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Orthogonal parabolic exposures
for motion deblurring

Taeg Sang Cho, Student Member, IEEE,
Anat Levin, Frédo Durand, and William. T. Freeman, Fellow, IEEE

Abstract—Relative motion between the camera and scene during exposure generates blur artifacts. Removing blur is challenging
because one has to estimate the motion kernels, which can spatially vary over the image. Even if the motion is successfully identified,
blur inversion can be unstable because the blur kernel attenuates high frequency image content. We present a computational camera
to address these challenges. Our solution captures two images of a scene with a parabolic camera motion in two orthogonal directions.
We show analytically that this strategy near-optimally preserves the image content of moving objects. This computational camera is the
first camera to provide a performance guarantee for capturing 2D object motions. Taking two images of a scene also helps us estimate
spatially varying object motions. We present a prototype camera and demonstrate successful motion deblurring on real world motions.

Index Terms—Computational photography, Motion deblurring, Blind deconvolution, Computational camera
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1 INTRODUCTION objects moving at a constant speed in an arbitrary direction
parallel to the image plane. This setup corresponds to a

ELATIVE motion between the camera and scene durifggenario in which the exposures are relatively short so that
Rexposure generates blur artifacts in photographs. Adn arbitrary object motion can be approximated as a constant
though motion blur can sometimes be desirable for artisgeed motion. Spatially variant blur induced by differejeat
purposes, it often severely limits the image quality. Whiler motions is therefore piecewise constant (in contrast to in-
can be reduced using a shorter shutter speed,this comearwitiplane rotational camera motions that induce continuous spa
unavoidable trade-off of increased noise. One source abmottially variant blur.) Our solution takes two successive ges
blur is camera shake. We can mitigate the camera shake blu${ng @ moving sensor: one moving in a horizontal parabolic
using a mechanical image stabilization hardware or by ptacidisplacement path and another moving in a vertical paraboli
the camera on a tripod during exposure. A second sourcedigplacement path [7]. We recover one sharp image from
blur is a movement of objects in the scene. This type of bltiie two input images by estimating the spatially variant blu
is harder to control, therefore it is often desirable to reeno (Sec. 4.2) and by deconvolving the input images using a multi

such blur computationally using blur deconvolution. image deconvolution algorithm (Sec. 4.1). We empirically
show that the image reconstruction error from blur kernel

Motion blur removal, often called motion deblurring or llin estimation is negligible (Sec. 4.2), addressing the firsti-ch
deconvolution, is challenging in two aspects. The first chgbnge of deblurring. We also analytically prove that our gma
lenge is estimating blur kernels, or point-spread functioRapture strategy near-optimally minimizes the informatiss

(PSF), from blurred images, which entails estimating thgr 2p constant-speed motions in arbitrary directions (8¢
relative motion between the camera and scene. Blur esbmathqgdressing the second challenge.

can be especially difficult if the scene is dynamic or if the

camera undergoes a rotational motion, which would induce

spatially variant blur. The second challenge is removig t RELATED WORK
blur to recover a blur-free image. Motion blur averages hneig

boring pixels, attenuating high spatial frequency infotio!a  5ome previous methods handle spatially variant blur by re-
Consequently, recovering a blur-free image is an iII—pos%qficting the type of spatially variant blur [8], [9], [14]15],
problem which needs to be addressed by deblurring Systef3], [24]: Levin [15] considers a piecewise constant salbti

or algorithms. variant blur; Sharet al. [24] assume that the relative motion

This paper provides a solution that addresses both chatenjetWeen the camera and the scene is purely rotational; Whyte
for a restricted class of a deblurring problem. We assumie t al- [27] and Gupteet al. [12] estimate a spatially variant

the camera is placed on a tripod and the scene consistsblHr ,by modglmg camera sha}ke as a_r!gld body motion. To aide
spatially variant blur estimation, additional hardwareilcobe

< cn o and e seiamd used to record the relative movement between the camera and

e T.S. Cho, F. Durand, and W. T. Freeman are with Computer Seiem ; ; ;

Artificial Intelligence Lab (CSAIL), Massachusetts Ingtt of Technology, the §Cene dl_mng €xposure, from W_hICh one Can estimate the
Cambridge, MA 02139. spatially variant blur [4], [26]. Levinet al. [17] introduce

a new camera that makes the blur invariant to 1D subject

e A. Levin is with the Weizmann Institute of Science, Israel. motions. Users could assist spatially varying blur estiomat
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by specifying blurred edges that should be sharp [13] or lspmmed spectra:
specifying regions with different amount of blur [9]. Takin x ) o )
two images also helps estimate spatially variant blur [85][ [[Ksey (@xy)l|* = ;Hksx,y(“ky)ﬂ 3)

Most of aforementioned methods do not address informatiqferefore, we should maximize the joint spectrum
loss due to blur. Typical motion blur kernels correspond tef 2 ; i i

box filters in the myoetion direction, therefore blurs at?enwatfﬁc?rs‘é\(/g’ygj _Iq:]iSagOgrlniz;gflgrgm;j”evg:tzt;grase \]fce)lrl)ngtg' and
high spatial frequencies and make the blur inversion idqzb Yoy Y '

One technique addressing this issue is a flutter shutterreame

[21]. By opening and closing the shutter multiple times dgri Given a time budget T, find a set of J camera motions that
exposure, one can significantly reduce the high frequengg@ximizes the minimum of the summed power spectrum
image information loss. Another method takes two image$ss,, (xy)||®> over every spatial frequencyyy and every
each with different exposure lengths [28]. The short-exwpes motion vector||scy| < Sopj-.

image contains high frequency information that supplesient

the missing information in the long-exposure, blurred imag

Agrawal et al. [3] take multiple shots of a moving ObJECt_’ ectral power guarantee for 2D constant velocity motions.

: : S
each with different exposures, and deconvolve the movmlg prove our claim, we start with a brief review of space
object using all the shots. The multi-shot strategy is beffi time motion blur anz;llysis. We show that a set of PSFs for all
because the information lost in one of the shots is capturSB constant velocity motionsey|| < Syb; occupies the com

. 8% j )
by another. However, their strategy does not offer guausgsnteplementary volume of an inverted double cone in the Fourier

on the yvorst-pase performangg. I.‘E\Bn aI: [17] Propose a domain, and that the camera motion design can be formulated
parabolic motion camera to minimize the information loss fq

1D tant velocit i but th lution is invalid .FIS maximizing the spectral content in this volume. We show
constant velocity motions, but the solution 1S invall IanaIyticaIIy that the best worst-case spectral coveragngf

a 2D motion is present. Agrawal and Raskar [1] anquze tQ"zlmera motions is bounded and that our design approaches
performance of a flutter-shutter camera and a parabolic mam e bound up to a constant multiplicative factor

and conclude that a flutter shutter camera performs better fo
handling a 2D constant velocity motion blur. Agrawal and Xu
[2] introduce a new code for a flutter shutter camera Wit 1 \iotion blur in the space-time volume
a better trade-off between blur estimation and information

capture. We represent light received by the sensor as a 3D space-time
volumeL(x,y,t). That is,L(x,y,t) denotes the light ray hitting

the x,y coordinate of a static detector at a time instahcé
static camera forms an image by integrating these light rays
over a finite exposure time:

We introduce thefirst solution that provides the worst-case

3 SENSOR MOTION DESIGN AND ANALYSIS

Consider an object moving at a constant velocity anddgt=
[sx,Sy] be its 2D velocity vector. Suppose we captdrienages

1 Rl i i ; ;
B ’B of this obj_ect.usmg] translating cameras. Locally, theAssume the camera is translating during exposure orx-te
blur is a convolution:

plane, and lef be its displacement path:
J— Kl j
=k, @l @) (£ oyet] = [f(0). f(0).1]) (5)

wherel is an ideal sharp imagey imaging noise, ands,, Then the rays hitting the detector are spatially shifted:
a blur kernel (point spread function, PSIR}M is a function

, T
of the relative motion between the sensor and the scene. The B(x,y) = / 2 L (x+ fx (t),y+ fy(t),t)dt+n (6)
convolution is a multiplication in the frequency domain: ’ -7 ’ ’

BOxy) = [ Loyt @
2

3] —K [ Al wheren is imaging noise. For example, for a static camera the
B () = g, (@) (@y) ¥ (@y) @) integration curve is a vertical straight ling(t) = fy(t) =0
where wyy = [ax,wy] is a 2D spatial frequency, and the {Fig. 1(a)). The integration curve of a camera moving at
indicates the Fourier transform of the corresponding digna a constant velocity is a slanted ling(t) = s¢, fy(t) =
St (Fig. 1(c)). For horizontal parabolic motionfy(t) =
at2, fy(t) =0 and for a vertical paraboli(t) =0, f,(t) =at?
(Fig. 1(d-e)). We can represent the integration cures a 3D
integration kernelp:

To deblur images successfully, we need to increase therape
content of blur kernelﬂR’s&y(a&,y)Hz. Qualitatively, a deblur-
ring algorithm divides the Fourier transforBi of the image

by that of the blur kerneRJSKy at every spatial frequency. If
HRJSX?y(aky)HZ is small for all cameras, the deblurring algorithm QX Y,t) = O(x— fx(t))- &(y — fy(t)) @)
amplifies noise and degrades the quality of restored image. W, . : .
shoF\)N in Sec. 4.1 thatgthe reconsq[ructizn performance ?)f twgereé 's a Dirac delta function.

Wiener filter deconvolution method is inversely relatedhe t If an object motion is locally constant, we can express the
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Fig. 1: The integration curveg (a-€), the point spread functions k (f-) and their log-power spectra (k-o) for a few cameras.
In (f-0), the outer axes correspond to x,y directional spdadf-j), the inner axes correspond to x—y coordinates, &nthe
spectra plots (k-0), the inner axes correspondue-wy, coordinates. All spectra plots are normalized to the sanatesc

Rsx.y for several object motions for different integration kdene

g ' @ are shown in the bottom row of Fig. 1. Fig. 2(a) shows
we Fourier slices corresponding to horizontal object motians
_ . varying velocities, the case considered in [17]. Slicesupgc
Wy o a 3D double wedge. When the motion direction changes (e.g.
s«=Sy in Fig. 2(b)), slices occupy a rotated 3D double wedge.
(© In general, 2D Fourier slices corresponding to all motion

Fig. 2: (a) The union of horizontal motion PSF slices at alffirections||scy|| < Sp; lie in the complementary volume of
velocitiesks forms a 3D double wedge. (b) A union of diagonadn inverted double cone (Fig. 2(c)). We refer to this volume
motion PSF slices forms a rotated 3D double wedge. (c) TR&a wedge of revolutiondefined as a set:
spectra of all 2D constant velocity PSF slices comprise a

P Y P C = {(@x @)@ < Sopjlaxyl} (10)

wedge of revolution.
To see this, note that the Fourier transform of a PSF is a slice
from @ at aw = s+ sywy, and if ||syy || < Sopj, Scak+ sy <
integrated image as a convolution of a sharp image at o8| wy|-
time instance (e.d-(x,Y,0)) with a point spread functioks,, .
The PSFks,, of a constant velocity motios,y = [s,s)] isa 544 Bounding spectral content
sheared projection of the 3D integration kerigel

Suppose we capturkimages of a scene and l&||2 be the
o, 003) = [ @x— sty st ®  joint power spectrunf @(a, ay, ) |2 = 79 (@, @, @) |2

As mentioned earlier, our goal is to design a set :of camera
motions that maximizes the joint kernel spectrufks,, ||
(Eq. 3) for all object motiongsyy|| < Sobj. Since PSFs of all
bounded 2D linear motions occupy the wedge of revolution
(Eq. 10), designing PSFs with high spectral power for all
Sy < Sobj IS equivalent to maximizing the spectral content

Rsky(a&,wy) = Pay, Wy, S+ Syay) (9) of ||@]|? within the wedge of revolution.

Some PSFs of different integration kernels are shown in t
second row of Fig. 1.

The Fourier transforr’ﬁs&y of the PSFks,, is a slice from the
Fourier transformp of the integration kernep [17], [19]:
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Fig. 4: () The spectrunp, captured by a x-parabolic camera.
(b) The spectrum;?p captured by a y-parabolic camera. (c)
The sum of spectra captured by the two orthogonal parabolic
cameras approximates the wedge of revolution.

Fig. 3: We explicitly invert the spectral bound for 1D motions ) o
to illustrate that the explicit inversion of the spectralusal the bound for 1D motions [17] in Fig."3 We can see that

in Eq. 12 does not result in a physically realizable motion ¢f€ corresponding optimal motion in the spatial domain is no
the form in Eq. 7. Both the spectrum and the motion (i.e. t[ferealizable motion: the inverse Fourier transform is dense

invert the bound for 2D motions in Eq. 12, we observe the

. ame phenomenon in 3D: the optimal path is not a realizable
We can derive an upper bound on the worst-case specf%monp P P

content of any camera motions. The amount of photon energy

collected by a camera within a fixed exposure tifieis oyr solution captures two images of a scene with two or-
bounded. Therefore, by Parseval’s theorem, the norm oy/evefisgonal parabolic motions. We show analytically that the

Wiy, Slice of @ (i.e. P(weg, Wy, @)) is bounded [17]; orthogonal parabolic motions capture the wedge of revauti
x 2 with the worst-case spectral power greater thah>2of the
/||‘P(%=‘%a“l)|| day <T (1) upper bound.

Every wy,y,-slice intersects the wedge of revolution for a

segment of length Q| wy,.y, |- To maximize the worst-case

spectral power, the optimal camera would spread the captu@&2.1 Camera motion
energy uniformly in this intersection. Therefore, we canae
an upper bound on the worst-case spectral power by dividi

the captured energy by the segment length: ('8t @, @ be the 3D integration kernels of x and y parabolic

camera motions. The kernels are defined by the integration
(12) curvesfy, fo:

| 2So0ill 1o f(t) = [ax(t+ T/420], t=[-T/2..0
Since the PSFs spectkg,, are slices througlp!, this bound fot) = [0,a,(t— T/4)2t], t=[0..T/2]
also applies for the PSFs’ spectral power:

min | (., @y 6a) 2 <
(14)

At time t, the derivative of the x-parabolic camera motion
minlk , 2 o _ 13) fi(t) is 2a4(t —T/4), therefore the camera essentially tracks an
Sy Ksuy (@, ) I < 2Sob | .y I (13) object moving with velocity 8y(t — T /4) alongx axis. During

The optimal bound Eg. 12 applies to any types of integrati§¥Posure, the x-parabolic camera trackwe every moving

kernel ¢ regardless of the number of shots taken during tfRPiect with velocity within the rangg—2ayT /4...2a.T /4].
time budgefT. Similarly, the y-parabolic camera covers the velocity ®ng

[—2ayT/4..2ayT /4]. For the reason that will be clarified

below, we set /3
2\ 25
3.2 Orthogonal parabolic motions & =ay = fj (15)

We seek a motion path whose spectrum covers the wedgeTéE\; maxir;:al velloclity of the sensor (tj)e;orr%gnsz \/zsébji .
revolution and approaches the bound in Eq. 12. We also se-fr tis, the velocity range covered by these parabolas Is
to cover the spectrum with the fewest images, because as v_v§°‘e”5"s°‘e”4'

take more images within the time budget, the delay betweg
subsequent shots reduces the effective time budget, ngra%

the spectral performance.

[b. 1(i-j)) show PSFs of different object motions captured
y the orthogonal parabolic camera. PSFs take the form of
a truncated and sheared parabola that depends on the object

We could compute the optimal camera motion by invertingP€ed.
the Fourier transform of the bound in Eq. 12. However, the

inv_erse Fourier tranSforr_n of this bolund is nOt_ a phy_sically 1. The bound for 1D motions in the Fourier space is the slicen@fwedge
valid motion of the form in Eq. 7. To illustrate this, we inver of revolution on thew, — w plane.
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Fig. 6: The joint spectrum of orthogonal parabolic motions
Fig. 5: The summed spectrum coverage of the two orthogorsalbsumes the wedge of revolution d:S> v2S].
parabolic motions for different object velocitiegys While
each parabolic motion has zeros in a range of spatial fre-
quencies (see Fig. 1(n-0)), their summed spectrum does patabolic exposures, we can reliably invert the blur for2all
have zeros in any spatial frequencies. The log-spectruits plobject motions.
in this figure are normalized to the same scale as that of t

log-spectrum plots in Fig. 1(k-0). tI]—"i:‘g. 4(c) visualizes the joint spectrum covered by the aytho

onal parabolic motions, suggesting that the sum of orthabon
3D wedges is an approximation of the wedge of revolution.
In fact, the sum of double wedges subsumes the wedge of

3.2.2 Optimality revolution if the maximal sensor spe€gknsis set t0v/2Sp;.

As mentioned earlier, to make the blur easily invertible, w€laim 1: Let Ssens be the maximum sensor speed of the
want to maximize the spectral power of the camera motigrarabolic camera, an&y,; be the maximum object speed.
paths within the wedge of revolution (Eg. 10). We showf S,o,¢> \/ES)bj, the joint power spectrunﬂ(bHZ of an or-
that the orthogonal parabolic motions capture the wedge tBbgonal parabolic camera subsumes the wedge of revolution
revolution with the worst-case spectral power greater th&ghen S;ons= \/i%bj, the worst-case spectral power of the
2715 of the optimal bound in Eq. 13. orthogonal parabolic camera, at any frequency, is at Ig%t

We first derive the joint spectral covera@é)n2 of the two of the optimal bound.

orthogonal parabolic motions. Leviet al. [17] show that a Proof: The power spectrum of each parabolic cam-
parabolic motion’s spectrum is approximately a double veedgera is given in Eq. 16. The joint power spectrum of
Since a x-parabolic motiog is a Dirac delta along thgaxis, the orthogonal parabolic camera is non-zero in the set
the 3D kernel spectruriigy |> spreads energy in a 3D double{(a, wy, @ )|w < SsengNax(||ax], [y} If (o, @y, @) lies
wedge and is constant along thg axis (Fig. 4(a)). The y- in the wedge of revolution, themy < Sypjl|axy|. Since
parabolic motion spreads energy in the orthogonal 3D douljley (|2 < 2max | wx||?, || awyl?),

wedge (Fig. 4(b)). Mathematically speaking,

@ < Sopjllwyl
l@u(o0 @y )| & g H (Ssend ] —[leal) < V2Spimax(||exl. flayl)
iy I~ - HSardayl = ) = Semaed fol -
Y ASsend wy|| In other words, the joint spectrum of the orthogonal parabol
whereH(-) is a Heaviside step function. cameras subsumes the wedge of revolution. This is illestrat

in Fig. 6.
The 2D PSF spectra are slices from the 3D double Wedg|1e ? o )
H(Pj”z- Fig. 1 (n-0) show the log-spectrum of PSkk for he spectrql power of the joint spectrum (at, w,, ) is at
parabolic exposures as we sweep the object velocity. For/g@st the minimum of the 3D wedge spectra:
directional motions § = 0), the x-parabolic camera covers . T
all spatial frequencies without zeros. This agrees with the min <4ssen4a&| +4Ssenslwy|) (18)
1D optimality argument in Leviret al. [17]. However, as y-
directional motion increases, the x-parabolic camerzs fal SiNce|lxyl
capture a double wedge of frequencies near dheaxis. In _ T T
other words, the x-parabolic camera misses spectral ctriten  MIN <4ssen4a&” + 455en51|0w|> = 4Ssend] Ouy ]
the presence of a y-directional motion, and the blur ingersi T '
is unstable. The y-parabolic camera, however, covers the =—
frequencies missed by the x-parabolic camera, therefae th 4\/233“”%3’”
sumof these two spectra (Fig. 5) does not have any zerosTherefore, the worst-case spectral power of the orthogonal
any spatial frequencies. Therefore, by taking two orth@dorparabolic camera is at least?® of the upper bound]]

= max([|ax||, [lay ),

(19)
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Fig. 5 shows the log spectrum of the orthogonal parabolice spectrum of the integration curgé!"®" js constant along
cameras. Zeros present in one camera are compensatedopyy, and is modulated along:

its orthogonal counterpart for all object motions. At each ~ flutter 2 s 2

velocity sy, information for some spatial frequencies is better o (@, ay, a)[|” = [Im(a)]l (21)

preserved than others, but Claim 1 guarantees that at e@ffere mi is the Fourier transform of the shutter code. This
frequency, the spectral content is at least2of the optimal code can be designed to be more broadband than the sinc
bound. function in a static camera. However, the spectrum is consta
along wy, wy. Therefore, the worst-case spectral performance
is bounded as follows:

i |1 flutter 2
min , =T/(2%piQ 22
The orthogonal parabolic camera deblurs diagonally moving s ks Sl /(ZSo0i2) (22)

objects better than objects moving along the camera motif} gl (ax, wy) [17], whereQ is the spatial bandwidth of the
axis because x-parabolic and y-parabolic shots both aaptdamera. As a result, the flutter shutter poorly capturesawe |
information from diagonally moving objects. Note that ifrequency image contents.

we know before the image capture that object motions are

primarily x-directional, one could increase the exposergth
of the x parabolic shot to improve the deblurring performean
in expectation.

3.2.3 Discussions

3.3.3 Alinearly moving camera

If the camera is moving at a constant velocity (Fig. 1

The spectral bound in Eq. 19 assumes that the image inforrff3itd column), the integration curve is a slanted straige |

tion at each spatial frequency is independent. Therefare, @™ (t) = [s¢,st,t] (Fig. 1(c)). By linearly moving the

bound holds only if the restoration method treats each aipagamera, we can track the object that moves at the camera’s

frequency as independent. One such restoration methoe is $aeed, but we still suffer from a sinc fall-off for objects oge

Wiener filter (introduced in Eq. 30) that imposes a Gaussidglocities are different from the camera’s velocity.

prior on image gradients. In a strict sense, the use of a non-

linear i_mage reconstrqction algor_ithm would require aa_iéht 3.3.4 A parabolic camera with a single exposure

analysis method, which takes into account correlations be-

tween different spatial frequencies. However, our franéwoBlur kernels from a single-exposure parabolic camera are

still provides a concrete construction for comparing défe invariant to 1D constant-velocity motions, and can be shown

camera designs, which we present below. to approach the optimal bound for a set of 1D linear motions
with bounded speed [17]. A single parabolic camera, however
is neither motion invariant nor optimal for 2D motions. When

3.3 Discussion of other cameras an object moves in a direction orthogonal to the camera
movement axis (i.e. a x-parabolic camera imaging an object

We compare the performance of the orthogonal parabofifoving in they direction), the spectral coverage along the

camera to those of other designs available in literature.  orthogonal frequencies (i.ey) is poor. We have shown in
Fig. 1 (n-o0) several Fourier slices in which the captureatspe

3.3.1 A static camera contain zeros.

The integration kernel of a static camerap®®(t) = [0,0,t], 3.3.5 A camera with parametric motions
fort e [-T/2..T/2] (Fig. 1(a)). Since the integration curve

does not vary along th& or y axis, the power spectrum isWe design other cameras with parametric motions and analyze

constant alongu, and w: their performance. Although we cannot analytically detive
~static ) 26in spectral performance of each camera, we can compare each
o7 (@ ay, @ )[|” =T sinc*( T) (20)  design numerically. We define four cameras: (i) a camera with

The Fourier transform of the PSF is a slice of the 3D spectruraised-cosine motion, (ii) a camera with a circular motion
¢, and is a sinc whose width depends on the object velodwth a constant angular speed, (iii) a camera with a circular
H@aticHZ = T2sinc((scox+S,@y)T). For fast object motions motion with a constant angular acceleration, and (iv) a came
this” sinc highly attenuates high frequencies. In fact, @ thWith a spiral motion. Each camera moves in the defined camera
object motion is fast it is better to reduce the exposure tinfgth @ during the exposuree [-T/2..T/2].

(this increases the width of the sinc) despite reducingdbe t (i) A camera with a raised-cosine motion: The parametric
amount of energy collected. motion for a raised-cosine motion is:

{p:xy,t] =[a(1+coqwt)),0,t]} (23)

wherew = 11/(T /2) and a = Spj/w. This camera moves in
In a flutter shutter camera [21], the integration curve of &D and covers each velocityice as opposed to once as in a
static camera is temporally modulated (Fig. 1(b)). Themsfo parabolic camera. Fig. 7(b) shows the blur kernel spectra fo

3.3.2 A flutter shutter camera



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 20XX 7

N\
mi\\\‘

N

Va

= N B [N
HIIHE- ©£5EY-- B
Sx N % u\\\\\\\\\ ‘\\\\\\\\\\ Sy N \

(a) A parabolic camera  (b) A raised-cosine camera (c) A circular motion camera  (d) A circular-acceleration (e) A spiral camera
motion camera

P

Fig. 7: We numerically analyze the spectral performance of fiverifit cameras: (a) a camera with a parabolic motion, (b)

a camera with a raised-cosine motion, (c) a camera with autédc motion with a constant angular speed, (d) a camera with
a circular motion with a constant angular acceleration, af@ a camera with a spiral motion. This figure shows that even
a two-image solution of cameras (b-e) cannot capture alfjdencies without zeros for all object motions, as a two-ienag

solution of a parabolic camera (a) does.

different object motions. The zero pattern is quite simttar 3.3.6 Two shots

that of a parabolic camera in Fig. 7(a), but zeros also appear

in frequencies that are well covered by a parabolic camef@King two images with cameras defined above can simplify
This observation suggests that even a two-image solution B¢ kernel estimation task, but it does not substantialhaeice

a raised-cosine camera cannot cover all frequencies withdif Spectral coverage of these cameras. Optimizing the-expo
zeros, as a pair of orthogonally-moving parabolic cameesdoSU'® lengths of each shot [3], and in the case of a fluttereshutt

camera also optimizing the random codes in each shot, do not
(i) A camera with a circular motion with a constant eliminate their fundamental limitations: their power sjppa@re

angular speed: We can define the motion of this camera asonstant alonguy and hence they spend the energy budget
outside the wedge of revolution. Previous two-image sohgi

{@: [x,y.t] = [acoqwt), asin(wt),t]} (24)  to deblurring, such as [5], [6], [22], [28], fall into the egfory

of taking two images with a static or a linearly moving camera
These methods can correctly find the motion kernels, but the
i’g}]age reconstruction quality is limited since the spectrum
coverage is low.

wherew = 11/(T/2) and a = Spj/(2w). The camera sensor
moves along a circular path at a predetermined sp&gg/@),
therefore the camera essentially tracks each object mot
with this particular speed in all possible orientationswdwer,
this camera fails to capture other motions, and conseqguentl

we observe many zeros in blur kernel spectra, as shown3.7 Synthetic simulation

Fig. 7(c). We compare the deblurring performance of (i) a pair of static

cameras, (i) a pair of flutter shutter cameras, (iii) a @ngl
Ooarabolic camera and (iv) an orthogonal parabolic camera
H’lrough simulations (Fig. 8). For all cameras, we fix theltota

posure timél and assume that the object motion is known.

e orthogonal parabolic camera is setup to deblur objects
moving at speed less th&ly;. To give previous solutions the

{o:[xyt] = [acoqw(t +T/2)2),asin(w(t+T/2)2),t]} favor of doubt, we optimized their parameters éachmotion

(25) independently: for a pair of static camera, we use the optima

wherew = 2m/(T)? and a = Sypj/(2wT). While this camera split of the exposure tim& into two shots; for a pair of flutter
performs well for many object velocities, the blur spectrahutter camera, we use the optimal split of the exposure time
still contain many zeros due to phase coupling, as shownTnandthe optimal code combinations. In a realistic scenario
Fig. 7(d). we cannot optimize the split of the exposure tilheor flutter-
shutter codes because the object motion is not known a priori

(i) A camera with a circular motion with a constant
angular acceleration: We can modify the above camera t
track each object speed once, each in different orientatio
The idea is to move the camera circularly but at a const
angular acceleration:

iv) A camera with a spiral motion: . . .
(v) ® We render images of a moving object seen by these cameras:

zero-mean Gaussian noise with standard deviatjica 0.01
(26) is added to the rendered blurry images. We deblur rendered

images using the Wiener deconvolution and compare the
wherew =km/(T/2) anda = Spj//(1+ w?T?/4). k deter- reconstruction performance. Fig. 8 shows deconvolutien re
mines the number of “spirals” during exposure. Here, we sgtilts and their peak signal-to-noise ratio (PSNR). Each row
k = 3. This camera tracks each speed once during exposw@responds to a different object velocity. When the object
but not in all directions. Fig. 7(e) shows that blur kerneals f is static, a pair of static camera restores visually the most
different object velocities contain substantial amountefos. pleasing deconvolution result. This is intuitively satisfy

{@: [xy,t] = [atcoqwt), atsin(wt),t]}
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Fig. 8: Synthetic visualizations of the reconstruction qualite dytimized the exposure lengths of each camera. First aolum
The object motion during the exposure. The green disc detlogevelocity range covered by the orthogonal parabolic &am

and the red arrow denotes the object velocity. Other colushtsw images deconvolved using the Wiener filter (Eg. 30). The
orthogonal parabolic camera outperforms the other optadizolutions in deblurring the moving object.

since the static camera is optimized for static object nmstio 4.1 Non-blind deconvolution
The image quality from a flutter shutter camera is slightly

worse than that of a static camera due to the loss of light. non-blind deconvolution algorithm recovers a blur-free
For moving objects, the orthogonal parabolic camera restoimagel from a blurry imageB! and an estimated blur kernel

visually the most pleasing deconvolution results. While thi. et E?,Ebe B= [BL,B?],k = [k!,k?]. We recover the blur-
orthogonal parabolic camera deblurs moving objects betfgge image by maximizing the posterior probability. Using
than other cameras, its performance degrades as the obpses rule:

moves faster. However, the worst-case spectral perforenanc - ——
across all velocitiess,, of interest is at least 2-° of the = arglmaxo(I|B, k)
optimal bound. 0 argmaxp(l, I??|E)
We put the synthetic experiment in the context of previous ! ) @7)
blur removal techniques. The performance of previous two- = argmaxp(l) rllp(Bj|kj’|)

image motion deblurring techniques, such as [5], [6], [£23]

can be approximated by the deconvolution result of thecstati
camera pair in Fig. 8. Even if these solutions correctlyneste
the motion, inverting the blur kernel is still hard since hig |ogp(BIjKI,1) = ——|Bj —K@l2+C, (28)
frequencies are attenuated. Blind motion deblurring smhst

such as [10], [23], attempt to resolve an even harder problem logp(l) —B Z p(axi(D])+p(loyi(h)])) +C9)
since they estimate the blur kernel from a single input image

n< is the imaging noise varianceg§ = 0.002 controls the
variance of the gradient profil€;,C, are constantsyy;, Oy,
4 IMAGE RECONSTRUCTION arex,y directional gradient operators at pixelandp(z) = 27

is a robust norm. Whem = 2, we impose a Gaussian prior

We review a Bayesian method for image deconvolution ang ne image gradients, and when< 1, we impose a sparse
kernel estimation, and extend the result to accomodate t Ror.

input images. We derive a closed form solution to estimate

blur kernels from input images, and present an equivaldig. 27 is essentially a joint deconvolution model, statinat t
representation to estimate motion locally. Also, we experi- we seek an imagkethat fits the convolution constraints of both
tally show that an image reconstruction error due to kernB} and B2 In other words, the deconvolved imaf@eshould
misclassification is small. be able to synthesize the input image’s and B? using the

where we can define each term as follows:

2
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pair of kernels that reconstructédAlthough not presented in &
Bayesian terms, Rav-Acha and Peleg [22] essentially debj ™4
two input images by maximizing the likelihood term (Eq. 28)gs

and Chenet al. [5] augment it with the prior term Eq. 29.fE &S
Using a sparse prior leads to visually pleasing results wi
crisp edges, but it is worth considering a Gaussian pri
because we can derive closed form solutions.

We can efficiently solve Eq. 27 using the Wiener filter (i.e.
Gaussian image prior) [11]:

~ Deconvolution with wrong kernel pair

x E*(‘*)x,y)|3((‘)’<’y)
I = ~
(tey) L [lk(oxy) 2+ 0 2(cy)

. (30) Fig. 9: An image is synthetically blurred, and is deconvolved
using the correct blur kernel pair and an incorrect blur ketn

where* is a complex conjugate operatar?(ay.y) is the vari- pair. An i_ncqrrect _blur kernel pgir has a sp_atial shift_ ingem
ance of the image prior in the frequency domam:z(%y) _ patible with |_nput images, leading to ghosting and. ringimg i
B(Héx||2+ Héy||2) whereéx,éy are the Fourier transform of the restor(_ad image, whereas the correct kernel pair restare
derivative filters. We use the Wiener filter to restore imagedarP: artifact free image.

for kernel estimation, but use a sparse deconvolution tores

the final blur-free image. _ )
o ) When there are two observed images, the difference term
We can explicitly compute the expected reconstructionrerrpgii2 _ g2«¢1||2 supplements the zero frequency test: this

using a Gaussian image prior by taking expectation over thgm favors a pair of kernels that satisfies the commutative

space of natural images and over image noise: property of convolution. This phase term drastically img®
. ) n2 the reliability of the kernel estimation measure. While Rav
En[IT-111F] =Y Acha and Peleg [22], Cheet al. [5] and Agrawalet al. [3]

Nk 24 n2g-2
G 5 2 llksey (0, )12 + 20~y wy) introduce kernel estimation methods that explicitly insi@te

31 . . .
) the commutative property of convolution, what we introduce

Eq. 31 h|gh||ghts_that the image reconstruction error d?fere is a Bayesian kernel estimation method that balanees th
creases monotonically as the summed power spectrum

Eijéx‘y(“%‘*’y)Hz increases. This justifies our PSF desigﬁ:)nt_rlbutlon c_)f the commutative property of convolutiondan
goal in Eq. 3. e Image prior.

We can rewrite log(B|k) in an equivalent representation that
is more attractive for computational reasons. This invelve
4.2 Kernel estimation solving for the latent image using Eq. 27, and expressing

p(B|k) as follows?:
A critical step in motion deblurring is estimating the cafre

blur kernelk. For that we seek logp(BJk) = logp(’,BIK) + ¥+ C4 (35)
(= argmarp(F5) — argmap(BIpl)  (62) Where® = 5,100, and W, = &3, K7+ 07 s the
k K

_ variance of p(éw|ﬁw). This variance term plays a critical
where p(k) is a prior on blur kernels (which we assumeole in distinguishing Eq. 35 from a standard MAP score
uniform). We derive the likelihoogp(B|k) by marginalizing p(I,k|B) since Eq. 35 accounts for the overall probability
over all latent images: volume around the mode and not only the mode itself [18].

p(Blk) = /D(B_, I [k)d1 (33) Qualitatively, logo(I’, B|k) penalizes kernel paitsthat restore

_ : an imagel which would not fit the convolution constraints

where p(B,1|k) is defined in Eq. 28,29. If the priop(l) is in Eq. 28. To satisfy the convolution constraints, the kerne
Gaussianp(BIk) is also Gaussian. If(1) ~ N(0,02), we can pair k should “undo” the blur present in input imagBsand

evaluatep(BJ|k) explicitly in the Fourier domain: respect the spatial shift between input images (i.e. satisf
== the commutative property of convolution.) Fig. 9 shows a
logp(Blk) = Cs— synthetic example. We blur a sharp image with a pair of
1 N [ ||BY%R — BZKY2+n20 2 (||BY2 + ||B?)?) blur kernels, and deconvolve the blurred images using the
>N 3 3 - correct/incorrect kernel pair. When we use an incorreahdler
2N (gy ||BlH2+||BZ||2—|—r720 2 | pal we u [

(34) pair, we observe ghosting artifacts due to an incompatible
spatial shift. Therefore, this image is unable to regeeectfa

We have omitted the dependence axyy for clarity. When input images, and log(i,B|k) penalizes that. On the other

there is only one observed image (ifé.: 0,B2=0), Eq. 34

reduces to a zero-frequency test which favors kernels withy. This is a Laplace_approximation of nglé_\R), which is equivalent to

similar zero patterns as that of the blurry imaBé [16]. logp(B|k) since logp(B|k) is a Gaussian distribution.
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Algorithm 1 Blur kernel estimation at pixel i

Algorithm 2 Multi-scale blur estimation

% Variable definitions

B = Blurred input images.

S = A set of blur kernel candidates.
i = A pixel index.

f(B,k) = Eq. 36

C <= 0.15 % penalty for single-image explanations
B; < 15x 15 window around the pixélin B.
% Compute the log-likelihood
for every kernel candidatec S, do
if k=0then
costk) < f(Bj,k) +C % A single-image explanation
else o
costk) < f(Bi,k)
end if
end for
% The kernel estimate maximizes the log-likelihood
Kernel estimate at = argmin cost)

% Variable definitions

kj = the kernel estimate gt" scale.j indexes the scale 1
to 3, from coarse to fine.

Bl = Input image pyramids af" scale.

S = 2 x 4500/4? kernel candidates at the coarsest scale.

Generate a 3-level image pyramid down-sampled in octaves.
% Estimate the blur at the coarsest scale
for every pixeli do _
k(i) < EstimateBlurPixeB!, S, i)
end for
% Regularize the estimate using MRF
ki < MRFRegularizéf)
% Loop over scales
for j=2:3do
for every pixeli do
% Velocity candidate reduction
Si(i) < 9 velocity neighbors ok;_1(i)

ki (i) < EstimateBlurPixeB), S (i),i)
end for
kj <= MRFRegularizek;j)

hand, ghosting artifacts are not visible when we use thescorr
end for

kernel to deblur the input images.

Most PSF estimation algorithms [10], [23] are designed to
estimate blur kernels that are uniform across the imageasnd
not well suited to subject motion blur because these algost o jint deconvolution leads to visual artifacts. Therefave
segrch over the full space of possible motions. In our SeeNal,se an image deblurred using only one of the two input images
object m0t|0ns_ are a_ssumed o _be constant velocity. SINESill in motion boundaries. We can automatically detect rehe
constant velocity motions comprise only a small subset R; use a single-image explanation by also considering kerne

general motions, we can constrain the motion sgarch SP&hdidates that consist of a single image observatior&i.e-
(i.e. the blur kernel search space) to constant velocityanst 0,k2 = 0). We add an additional fixed penalty C (set to 0.15

This subsequently reduces the kernel estimation errohifn tfc;r all experiments, determined through cross validatitm)

work, we estimatd by evaluating the log likelihood Eq. 35 ONijose kernel candidates: otherwise, the log-likelihoagl (5)

a set_of PSF pairs that corresp(_)nd to disc_retiz_ed 2D C_OnStﬁ[%ays favors a single image solution. Algorithm 1 provides
velocity motions, and by choosing the pair with the hlghegc pseudocode for blur kernel estimation at pikel
log likelihood.

such regions the observation model (Eq. 28) is inconsistet

4.3.2 Multi-scale blur kernel estimation

4.3 Local kernel estimation ) ) )
The quality of restored images depends on how finely we sam-

If there are multiple motions in the scene, we need to localfe the space of 2D constant velocity motions. With our autrre
estimate the motion. Ldt be images generated by deconvolveamera setup, we discretize the space into 4500 samples. We
ing B with the blur kernel paitks, and letBl = kil @ Is be a quantize the space such that a step in the velocity spacksresu

re-convolved image. The log-likelihoddg(p(Blks)) at pixel in roughly a one-pixel blur at the maximum object velocity.
iis: Searching over 4500 velocity samples to find the correct

kernel pair at the full image resolution is computationally
expensive. We resort to a coarse-to-fine strategy to mitigat
the computational burden. We first down-sample the input
~ ~ 1~ imagesB by a factor of 4 in both width and height to reduce
—P(0xils)) = playi(ls) + Nw the number of pixels and also the motion search space: blur
whereN = 15x 15 is the size of the local window centereck€rnels from two adjacent velocity samples are essentially
around the pixel. identical at a coarser resolution. At the coarsest scale, we
search through 2 4500/ (4%) velocity samples (single-image
explanations incur the factor of 2). We then propagate the
estimated motion to a finer resolution to refine the estimates

J— — 2 . ~
log p(B(i) ke) ~ —512 5 890 - BL0) -
2

4.3.1 Handling motion boundaries

Because we take two images sequentially, there are motidneach spatial scale, we regularize the log-likelihoodip 8
boundaries that are visible in one image but not in the other.using a Markov random field (MRF). Algorithm 2 provides a
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error contributed by the local kernel estimation algorithm
When the local window is larger thathb5x 15 pixels, the

deconvolution error from kernel estimation negligible.

horizontal actuator

(a) (b)

Fig. 11: (a) A diagram of our prototype. (b) A photograph of
pseudocode for our multi-scale kernel estimation stratédsy the actuators and the camera sensor.
use the regularized kernel map to reconstruct the blur free
image IN._First, we deconvolve input imagés using all blur

kernelsks,, that appear in the estimated kernel map. Given thg two motion stages (Physik Instrumente M-663 pair), where
set of deconvolved imagds,,, we reconstruct the blur free gach can move the camera sensor along orthogonal axes (See
image fromls,, by selecting, at each pixel, the pixel valugrig. 11(a)). In each image capture, one of the motion stages
from the image deblurred using the estimated blur kernel. WRdergoes parabolic motion, approximated by 19 segments of
blend different motion layers using a Poisson blending meth constant velocity due to control constraints. In practice,

[20] to reduce artifacts at abutting motion layers. could replace the motion stages with an image stabilization
hardware. The camera lens is affixed to the camera lid, and
4.3.3 Quantifying the kernel estimation error does not move during exposure. The total exposure time for

. - ) . . taking two images is 500ms: 200ms for each image, with a
Fig. 10 quantllﬁes. the image reconstruction error |ntroduc;%e|ay of 100ms between exposures. 100ms delay is incurred
by kernel estimation. We blur a sharp natural image usn'ﬂg/ switching the control from one motion stage to another,

a blur kernel pair, and we deblur the rendered images usifgy -an be reduced by using an improved hardware.
the correct kernel pair. Then we compute the base-line mean-

squared error (MSE). The mean-squared error is not zéfe rendered PSFs of our imaging system for different object

because we lose information through the blurry observatispeed using a parameterized actuator motion model, and used

process, thus the restored image is not exactly the sameths@m for deconvolution. We validated the accuracy of reader

the original image. We also deblur the rendered images usiig§Fs by physically calibrating blur kernels at several cibje

kernels locally estimated by maximizing the log-likeliltbo velocities and by comparing them to rendered kernels. For

in Eq. 36, and compute its MSE. For this experiment, wealibration, we place a high-frequency calibration patten a

compute the MSE as we increase the window size, showrotion rail, take a sharp image of the static calibratiorerat

as a green curve in Fig. 10. On the same plot, we showith a static camera, and take an image of the moving pattern

the base-line MSE (a dotted blue curve). The base-line MS#th a camera undergoing a parabolic motion. We solve for

is independendf the kernel estimation error, therefore théhe kernek that minimizes|B—k®1/|?, wherel is the sharp

difference between the green curve and the dotted blue cuivége of the static calibration pattern, aBds the image of

is the deconvolution error from kernel misidentificatione Wthe moving pattern taken with a parabolic camera.

observe that the additional error from kernel estimation is

negligible when the window size is greater than X1%5.

This result suggests that it is reasonable to focus on findib@ Results

a camera motion that maximizes the spectral power of blur

kernels. Fig. 12 illustrates the deblurring pipeline. First, we capt

two images successively while the sensor undergoes parabol

motions in two orthogonal directions. From the two images,

we locally estimate the motion and restore the blur-freegena

5.1 Prototype camera using blur kernels that correspond to the estimated motion.
Automatically detected motion boundaries are shown bykblac

We built a prototype camera consisting of a sensor, twawpunding boxes. Our kernel estimation algorithm sometimes

motion stages and their controllers. We mounted a lightisclassifies motions in un-textured regions, but this doss

weight camera sensor (Point Grey Research Flea 2 Camdeay to visual artifacts. For reference we show an imagentake

5 EXPERIMENTS
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Fig. 12: This figure shows the pipeline of our system. We take two isnagieg the orthogonal parabolic camera, and we
locally estimate motion. The estimated motion is shown tighcolor coding scheme in the inset, and the detected motion
boundaries are represented with black bounding boxes. Weudée captured image pair using the estimated motion map.
For reference, we also show the image taken with a synchedrstatic camera with a 500ms exposure.

with a static camera with 500ms exposure, synchronizedgo th  X-parabolic camera y-parabolic camera

first shot of the orthogonal parabolic camera. This refezen
image reveals the object motion during exposure.

In Fig. 13, we compare the deconvolution performance of
two-shot static camera and an orthogonal parabolic camera
toy train is moving at a constant velocity, assumed known fi
this comparison. For the static camera, we optimize the sg
of the exposure for this known train motion: 40ms for the firs
shot, and 360ms for the second shot. Using the static cam
we can reliably reconstruct the static part of the sceneat t
expense of degraded renditions of moving parts. On the otlf
hand, our camera enables reliable reconstructions of baltilc s
and moving parts, although static regions are slightly moj
degraded compared to static regions restored using the st
camera. An orthogonal parabolic camera spreads the eng
budget over all velocities of interest, whereas a staticezam
concentrates the energy budget for the static motion.

We present more deblurring results on human motions
Fig. 14, using parabolic exposure to capture motions in ng
horizontal directions. Images from the static camera (500mb
exposure) reveal the motions during exposure, shown by red
arrows. We can observe some artifacts at motion boundarie$#. 15: Our image reconstruction algorithm handles occlu-
which the joint convolution model does not hold. In genera$jon boundaries in a manner similar to motion boundaries. In
however, the reconstructions are visually pleasing. Irthivel the occluded region, an image deblurred using only one of the
column of Fig. 14, we show how an orthogonal paraboliavo input images is used.

camera handles a perspective motion. While a perspective

motion does not conform to our assumption on object motions,

our system still recovers a reasonably sharp image. 5.3 Discussion

Estimated motion Deblurred image

Our image reconstruction algorithm treats an occludecbregiKernel estimation takes 30 min - 1 hour on a single, serial
as a motion boundary. When a moving object is seen orfijachine: the running time depends on the size of the image.
in one of the two images due to occlusion, as in Fig. 15, @k by-product of kernel estimation is a blur free image de-

image deblurred using only one of the input images is usétirred using the Wiener filter. The running time of the spars
to fill in the occluded region. deconvolution algorithm is roughly 6 hours.

We assume that objects move at a constant velocity within the
exposure time, which is a limitation shared by most previous
3. The camera body is tilted for this purpose. work that deals with object motion [15], [17]. Camera shake,
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Static camera pair

Orthogonal parabolic
camera pair

Input Images Deblurred image

Fig. 13: We compare the deblurring performance of a two-shot statinera and an orthogonal parabolic camera. We optimize
the split of the exposure for the static camera, assumingwieaknow the object motion: 40ms for the first shot and 360ms fo
the second shot. The blur kernel is estimated manually tqpagenjust the amount of information captured by these camera
The static camera reconstructs static objects well, buthat éxpense of a degraded rendition of the moving object, ealser
the orthogonal parabolic camera restores a reasonable it of both the static and moving parts.

which typically exhibits complex kernels, needs to be haddl[2] A. Agrawal and Y. Xu. Coded exposure deblurring: Optiedzcodes for
separately Our camera design captures image information Psf estimation and invertibility. IfProceedings of the IEEE Conference
. . - on Computer Vision and Pattern Recognition (CVPE)09.
almost optimally, but it does not provide guarantees fon&er P g‘ (_ PE) B
estimation performance. While taking two images certainly! % aﬁ%fg’;’iz'ﬁs\‘oﬁuéfgdhi-sR(?jrgir-;?‘ggggzgagggb'mw'deo-m'\"
helps kernel estimation, designing a sensor motion that op- P o T
timizes both kernel estimation and information captureris &*/ M. Ben-Ezra and S. K. Nayar. Motion-based motion defaigr IEEE
. . . Transactions on Pattern Analysis and Machine Intelligen2é:689 —
open problem. Our image reconstruction takes into account ggg 2004.
0cqlusmn_s by allowing some pixels to be recopstructed fror@ 3. Chen, L. Yuan, C.-K. Tang, and L. Quan. Robust dual emti
a Sm_gle Images, but a full treatment of occlusion for decon-  gebjurring. InProceedings of the IEEE Conference on Computer Vision
volution remains an open challenge. and Pattern Recognition (CVPR3008.
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