric motions

We design other cameras with parametric motions and analyze
their performance. Although we cannot analytically derivethe
spectral performance of each camera, we can compare each
design numerically. We define four cameras: (i) a camera with
a raised-cosine motion, (ii) a camera with a circular motion
with a constant angular speed, (iii) a camera with a circular
motion with a constant angular acceleration, and (iv) a camera
with a spiral motion. Each camera moves in the defined camera
pathφ during the exposuret ∈ [−T/2...T/2].

(i) A camera with a raised-cosine motion: The parametric
motion for a raised-cosine motion is:

{φ : [x,y,t] = [α (1+cos(ωt)),0,t]} (23)

whereω = π/(T/2) and α = Sob j/ω . This camera moves in
1D and covers each velocitytwice as opposed to once as in a
parabolic camera. Fig. 7(b) shows the blur kernel spectra for
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(a) A parabolic camera (b) A raised-cosine camera (c) A circular motion camera (d) A circular-acceleration

motion camera

(e) A spiral camera
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sy
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sy
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sx

sy

Fig. 7: We numerically analyze the spectral performance of five different cameras: (a) a camera with a parabolic motion, (b)
a camera with a raised-cosine motion, (c) a camera with a circular motion with a constant angular speed, (d) a camera with
a circular motion with a constant angular acceleration, and(e) a camera with a spiral motion. This figure shows that even
a two-image solution of cameras (b-e) cannot capture all frequencies without zeros for all object motions, as a two-image
solution of a parabolic camera (a) does.

different object motions. The zero pattern is quite similarto
that of a parabolic camera in Fig. 7(a), but zeros also appear
in frequencies that are well covered by a parabolic camera.
This observation suggests that even a two-image solution of
a raised-cosine camera cannot cover all frequencies without
zeros, as a pair of orthogonally-moving parabolic camera does.

(ii) A camera with a circular motion with a constant
angular speed: We can define the motion of this camera as:

{φ : [x,y, t] = [α cos(ωt),α sin(ωt), t]} (24)

whereω = π/(T/2) and α = Sob j/(2ω). The camera sensor
moves along a circular path at a predetermined speed (Sob j/2),
therefore the camera essentially tracks each object motion
with this particular speed in all possible orientations. However,
this camera fails to capture other motions, and consequently
we observe many zeros in blur kernel spectra, as shown in
Fig. 7(c).

(iii) A camera with a circular motion with a constant
angular acceleration: We can modify the above camera to
track each object speed once, each in different orientations.
The idea is to move the camera circularly but at a constant
angular acceleration:
{

φ : [x,y,t] = [α cos(ω(t +T/2)2),α sin(ω(t +T/2)2),t]
}

(25)
whereω = 2π/(T)2 andα = Sob j/(2ωT). While this camera
performs well for many object velocities, the blur spectra
still contain many zeros due to phase coupling, as shown in
Fig. 7(d).

(iv) A camera with a spiral motion:

{φ : [x,y, t] = [αt cos(ωt),αt sin(ωt), t]} (26)

whereω = kπ/(T/2) andα = Sob j/
√

(1+ ω2T2/4). k deter-
mines the number of “spirals” during exposure. Here, we set
k = 3. This camera tracks each speed once during exposure,
but not in all directions. Fig. 7(e) shows that blur kernels for
different object velocities contain substantial amount ofzeros.

3.3.6 Two shots

Taking two images with cameras defined above can simplify
the kernel estimation task, but it does not substantially enhance
the spectral coverage of these cameras. Optimizing the expo-
sure lengths of each shot [3], and in the case of a flutter shutter
camera also optimizing the random codes in each shot, do not
eliminate their fundamental limitations: their power spectra are
constant alongωx,y and hence they spend the energy budget
outside the wedge of revolution. Previous two-image solutions
to deblurring, such as [5], [6], [22], [28], fall into the category
of taking two images with a static or a linearly moving camera.
These methods can correctly find the motion kernels, but the
image reconstruction quality is limited since the spectrum
coverage is low.

3.3.7 Synthetic simulation

We compare the deblurring performance of (i) a pair of static
cameras, (ii) a pair of flutter shutter cameras, (iii) a single
parabolic camera and (iv) an orthogonal parabolic camera
through simulations (Fig. 8). For all cameras, we fix the total
exposure timeT and assume that the object motion is known.
The orthogonal parabolic camera is setup to deblur objects
moving at speed less thanSob j. To give previous solutions the
favor of doubt, we optimized their parameters foreachmotion
independently: for a pair of static camera, we use the optimal
split of the exposure timeT into two shots; for a pair of flutter
shutter camera, we use the optimal split of the exposure time
T and the optimal code combinations. In a realistic scenario
we cannot optimize the split of the exposure timeT nor flutter-
shutter codes because the object motion is not known a priori.

We render images of a moving object seen by these cameras:
zero-mean Gaussian noise with standard deviationη = 0.01
is added to the rendered blurry images. We deblur rendered
images using the Wiener deconvolution and compare the
reconstruction performance. Fig. 8 shows deconvolution re-
sults and their peak signal-to-noise ratio (PSNR). Each row
corresponds to a different object velocity. When the object
is static, a pair of static camera restores visually the most
pleasing deconvolution result. This is intuitively satisfying
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Fig. 8: Synthetic visualizations of the reconstruction quality. We optimized the exposure lengths of each camera. First column:
The object motion during the exposure. The green disc denotes the velocity range covered by the orthogonal parabolic camera,
and the red arrow denotes the object velocity. Other columnsshow images deconvolved using the Wiener filter (Eq. 30). The
orthogonal parabolic camera outperforms the other optimized solutions in deblurring the moving object.

since the static camera is optimized for static object motions.
The image quality from a flutter shutter camera is slightly
worse than that of a static camera due to the loss of light.
For moving objects, the orthogonal parabolic camera restores
visually the most pleasing deconvolution results. While the
orthogonal parabolic camera deblurs moving objects better
than other cameras, its performance degrades as the object
moves faster. However, the worst-case spectral performance
across all velocitiessx,y of interest is at least 2−1.5 of the
optimal bound.

We put the synthetic experiment in the context of previous
blur removal techniques. The performance of previous two-
image motion deblurring techniques, such as [5], [6], [22],[28]
can be approximated by the deconvolution result of the static
camera pair in Fig. 8. Even if these solutions correctly estimate
the motion, inverting the blur kernel is still hard since high
frequencies are attenuated. Blind motion deblurring solutions,
such as [10], [23], attempt to resolve an even harder problem,
since they estimate the blur kernel from a single input image.

4 IMAGE RECONSTRUCTION

We review a Bayesian method for image deconvolution and
kernel estimation, and extend the result to accomodate two
input images. We derive a closed form solution to estimate
blur kernels from input images, and present an equivalent
representation to estimate motion locally. Also, we experimen-
tally show that an image reconstruction error due to kernel
misclassification is small.

4.1 Non-blind deconvolution

A non-blind deconvolution algorithm recovers a blur-free
imageI from a blurry imageB j and an estimated blur kernel
k j . Let B̄, k̄ be B̄ = [B1,B2], k̄ = [k1,k2]. We recover the blur-
free image by maximizing the posterior probability. Using
Bayes rule:

Ĩ = argmax
I

p(I |B̄, k̄)

∝ argmax
I

p(I , B̄|k̄)

= argmax
I

p(I)
2

∏
j=1

p(B j |k j , I)

(27)

where we can define each term as follows:

logp(B j |k j , I) = − 1
η2 |B

j −k j ⊗ I |2+C1 (28)

logp(I) = −β ∑
i

(ρ(|gx,i(I)|)+ ρ(|gy,i(I)|))+C2(29)

η2 is the imaging noise variance,β = 0.002 controls the
variance of the gradient profile,C1,C2 are constants,gx,i ,gy,i

arex,y directional gradient operators at pixeli, andρ(z) = zα

is a robust norm. Whenα = 2, we impose a Gaussian prior
on the image gradients, and whenα ≤ 1, we impose a sparse
prior.

Eq. 27 is essentially a joint deconvolution model, stating that
we seek an imagẽI that fits the convolution constraints of both
B1 and B2. In other words, the deconvolved imageĨ should
be able to synthesize the input imagesB1 and B2 using the
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pair of kernels that reconstructedĨ . Although not presented in
Bayesian terms, Rav-Acha and Peleg [22] essentially deblur
two input images by maximizing the likelihood term (Eq. 28),
and Chenet al. [5] augment it with the prior term Eq. 29.
Using a sparse prior leads to visually pleasing results with
crisp edges, but it is worth considering a Gaussian prior
because we can derive closed form solutions.

We can efficiently solve Eq. 27 using the Wiener filter (i.e. a
Gaussian image prior) [11]:

˜̂I(ωx,y) =
¯̂k∗(ωx,y)

¯̂B(ωx,y)

1
η2‖¯̂k(ωx,y)‖2 + σ−2(ωx,y)

. (30)

where∗ is a complex conjugate operator,σ2(ωx,y) is the vari-
ance of the image prior in the frequency domain:σ−2(ωx,y) =
β (‖Ĝx‖2 +‖Ĝy‖2) whereĜx,Ĝy are the Fourier transform of
derivative filters. We use the Wiener filter to restore images
for kernel estimation, but use a sparse deconvolution to restore
the final blur-free image.

We can explicitly compute the expected reconstruction error
using a Gaussian image prior by taking expectation over the
space of natural images and over image noise:

EI ,n
[

‖Ĩ − I‖2]= ∑
ωx

∑
ωy

η2

∑ j ‖k̂ j
sx,y(ωx,ωy)‖2 + η2σ−2(ωx,ωy)

(31)
Eq. 31 highlights that the image reconstruction error de-
creases monotonically as the summed power spectrum
∑ j ‖k̂ j

sx,y(ωx,ωy)‖2 increases. This justifies our PSF design
goal in Eq. 3.

4.2 Kernel estimation

A critical step in motion deblurring is estimating the correct
blur kernelk̄. For that we seek

k̄ = argmax
k

p(k̄|B̄) = argmax
k

p(B̄|k̄)p(k̄) (32)

where p(k̄) is a prior on blur kernels (which we assume
uniform). We derive the likelihoodp(B̄|k̄) by marginalizing
over all latent imagesI :

p(B̄|k̄) =

∫

p(B̄, I |k̄)dI (33)

where p(B̄, I |k̄) is defined in Eq. 28,29. If the priorp(I) is
Gaussian,p(B̄|k̄) is also Gaussian. Ifp(I)∼ N(0,σ2), we can
evaluatep(B̄|k̄) explicitly in the Fourier domain:

logp( ¯̂B|¯̂k) = C3−
1

2N

N

∑
ωx,y

(

‖B̂1k̂2∗− B̂2∗k̂1‖2 + η2σ−2
(

‖B̂1‖2 +‖B̂2‖2
)

‖B̂1‖2 +‖B̂2‖2 + η2σ−2

)

(34)

We have omitted the dependence onωx,y for clarity. When
there is only one observed image (i.e.k̂2 = 0, B̂2 = 0), Eq. 34
reduces to a zero-frequency test which favors kernels with
similar zero patterns as that of the blurry imageB̂1 [16].

Deconvolution with correct kernel pairDeconvolution with wrong kernel pair

Fig. 9: An image is synthetically blurred, and is deconvolved
using the correct blur kernel pair and an incorrect blur kernel
pair. An incorrect blur kernel pair has a spatial shift incom-
patible with input images, leading to ghosting and ringing in
the restored image, whereas the correct kernel pair restores a
sharp, artifact free image.

When there are two observed images, the difference term
‖B̂1k̂2∗ − B̂2∗k̂1‖2 supplements the zero frequency test: this
term favors a pair of kernels that satisfies the commutative
property of convolution. This phase term drastically improves
the reliability of the kernel estimation measure. While Rav-
Acha and Peleg [22], Chenet al. [5] and Agrawalet al. [3]
introduce kernel estimation methods that explicitly instantiate
the commutative property of convolution, what we introduce
here is a Bayesian kernel estimation method that balances the
contribution of the commutative property of convolution and
the image prior.

We can rewrite logp( ¯̂B|¯̂k) in an equivalent representation that
is more attractive for computational reasons. This involves
solving for the latent imagẽI using Eq. 27, and expressing
p(B̄|k̄) as follows2:

logp(B̄|k̄) = logp(Ĩ , B̄|k̄)+ Ψ̃+C4 (35)

where Ψ̃ = ∑ω logΨω , and Ψω = 1
η2 ∑ j ‖k̂ j

ω‖2 + σ−2
ω is the

variance of p( ¯̂Bω |¯̂kω). This variance term plays a critical
role in distinguishing Eq. 35 from a standard MAP score
p(I , k̄|B̄) since Eq. 35 accounts for the overall probability
volume around the mode and not only the mode itself [18].

Qualitatively, logp(Ĩ , B̄|k̄) penalizes kernel pairs̄k that restore
an imageĨ which would not fit the convolution constraints
in Eq. 28. To satisfy the convolution constraints, the kernel
pair k̄ should “undo” the blur present in input images̄B and
respect the spatial shift between input images (i.e. satisfy
the commutative property of convolution.) Fig. 9 shows a
synthetic example. We blur a sharp image with a pair of
blur kernels, and deconvolve the blurred images using the
correct/incorrect kernel pair. When we use an incorrect kernel
pair, we observe ghosting artifacts due to an incompatible
spatial shift. Therefore, this image is unable to regenerate the
input images, and logp(Ĩ , B̄|k̄) penalizes that. On the other

2. This is a Laplace approximation of logp( ¯̂B|¯̂k), which is equivalent to
logp( ¯̂B|¯̂k) since logp( ¯̂B|¯̂k) is a Gaussian distribution.
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Algorithm 1 Blur kernel estimation at pixel i

% Variable definitions
B̄≡ Blurred input images.
Sk ≡ A set of blur kernel candidates.
i ≡ A pixel index.
f (B̄, k̄) ≡ Eq. 36

C⇐ 0.15 % penalty for single-image explanations
B̄i ⇐ 15×15 window around the pixeli in B̄.
% Compute the log-likelihood
for every kernel candidatēk∈ Sk do

if k2 = 0 then
cost(̄k) ⇐ f (B̄i , k̄)+C % A single-image explanation

else
cost(̄k) ⇐ f (B̄i , k̄)

end if
end for
% The kernel estimate maximizes the log-likelihood
Kernel estimate at i⇐ argmin cost(̄k)

hand, ghosting artifacts are not visible when we use the correct
kernel to deblur the input images.

Most PSF estimation algorithms [10], [23] are designed to
estimate blur kernels that are uniform across the image, andare
not well suited to subject motion blur because these algorithms
search over the full space of possible motions. In our scenario,
object motions are assumed to be constant velocity. Since
constant velocity motions comprise only a small subset of
general motions, we can constrain the motion search space
(i.e. the blur kernel search space) to constant velocity motions.
This subsequently reduces the kernel estimation error. In this
work, we estimatēk by evaluating the log likelihood Eq. 35 on
a set of PSF pairs that correspond to discretized 2D constant
velocity motions, and by choosing the pair with the highest
log likelihood.

4.3 Local kernel estimation

If there are multiple motions in the scene, we need to locally
estimate the motion. Let̃Is be images generated by deconvolv-
ing B̄ with the blur kernel pair̄ks, and let B̃ j

s = k j
s ⊗ Ĩs be a

re-convolved image. The log-likelihoodlog(p(B̄|k̄s)) at pixel
i is:

logp(B̄(i)|k̄s) ≈− 1
2η2

2

∑
j=1

|B j(i)− B̃ j
s(i)|2

−ρ(gx,i(Ĩs))−ρ(gy,i(Ĩs))+
1
N

Ψ̃

(36)

whereN = 15×15 is the size of the local window centered
around the pixeli.

4.3.1 Handling motion boundaries

Because we take two images sequentially, there are motion
boundaries that are visible in one image but not in the other.In

Algorithm 2 Multi-scale blur estimation

% Variable definitions
k j ≡ the kernel estimate atjth scale. j indexes the scale 1
to 3, from coarse to fine.
B̄ j ≡ Input image pyramids atjth scale.
S1

k ≡ 2×4500/42 kernel candidates at the coarsest scale.

Generate a 3-level image pyramid down-sampled in octaves.
% Estimate the blur at the coarsest scale
for every pixeli do

k1(i) ⇐ EstimateBlurPixel(̄B1,S1
k, i)

end for
% Regularize the estimate using MRF
k1 ⇐ MRFRegularize(k1)
% Loop over scales
for j = 2 : 3 do

for every pixeli do
% Velocity candidate reduction
Sj

k(i) ⇐ 9 velocity neighbors ofk j−1(i)
k j(i) ⇐ EstimateBlurPixel(̄B j ,Sj

k(i), i)
end for
k j ⇐ MRFRegularize(k j)

end for

such regions the observation model (Eq. 28) is inconsistentand
the joint deconvolution leads to visual artifacts. Therefore, we
use an image deblurred using only one of the two input images
to fill in motion boundaries. We can automatically detect where
to use a single-image explanation by also considering kernel
candidates that consist of a single image observation (i.e.B2 =
0,k2 = 0). We add an additional fixed penalty C (set to 0.15
for all experiments, determined through cross validation)to
those kernel candidates; otherwise, the log-likelihood (Eq. 36)
always favors a single image solution. Algorithm 1 provides
a pseudocode for blur kernel estimation at pixeli.

4.3.2 Multi-scale blur kernel estimation

The quality of restored images depends on how finely we sam-
ple the space of 2D constant velocity motions. With our current
camera setup, we discretize the space into 4500 samples. We
quantize the space such that a step in the velocity space results
in roughly a one-pixel blur at the maximum object velocity.
Searching over 4500 velocity samples to find the correct
kernel pair at the full image resolution is computationally
expensive. We resort to a coarse-to-fine strategy to mitigate
the computational burden. We first down-sample the input
imagesB̄ by a factor of 4 in both width and height to reduce
the number of pixels and also the motion search space: blur
kernels from two adjacent velocity samples are essentially
identical at a coarser resolution. At the coarsest scale, we
search through 2×4500/(42) velocity samples (single-image
explanations incur the factor of 2). We then propagate the
estimated motion to a finer resolution to refine the estimates.

At each spatial scale, we regularize the log-likelihood in Eq. 36
using a Markov random field (MRF). Algorithm 2 provides a
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Fig. 10: This figure evaluates the amount of deconvolution
error contributed by the local kernel estimation algorithm.
When the local window is larger than15× 15 pixels, the
deconvolution error from kernel estimation negligible.

pseudocode for our multi-scale kernel estimation strategy. We
use the regularized kernel map to reconstruct the blur free
image Ĩ . First, we deconvolve input images̄B using all blur
kernelsk̄sx,y that appear in the estimated kernel map. Given the
set of deconvolved images̃Isx,y, we reconstruct the blur free
image from Ĩsx,y by selecting, at each pixel, the pixel value
from the image deblurred using the estimated blur kernel. We
blend different motion layers using a Poisson blending method
[20] to reduce artifacts at abutting motion layers.

4.3.3 Quantifying the kernel estimation error

Fig. 10 quantifies the image reconstruction error introduced
by kernel estimation. We blur a sharp natural image using
a blur kernel pair, and we deblur the rendered images using
the correct kernel pair. Then we compute the base-line mean-
squared error (MSE). The mean-squared error is not zero
because we lose information through the blurry observation
process, thus the restored image is not exactly the same as
the original image. We also deblur the rendered images using
kernels locally estimated by maximizing the log-likelihood
in Eq. 36, and compute its MSE. For this experiment, we
compute the MSE as we increase the window size, shown
as a green curve in Fig. 10. On the same plot, we show
the base-line MSE (a dotted blue curve). The base-line MSE
is independentof the kernel estimation error, therefore the
difference between the green curve and the dotted blue curve
is the deconvolution error from kernel misidentification. We
observe that the additional error from kernel estimation is
negligible when the window size is greater than 15× 15.
This result suggests that it is reasonable to focus on finding
a camera motion that maximizes the spectral power of blur
kernels.

5 EXPERIMENTS

5.1 Prototype camera

We built a prototype camera consisting of a sensor, two
motion stages and their controllers. We mounted a light-
weight camera sensor (Point Grey Research Flea 2 Camera)

sensor

Static lens

vertical actuator

horizontal actuator

(a)

Sensor

Actuators

(b)

Fig. 11: (a) A diagram of our prototype. (b) A photograph of
the actuators and the camera sensor.

on two motion stages (Physik Instrumente M-663 pair), where
each can move the camera sensor along orthogonal axes (See
Fig. 11(a)). In each image capture, one of the motion stages
undergoes parabolic motion, approximated by 19 segments of
constant velocity due to control constraints. In practice,we
could replace the motion stages with an image stabilization
hardware. The camera lens is affixed to the camera lid, and
does not move during exposure. The total exposure time for
taking two images is 500ms: 200ms for each image, with a
delay of 100ms between exposures. 100ms delay is incurred
by switching the control from one motion stage to another,
and can be reduced by using an improved hardware.

We rendered PSFs of our imaging system for different object
speed using a parameterized actuator motion model, and used
them for deconvolution. We validated the accuracy of rendered
PSFs by physically calibrating blur kernels at several object
velocities and by comparing them to rendered kernels. For
calibration, we place a high-frequency calibration pattern on a
motion rail, take a sharp image of the static calibration pattern
with a static camera, and take an image of the moving pattern
with a camera undergoing a parabolic motion. We solve for
the kernelk that minimizes‖B−k⊗ I‖2, whereI is the sharp
image of the static calibration pattern, andB is the image of
the moving pattern taken with a parabolic camera.

5.2 Results

Fig. 12 illustrates the deblurring pipeline. First, we capture
two images successively while the sensor undergoes parabolic
motions in two orthogonal directions. From the two images,
we locally estimate the motion and restore the blur-free image
using blur kernels that correspond to the estimated motion.
Automatically detected motion boundaries are shown by black
bounding boxes. Our kernel estimation algorithm sometimes
misclassifies motions in un-textured regions, but this doesnot
lead to visual artifacts. For reference we show an image taken
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x-parabolic camera y-parabolic camera

Input images Estimated motion Deblurred image From a static camera

sx

sy

Fig. 12: This figure shows the pipeline of our system. We take two images using the orthogonal parabolic camera, and we
locally estimate motion. The estimated motion is shown withthe color coding scheme in the inset, and the detected motion
boundaries are represented with black bounding boxes. We deblur the captured image pair using the estimated motion map.
For reference, we also show the image taken with a synchronized static camera with a 500ms exposure.

with a static camera with 500ms exposure, synchronized to the
first shot of the orthogonal parabolic camera. This reference
image reveals the object motion during exposure.

In Fig. 13, we compare the deconvolution performance of a
two-shot static camera and an orthogonal parabolic camera.A
toy train is moving at a constant velocity, assumed known for
this comparison. For the static camera, we optimize the split
of the exposure for this known train motion: 40ms for the first
shot, and 360ms for the second shot. Using the static camera,
we can reliably reconstruct the static part of the scene at the
expense of degraded renditions of moving parts. On the other
hand, our camera enables reliable reconstructions of both static
and moving parts, although static regions are slightly more
degraded compared to static regions restored using the static
camera. An orthogonal parabolic camera spreads the energy
budget over all velocities of interest, whereas a static camera
concentrates the energy budget for the static motion.

We present more deblurring results on human motions in
Fig. 14, using parabolic exposure to capture motions in non-
horizontal directions3. Images from the static camera (500ms
exposure) reveal the motions during exposure, shown by red
arrows. We can observe some artifacts at motion boundaries at
which the joint convolution model does not hold. In general,
however, the reconstructions are visually pleasing. In thethird
column of Fig. 14, we show how an orthogonal parabolic
camera handles a perspective motion. While a perspective
motion does not conform to our assumption on object motions,
our system still recovers a reasonably sharp image.

Our image reconstruction algorithm treats an occluded region
as a motion boundary. When a moving object is seen only
in one of the two images due to occlusion, as in Fig. 15, an
image deblurred using only one of the input images is used
to fill in the occluded region.

3. The camera body is tilted for this purpose.

x-parabolic camera y-parabolic camera

Estimated motion Deblurred image

Fig. 15: Our image reconstruction algorithm handles occlu-
sion boundaries in a manner similar to motion boundaries. In
the occluded region, an image deblurred using only one of the
two input images is used.

5.3 Discussion

Kernel estimation takes 30 min - 1 hour on a single, serial
machine: the running time depends on the size of the image.
A by-product of kernel estimation is a blur free image de-
blurred using the Wiener filter. The running time of the sparse
deconvolution algorithm is roughly 6 hours.

We assume that objects move at a constant velocity within the
exposure time, which is a limitation shared by most previous
work that deals with object motion [15], [17]. Camera shake,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 20XX 13

Input Images Deblurred image

St
at

ic
 c

am
e

ra
 p

ai
r

O
rt

h
o

g
o

n
al

 p
ar

ab
o

lic
 

ca
m

e
ra

 p
ai

r

Fig. 13: We compare the deblurring performance of a two-shot static camera and an orthogonal parabolic camera. We optimize
the split of the exposure for the static camera, assuming that we know the object motion: 40ms for the first shot and 360ms for
the second shot. The blur kernel is estimated manually to compare just the amount of information captured by these cameras.
The static camera reconstructs static objects well, but at the expense of a degraded rendition of the moving object, whereas
the orthogonal parabolic camera restores a reasonable rendition of both the static and moving parts.

which typically exhibits complex kernels, needs to be handled
separately. Our camera design captures image information
almost optimally, but it does not provide guarantees for kernel
estimation performance. While taking two images certainly
helps kernel estimation, designing a sensor motion that op-
timizes both kernel estimation and information capture is an
open problem. Our image reconstruction takes into account
occlusions by allowing some pixels to be reconstructed from
a single images, but a full treatment of occlusion for decon-
volution remains an open challenge.

6 CONCLUSION

This paper presented a two-exposure solution to removing
constant velocity object motion blur. We showed that the union
of PSFs corresponding to 2D linear motions occupy a wedge of
revolution in the Fourier space, and that the spectral content of
the orthogonal parabolic camera approaches the optimal bound
up to a multiplicative constant within the wedge of revolution.
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