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Abstract

Today, the top performing parsing algorithms rely on the availability of annotated data for
learning the syntactic structure of a language. Unfortunately, syntactically annotated texts
are available only for a handful of languages. The research presented in this thesis aims
at developing parsing models that can effectively perform in a lightly-supervised training
regime. In particular we focus on formulating linguistically aware models of dependency
parsing that can exploit readily available sources of linguistic knowledge such as language
universals and typological features. This type of linguistic knowledge can be used to moti-
vate model design and/or to guide inference procedure.

We propose three alternative approaches for incorporating linguistic information into a
lightly-supervised training setup:

First, we show that linguistic information can be used in the form of rules on top of stan-
dard unsupervised parsing models to guide inference procedure. This method consistently
outperforms existing monolingual and multilingual unsupervised parsers when tested on a
set of 6 Indo-European languages.

Next, we show that a linguistically aware model design greatly facilitates crosslingual
parser transfer by leveraging syntactic connections between languages. Our transfer ap-
proach outperforms the state-of-the-art multilingual transfer parser across a set of 19 lan-
guages, achieving an average gain of 5.9%. The gains are even more pronounced – 14.4%
– on non-Indo-European languages where existing transfer methods fail to perform.

Finally, we propose a corpus-level Bayesian framework that allows multiple views of data
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in a single model. We use this framework to combine a dependency model with con-
stituency view and universal rules, achieving a performance gain of 1.9% compared to the
top-performing unsupervised parsing model.

Thesis Supervisor: Regina Barzilay
Title: Professor, Electrical Engineering and Computer Science
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Chapter 1

Introduction

Computer understanding of natural language can have enormous impact on the way we

communicate today. It can lead towards automation of numerous tasks involving human-

human and human-computer communication, ranging from question-answering to trans-

lation and text summarization. Most of the research in this area relies on some form of

syntactic analysis of text. Consequently, automatic syntactic parsing has evolved into a

major sub-task in the field of Natural Language Processing (NLP).

Today, the top performing parsing algorithms rely on the availability of annotated data for

learning the syntactic structure of a language. Unfortunately, syntactically annotated texts

are available only for a handful of languages. Moreover, the development of such resources

for a new language can be both expensive and time consuming because of the level of lin-

guistic expertise needed to produce syntactic annotations. However, there is a vast body of

knowledge in the form of linguistic theories which remains mostly untapped in the context

of grammar induction. Existing techniques that aim to benefit resource-lean languages ei-

ther assume a fully unsupervised setup [47, 44, 20] or transfer syntactic information from

annotated resources in other languages [73, 19, 58]. There is surprisingly little existing

15



work that makes use of available linguistic sources of knowledge. The work presented in

this thesis exploits linguistic knowledge about syntax and its crosslingual variations when

learning grammar. The aim is to develop parsing methods that are applicable across a wide

range of human languages with minimal supervision.

History of linguistics dates back to 4th century BC starting from the Sanskrit grammar of

Panini. Since then, a huge amount of knowledge has accumulated in the form of linguis-

tic theories and grammar formalisms. This includes both language specific studies as well

as general formalisms for representing languages. The popular forms of syntactic repre-

sentation used in NLP today (e.g. Context Free Grammar, Dependency Grammar, Tree

Adjoining Grammar) are based on established linguistic theories. When training a parsing

model for any particular formalism, manually annotated treebanks (sentences annotated

with syntactic structure) of the desired formalism for the language of interest are given to

the parser.

Human annotators who produce treebanks for any particular formalism are provided with

annotation guidelines. The guidelines are needed for two reasons: First, although the native

speaker of a language can perfectly understand the meaning of the sentences, consciously

marking syntactic relations between words is a difficult task even for humans. Secondly,

in linguistic theories there are multiple views on how to represent certain very frequent

constructs. For instance, in dependency parsing framework, there is still no consensus on

the head of Noun phrases. Therefore, guidelines are considered necessary for correct and

consistent annotation of data.

In contrast, unsupervised parsers are expected to learn the syntactic structure in the absence

of any linguistic guidance. This setup would make sense if the aim was to discern patterns

in language structure previously unidentified by linguists. However, that is not the case,

standard practice is to evaluate these parsers against manual annotations. The parsers are
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expected to automatically learn the structure that the annotators had in mind (or in their

guidelines). Thus the primary goal of the research in grammar induction has been to save

annotation effort. Our claim is that this goal can be achieved more effectively if, like the

human annotators, the parsers are guided towards the desired annotations.

Readily available forms of linguistic knowledge include basic part-of-speech definitions,

dominant syntactic properties such as right-branching vs. left-branching, and word order

trends like Prepositions vs. Postpositions. Such high-level syntactic properties are well

documented for most languages. Yet, unsupervised parsers try to re-learn those trends and

fail to get even basic dependencies right. Supervised parsers, on the other hand, learn these

patterns and much more from the detailed treebanks used for training. For instance, when

trained on large treebanks, these parsers learn lexical selectional preferences. Encoding

these preferences manually into a parser can be quite cumbersome if not impossible. This

indicates that in order to bridge the gap between supervised and unsupervised methods,

high-level linguistic knowledge must be combined with learning from data.

Adding linguistic knowledge to a data driven parsing models poses some challenges. The

main challenge is that this knowledge is available in declarative forms without any notion

of degree of applicability. For instance, it may tell us that a certain language is dominantly

right-branching, but the degree of dominance remains unknown. Moreover, even when the

information is almost always applicable, there is still room for ambiguity. For instance,

if we know that a language is always Prepositional, in a given sentence there can still be

multiple Prepositions preceding a Noun that can be potential heads. We explore different

ways of balancing declarative knowledge with the patterns learned from data.

The work presented in this thesis shows the benefits of using linguistic knowledge in combi-

nation with learning from data. Since the first better-than-random parser in 2004 [47] (with

an average accuracy of 33.6% [75]), unsupervised techniques have reached an accuracy of
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48.6% [76]. However, our unsupervised parser, with access to a small set of linguistic rules,

outperforms these models with an accuracy of 50.7%. Furthermore, our linguistically mo-

tivated transfer parser and semi-supervised parser achieve 59.5% and 67.2% respectively.

The information provided to these parsers is minimal and readily available yet the gains are

substantial when compared with fully unsupervised models.

We explore the use of different forms of linguistic information as well as different ways

of incorporating this information into parsing models. First, we show that linguistic infor-

mation can be used in the form of universal rules on top of standard unsupervised parsing

models to guide inference procedure, yielding impressive gains in performance. Next, we

show that a linguistically aware model design greatly facilitates crosslingual parser transfer

by leveraging crosslingual syntactic connections. Finally, we propose a simple yet effective

method that allows multiple linguistic views of data in a single model.

Before further elaborating on our approach, we first give a brief overview of dependency

grammar formalism followed by a discussion of dependency parsing research in NLP. We

then continue with a more detailed overview of the work presented in this thesis followed

by an outline of the rest of the thesis.
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1.1 Dependency Grammar Formalism

In modern linguistics, dependency based representation started with the work of Tesniere

published in 1959 [48]. Since then a number of formalisms based on binary word depen-

dencies have emerged. The fundamental difference between dependency base represen-

tation and more traditional constituency representation is the following: In dependency

tree the number of tree nodes is equal to the number of words in the sentence, whereas

in constituency tree, there maybe additional internal tree nodes specifying the syntactic

labels of word spans. Thus the length of the sentence, in a way, limits the complexity of

its dependency tree, which makes this formalism relatively simple and more suitable for

computational analysis.

Figure 1-1 shows the Dependency based syntactic structure of a sentence. In dependency

parse of a sentence, each word serves as a modifier of some other word in the sentence. In

the figure, the arrow heads point to the modifier word. The word being modified is called

the “head” or the “parent”, and the modifier may be called “dependent” or “child”. The

basic idea is that a modifier word is present in the sentence because of its head word and

is therefore dependent on its head word, moreover it modifies or adds to the meaning of its

head. For instance, in the example sentence “red” is a modifier of “apples”, its presence in

Figure 1-1: A Dependency Tree

the sentence can only be justified as a modifier of “apples” and it narrows down the set of

apples from which John ate thus adding to the meaning of its head. Figure 1-2 shows the

corresponding constituency tree, Note that this tree has 8 internal tree nodes in addition to
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the leaf word nodes.

Figure 1-2: A Constituency Tree

The notion of head is not exclusive to dependency formalism, most other grammar for-

malisms, including constituency based ones, have some notion of head for spans or con-

stituents. The question of how to identify the head of a constituent, or alternatively how to

decide the direction of a binary dependency, is debatable. The head may differ depending

on whether we are looking for semantic head or syntactic head. Semantic heads are usually

the content words such as Nouns or Verbs, while syntactic heads maybe the function words

such as Prepositions and Auxiliaries. However, even within syntactic theories, function

words are not always marked as heads. For instance, in the dependencies involving Auxil-

iary and Verb, the Auxiliary word is usually considered head however in the dependencies

between Nouns and Determiners, NP analysis (Noun Phrase where Noun is the head) is

more common than DP analysis (Determiner Phrase where Determiner is the head). There

are reasonable arguments to support both views. Therefore, different dependency based

formalisms and even different dependency types within one formalism maybe based on

different head finding principles. This lack of consensus in syntactic theories is partly the

reason for inconsistency in different treebanks annotations.
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In dependency based representation, modifiers are often further divided into two categories

1) the necessary modifiers also called “arguments” and 2) the optional modifiers, called

“adjuncts”. For instance, the subject and object modifiers of transitive Verbs are argu-

ments, since a transitive Verb is incomplete in meaning without either subject or object;

but Adjective modifiers of Nouns are not necessary and hence are adjuncts. In the example

sentence, removing the object (“John ate”) makes the sentence incomplete but removing

the Adjective (“John ate apples”) does not. Dependency parse may also include the labels

of dependency links, for instance subject and object labels. However, the work presented

in this thesis always assumes unlabeled trees.

One benefit of dependency representation, in contrast to constituency based representa-

tions, is its ability to handle discontinuities that frequently arise in free-word-order lan-

guages. This is because the dependency representation of a sentence is not tied to the sur-

face order of words. However, majority of the NLP work on dependency parsing assumes

projectivity which limits the ability of dependency representation. A projective dependency

tree is the one for which the linear order of the words in sentence does not introduce any

crossing dependency links. For instance, the tree in Figure 1-1 is projective (as is the case

for most of English sentences), however the tree shown in Figure 1-3 is not projective. The

Figure 1-3: An example of a non-projective dependency tree

link between “open” and “at” crosses the link between “knows” and “will”. This is a very

uncommon occurrence for English but for other languages, such as German, non-projective
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trees are very common. The work presented in this thesis assumes projectivity, however

the basic ideas can be incorporated into a non-projective parser.
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1.2 Dependency Parsing in NLP

Much like the linguistics theories, the dependency formalism gained popularity in NLP

only in recent years. Initially, most of the parsing work was based on constituency for-

malism. However, comparative simplicity of dependency formalism, combined with the

development of efficient algorithms [27], has made it the formalism of choice in many syn-

tactic parsing works. Furthermore, the availability of CoNLL 06 and 07 datasets [14, 62]

and the recent trends of multilingual evaluation of NLP tools has also contributed to the

popularity of this framework for parsing research.

Early work in syntactic parsing (as well as in other areas of NLP) was focused primarily on

English. Efforts were invested into developing annotated resources for English which could

be used to train supervised parsing algorithms [53]. Availability of annotated resources

allowed for designing parsing models that can capture detailed syntactic structures [22]

such as sub-categorization frames and second order features. Moreover, the supervised

training regime also allows for the use of feature rich discriminative training algorithms

[57].

As the focus shifted towards languages other than English, the issue of lack of crosslin-

gual portability of supervised parsers became apparent. Initial efforts to address this prob-

lem relied mainly on unsupervised parsing methods [47]. In contrast to their supervised

counterparts, these methods simplified the parse representation to a bare-bones level: just

brackets for constituency parse and just head-modifier tag pairs for dependency parse [47].

These simpler design choices were driven in part by the computational complexity of unsu-

pervised learning algorithms and in part to enable the parser to identify consistent patterns

in data. Since pattern identification is a lot easier if the sought after patterns are very high

level. The issue of computational difficulty has been addressed in various works including

the contrastive estimation work of Eisner et al. [70] and the sampling based algorithms
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of Cohen et al. [10]. However, the issue of learning complex patterns from un-annotated

data still remains. As mentioned earlier, the problem lies partly in difficulty of evaluating

the patterns learned by an unsupervised parser. Evaluating unsupervised parsers against

human annotations is bound to fail. In fact, for most unsupervised parsers, the undirected

dependency accuracy is at least 10 points better than the directed dependency accuracy, this

is not counting the ripple effect of those errors. In other words, like the linguists, the parser

also quite often disagree with the annotations on the choice of head.

In past few years, efforts have been made to standardize the annotations across languages

with a focus on enabling transfer of linguistic tools from resource-rich languages to resource-

lean languages. One such work is the development of universal tagset by Petrov et al. [65].

By mapping part-of-speech tagsets used in different dependency treebanks to a universal

coarse set, direct transfer of unlexicalized parser across languages is made possible [58].

However, the structural inconsistencies in annotations can not be handled by universal POS

tag mapping. Furthermore, not all differences between treebanks of different languages are

due to annotation differences. The languages are in fact different and direct transfer does

not handle that, which makes it useful only when the source and target languages are struc-

turally quite similar. Some of the work presented in this thesis is focused on crosslingual

transfer when source and target languages are very different.

Another way of enhancing the performance of unsupervised parser is to introduce high-

level weak supervision into the parser that guides it towards desired structures. This high

level knowledge is typically incomplete and/or noisy. Examples include using partial

HTML mark-up [77], partial semantic annotations [59], constraints induced from paral-

lel data [33] and high-level rules [26]. Most of the work presented in this thesis is also

closely related to this direction of research.
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1.3 This thesis

We first present an example to motivate the use of linguistic knowledge. We then give

a more detailed overview of different types of linguistic knowledge that we use followed

by a high level account of techniques we employ to incorporate linguistic knowledge into

parsing models. The last section summarizes major contributions of our work.

1.3.1 A Motivating Example

In dependency parsing formalism, for every word in the sentence, a decision is made about

which other word in the sentence is the syntactic head of the word. While inducing these

decisions, it has been standard practice to assume that the part-of-speech tag of each word

is known. However, the connection between part-of-speech and the dependency structure,

as defined in syntactic theories, is always ignored when learning dependency structures.

For instance, take the example sentence shown in Figure 1-4. The dependency parse shown

in the figure is produced by an unsupervised parser [47]. If we know that the part-of-speech

tag of “the” is Article, then we also know, by definition, that “the Articles are the words

that specify definiteness of Nouns”. We can then eliminate many spurious attachments for

the word “the”. Note, however, that such information can only guide the parser, it can not

completely disambiguate the decision. In the sentence in Figure 1-4 there are still multiple

Noun candidates that can be modified by “the”. Further information, such as the position of

modifier with respect to the head and other modifiers of the head, maybe needed for total

disambiguation. This calls for parsing models that can effectively make use of external

linguistic knowledge while filling the information gaps via learning from the data.
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Figure 1-4: An example of how POS tag definitions may help eliminate wrong dependen-
cies. The definitions of Article and Adverb disagree with wrong dependencies predicted by
an unsupervised parser [47].

1.3.2 Forms of Linguistic Knowledge

When selecting which linguistic information to incorporate into our parsing models, we

have two considerations in mind: First, the information should be either universal or easily

available for most languages. Second, It should be representable in a form meaningful

within the parsing framework. While the latter is a practical consideration, the former is

intended to make our methods usable for most languages in the world.

Universal Rules

We first propose the use of a small set of universal dependency rules (see Table 1.1) as

guiding linguistic information. These rules are universal because they are based on the

definition of Part-Of-Speech (POS) categories. For example Adverbs are by definition

the words that modify Verbs or Adjectives, so we add two rules stating that Verbs and

26



Adjectives can take Adverbs as dependents. As mentioned earlier, for certain dependencies,

linguists differ on who should be the head. For instance the dependency link between Noun

and Article can go either way depending on whether you want to adhere to the traditional

view or the more recent transformational grammar. We chose the more commonly held

traditional notion of Noun phrase. However, the rules can be changed depending on the

desired annotation scheme.

We do not expect all the dependency relations to be consistent with these rules. Post-hoc

analysis of CoNLL 2006-2007 shared task data [14, 62] reveals that the ratio of these rules

varies greatly across languages; while most languages follow the rules more than 50% of

the times, there are outliers too. For instance, Japanese dependencies are consistent with the

rules only 35% of the times. Our method can handle this variability because we introduce

the rules as soft constraints. In particular, we introduce them as expectation constraint over

model posterior (discussed later in more detail).

Note that the universal rules only specify the head and the dependent tags, they do not

specify their position/ordering in the sentence relative to each other. It is the absence of

ordering information that makes them universal.

Root→ Auxiliary Verb→ Noun Noun→ Noun
Root→ Verb Verb→ Pronoun Noun→ Numeral
Auxiliary→ Verb Verb→ Adverb Noun→ Adjective
Preposition→ Noun Verb→ Verb Noun→ Article
Adjective→ Adverb

Table 1.1: The manually-specified universal dependency rules used in our experiments.

27



Linguistic Typology

Linguistic typology is a subfield within linguistics that studies systematic variations be-

tween languages; it characterizes the languages with respect to different aspects of struc-

tural variations. Examples include morphological (internal structure of words), phonetic

(sound related), lexical (regarding the vocabulary of a language) or syntactic (word order)

variations. We are interested in the characteristics concerning syntactic variations. An

example of such variations would be the order of Subject, Verb and Object. English for

instance is a SVO language i.e. the Subject precedes the Verb and the Object follows it,

Urdu on the other hand is a VSO language.

We propose the use of syntactic typology of languages when transferring parsers trained

on a set of source languages to a target language. This setup is of interest because syn-

tactically annotated treebanks of reasonable sizes are available today for a couple of dozen

languages. Annotation efforts for a new language can be saved if we can effectively trans-

fer the information available in these treebanks. However, a new target language may share

different aspects of its syntactic structure with different source languages. Therefore, a

parser trained on a diverse set of source languages will not do well if transferred blindly.

In this situation, the syntactic typological features can be useful. They can guide the parser

to share the parameters of the target language only selectively with the source languages

depending on shared typological characteristics.

Like the universal rules, typological information is also readily available for most languages

via the online version of “The World Atlas of Language Structure” (WALS) [43]. In our

experiments we only use those syntactic typology features that are defined in WALS for all

the languages in our dataset (see Table 1.2). Note that the features listed in the Table 1.2

only specify the ordering of dependents with respect to the parent, the fact that undirected

versions of those dependencies exist universally in all languages is implied. Our transfer
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ID Feature Description Values
81A Order of Subject, Object and Verb SVO, SOV, VSO, VOS, OVS, OSV
85A Order of Adposition and Noun Postpositions, Prepositions, Inpositions
86A Order of Genitive and Noun Genitive-Noun, Noun-Genitive
87A Order of Adjective and Noun Adjective-Noun, Noun-Adjective
88A Order of Demonstrative and Noun Demonstrative-Noun, Noun-Demonstrative
89A Order of Numeral and Noun Numeral-Noun, Noun-Numeral

Table 1.2: The set of typological features that we use in our transfer based parsing model.
For each feature, the first column gives the ID of the feature as used in WALS, the second
column describes the feature and the last column enumerates the allowable values for the
feature. Besides these values, each feature can also have a value of ‘No dominant order’.

model also makes use of the universal nature of undirected dependencies.

Multiple Grammar Formalisms

While the work presented in this thesis is primarily based on dependency parsing frame-

work, combining it with other frameworks, like constituency parsing, should help constrain

the learning process. Incorporating constituency information is particularly easy if we limit

the dependency structures to only projective trees. In a projective tree, the span projected

by any node in the dependency tree forms a constituent. Consider for example the depen-

dency tree in Figure 1-5 and its corresponding constituent brackets. Most of the brackets

of the constituency tree are discernible via the dependency tree.

The nice thing about constituent brackets is the notion of substitutability i.e. the con-

stituents of the same type should be usable interchangeably. This means that if we take an

NP from one sentence and replace it with an NP in another sentence, the resulting sentence

should still be grammatical. This ensures the context-free-ness of the constituency gram-

mar. To incorporate the idea of substitutability into a dependency parser, we model distri-

butions over the pairs of internal and external boundary tags of each constituent span. It
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Figure 1-5: A dependency tree (represented by arrows) and corresponding constituency
brackets (represented by parentheses)

is seemingly counter-intuitive to use context POS tags in order to model context-free-ness.

However, explicitly modeling the context of constituents can be viewed as substitutability

test.

Figure 1-6 shows an example of how constituency and context information may help cor-

rect common mistakes made by lightly supervised dependency parsers. The parse in the

top is produced by a dependency based parser trained only on 10 annotated sentences. It

erroneously predicts Verb “stepped” as parent of Preposition “to”. The dependency parse

at the bottom is produced by a parser that combines dependency and constituency views.

This parser is also trained on the same 10 annotated sentences; Yet, the dependency tree

produced by this parser does not have the erroneous dependency link. If we consider only

local dependency decisions, then the first parse is much more probable than the second.

This is because Verb is a very likely parent for Preposition. The true dependency, where

the Preposition is headed by another Preposition, is relatively rare. It is not likely to be

learned from a small set of training sentences. However, if we look at the constituent spans

produced by the erroneous tree, they are very unlikely. For instance, based on the 10 an-
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Figure 1-6: Trees produced by dependency-only parser (top) and combined depen-
dency+constituency parser (bottom).

notated training sentences, having a preposition (in) that has only itself in its projected

constituent span is not likely. Therefore, a combined parser has correctly predicted the

attachment for the Preposition.
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1.3.3 Techniques for Incorporating Linguistic Knowledge

Linguistic information can either be incorporated directly into the parsing model in the form

of model parameters or it can be used to constrain the search space during training. The

former is useful when incorporating relatively detailed linguistic concepts like constituency

information or sub-categorization frames, the latter is more appropriate when linguistic

knowledge is in the form incomplete high level information such as the universal linguistic

rules discussed in the previous section.

Constrained Inference

Incorporating high-level linguistic rules directly into the parsing model can be challeng-

ing as it requires careful tuning of either the model structure or priors for each constraint.

Instead, following the approach of [38], we constrain the posterior to satisfy the rules in

expectation during inference. This effectively biases the inference toward linguistically

plausible settings. We adapt this method to our Bayesian framework via variational ap-

proximation.

In standard variational inference, an intractable true posterior is approximated by a distri-

bution from a tractable set [8]. This tractable set typically makes stronger independence as-

sumptions between model parameters than the model itself. To incorporate the constraints,

we further restrict the set to only include distributions that satisfy the specified expectation

constraints over hidden variables.

In general, for some given model, let θ denote the entire set of model parameters and z and

x denote the hidden structure and observations respectively. We are interested in estimating

the posterior p(θ, z | x). Variational inference transforms this problem into an optimization

problem where we try to find a distribution q(θ, z) from a restricted set Q that minimizes
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the KL-divergence between q(θ, z) and p(θ, z | x). To make this minimization tractable,

a mean field factorization is typically assumed. This means that q belongs to a set Q of

distributions that factorize as follows:

q(θ, z) = q(θ)q(z).

We further constrain q to be from the subset of Q that satisfies the expectation constraint

Eq[f(z)] ≤ b where f is a deterministically computable function of the hidden structures.

In our model, f counts the dependency edges that are an instance of one of the declaratively

specified dependency rules (1.1), while b is the proportion of the total dependencies that

we expect should fulfill this constraint (set to 0.8 in our experiments).

Findings: We test the effectiveness of our grammar induction model on six Indo-European

languages from three language groups: English, Danish, Portuguese, Slovene, Spanish, and

Swedish. Though these languages share a high-level Indo-European ancestry, they cover a

diverse range of syntactic phenomenon. Our results demonstrate that universal rules greatly

improve the accuracy of dependency parsing across all of these languages, outperforming

the state-of-the-art unsupervised grammar induction methods [44, 7].

Linguistically Motivated Model Design

One obvious way of incorporating linguistic knowledge is via model structure. A linguis-

tically motivated model design can either learn the desired information from the data or

can make use of known information in the form of observed parameters. However, the

challenge lies in capturing important pieces of information without overly complicating

the model. Too much detail will cause sparsity and/or intractability issues, too little will

33



miss on important patterns. We address this challenge first by focusing on the phenomena

that are salient to the setup at hand and then by introducing corpus level models that allow

different linguistic views in a single model without making inference intractable.

Model Design for Parser Transfer We first introduce a parsing model that is designed

specifically for a cross-lingual transfer setup. In this setup, treebank annotations are avail-

able for a set of source languages. The goal is to effectively transfer this information to a

new target language for which language specific treebank data is not available. The idea of

parser transfer across languages implicitly relies on universal aspects of syntactic structure.

However, existing work in this direction does not make explicit use of those aspects.

We propose a parser that explicitly separates universal components from the language spe-

cific components. This approach is rooted in linguistic theory that characterizes the connec-

tion between languages at various levels of sharing. Some syntactic properties are universal

across languages. For instance, Nouns take Adjectives and Articles as dependents, but not

Adverbs. However, the order of these dependents with respect to the parent is influenced

by the typological features of each language.

We capture this intuition via a two-tier model that separates the selection of dependents

from their ordering: Selection Component determines the dependent tags given the parent

tag. Ordering Component determines the position of each dependent tag with respect to its

parent (right or left) and the order within the right and left dependents. This factorization

constitutes a departure from traditional parsing models where these decisions are tightly

coupled. By separating the two, the model is able to support different degrees of cross-

lingual sharing on each level.

The parameters of the selection component are assumed to be universal and can therefore

be borrowed from any or all of the source languages. Note that the universal component of
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this model can be viewed as an alternative for the undirected universal rules declaratively

specified in the rules based parser from previous section.

For ordering component, we allow partial sharing based on the typological features listed

in Table 1.2 in Section 1.3.2. In particular, we define ordering distribution as a log-linear

model whose dependence on any particular language is captured only via typological fea-

ture, i.e. the identity of the language is never used as a feature.

P (d|a, h, l) =
1

Z(a, h, l)
ew·g(d,a,h,vl)

Where a and h are the dependent and the head tags, l is the language, d is the orientation of

the dependent with respect to the head (left or right). w are the feature weights and g is the

feature function. Note that g has access to the language l only via its typological features

vl. Thus even if the target language is not closely related to any single source language, its

ID English Portuguese Arabic
81A SVO SVO VSO
85A Preposition Preposition Preposition
87A Adjective-Noun Noun-Adjective Noun-Adjective
88A Demonstrative-Noun Demonstrative-Noun Demonstrative-Noun

Table 1.3: Typological word-order features of English, Portuguese and Arabic.

ordering decisions are selectively informed by different languages it shares features with.

For instance, Portuguese is a prepositional language like English, but the order of its Noun-

Adjective dependency is different from English and matches that of Arabic (see Table 1.3).

The typological features of Portuguese enable the sharing of right parameters with each

language and block the irrelevant parameters.

Findings: We evaluated our selective sharing model on 17 languages from 10 language

families. On this diverse set, our model consistently outperforms state-of-the-art multi-
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lingual dependency parsers. Performance gain, averaged over all the languages, is 5.9%

when compared to the highest baseline. Our model achieves the most significant gains on

non-Indo-European languages, where we see a 14.4% improvement.

Corpus Level Models with Multiple Linguistic Views Combining multiple ways of

solving the same task rarely fails. This is particularly true when models are simple, mis-

specified, and capture largely complementary aspects of the data. The insight has been

used frequently in unsupervised parsing. For example, early successes [47] sought to com-

bine dependency and constituent parsing. Another perspective to combining models is to

incorporate declarative knowledge, insufficient on its own, into an otherwise unsupervised

model [21, 26, 60].

In NLP, for unsupervised tasks, generative models have frequently been the framework of

choice. The locally normalized parameters in generative models eliminate the need to com-

puting the intractable normalization term. However, incorporating multiple overlapping

views into a generative model usually makes the inference computationally intractable.

One common mechanism for handling multiple views in a generative framework is the

product of experts [47, 72, 13]. In this scenario, each view forms a generative model and

the latent structure is scored using the product of their probabilities. These models are sim-

ple and effective in practice. However, product of experts models typically require some

form of approximation during inference.

We propose unsupervised Bayesian models of dependency parsing that operate on the cor-

pus level. By dispensing with the per-sentence view of modeling, we can easily merge

multiple ways of scoring or constraining parsing decisions. We begin with a simple gen-

erative dependency parsing model, akin to [47], and adorn it with various complementary

views of scoring. Different views are incorporated as additional parameters that pertain to

the same parsing decisions. By integrating over the parameters (i.e., exploring jointly opti-

36



mal parameter settings), we necessarily couple parsing decisions across the sentences in the

corpus. It is still possible, however, to sample a new improved parse for each sentence, one

sentence at a time, in a (collapsed) Gibbs’ sampling framework, or approximately using

Metropolis-Hastings. We experiment with several such alternative views.

Findings: We evaluate our method on 19 languages, using dependency data from CONLL

2007 and CONLL 2006 datasets. For unsupervised experiments, we compare our results

against the state-of-the-art parser [76] which combines several parsing models. On average,

our model outperforms this baseline by 1.9%.
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1.3.4 Contributions

The contribution of this work is threefold:

– We introduce the notion of a universal view of dependency parsing, first via uni-

versal rules and then by separating universal selection component from language

specific ordering component for parser transfer. Our experiments show that this two

tier-approach is quite effective for implementing language independent parsers.

– We are the first to exploit linguistic typology to model crosslingual syntactic varia-

tions. We thus enable the transfer of ordering information from a diverse set of source

languages to an un-related target language. We have shown that even very high-level

typological information can help make the parsers more portable across languages.

– We propose a corpus-level Bayesian framework that makes it easy to merge multi-

ple overlapping views of data into one model. The framework is generic and can be

used for tasks other than dependency parsing. We demonstrate the effectiveness of

this approach by combining dependency and constituency views in one parser, yield-

ing significant performance gains on dependency predictions. Existing research in

NLP has demonstrated the benefits of joint learning of multiple tasks [79, 32], this

framework can also be used as a mechanism for joint learning.
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1.4 Outline

The remainder of this thesis is organized as follows:

– Chapter 2 describes in detail our rule-based parsing method. This method uses uni-

versal dependency rules to constrain parameter search for an otherwise unsupervised

parser.

– Chapter 3 presents our parsing model designed specifically for crosslingual parser

transfer. This parser makes use of linguistic typology to selectively transfer parsing

information to a target language according to its syntactic connections with source

languages.

– Chapter 4 proposes a corpus-level Bayesian framework for unsupervised parsing.

This method allows to incorporate overlapping linguistic views into one model with-

out making inference intractable.

– Chapter 5 summarizes major findings and points to directions for future research.
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Chapter 2

Using Universal Linguistic Rules for

Grammar Induction

Despite surface differences, human languages exhibit striking similarities in many fun-

damental aspects of syntactic structure. These structural correspondences, referred to as

syntactic universals, have been extensively studied in linguistics [1, 16, 81, 61] and under-

lie many approaches in multilingual parsing. In fact, much recent work has demonstrated

that learning cross-lingual correspondences from corpus data greatly reduces the ambiguity

inherent in syntactic analysis [49, 15, 20, 71, 7].

In this chapter, we present a grammar induction approach that exploits these structural

correspondences by declaratively encoding a small set of universal dependency rules. As

input to the model, we assume a corpus annotated with coarse syntactic categories (i.e.,

high-level part-of-speech tags) and a set of universal rules defined over these categories,

such as those in Table 2.1. These rules incorporate the definitional properties of syntactic

categories in terms of their interdependencies and thus are universal across languages. They

can potentially help disambiguate structural ambiguities that are difficult to learn from data
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Root→ Auxiliary Noun→ Adjective
Root→ Verb Noun→ Article
Verb→ Noun Noun→ Noun
Verb→ Pronoun Noun→ Numeral
Verb→ Adverb Preposition→ Noun
Verb→ Verb Adjective→ Adverb
Auxiliary→ Verb

Table 2.1: The manually-specified universal dependency rules used in our experiments.
These rules specify head-dependent relationships between coarse (i.e., unsplit) syntactic
categories. An explanation of the ruleset is provided in Section 2.4.

alone — for example, our rules prefer analyses in which verbs are dependents of auxiliaries,

even though analyzing auxiliaries as dependents of verbs is also consistent with the data.

Leveraging these universal rules has the potential to improve parsing performance for a

large number of human languages; this is particularly relevant to the processing of low-

resource languages. Furthermore, these universal rules are compact and well-understood,

making them easy to manually construct.

In addition to these universal dependencies, each specific language typically possesses its

own idiosyncratic set of dependencies. We address this challenge by requiring the univer-

sal constraints to only hold in expectation rather than absolutely, i.e., we permit a certain

number of violations of the constraints.

We formulate a generative Bayesian model that explains the observed data while accounting

for declarative linguistic rules during inference. These rules are used as expectation con-

straints on the posterior distribution over dependency structures. This approach is based

on the posterior regularization technique [37], which we apply to a variational inference

algorithm for our parsing model. Our model can also optionally refine common high-level

syntactic categories into per-language categories by inducing a clustering of words using

Dirichlet Processes [30]. Since the universals guide induction toward linguistically plau-
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sible structures, automatic refinement becomes feasible even in the absence of manually

annotated syntactic trees.

We test the effectiveness of our grammar induction model on six Indo-European languages

from three language groups: English, Danish, Portuguese, Slovene, Spanish, and Swedish.

Though these languages share a high-level Indo-European ancestry, they cover a diverse

range of syntactic phenomenon. Our results demonstrate that universal rules greatly im-

prove the accuracy of dependency parsing across all of these languages, outperforming

current state-of-the-art unsupervised grammar induction methods [44, 7].

2.1 Related Work

Learning with Linguistic Constraints Our work is situated within a broader class of un-

supervised approaches that employ declarative knowledge to improve learning of linguistic

structure [41, 17, 38, 21, 26, 50]. The way we apply constraints is closest to the latter two

approaches of posterior regularization and generalized expectation criteria.

In the posterior regularization framework, constraints are expressed in the form of expec-

tations on posteriors [38, 33, 37, 34]. This design enables the model to reflect constraints

that are difficult to encode via the model structure or as priors on its parameters. In their

approach, parameters are estimated using a modified EM algorithm, where the E-step min-

imizes the KL-divergence between the model posterior and the set of distributions that

satisfies the constraints. Our approach also expresses constraints as expectations on the

posterior; we utilize the machinery of their framework within a variational inference algo-

rithm with a mean field approximation.

Generalized expectation criteria, another technique for declaratively specifying expecta-

tion constraints, has previously been successfully applied to the task of dependency pars-
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ing [26]. This objective expresses constraints in the form of preferences over model expec-

tations. The objective is penalized by the square distance between model expectations and

the prespecified values of the expectation. This approach yields significant gains compared

to a fully unsupervised counterpart. The constraints they studied are corpus- and language-

specific. Our work demonstrates that a small set of language-independent universals can

also serve as effective constraints. Furthermore, we find that our method outperforms the

generalized expectation approach using corpus-specific constraints.

Learning to Refine Syntactic Categories Recent research has demonstrated the useful-

ness of automatically refining the granularity of syntactic categories. While most of the

existing approaches are implemented in the supervised setting [31, 66], [52] propose a

non-parametric Bayesian model that learns the granularity of PCFG categories in an unsu-

pervised fashion. For each non-terminal grammar symbol, the model posits a Hierarchical

Dirichlet Process over its refinements (subsymbols) to automatically learn the granularity

of syntactic categories. As with their work, we also use non-parametric priors for category

refinement and employ variational methods for inference. However, our goal is to apply

category refinement to dependency parsing, rather than to PCFGs, requiring a substantially

different model formulation. While [52] demonstrated empirical gains on a synthetic cor-

pus, our experiments focus on unsupervised category refinement on real language data.

Universal Rules in NLP Despite the recent surge of interest in multilingual learning [49,

20, 71, 7], there is surprisingly little computational work on linguistic universals. On the

acquisition side, [25] proposed a computational technique for discovering universal im-

plications in typological features. More closely related to our work is the position paper

by [3], which advocates the use of manually-encoded cross-lingual generalizations for the

development of NLP systems. She argues that a system employing such knowledge could
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s - coarse symbol (observed)
z - refined subsymbol
x - word (observed)
θszc - distr over child coarse

symbols for each parent s
and z and context c

βs - top-level distr over sub-
symbols for s

πss′z′c - distr over subsymbols for
each s, parent s′ and z′, and
context c

φsz - distr over words for s and z

Figure 2-1: Graphical representation of the model and a summary of the notation. There is a
copy of the outer plate for each distinct symbol in the observed coarse tags. Here, node 3 is
shown to be the parent of nodes 1 and 2. Shaded variables are observed, square variables are
hyperparameters. The elongated oval around s and z represents the two variables jointly.
For clarity the diagram omits some arrows from θ to each s, π to each z, and φ to each x.

be easily adapted to a particular language by specializing this high level knowledge based

on the typological features of the language. We also argue that cross-language univer-

sals are beneficial for automatic language processing; however, our focus is on learning

language-specific adaptations of these rules from data.

2.2 Model

The central hypothesis of this work is that unsupervised dependency grammar induction

can be improved using universal linguistic knowledge. Toward this end our approach is

comprised of two components: a probabilistic model that explains how sentences are gen-

erated from latent dependency structures and a technique for incorporating declarative rules

into the inference process.

We first describe the generative story in this section before turning to how constraints are

applied during inference in Section 2.3. Our model takes as input (i.e., as observed) a set
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For each observed coarse symbol t:

1. Draw top-level infinite multinomial over subsymbols βt ∼ GEM(γ).

2. For each subsymbol s of symbol t:

(a) Draw word emission multinomial φts ∼ Dir(φ0).

(b) For each context value c:
i. Draw child symbol generation multinomial θtsc ∼ Dir(θ0).

ii. For each child symbol t′:
A. Draw second-level infinite multinomial over subsymbols πt′tsc ∼

DP(α, βt′).

For each tree node i generated in context c by parent symbol t′ and parent subsymbol s′:

1. Draw coarse symbol ti ∼ Mult(θt′s′c).

2. Draw subsymbol si ∼ Mult(πtit′s′c).

3. Draw word xi ∼ Mult(φsiti).

Table 2.2: The generative process for model parameters and parses. In the above GEM,
DP, Dir, and Mult refer respectively to the stick breaking distribution, Dirichlet process,
Dirichlet distribution, and multinomial distribution.

of sentences where each word is annotated with a coarse part-of-speech tag. Table 2.2

provides a detailed technical description of our model’s generative process, and Figure 2-1

presents a model diagram.

Generating Symbols and Words We describe how a single node of the tree is generated

before discussing how the entire tree structure is formed. Each node of the dependency

tree is comprised of three random variables: an observed coarse symbol t, a hidden refined

subsymbol s, and an observed word x. In the following let the parent of the current node

have symbol t′ and subsymbol s′; the root node is generated from separate root-specific
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distributions. Subsymbol refinement is an optional component of the full model and can

be omitted by deterministically equating t and s. As we explain at the end of this section,

without this aspect the generative story closely resembles the classic dependency model

with valence (DMV) of [47].

First we draw symbol t from a finite multinomial distribution with parameters θt′s′c. As the

indices indicate, we have one such set of multinomial parameters for every combination of

parent symbol t′ and subsymbol s′ along with a context c. Here the context of the current

node can take one of six values corresponding to every combination of direction (left or

right) and valence (first, second, or third or higher child) with respect to its parent. The

prior (base distribution) for each θt′s′c is a symmetric Dirichlet with hyperparameter θ0.

Next we draw the refined syntactic category subsymbol s from an infinite multinomial with

parameters πtt′s′c. Here the selection of π is indexed by the current node’s coarse symbol

t, the symbol t′ and subsymbol s′ of the parent node, and the context c of the current node

with respect to its parent.

For each unique coarse symbol t we tie together the distributions πtt′s′c for all possible

parent and context combinations (i.e., t′, s′, and c) using a Hierarchical Dirichlet Process

(HDP). Specifically, for a single t, each distribution πtt′s′c over subsymbols is drawn from

a DP with concentration parameter α and base distribution βt over subsymbols. This base

distribution βt is itself drawn from a GEM prior with concentration parameter γ. By formu-

lating the generation of s as an HDP, we can share parameters for a single coarse symbol’s

subsymbol distribution while allowing for individual variability based on node parent and

context. Note that parameters are not shared across different coarse symbols, preserving

the distinctions expressed via the coarse tag annotations.

Finally, we generate the word x from a finite multinomial with parameters φsz, where s and

z are the symbol and subsymbol of the current node. The φ distributions are drawn from a
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symmetric Dirichlet prior.

Generating the Tree Structure We now consider how the structure of the tree arises. We

follow an approach similar to the widely-referenced DMV model [47], which forms the ba-

sis of the current state-of-the-art unsupervised grammar induction model [44]. After a node

is drawn we generate children on each side until we produce a designated STOP symbol.

We encode more detailed valence information than [47] and condition child generation on

parent valence. Specifically, after drawing a node we first decide whether to proceed to

generate a child or to stop conditioned on the parent symbol and subsymbol and the current

context (direction and valence). If we decide to generate a child we follow the previously

described process for constructing a node. We can combine the stopping decision with the

generation of the child symbol by including a distinguished STOP symbol as a possible

outcome in distribution θ.

No-Split Model Variant In the absence of subsymbol refinement (i.e., when subsymbol

s is set to be identical to coarse symbol t), our model simplifies in some respects. In par-

ticular, the HDP generation of s is obviated and word x is drawn from a word distribution

φt indexed solely by coarse symbol t. Since both t and x are observed, the actual value of

φ has no impact on the learning process. The resulting simplified model closely resembles

DMV [47], except that it 1) encodes richer context and valence information, and 2) imposes

a Dirichlet prior on the symbol distribution θ.

2.3 Inference with Constraints

We now describe how to augment our generative model of dependency structure with con-

straints derived from linguistic knowledge. Incorporating arbitrary linguistic rules directly
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in the generative story is challenging as it requires careful tuning of either the model struc-

ture or priors for each constraint. Instead, following the approach of [38], we constrain

the posterior to satisfy the rules in expectation during inference. This effectively biases the

inference toward linguistically plausible settings.

In standard variational inference, an intractable true posterior is approximated by a distri-

bution from a tractable set [8]. This tractable set typically makes stronger independence as-

sumptions between model parameters than the model itself. To incorporate the constraints,

we further restrict the set to only include distributions that satisfy the specified expectation

constraints over hidden variables.

In general, for some given model, let θ denote the entire set of model parameters and z and

x denote the hidden structure and observations respectively. We are interested in estimating

the posterior p(θ, z | x). Variational inference transforms this problem into an optimization

problem where we try to find a distribution q(θ, z) from a restricted set Q that minimizes

the KL-divergence between q(θ, z) and p(θ, z | x):

KL(q(θ, z) ‖ p(θ, z | x)) =

∫
q(θ, z) log

q(θ, z)

p(θ, z, x)
dθdz + log p(x).

Rearranging the above yields:

log p(x) = KL(q(θ, z) ‖ p(θ, z | x)) + F ,

where F is defined as

F ≡
∫
q(θ, z) log

p(θ, z, x)

q(θ, z)
dθdz. (2.1)

Thus F is a lower bound on likelihood. Maximizing this lower bound is equivalent to

minimizing the KL-divergence between p(θ, z | x) and q(θ, z). To make this maximization

tractable we make a mean field assumption that q belongs to a set Q of distributions that
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factorize as follows:

q(θ, z) = q(θ)q(z).

We further constrain q to be from the subset of Q that satisfies the expectation constraint

Eq[f(z)] ≤ b where f is a deterministically computable function of the hidden structures.

In our model, for example, f counts the dependency edges that are an instance of one of the

declaratively specified dependency rules, while b is the proportion of the total dependencies

that we expect should fulfill this constraint.1

With the mean field factorization and the expectation constraints in place, solving the max-

imization of F in (2.1) separately for each factor yields the following updates:

q(θ) = argmin
q(θ)

KL (q(θ) ‖ q′(θ)), (2.2)

q(z) = argmin
q(z)

KL (q(z) ‖ q′(z)) s.t. Eq(z)[f(z)] ≤ b, (2.3)

where

q′(θ) ∝ expEq(z)[log p(θ, z, x)], (2.4)

q′(z) ∝ expEq(θ)[log p(θ, z, x)]. (2.5)

We can solve (2.2) by setting q(θ) to q′(θ) — since q(z) is held fixed while updating q(θ),

the expectation function of the constraint remains constant during this update. As shown

by [38], the update in (2.3) is a constrained optimization problem and can be solved by

performing gradient search on its dual:

argmin
λ

λ>b+ log
∑
z

q′(z) exp(−λ>f(z)) (2.6)

1Constraints of the form Eq[f(z)] ≥ b are easily imposed by negating f(z) and b.
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For a fixed value of λ the optimal q(z) ∝ q′(z) exp(−λ>f(z)). By updating q(θ) and q(z)

as in (2.2) and (2.3) we are effectively maximizing the lower bound F .

2.3.1 Variational Updates

We now derive the specific variational updates for our dependency induction model. First

we assume the following mean-field factorization of our variational distribution:

q(β, θ, π, φ, z) = q(z) ·
∏
t′

q(βt′) ·
T∏

s′=1

q(φt′s′) ·
∏
c

q(θt′s′c) ·
∏
t

q(πtt′s′c), (2.7)

where t′ varies over the set of unique symbols in the observed tags, s′ denotes subsymbols

for each symbol, c varies over context values comprising a pair of direction (left or right)

and valence (first, second, or third or higher) values, and t corresponds to child symbols. z

refers to all latent variables, including dependency trees and subsymbols.

We restrict q(θt′s′c) and q(φt′s′) to be Dirichlet distributions and q(z) to be multinomial.

As with prior work [51], we assume a degenerate q(β) ≡ δβ∗(β) for tractability reasons,

i.e., all mass is concentrated on some single β∗. We also assume that the top level stick-

breaking distribution is truncated at T , i.e., q(β) assigns zero probability to integers greater

than T . Because of the truncation of β, we can approximate q(πtt′s′c) with an asymmetric

finite dimensional Dirichlet.

The factors are updated one at a time holding all other factors fixed. The variational update

for q(π) is given by:

q(πtt′s′c) = Dir
(
πtt′s′c;αβt + Eq(z)[Ctt′s′c(z)]

)
,

where term Eq(z)[Ctt′s′c(z)] is the expected count w.r.t. q(z) of child symbol t and subsym-
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bol s in context c when generated by parent symbol t′ and subsymbol s′. See Appendix B.2

for the derivation of this update.

Similarly, the updates for q(θ) and q(φ) are given by:

q(θt′s′c) = Dir
(
θt′s′c; θ0 + Eq(z)[Ct′s′c(s)]

)
,

q(φt′s′) = Dir
(
φt′s′ ;φ0 + Eq(z)[Ct′s′(x)]

)
,

where Ct′s′c(s) is the count of child symbol t being generated by the parent symbol t′ and

subsymbol s′ in context c and Ct′s′x is the count of word x being generated by symbol t′

and subsymbol s′ (see Appendix B.1 for details).

The only factor affected by the expectation constraints is q(z). Recall from the previous

section that the update for q(z) is performed via gradient search on the dual of a constrained

minimization problem of the form:

q(z) = argmin
q(z)

KL(q(z) ‖ q′(z)).

Thus we first compute the update for q′(z) (see derivation in Appendix B.3):

q′(z) ∝
N∏
n=1

len(n)∏
j=1

(expEq(φ)[log φtnjsnj
(xnj)]

× expEq(θ)[log θth(nj)sh(nj)cnj
(tnj)]

× expEq(π)[log πtnjth(nj)sh(nj)cnj
(snj)]),

where N is the total number of sentences, len(n) is the length of sentence n, and index

h(nj) refers to the head of the jth node of sentence n. Given this q′(z) a gradient search is

performed using (2.6) to find the optimal λ and thus the primal solution for updating q(z).
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1. Identify non-recursive NPs:

• All nouns, pronouns and possessive marker are part of an NP.

• All adjectives, conjunctions and determiners immediately preceding an NP are
part of the NP.

2. The first verb or modal in the sentence is the headword.

3. All words in an NP are headed by the last word in the NP.

4. The last word in an NP is headed by the word immediately before the NP if it is
a preposition, otherwise it is headed by the headword of the sentence if the NP is
before the headword, else it is headed by the word preceding the NP.

5. For the first word set its head to be the headword of the sentence. For each other
word set its headword to be the previous word.

Table 2.3: English-specific dependency rules.

Finally, we update the degenerate factor q(βs) with the projected gradient search algorithm

used by [51].

2.4 Linguistic Constraints

Universal Dependency Rules We compile a set of 13 universal dependency rules consis-

tent with various linguistic accounts [16, 61], shown in Table 2.1. These rules are defined

over coarse part-of-speech tags: Noun, Verb, Adjective, Adverb, Pronoun, Article, Aux-

iliary, Preposition, Numeral and Conjunction. Each rule specifies a part-of-speech for the

head and argument but does not provide ordering information.

We require that a minimum proportion of the posterior dependencies be instances of these
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rules in expectation. In contrast to prior work on rule-driven dependency induction [26],

where each rule has a separately specified expectation, we only set a single minimum ex-

pectation for the proportion of all dependencies that must match one of the rules. This

setup is more relevant for learning with universals since individual rule frequencies vary

greatly between languages.

English-specific Dependency Rules For English, we also consider a small set of hand-

crafted dependency rules designed by Michael Collins2 for deterministic parsing, shown in

Table 2.3. Unlike the universals from Table 2.1, these rules alone are enough to construct

a full dependency tree. Thus they allow us to judge whether the model is able to improve

upon a human-engineered deterministic parser. Moreover, with this dataset we can assess

the additional benefit of using rules tailored to an individual language as opposed to uni-

versal rules.

2.5 Experimental Setup

Datasets and Evaluation We test the effectiveness of our grammar induction approach

on English, Danish, Portuguese, Slovene, Spanish, and Swedish. For English we use the

Penn Treebank [53], transformed from CFG parses into dependencies with the Collins head

finding rules [22]; for the other languages we use data from the 2006 CoNLL-X Shared

Task [14]. Each dataset provides manually annotated part-of-speech tags that are used

for both training and testing. For comparison purposes with previous work, we limit the

cross-lingual experiments to sentences of length 10 or less (not counting punctuation). For

English, we also explore sentences of length up to 20.

2Personal communication.
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The final output metric is directed dependency accuracy. This is computed based on the

Viterbi parses produced using the final unnormalized variational distribution q(z) over de-

pendency structures.

Hyperparameters and Training Regimes Unless otherwise stated, in experiments with

rule-based constraints the expected proportion of dependencies that must satisfy those con-

straints is set to 0.8. This threshold value was chosen based on minimal tuning on a single

language and ruleset (English with universal rules) and carried over to each other experi-

mental condition. A more detailed discussion of the threshold’s empirical impact is pre-

sented in Section 2.6.1.

Variational approximations to the HDP are truncated at 10. All hyperparameter values are

fixed to 1 except α which is fixed to 10.

We also conduct a set of No-Split experiments to evaluate the importance of syntactic re-

finement; in these experiments each coarse symbol corresponds to only one refined symbol.

This is easily effected during inference by setting the HDP variational approximation trun-

cation level to one.

For each experiment we run 50 iterations of variational updates; for each iteration we per-

form five steps of gradient search to compute the update for the variational distribution q(z)

over dependency structures.

2.6 Results

In the following section we present our primary cross-lingual results using universal rules

(Section 2.6.1) before performing a more in-depth analysis of model properties such as

sensitivity to ruleset selection and inference stability (Section 2.6.2).
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DMV PGI No-Split HDP-DEP
English 47.1 62.3 71.5 71.9 (0.3)
Danish 33.5 41.6 48.8 51.9 (1.6)
Portuguese 38.5 63.0 54.0 71.5 (0.5)
Slovene 38.5 48.4 50.6 50.9 (5.5)
Spanish 28.0 58.4 64.8 67.2 (0.4)
Swedish 45.3 58.3 63.3 62.1 (0.5)

Table 2.4: Directed dependency accuracy using our model with universal dependency rules
(No-Split and HDP-DEP), compared to DMV [47] and PGI [7]. The DMV results are taken
from [7]. Bold numbers indicate the best result for each language. For the full model, the
standard deviation in performance over five runs is indicated in parentheses.

2.6.1 Main Cross-Lingual Results

Table 2.4 shows the performance of both our full model (HDP-DEP) and its No-Split ver-

sion using universal dependency rules across six languages. We also provide the perfor-

mance of two baselines — the dependency model with valence (DMV) [47] and the phylo-

genetic grammar induction (PGI) model [7].

HDP-DEP outperforms both DMV and PGI across all six languages. Against DMV we

achieve an average absolute improvement of 24.1%. This improvement is expected given

that DMV does not have access to the additional information provided through the uni-

versal rules. PGI is more relevant as a point of comparison, since it is able to leverage

multilingual data to learn information similar to what we have declaratively specified using

universal rules. Specifically, PGI reduces induction ambiguity by connecting language-

specific parameters via phylogenetic priors. We find, however, that we outperform PGI by

an average margin of 7.2%, demonstrating the benefits of explicit rule specification.

An additional point of comparison is the lexicalized unsupervised parser of [44], which

yields the current state-of-the-art unsupervised accuracy on English at 68.8%. Our method

also outperforms this approach, without employing lexicalization and sophisticated smooth-
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English
Rule Excluded Acc Loss Gold Freq
Preposition→ Noun 61.0 10.9 5.1
Verb→ Noun 61.4 10.5 14.8
Noun→ Noun 64.4 7.5 10.7
Noun→ Article 64.7 7.2 8.5

Spanish
Rule Excluded Acc Loss Gold Freq
Preposition→ Noun 53.4 13.8 8.2
Verb→ Noun 61.9 5.4 12.9
Noun→ Noun 62.6 4.7 2.0
Root→ Verb 65.4 1.8 12.3

Table 2.5: Ablation experiment results for universal dependency rules on English and Span-
ish. For each rule, we evaluate the model using the ruleset excluding that rule, and list the
most significant rules for each language. The second last column is the absolute loss in
performance compared to the setting where all rules are available. The last column shows
the percentage of the gold dependencies that satisfy the rule.

ing as they do. This result suggests that combining the complementary strengths of their

approach and ours can yield further performance improvements.

Table 2.4 also shows the No-Split results where syntactic categories are not refined. We find

that such refinement usually proves to be beneficial, yielding an average performance gain

of 3.7%. However, we note that the impact of incorporating splitting varies significantly

across languages. Further understanding of this connection is an area of future research.

Finally, we note that our model exhibits low variance for most languages. This result attests

to how the expectation constraints consistently guide inference toward high-accuracy areas

of the search space.

Ablation Analysis Our next experiment seeks to understand the relative importance of

the various universal rules from Table 2.1. We study how accuracy is affected when each
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Figure 2-2: Accuracy of our model with different threshold settings, on English only and
averaged over all languages. “Gold” refers to the setting where each language’s threshold is
set independently to the proportion of gold dependencies satisfying the rules — for English
this proportion is 70%, while the average proportion across languages is 63%.

of the rules is removed one at a time for English and Spanish. Table 2.5 lists the rules with

the greatest impact on performance when removed. We note the high overlap between the

most significant rules for English and Spanish.

We also observe that the relationship between a rule’s frequency and its importance for

high accuracy is not straightforward. For example, the “Preposition→ Noun” rule, whose

removal degrades accuracy the most for both English and Spanish, is not the most frequent

rule in either language. This result suggests that some rules are harder to learn than oth-

ers regardless of their frequency, so their presence in the specified ruleset yields stronger

performance gains.

Varying the Constraint Threshold In our main experiments we require that at least 80%

of the expected dependencies satisfy the rule constraints. We arrived at this threshold by

tuning on the basis of English only. As shown in Figure 2-2, for English a broad band of
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Length
≤ 10 ≤ 20

Universal Dependency Rules
1 HDP-DEP 71.9 50.4
No Rules (Random Init)
2 HDP-DEP 24.9 24.4
3 Headden et al. [44] 68.8 -
English-Specific Parsing Rules
4 Deterministic (rules only) 70.0 62.6
5 HDP-DEP 73.8 66.1
[26] Rules
6 Druck et al. [26] 61.3 -
7 HDP-DEP 64.9 42.2

Table 2.6: Directed accuracy of our model (HDP-DEP) on sentences of length 10 or less
and 20 or less from WSJ with different rulesets and with no rules, along with various
baselines from the literature. Entries in this table are numbered for ease of reference in the
text.

threshold values from 75% to 90% yields results within 2.5% of each other, with a slight

peak at 80%.

To further study the sensitivity of our method to how the threshold is set, we perform post

hoc experiments with other threshold values on each of the other languages. As Figure 2-2

also shows, on average a value of 80% is optimal across languages, though again accuracy

is stable within 2.5% between thresholds of 75% to 90%. These results demonstrate that a

single threshold is broadly applicable across languages.

Interestingly, setting the threshold value independently for each language to its “true” pro-

portion based on the gold dependencies (denoted as the “Gold” case in Figure 2-2) does

not achieve optimal performance. Thus, knowledge of the true language-specific rule pro-

portions is not necessary for high accuracy.
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2.6.2 Analysis of Model Properties

We perform a set of additional experiments on English to gain further insight into HDP-

DEP’s behavior. Our choice of language is motivated by the fact that a wide range of prior

parsing algorithms were developed for and tested exclusively on English. The experiments

below demonstrate that 1) universal rules alone are powerful, but language- and dataset-

tailored rules can further improve performance; 2) our model learns jointly from the rules

and data, outperforming a rules-only deterministic parser; 3) the way we incorporate poste-

rior constraints outperforms the generalized expectation constraint framework; and 4) our

model exhibits low variance when seeded with different initializations. These results are

summarized in Table 2.6 and discussed in detail below; line numbers refer to entries in

Table 2.6. Each run of HDP-DEP below is with syntactic refinement enabled.

Impact of Rules Selection We compare the performance of HDP-DEP using the uni-

versal rules versus a set of rules designed for deterministically parsing the Penn Treebank

(see Section 2.4 for details). As lines 1 and 5 of Table 2.6 show, language-specific rules

yield better performance. For sentences of length 10 or less, the difference between the

two rulesets is a relatively small 1.9%; for longer sentences, however, the difference is a

substantially larger 15.7%. This is likely because longer sentences tend to be more com-

plex and thus exhibit more language-idiosyncratic dependencies. Such dependencies can

be better captured by the refined language-specific rules.

We also test model performance when no linguistic rules are available, i.e., performing

unconstrained variational inference. The model performs substantially worse (line 2), con-

firming that syntactic category refinement in a fully unsupervised setup is challenging.
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Learning Beyond Provided Rules Since HDP-DEP is provided with linguistic rules, a

legitimate question is whether it improves upon what the rules encode, especially when the

rules are complete and language-specific. We can answer this question by comparing the

performance of our model seeded with the English-specific rules against a deterministic

parser that implements the same rules. Lines 4 and 5 of Table 2.6 demonstrate that the

model outperforms a rules-only deterministic parser by 3.8% for sentences of length 10 or

less and by 3.5% for sentences of length 20 or less.

Comparison with Alternative Semi-supervised Parser The dependency parser based

on the generalized expectation criteria [26] is the closest to our reported work in terms of

technique. To compare the two, we run HDP-DEP using the 20 rules given by [26]. Our

model achieves an accuracy of 64.9% (line 7) compared to 61.3% (line 6) reported in their

work. Note that we do not rely on rule-specific expectation information as they do, instead

requiring only a single expectation constraint parameter.3

Model Stability It is commonly acknowledged in the literature that unsupervised gram-

mar induction methods exhibit sensitivity to initialization. As in the previous section, we

find that the presence of linguistic rules greatly reduces this sensitivity: for HDP-DEP,

the standard deviation over five randomly initialized runs with the English-specific rules is

1.5%, compared to 4.5% for the parser developed by [44] and 8.0% for DMV [47].

3As explained in Section 2.4, having a single expectation parameter is motivated by our focus on parsing
with universal rules.
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2.7 Conclusions and Subsequent Research

In this work we demonstrate that there is a universal aspect to dependency parsing that can

be expressed in the form of high level syntactic universal rules. Moreover, syntactic univer-

sals encoded as declarative constraints improve grammar induction. Since the publication

of this work in 2010 [60] a number of subsequent works have explored similar ideas.

A direct application of our universal rules is the heuristic based parsing system of Sogaard

[74]. This system provides a deterministic method for applying the universal rules, the aim

is to provide a more realistic baseline for parsers developed for low-resource languages.

The results presented in the paper show that this simple baseline outperforms most unsu-

pervised parsing systems submitted to the PASCAL challenge on grammar induction [36].

The idea of exploiting universal view of dependency grammar has also been explored fur-

ther. Boonkwan and Steedman [11] proposed a set of universal prototypes that can be

customized for a specific languages using high level knowledge of the language’s syntax.

The POS tags in these language specific prototypes are then manually mapped to language

specific tags in target corpora. A limitation of this system, as well as our work, is that

universal rules operate at the level of POS tags, thus requiring tag annotations for target

language along with a mapping from language specific tags to universal tags.

One line of work has focused on developing universal POS tag mapping needed to enable

the use of universal rules. Among these are the manually designed tagset mapping of

Petrov et al. [65]. This work gives mapping for the tagsets of 25 treebanks from different

languages. These mappings has been frequently used in parser transfer systems. Another

such work is the mapping system of Zhang et al. [85]. This system automatically learns

mappings from language specific to universal tagset, improving the performance of various

transfer system compared to the case when manual mappings are used.

61



62



Chapter 3

Selective Sharing for Crosslingual

Grammar Tranfer

Current top performing parsing algorithms rely on the availability of annotated data for

learning the syntactic structure of a language. Standard approaches for extending these

techniques to resource-lean languages either use parallel corpora or rely on annotated trees

from other source languages. These techniques have been shown to work well for language

families with many annotated resources (such as Indo-European languages). Unfortunately,

for many languages there are no available parallel corpora or annotated resources in related

languages. For such languages the only remaining option is to resort to unsupervised ap-

proaches, which are known to produce highly inaccurate results.

In this chapter, we present a new multilingual algorithm for dependency parsing. In contrast

to previous approaches, this algorithm can learn dependency structures using annotations

from a diverse set of source languages, even if this set is not related to the target language.

In our selective sharing approach, the algorithm learns which aspects of the source lan-

guages are relevant for the target language and ties model parameters accordingly. This
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approach is rooted in linguistic theory that characterizes the connection between languages

at various levels of sharing. Some syntactic properties are universal across languages. For

instance, nouns take adjectives and determiners as dependents, but not adverbs. However,

the order of these dependents with respect to the parent is influenced by the typological

features of each language.

To implement this intuition, we factorize generation of a dependency tree into two pro-

cesses: selection of syntactic dependents and their ordering. The first component models

the distribution of dependents for each part-of-speech tag, abstracting over their order. Be-

ing largely language-universal, this distribution can be learned in a supervised fashion from

all the training languages. On the other hand, ordering of dependents varies greatly across

languages and therefore should only be influenced by languages with similar properties.

Furthermore, this similarity has to be expressed at the level of dependency types – i.e., two

languages may share noun-adposition ordering, but differ in noun-determiner ordering. To

systematically model this cross-lingual sharing, we rely on typological features that reflect

ordering preferences of a given language. In addition to the known typological features, our

parsing model embeds latent features that can capture cross-lingual structural similarities.

While the approach described so far supports a seamless transfer of shared information,

it does not account for syntactic properties of the target language unseen in the training

languages. For instance, in the CoNLL data, Arabic is the only language with the VSO

ordering. To handle such cases, our approach augments cross-lingual sharing with unsu-

pervised learning on the target languages.

We evaluated our selective sharing model on 17 languages from 10 language families. On

this diverse set, our model consistently outperforms state-of-the-art multilingual depen-

dency parsers. Performance gain, averaged over all the languages, is 5.9% when com-

pared to the highest baseline. Our model achieves the most significant gains on non-Indo-
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European languages, where we see a 14.4% improvement. We also demonstrate that in the

absence of observed typological information, a set of automatically induced latent features

can effectively work as a proxy for typology.

3.1 Related Work

Traditionally, parallel corpora have been a mainstay of multilingual parsing [82, 49, 69, 45,

83, 15, 71]. However, recent work in multilingual parsing has demonstrated the feasibility

of transfer in the absence of parallel data. As a main source of guidance, these methods

rely on the commonalities in dependency structure across languages. For instance, [60]

explicitly encode these similarities in the form of universal rules which guide grammar

induction in the target language. An alternative approach is to directly employ a non-

lexicalized parser trained on one language to process a target language [84, 58, 73]. Since

many unlexicalized dependencies are preserved across languages, these approaches are

shown to be effective for related languages. For instance, when applied to the language

pairs within the Indo-European family, such parsers outperform unsupervised monolingual

techniques by a significant margin.

The challenge, however, is to enable dependency transfer for target languages that exhibit

structural differences from source languages. In such cases, the extent of multilingual

transfer is determined by the relation between source and target languages. [7] define

such a relation in terms of phylogenetic trees, and use this distance to selectively tie the

parameters of monolingual syntactic models. [19] do not use a predefined linguistic hier-

archy of language relations, but instead learn the contribution of source languages to the

training mixture based on the likelihood of the target language. [73] proposes a different

measure of language relatedness based on perplexity between POS sequences of source
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and target languages. Using this measure, he selects a subset of training source sentences

that are closer to the target language. While all of the above techniques demonstrate gains

from modeling language relatedness, they still underperform when the source and target

languages are unrelated.

Our model differs from the above approaches in its emphasis on the selective information

sharing driven by language relatedness. This is further combined with monolingual un-

supervised learning. As our evaluation demonstrates, this layered approach broadens the

advantages of multilingual learning to languages that exhibit significant differences from

the languages in the training mix.

3.2 Linguistic Motivation

Language-Independent Dependency Properties Despite significant syntactic differences,

human languages exhibit striking similarity in dependency patterns. For a given part-of-

speech tag, the set of tags that can occur as its dependents is largely consistent across

languages. For instance, adverbs and nouns are likely to be dependents of verbs, while

adjectives are not. Thus, these patterns can be freely transferred across languages.

Shared Dependency Properties Unlike dependent selection, the ordering of dependents

in a sentence differs greatly across languages. In fact, cross-lingual syntactic variations are

primarily expressed in different ordering of dependents [42, 40]. Fortunately, the dimen-

sions of these variations have been extensively studied in linguistics and are documented

in the form of typological features [23, 43]. For instance, most languages are either dom-

inantly prepositional like English or post-positional like Urdu. Moreover, a language may

be close to different languages for different dependency types. For instance, Portuguese

is a prepositional language like English, but the order of its noun-adjective dependency is
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different from English and matches that of Arabic. Therefore, we seek a model that can

express parameter sharing at the level of dependency types and can benefit from known

language relations.

Language-specific Dependency Variations Not every aspect of syntactic structure is shared

across languages. This is particularly true given a limited number of supervised source

languages; it is quite likely that a target language will have previously unseen syntactic

phenomena. In such a scenario, the raw text in the target language might be the only source

of information about its unique aspects.

3.3 Model

We propose a probabilistic model for generating dependency trees that facilitates param-

eter sharing across languages. We assume a setup where dependency tree annotations are

available for a set of source languages and we want to use these annotations to infer a

parser for a target language. Syntactic trees for the target language are not available during

training. We also assume that both source and target languages are annotated with a coarse

parts-of-speech tagset which is shared across languages. Such tagsets are commonly used

in multilingual parsing [84, 58, 73, 60].

The key feature of our model is a two-tier approach that separates the selection of depen-

dents from their ordering:

1. Selection Component: Determines the dependent tags given the parent tag.

2. Ordering Component: Determines the position of each dependent tag with respect to

its parent (right or left) and the order within the right and left dependents.
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Figure 3-1: The steps of the generative process for a fragment with head h. In step (a), the
unordered set of dependents is chosen. In step (b) they are partitioned into left and right
unordered sets. Finally, each set is ordered in step (c).

This factorization constitutes a departure from traditional parsing models where these de-

cisions are tightly coupled. By separating the two, the model is able to support different

degrees of cross-lingual sharing on each level.

For the selection component, a reasonable approximation is to assume that it is the same

for all languages. This is the approach we take here.

As mentioned in Section 3.2, the ordering of dependents is largely determined by the typo-

logical features of the language. We assume that we have a set of such features for every

language l, and denote this feature vector by vl. We also experiment with a variant of our

model where typological features are not observed. Instead, the model captures structural

variations across languages by means of a small set of binary latent features. The values of

these features are language dependent. We denote the set of latent features for language l

by bl.

Finally, based on the well known fact that long distance dependencies are less likely [28],

we bias our model towards short dependencies. This is done by imposing a corpus-level

soft constraint on dependency lengths using the posterior regularization framework [38].
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3.3.1 Generative Process

Our model generates dependency trees one fragment at a time. A fragment is defined

as a subtree comprising the immediate dependents of any node in the tree. The process

recursively generates fragments in a head outwards manner, where the distribution over

fragments depends on the head tag. If the generated fragment is not empty then the process

continues for each child tag in the fragment, drawing new fragments from the distribution

associated with the tag. The process stops when there are no more non-empty fragments.

A fragment with head node h is generated in language l via the following stages:

• Generate the set of dependents of h via a distribution Psel(S|h). Here S is an un-

ordered set of POS tags. Note that this part is universal (i.e., it does not depend on

the language l).

• For each element in S decide whether it should go to the right or left of h as follows:

for every a ∈ S, draw its direction from the distribution Pord(d|a, h, l), where d ∈
{R,L}. This results in two unordered sets SR, SL, the right and left dependents of h.

This part does depend on the language l, since the relative ordering of dependents is

not likely to be universal.

• Order the sets SR, SL. For simplicity, we assume that the order is drawn uniformly

from all the possible unique permutations over SR and SL. We denote the number of

such unique permutations of SR by n(SR).1 Thus the probability of each permutation

of SR is 1
n(SR)

2.

1This number depends on the count of each distinct tag in SR. For example if SR = {N,N,N} then
n(SR) = 1. If SR = {N,D, V } then n(SR) = 3!.

2We acknowledge that assuming a uniform distribution over the permutations of the right and left depen-
dents is linguistically counterintuitive. However, it simplifies the model by greatly reducing the number of
parameters to learn.
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Figure 3-1 illustrates the generative process. The first step constitutes the selection com-

ponent and the last two steps constitute the ordering component. Given this generation

scheme, the probability P (D) of generating a given fragment D with head h will be:

Psel({D}|h)
∏
a∈D

Pord(dD(a)|a, h, l) 1

n(DR)n(DL)
(3.1)

Where we use the following notations:

• DR, DL denote the parts of the fragment that are to the left and right of h.

• {D} is the unordered set of tags in D.

• dD(a) is the position (either R or L) of the dependent a w.r.t. the head of D.

In what follows we discuss the parameterizations of the different distributions.

Selection Component The selection component draws an unordered set of tags S given

the head tag h. We assume that the process is carried out in two steps. First the number of

dependents n is drawn from a distribution:

Psize(n|h) = θsize(n|h) (3.2)

where θsize(n|h) is a parameter for each value of n and h. We restrict the maximum value

of n to four, since this is a reasonable bound on the total number of dependents for a single

parent node in a tree. These parameters are non-negative and satisfy
∑

n θsize(n|h) = 1. In

other words, the size is drawn from a categorical distribution that is fully parameterized.

Next, given the size n, a set S with |S| = n is drawn according to the following log-linear
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model:

Pset(S|h, n) =
1

Zset(h, n)
e
∑

Si∈S
θsel(Si|h)

Zset(h, n) =
∑

S:|S|=n

e
∑

Si∈S
θsel(Si|h)

In the above, Si is the ith POS tag in the unordered set S, and θsel(Si|h) are parameters.

Thus, large values of θsel(Si|h) indicate that POS Si is more likely to appear in the subset

with parent POS h.

Combining the above two steps we have the following distribution for selecting a set S of

size n:

Psel(S|h) = Psize(n|h)Pset(S|h, n) . (3.3)

ID Feature Description Values
81A Order of Subject, Object and Verb SVO, SOV, VSO, VOS, OVS, OSV
85A Order of Adposition and Noun Postpositions, Prepositions, Inpositions
86A Order of Genitive and Noun Genitive-Noun, Noun-Genitive
87A Order of Adjective and Noun Adjective-Noun, Noun-Adjective
88A Order of Demonstrative and Noun Demonstrative-Noun, Noun-Demonstrative

Table 3.1: The set of typological features that we use in our model. For each feature, the
first column gives the ID of the feature as used in WALS, the second column describes the
feature and the last column enumerates the allowable values for the feature. Besides these
values, each feature can also have a value of ‘No dominant order’.

Ordering Component The ordering component consists of distributions Pord(d|a, h, l)
that determine whether tag awill be mapped to the left or right of the head tag h. We model
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it using the following log-linear model:

Pord(d|a, h, l) =
1

Zord(a, h, l)
eword·g(d,a,h,vl)

Zord(a, h, l) =
∑

d∈{R,L}

eword·g(d,a,h,vl)

Note that in the above equations the ordering component depends on the known typological

features vl. In the setup when typological features are not known, vl is replaced with the

latent ordering feature set bl.

The feature vector g contains indicator features for combinations of a, h, d and individual

features vli (i.e., the ith typological features for language l).

3.3.2 Typological Features

The typological features we use are a subset of order-related typological features from “The

World Atlas of Language Structure” [43]. We include only those features whose values are

available for all the languages in our dataset. Table 3.1 summarizes the set of features that

we use. Note that we do not explicitly specify the correspondence between these features

and the model parameters. Instead, we leave it for the model to learn this correspondence

automatically.

3.3.3 Dependency Length Constraint

To incorporate the intuition that long distance dependencies are less likely, we impose a

posterior constraint on dependency length. In particular, we use the Posterior Regular-

ization (PR) framework of [38]. The PR framework incorporates constraints by adding a
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penalty term to the standard likelihood objective. This term penalizes the distance of the

model posterior from a set Q, where Q contains all the posterior distributions that satisfy

the constraints. In our case the constraint is that the expected dependency length is less

than or equal to a pre-specified threshold value b. If we denote the latent dependency trees

by z and the observed sentences by x then

Q = {q(z|x) : Eq[f(x, z)] ≤ b} (3.4)

where f(x, z) computes the sum of the lengths of all dependencies in z with respect to the

linear order of x. We measure the length of a dependency relation by counting the number

of tokens between the head and its modifier. The PR objective penalizes the KL-divergence

of the model posterior from the set Q:

Lθ(x)−KL (Q ‖ pθ(z|x))

where θ denotes the model parameters and the first term is the log-likelihood of the data.

This objective can be optimized using a modified version of the EM algorithm [38].

3.4 Parameter Learning

Our model is parameterized by the parameters θsel, θsize and word. We learn these by

maximizing the likelihood of the training data. As is standard, we add `2 regularization

on the parameters and tune it on source languages. The likelihood is marginalized over all

latent variables. These are:

• For sentences in the target language: all possible derivations that result in the ob-

served POS tag sequences. The derivations include the choice of unordered sets
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size n, the unordered sets themselves S, their left/right allocations and the orderings

within the left and right branches.

• For all languages: all possible values of the latent features bl.3

Since we are learning with latent variables, we use the EM algorithm to monotonically

improve the likelihood. At each E step, the posterior over latent variables is calculated

using the current model. At the M step this posterior is used to maximize the likelihood

over the fully observed data. To compensate for the differences in the amount of training

data, the counts from each language are normalized before computing the likelihood.

The M step involves finding maximum likelihood parameters for log-linear models in Equa-

tions 3.3 and 3.4. This is done via standard gradient based search; in particular, we use the

method of BFGS.

We now briefly discuss how to calculate the posterior probabilities. For estimating the word

parameters we require marginals of the type P (bli|Dl;wt) where Dl are the sentences in

language l, bli is the ith latent feature for the language l and wt are the parameter values at

iteration t. Consider doing this for a source language l. Since the parses are known, we only

need to marginalize over the other latent features. This can be done in a straightforward

manner by using our probabilistic model. The complexity is exponential in the number of

latent features, since we need to marginalize over all features other than bli. This is feasible

in our case, since we use a relatively small number of such features.

When performing unsupervised learning for the target language, we need to marginalize

over possible derivations. Specifically, for the M step, we need probabilities of the form

P (a modifies h|Dl;wt). These can be calculated using a variant of the inside outside al-

gorithm (see Appendix A.1). The exact version of this algorithm would be exponential in

3This corresponds to the case when typological features are not known.
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the number of dependents due to the 1
n(Sr)

term in the permutation factor. Although it is

possible to run this exact algorithm in our case, where the number of dependents is limited

to 4, we use an approximation that works well in practice: instead of 1
n(Sr)

we use 1
|Sr|! .

In this case the runtime is no longer exponential in the number of children, so inference is

much faster.

Finally, given the trained parameters we generate parses in the target language by cal-

culating the maximum a posteriori derivation. This is done using a variant of the CKY

algorithm.

3.5 Experimental Setup

Datasets and Evaluation We test the effectiveness of our approach on 17 languages:

Arabic, Basque, Bulgarian, Catalan, Chinese, Czech, Dutch, English, German, Greek, Hun-

garian, Italian, Japanese, Portuguese, Spanish, Swedish and Turkish. We used datasets dis-

tributed for the 2006 and 2007 CoNLL Shared Tasks [14, 62]. Each dataset provides man-

ually annotated dependency trees and POS tags. To enable crosslingual sharing, we map

the gold part-of-speech tags in each corpus to a common coarse tagset [84, 73, 58, 60]. The

coarse tagset consists of 11 tags: noun, verb, adjective, adverb, pronoun, determiner, ad-

position, numeral, conjunction, particle, punctuation mark, and X (a catch-all tag). Among

several available fine-to-coarse mapping schemes, we employ the one of [60] that yields

consistently better performance for our method and the baselines than the mapping pro-

posed by [65]. In most of our experiments, we assume the availability of typological feature

values for each language (Table 3.2).

As the evaluation metric, we use directed dependency accuracy. Following standard eval-

uation practices, we do not evaluate on punctuation. For both the baselines and our model
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ID Name ar ba bu ca ch cz du en ge gr hu it ja po sp sw tu
88A Dem-Noun 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
88A Noun-Dem 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
87A Adj-Noun 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1
87A Noun-Adj 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0
85A No order 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
85A Post 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
85A Pre 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0
86A Gen-Noun 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1
86A No order 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
86A Noun-Gen 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0
81A SOV 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1
81A SVO 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0
81A VSO 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Table 3.2: Typological feature values for Arabic (ar), Basque (ba), Bulgarian (bu), Catalan
(ca), Chinese (ch), Czech (cz), Dutch (du), English (en), German (ge), Greek (gr), Hungar-
ian (hu), Italian (it), Japanese (ja), Portuguese (po), Spanish (sp), Swedish (sw) and Turkish
(tu). Dem = Demonstrative, Adj = Adjective, Pre = Preposition, Post = Postposition, Gen
= Genitive, S = Subject, O = Object, V = Verb and “No order” = No dominant order

we evaluate on all sentences of length 50 or less ignoring punctuation.

Training Regime Our model typically converges quickly and does not require more than

50 iterations of EM. When the model involves latent typological variables, the initialization

of these variables can impact the final performance. As a selection criterion for initializa-

tion, we consider the performance of the final model averaged over the supervised source

languages. We perform ten random restarts and select the best according to this criterion.

Likewise, the threshold value b for the PR constraint on the dependency length is tuned on

the source languages, using average test set accuracy as the selection criterion.

Baselines We compare against the state-of-the-art multilingual dependency parsers that

do not use parallel corpora for training. All the systems were evaluated using the same

fine-to-coarse tagset mapping. The first baseline, Transfer, uses direct transfer of a dis-
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criminative parser trained on all the source languages [58]. This simple baseline achieves

surprisingly good results, within less than 3% difference from a parser trained using paral-

lel data. In the second baseline (Mixture), parameters of the target language are estimated

as a weighted mixture of the parameters learned from annotated source languages [19].

The underlying parsing model is the dependency model with valance (DMV) [47]. Origi-

nally, the baseline methods were evaluated on different sets of languages using a different

tag mapping. Therefore, we obtained new results for these methods in our setup. For the

Transfer baseline, for each target language we trained the model on all other languages in

our dataset. For the Mixture baseline, we trained the model on the same four languages

used in the original paper — English, German, Czech and Italian. When measuring the

performance on these languages, we selected another set of four languages with a similar

level of diversity.4

3.6 Results

Table 3.3 summarizes the performance for different configurations of our model and the

baselines.

3.6.1 Comparison against Baselines

On average, the selective sharing model outperforms both baselines, yielding 8.9% gain

over the weighted mixture model [19] and 5.9% gain over the direct transfer method [58].

Our model outperforms the weighted mixture model on 15 of the 17 languages and the

transfer method on 12 of the 17 languages. Most of the gains are obtained on non-Indo-

4We also experimented with a version of the [19] model trained on all the source languages. This setup
resulted in decreased performance. For this reason, we chose to train the model on the four languages.

77



European languages, that have little similarity with the source languages. For this set, the

average gain over the transfer baseline is 14.4%. With some languages, such as Japanese,

achieving gains of as much as 30%.

On Indo-European languages, the model performance is almost equivalent to that of the best

performing baseline. To explain this result we consider the performance of the supervised

version of our model which constitutes an upper bound on the performance. The average

accuracy of our supervised model on these languages is 66.8%, compared to the 76.3% of

the unlexicalized MST parser. Since Indo-European languages are overrepresented in our

dataset, a target language from this family is likely to exhibit more similarity to the training

data. When such similarity is substantial, the transfer baseline will benefit from the power

of a context-rich discriminative parser.

A similar trait can be seen by comparing the performance of our model to an oracle version

of our model which selects the optimal source language for a given target language (column

7). Overall, our method performs similarly to this oracle variant. However, the gain for non

Indo-European languages is 1.9% vs -1.3% for Indo-European languages.

3.6.2 Analysis of Model Properties

We first test our hypothesis about the universal nature of the dependent selection. We

compare the performance of our model (column 6) against a variant (column 8) where this

component is trained from annotations on the target language. The performance of the two

is very close – 1.8%, supporting the above hypothesis.

To assess the contribution of other layers of selective sharing, we first explore the role

of typological features in learning the ordering component. When the model does not

have access to observed typological features, and does not use latent ones (column 4),
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the accuracy drops by 2.6%5. For some languages (e.g., Turkish) the decrease is very

pronounced. Latent typological features (column 5) do not yield the same gain as observed

ones, but they do improve the performance of the typology-free model by 1.4%.

Next, we show the importance of using raw target language data in training the model.

When the model has to make all the ordering decisions based on meta-linguistic features

without account for unique properties of the target languages, the performance decreases

by 0.9% (see column 3).

To assess the relative difficulty of learning the ordering and selection components, we con-

sider model variants where each of these components is trained using annotations in the

target language. As shown in columns 8 and 9, these two variants outperform the original

model, achieving 61.3% for supervised selection and 63.7% for supervised ordering. Com-

paring these numbers to the accuracy of the original model (column 6) demonstrates the

difficulty inherent in learning the ordering information. This finding is expected given that

ordering involves selective sharing from multiple languages.

Overall, the performance gap between the selective sharing model and its monolingual

supervised counterpart is 7.3%. In contrast, the unsupervised monolingual variant of our

model achieves a meager 26%.6 This demonstrates that our model can effectively learn

relevant aspects of syntactic structure from a diverse set of languages.

3.6.3 Analysis of Typological Feature Weights

We analyzed the learned feature weights for the feature involving typological properties.

We found that for every dependency type, highest feature weight is learned when it is

combined with its corresponding typological property. For instance, Figure 3.6.3 shows

5In this setup, the ordering component is trained in an unsupervised fashion on the target language.
6This performance is comparable to other generative models such as DMV [47].
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Figure 3-2: Typological feature weights learned by the model for postpositional dependen-
cies between Nouns and Adpositions

weights for features corresponding to the dependency between Adpositions and Nouns

when Noun is to the left of Adposition. Model learns correctly to assign highest weight to

the feature that combines this dependency with Postposition property, and the lowest weight

when combined with the Preposition property. Furthermore, the second highest weight is

learned for the feature that combines this dependency with SVO property. This corresponds

to the known language universal that SVO languages are always postpositional. Although

the experiments presented here are not designed to unveil language universals, this analysis

suggests that linguistically motivated models can be used to uncover correlations between

different inter and intra-language phenomena.
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3.6.4 Performance on Kinyarwanda and Malagasy

We also test the performance of our model on Kinyarwanda and Malagasy data produced

as part of Multidisciplinary University Research Initiative (MURI)7. This data has 270 an-

notated sentences for Kinyarwanda and 156 for Malagasy. In these experiments, all the lan-

guages from the previous experiments were used as source languages while Kinyarwanda

and Malagasy each were used as target language. The results are shown in Figure 3.6.4.

The plot at the top shows the results when gold part-of-speech tags are available, the results

on the bottom are produced using automatically annotated POS tags [35]. In both cases,

our model outperforms the parser transferred directly from the closest source language by

4% and 10% respectively for Malagasy and Kinyarwanda. Moreover, the performance of

selective-sharing model is quite close to its supervised counterpart.

3.7 Conclusions and Subsequent Research

We present a novel algorithm for multilingual dependency parsing that uses annotations

from a diverse set of source languages to parse a new unannotated language. Overall,

our model consistently outperforms the multi-source transfer based dependency parser of

[58]. Our experiments demonstrate that the model is particularly effective in processing

languages that exhibit significant differences from the training languages.

One limitation of this work is the loss of language specific information that is available

to supervised parsers in the form of language specific tags and words. Täckström et al.

[80] propose a method for incorporating typological features along with language family

information into a discriminative model. This method improves over our work achieving

a performance of 62%. The performance is further improved by using the target language

7http://www.linguisticcore.info
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Figure 3-3: Performance of our Selective Sharing model (middle column) compared against
Direct Transfer from the best source (left) and Supervised (right) using gold POS tags (top)
and automatically generated POS tags (bottom)
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data to adapt the transfer parser achieving an accuracy of 65%. The gain in performance

incurred by incorporating language specific unannotated data suggests that crosslingual

mapping of lexical dependencies may further improve the quality of transfer. A work par-

allel to ours by Täckström et al. [80] suggest one such method of learning crosslingual

lexical clusters, showing improvements over previous direct transfer parsers on a subset of

CoNLL data.
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Chapter 4

Many Views in One: Dependency

Parsing Using Corpus Level Models

Combining multiple ways of solving the same task rarely fails. This is particularly true

when models are simple, misspecified, and capture largely complementary aspects of the

data. The insight has been used frequently in unsupervised parsing. For example, early

successes [47] sought to combine dependency and constituent parsing. Another perspective

to combining models is to incorporate declarative knowledge, insufficient on its own, into

an otherwise unsupervised model [21, 26, 60].

There are many technical ways to realize this basic intuition. For example, [47] used prod-

ucts of experts where each expert parser was based on a single grammar formalisms. The

product form primarily reinforces shared predictions while enabling each model to dom-

inate the other, ignorant one. Declarative knowledge can be incorporated via posterior

regularization [60] or generalized expectation [26]. In either case, the unsupervised model

is guided towards predefined statistical properties.
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Multiple views, types of models or declarative knowledge, should be possible to incorpo-

rate directly into a single model where their strengths and weaknesses would be balanced in

the same context. Such an approach should be possible to formulate in a Bayesian frame-

work where the full range of parameters (and their combinations) are explored. It is less

obvious, however, whether such an approach remains computationally feasible.

We propose here unsupervised Bayesian models of dependency parsing that operate on the

corpus level. By dispensing with the per-sentence view of modeling, we can easily merge

multiple ways of scoring or constraining parsing decisions. We begin with a simple gen-

erative dependency parsing model, akin to [47], and adorn it with various complementary

views of scoring. Different views are incorporated as additional parameters that pertain to

the same parsing decisions. By integrating over the parameters (i.e., exploring jointly opti-

mal parameter settings), we necessarily couple parsing decisions across the sentences in the

corpus. It is still possible, however, to sample a new improved parse for each sentence, one

sentence at a time, in a (collapsed) Gibbs’ sampling framework, or approximately using

Metropolis-Hastings. We experiment with several such alternative views.

We evaluate our method on 19 languages, using dependency data from CONLL 2007 and

CONLL 2006 datasets. For unsupervised experiments, we compare our results against the

state-of-the-art parser [76] which combines several parsing models. On average, our model

outperforms this baseline by 1.9%. However, their relative performance across individual

languages varies greatly, suggesting that the two parsers have different modeling strengths.

In addition, we show that our model outperforms posterior regularization applied with the

same set of constraints.

We also evaluate our model in a semi-supervised set-up, providing it with a small amount

of training data. Across different sizes of training data, our model shows consistent im-

provement over purely supervised system trained on the same amount of annotated data
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but without any unlabeled text. For instance, given 10 training sentences augmented with

raw data, the semi-supervised model achieves 67.2%, compared to 63.2% of the fully su-

pervised model.

4.1 Related Work

Models based on multiple views have been extensively studied in supervised parsing [29,

64, 39], and more broadly in machine learning [9, 24, 18]. In this section, we focus on how

this approach has been explored in unsupervised generative parsers. We first discuss the

types of overlapping linguistic constraints that were successfully captured in this type of

models. Then we discuss mechanisms for effectively leveraging these overlapping views.

Linguistic Information Encoded in Overlapping Views A natural way to leverage

overlapping views is to combine representations from different grammar formalisms into a

single model. An early instance of this approach is a work by [47] that learns a model that

combines constituency and dependency components. While the trees produced by these

formalisms are different, they can constrain each other: the boundaries of constituents

should be aligned with projected spans of the nodes in dependency trees. The desired

structure should be preferred by both formalisms. The same ideas have been implemented

in other models [75, 59].

In the above case, overlapping views are jointly learned from data. In other approaches, one

of these overlapping representations has been specified declaratively, rather than learned.

Such representations may specify high-level linguistic constraints on dependency relations.

Examples include the types of modifiers a head verb can take. This type of rules have been

successfully used to constrain parsing models learned from raw data [21, 60, 12, 26, 67].
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Since these rules often include expected frequencies, the model is able to incorporate them

as soft constraints.

Mechanisms for Combining Overlapping Views One common mechanism for han-

dling multiple views in a generative framework is the product of experts [47, 72, 13]. In this

scenario, each view forms a generative model and the latent structure is scored using the

product of their probabilities. These models are simple and effective in practice. However,

product of experts models typically require some form of approximation. For instance, [47]

and [72] approximate the inference by assuming that each model independently generates

the data; this results in a deficient model. [13], on the other hand, approximate the infer-

ence using a fully-factorized variational distribution, thus optimizing a lower bound on true

objective.

Another approach for combining overlapping views is to use posterior regularization [34]

and generalized expectation criteria [26]. These techniques are used when one of the views

is observed, and specified as a constraint with an expected value. These constraints may ex-

press patterns that involve non-local structures that are hard to capture by a local generative

model. This framework keeps the generative model intact, using the constraints to limit the

search space during learning. This modular architecture can encourage the constraints to a

moderate degree: if the basic model cannot satisfy the constraints, posterior regularization

cannot move it in the right direction. In contrast, our approach incorporates different views

in a single model, and thereby has means to find a solution consistent with all the views.

Yet another way of incorporating overlapping views is to utilize locally normalized log-

linear models of Berg-Kirkpatrick et al. [6]. While these log-linear models allow multiple

views via overlapping features, they can do so only in a local context. Adding features

pertaining to bigger contexts (sentence-level or corpus-level) will introduce an intractable

normalization term. However, our approach allows the use of non-local parameters without
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making inference intractable.

More recently, [76] proposed an effective way for incorporating multiple views via model

combination. Different views are represented in separate models, which are then arranged

into a network via a series of model perturbations and output-merge operations. Each sub-

sequent parser in the pipeline benefits from the preceding simpler parsers. Our approach,

on the other hand, learns all the views jointly, thereby allowing each view to inform the

others.

4.2 Basic Dependency Model

Our model builds on a simple base model. As the base model, we use an extended Bayesian

version of the generative dependency model introduced in [47]. Schematically, the gener-

ative process starts at the dedicated root node. The modifier nodes of each node in the

tree are generated recursively in a head-outward and depth-first manner. The generation of

the modifiers for a node involves two types of decisions. First, at each step, a decision is

made whether to stop or continue generating modifiers (in either direction). Next, in case

of a continue decision, each modifier is generated from the set of possible modifiers. The

resulting tree is projective.

Model parameters The binary stop/continue decision for generating modifiers is condi-

tioned on other available features in the tree so far. The probability that we stop generating

modifiers is specified by a multi-way parameter table θstop(h, dir, args, dist) ∈ [0, 1]. Here

h is the part-of-speech tag of the head node; dir refers to the direction of generation (right

or left) with respect to the head; args is the number of arguments generated so far on the

dir side of the head node; finally, dist is the bucketed distance from the head to the outer

most leaf node generated so far on side dir. Note that the number of arguments, variable
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args, includes only modifiers that are indeed arguments (as opposed to adjuncts). This is

made possible by means of a small set of rules (see Table 4.1) used to distinguish argument

modifiers from all other modifiers 1. dist is another type of information that is not used

in standard generative dependency models, including [47]. However, as noted by [75],

a depth-first generative process allows to condition on any information pertaining to the

subtrees generated by the preceding sibling nodes on the same side.

Once the decision is made to generate another modifier node, its part-of-speech tag is gen-

erated from a multinomial distribution θchoose(t|h, dir) where t ranges over the possible

tags. Note that we do not have a separate parameter governing the direction of generation.

Indeed, this information is folded in stop/continue decisions. To complete the generative

process, we can simply determine, as a default, that one side (e.g., right) is generated first.

Our model is Bayesian and therefore requires prior distributions over the parameters. Both

θstop and θchoose distributions have symmetric Dirichlet priors with parameters θ0
stop and

θ0
choose, respectively. The prior distributions are assumed to be independent of each other

for each setting of the conditioning variables. Thus, for example, the prior distribution over

the multinomial distribution θchoose(·|h, dir) is distinct from θchoose(·|h′, dir), whenever

h 6= h′.

Model over the corpus We denote an annotated corpus as {(xi, yi)}Ni=1, where xi is a

sentence and yi the corresponding parse. In this paper, our focus is on unsupervised (and

semi-supervised) parsing. We are therefore primarily given only the sentences {xi}Ni=1. In

this case, yi represents a predicted parse for xi.

According to our base model described above, each sentence xi would be represented as a

sequence of tags. In this case, we can evaluate the probability P (yi, xi|θ) corresponding to

1These rules are only used to decide the type of a modifier given both the head and the modifier. They do
not help select the modifiers for a head.
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Head Argument
Verb Noun
Verb Pronoun
Verb Adjective
Verb Verb
Adposition Noun
Noun Determiner

Table 4.1: The set of rules used to distinguish between arguments and adjuncts. Only
modifiers that correspond to one of the head-modifier pairs listed in the table are considered
arguments; all other modifiers are assumed to be adjuncts.

each valid parse yi ∈ Y(xi). θ here refers to the set of all model parameters. The Bayesian

parsing model therefore induces a distribution over the corpus as a whole

P (y1, . . . , yN , x1, . . . , xN) =∫
P (θ)

[
N∏
i=1

P (yi, xi|θ)
]
dθ (4.1)

Our goal is to find likely realizations of {yi}Ni=1 given the sentences {xi}Ni=1, i.e., to maxi-

mize the joint distribution P (y1, . . . , yN , x1, . . . , xN) with respect to {yi}Ni=1. We will next

extend the corpus level model.

4.3 Modeling Overlapping Decisions

The key idea behind our approach is to incorporate additional parameters that are used to

guide overlapping decisions in the basic dependency model. For example, we will intro-

duce parameters for generating a coarse part-of-speech tag for each modifier as well as its

91



refined tag. The two decisions are clearly related but can be modeled in terms of two sepa-

rate sets of parameters, and independent prior distributions over those parameters. Despite

apparent over-generation of decisions, we can define and use effectively a consistent joint

distribution on the corpus level.

Consider a simple illustrative example. Let t index refined part-of-speech tags and tc coarse

tags. The two indexes are logically tied such that C(t) = tc for any t. Consider a sequence

of refined tags t1, . . . , tN . We specify a joint distribution over these tags in an overlapping

manner. Specifically, we can define P (t1, . . . , tN) as

1

Z

∫
P (θ)Pc(θc)

[
N∏
i=1

θ(ti)θc(C(ti))

]
dθdθc (4.2)

=
1

Z

[∫
P (θ)

N∏
i=1

θ(ti)dθ

][∫
Pc(θc)

N∏
i=1

θc(C(ti))dθ

]
(4.3)

where θ are the multinomial parameters over the refined tags and θc the corresponding

parameters over the coarse tags. By defining a globally normalized joint distribution, we

essentially draw all data nodes and parameter nodes at once from this distribution, hence

no over-generation. This formulation can be viewed as a factor graph where a single factor

connects all nodes. The potential associated with this factor is defined in terms of multino-

mial distributions and their priors.

Note that the feasibility of carrying out the integrals in 4.3 is independent of how many

overlapping parameters we have. If the prior distributions are conjugate priors, the integrals

can be carried out in closed form. The overall normalization constant Z is never needed

if the model is used in a Gibbs’ sampling framework where we would sample one tag ti

given the others t1, . . . , ti−1, ti+1, . . . , tN . We extend this basic approach for parsing with

overlapping parameters.
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4.4 The Full model

Our full model is comprised of the basic dependency model and a set of additional over-

lapping parameters. These additional parameters pertain to different aspects of dependency

trees that overlap with the basic model and with each other.

In a semi-supervised setting, multiple overlapping views of latent structure are helpful since

each view serves as a regularizer (sanity check) for the others. For the unsupervised setup,

this approach allows us to incorporate high level declarative knowledge about dependency

patterns.

The next sections discuss the aspects of dependency structures that we wish to capture

using additional overlapping views of the data. We also discuss the linguistic intuitions

that motivated our choices.

4.4.1 Dependency Parameters

We augment the basic dependency model with lexical and coarse-tag versions of θstop and

θchoose. The parameters and their prior distributions are otherwise defined analogously to

the base model.

4.4.2 Constituency Parameters

The constituency grammar formalism is based on the idea of substitutability, i.e. con-

stituents of the same type can be substituted for each other to form syntactically valid

sentences. In this work, we integrate a notion of constituency into our model. In particu-

lar, we introduce parameters that can capture contextual patterns seen in the constituents
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induced by dependency trees. Thus capitalizing on the idea of substitutability that forms

the basis of the constituency formalism.

For a given sentence, a projective dependency tree also gives partial constituent bracketing.

The projected span of each node in the dependency tree corresponds to one of the brackets

in the corresponding constituency tree. This means we can expect these brackets to exhibit

the same substitutability behavior.

To incorporate this intuition, we introduce two parameters. The first parameter looks at the

boundary tags of each constituent span. In particular, for every coarse part-of-speech tag t

with coarse head tag h we have a multinomial distribution φconst(tB,L, tB,R|h, t) over pairs

of coarse tags. Where tB,L and tB,R are the left and right boundary tags of the constituent

span projected by the dependency sub-tree rooted at t. In other words, this distribution

characterizes a sub-tree for the pair (h, t) based solely on its boundary leaf tags.

The second parameter captures the context of a constituency span. Again, for every parent-

tag pair (h, t) we have a multinomial distribution φcontext(tC,L, tC,R|h, t) over the pairs of

coarse tags that occur outside of the projected span on both sides. Both φconst and φcontext

distributions have symmetric Dirichlet priors with parameters φ0
const and φ0

context. Figure

4-1 illustrates these parameters.

4.4.3 Rule-Based Distribution

In rule-based distribution, we reuse the idea of universal linguistic patterns from Chapter

2. However, the way these rules are incorporated is different from our previous approach.

Instead of using rules as constraints during inference, we add them as a model parameter.

We model the ratio of dependencies in a sentence that match one of the pre-specified coarse

rules (see Table 4.2). We assume that this ratio follows a Gaussian distribution with mean
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Figure 4-1: A schematic figure illustrating the notion of substitutability in a dependency
tree. A word with part-of-speech tag t modifies its head h and projects the constituent span
of words between brackets. tB,L and tB,R are the tags of the words at the left and right
boundaries of the span; tC,L and tC,R are the tags of the left and right words outside the
span.

0.7 and standard deviation to 0.01. The ratio for each sentence is considered a separate

draw from the Gaussian distribution.

Root→ Verb Noun→ Adjective
Verb→ Noun Noun→ Article
Verb→ Pronoun Noun→ Noun
Verb→ Adverb Noun→ Numeral
Verb→ Verb Preposition→ Noun
Adjective→ Adverb

Table 4.2: The manually-specified universal dependency rules used in our experiments.
These rules specify head-dependent relationships between coarse syntactic categories.

4.5 Learning and Decoding

Learning and prediction are solved together in our Bayesian model. First, we marginalize

out the latent parameters for any setting of the dependency trees {yi}Ni=1 in the corpus.

This is feasible since the multinomial parameters in our model are all assigned conjugate
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symmetric Dirichlet prior distributions. As in the base model, such marginalization results

in a joint distribution over {yi}Ni=1 and the corresponding sentences (suppressed). We then

sample each new tree yi, one after the other, in the collapsed Gibbs’ sampling framework.

In other words, a new tree yi for xi is sampled from the conditional distribution

P (yi|y1, . . . , yi−1, yi+1, . . . , yN , x1, . . . , xN)

Note that we do not need the global normalization constant for Gibbs’ sampling. However,

sampling a tree from this conditional distribution is not typically tractable in our frame-

work. Indeed, some of the overlapping parameters are used more than once in each tree,

i.e., they represent counting features. Similarly, our distributional bias towards rule usage

does not factor according to the dependency arcs.

We adopt a Metropolis Hastings sampler for each new tree. Our proposal distribution

corresponds to a first order parser. It relies on counts of current values of all the other trees

(see [46] for details). In order to sample a tree, we first construct an inside table using

the proposal distribution (see Appendix A.2). A tree is then sampled in top-down fashion,

using marginalized probabilities of all possible trees at lower levels.

In the unsupervised learning setting, we follow the above sampling strategy to update

each dependency tree at a time given fixed trees for all the other sentences. In the semi-

supervised case, the trees for the annotated part of the data are held fixed to their given gold

parses.

Hyper-parameter Settings All the Dirichlet hyper-parameters are set to 0.1 in the unsu-

pervised case and 10 in the semi-supervised case. In the semi-supervised case, the counts

from the annotated part of the data are boosted to make that part 10 times bigger than the

un-annotated part.
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Decoding In the absence of parameters pertaining to non-local decisions, we find and use

the tree that maximizes the conditional distribution for each test sentence. When non-local

sentence level parameters are present, we use the final MH sample obtained for the test

sentence.

4.6 Experimental Setup

Datasets and Evaluation We test the effectiveness of our approach on datasets in 19

languages2, distributed for the 2006 and 2007 CoNLL shared tasks [14, 63]. Each dataset

provides manually annotated dependency trees and part-of-speech tags. To effectively learn

from small amounts of data, we also map the gold part-of-speech tags in each corpus to a

coarse tagset using the mapping scheme given by Petrov et al. [65].

As the evaluation metric, we use unlabeled directed dependency accuracy. Following stan-

dard evaluation practices, for both the baselines and our model we evaluate on sentences of

length 50 or less ignoring punctuation.

Training Setup We test our approach in both unsupervised and semi-supervised setups.

In the semi-supervised setup, we only use dependency (θ) and constituency (φ) parameters
3.

In the semi-supervised case, we experiment with two settings — 10 and 50 annotated sen-

tences. For each setup, the rest of the CoNLL data is used as unparsed text with only

part-of-speech tag annotations.

2Arabic (ar), Basque (ba), Bulgarian (bu), Catalan (ca), Chinese (ch), Czech (cz), Danish (da), Dutch (du),
English (en), German (ge), Greek (gr), Hungarian (hu), Italian (it), Japanese (ja), Portuguese (po), Slovene
(sl), Spanish (sp), Swedish (sw) and Turkish (tu)

3Our experiments show that in the presence of annotated data, even in small amounts, the rule-based
distribution becomes unnecessary.
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Baselines We compare the results of our unsupervised experiments against two base-

lines. The first baseline is the state-of-the-art unsupervised parser of Spitkovsky et al. [76],

which is a combination of several existing state-of-the-art parsers. The second baseline is

our parsing model from Chapter 2, which incorporates universal rules via posterior regu-

larization. The results reported in Chapter 2 are for sentences up to length 10 and are given

only for a subset of the CoNLL languages. We ran the No-Split version of this parser on

longer sentences to make the results comparable.

In the semi-supervised case, we compare against a supervised version of our parser which

does not have access to additional unlabeled data.

4.7 Results

Unsupervised Results The results of our unsupervised experiments are summarized in

Table 4.3. The final two columns show the results of our parser when the basic dependency

model is augmented with only rule-based parameters (D1+R) and with both constituency

and rule-based parameters (D+C+R). The full version of our model outperforms the rule-

based-only one by 3.2% on average. We find some significant differences on certain lan-

guages: adding constituency parameters increases performance by 19.1% and 26.8% for

Danish and Portuguese respectively, but degrades performance by 8.9% for Hungarian. We

speculate that these languages have a relatively complicated relationship between depen-

dency and constituency, and leave a more detailed analysis for future work.

When averaged over all languages, the full version of our unsupervised model gives per-

formance which is 1.9% better than the state-of-the-art parser combination by Spitkovsky

et al. [76]; we do better on 7 out of 19 languages. Interestingly, we find considerable dif-

ferences in performance on individual languages between the two systems. For example,
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COMB PR D1+R D+C+R
ar 26.8 39.4 45.8 51.1
ba 24.4 27.2 34.0 22.7
bu 63.4 55.1 56.5 61.8
ca 68.0 62.9 63.5 63.4
ch 58.4 23.6 51.4 47.8
cz 34.3 39.1 43.2 42.5
da 21.4 41.9 41.2 60.3
du 48.0 54.3 37.1 46.4
en 58.2 42.5 41.9 41.2
ge 56.2 38.9 46.3 49.7
gr 45.4 41.1 58.0 58.0
hu 58.3 50.1 54.8 45.9
it 34.9 57.4 58.0 59.8
ja 63.0 39.7 43.3 51.3
po 74.5 42.3 43.9 70.7
sl 50.9 39.8 46.4 38.9
sp 61.4 54.7 55.7 56.5
sw 49.7 39.9 45.1 52.5
tu 29.2 41.0 36.7 42.3

48.8 43.7 47.5 50.7

Table 4.3: Unsupervised results, D1 = basic Dependency model, D = all Dependency pa-
rameters, C = Constituency parameters and R = Rule-based parameters. COMB and PR
refer to the parser COMBination of [76] and the Posterior Regularization-based parser
(Chapter 2), respectively.

our system outperforms that of Spitkovsky et al. [76] by 24.3%, 38.9%, 24.9% on Arabic,

Danish and Italian, respectively. On the other hand, their system tops ours by 17% on En-

glish. Such large differences might indicate that the two systems capture different aspects

of the data, which can be benefited from further combination.

We also compare against our parser from Chapter 2, column PR, which uses posterior

regularization to incorporate the same set of rules as we do. Current model outperforms

by 7% on average and it also gains better results on almost all languages. Even without

considering constituency parameters (D1+R), this model achieves a gain of 3.8%. This

99



indicates that incorporating universal rules as a model parameter is more effective than

imposing as posterior constraint. This result can be explained by analyzing the gold tree

annotations of our data. The percentage of gold dependencies consistent with rules is a

little above 50% when averaged across all languages, with a maximum value of 59% for

English. Though we use the same threshold of 0.7 for both our model and PR baseline, our

model is more flexible in enforcing the rules. The PR baseline, on the other hand, would try

to meet the constraint if possible regardless of the values of underlying model parameters.

Comparison against DMV+CCM (Klein & Manning [47]) We also compare our Mul-

tiple views model with the combined DMV and CCM model of Klein & Manning [47].

The dependency and constituency components of our model as well as the datasets we

use are different from those of Klein & Manning [47]. To make the comparison fare, we

implement a version of our model where the dependency and constituency parameters are

the same as in DMV and CCM respectively. Furthermore, we incorporate the smoothing

counts used for CCM in the form of parameters of the Dirichlet prior over constituency

parameters. This version of our model, when tested on WSJ10 corpus, gives an accuracy

of 53%, averaged over 10 runs. The dependency accuracy for the product-of-experts com-

bination of these models as reported in [47] is 47.5%. Our method for combining the two

views outperforms this baseline by 5.5%.

Semi-supervised Results Tables 4.4 shows the results for the semi-supervised setups

with 10 and 50 annotated sentences. In all cases, the model that combines dependency and

constituency views (D+C+Text) outperforms its supervised-only counterpart (D+C) as well

as all other model versions, both on average and consistency across (almost) all languages.

We see decreasing gains as we increase the amount of annotated sentences available: 4% for

10 sentences and 1% for 50 sentences. Looking at individual languages, we see especially
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large gains for Japanese (8.9%) and Chinese (9.1%) with 10 annotated sentences. However,

once more annotated data is available, the performance gains are not so drastic.

with 10 annotated sentences with 50 annotated sentences
D D+Text D+C D+C+Text D D+Text D+C D+C+Text

ar 62.7 60.8 64.5 67.3 66.2 62.2 70.6 70.3
ba 47.2 46.7 49.1 52.7 55.0 51.9 55.2 56.0
bu 62.6 58.8 62.5 69.1 72.3 72.2 75.9 76.9
ca 70.4 67.5 72.2 77.7 73.5 73.2 78.9 79.8
ch 56.2 66.6 62.1 71.2 74.7 73.5 74.5 78.8
cz 54.0 55.9 60.0 62.0 64.6 60.4 68.6 68.2
da 59.0 59.0 62.2 67.5 67.1 66.6 75.4 76.7
du 40.4 39.9 44.6 52.4 56.1 57.9 61.6 65.0
en 59.1 58.8 66.4 70.1 64.5 61.1 71.0 73.3
ge 62.4 50.4 64.7 67.2 65.2 66.2 71.8 73.1
gr 65.5 65.4 68.0 70.6 69.1 66.1 73.9 74.1
hu 64.3 57.0 65.5 61.3 65.9 63.1 67.8 67.7
it 62.5 61.9 63.0 65.9 65.6 65.3 71.5 70.6
ja 65.5 68.6 65.7 74.6 76.1 78.9 80.4 81.0
po 76.1 75.4 78.2 79.7 78.0 78.5 81.9 82.9
sl 55.5 48.3 60.1 66.1 60.3 54.8 68.1 68.1
sp 61.8 63.2 66.2 69.6 63.9 64.2 73.0 73.4
sw 65.0 56.9 64.4 70.6 69.6 69.5 75.0 76.4
tu 58.9 61.2 60.5 61.8 62.5 64.9 66.9 68.6

60.5 59.1 63.2 67.2 66.9 65.8 71.7 72.7

Table 4.4: Supervised and semi-supervised results with 10 and 50 supervised sentences,
D = Dependency model, C = Constituency parameters; +Text refers to a semi-supervised
setup.

Interestingly, we find that semi-supervised learning is only effective in the presence of mul-

tiple views. In fact, semi-supervised learning without overlapping views (D+Text) degrades

performance by about 1% compared to the supervised version (D). This finding is consis-

tent with previous work [55, 54] where using additional raw text is beneficial for parsing

only when the parser is combined with a non-local re-ranker.
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Unsupervised Ablation Experiments We also perform ablation experiments to analyze

relative contribution of each model component. Table 4.7 shows the results of ablation

experiments for different versions of dependency component with or without other views.

D0 +C +R +C+R D1 +C +R +C+R D +C +R +C+R
ar 33.2 41.5 44.6 45.2 34.6 42.9 45.8 46.5 4.9 39.3 46.6 51.1
ba 23.9 23.2 27.9 28.1 28.8 23.4 34.0 38.4 0.6 21.0 22.6 22.7
bu 12.9 52.1 59.4 59.3 18.3 53.9 56.5 56.0 30.7 58.3 48.5 61.8
ca 26.4 49.5 56.4 25.2 29.3 52.8 63.5 65.5 36.0 36.2 32.6 63.4
ch 72.6 29.8 50.0 43.7 21.6 20.2 51.4 46.8 12.4 21.7 58.2 47.8
cz 31.4 46.3 44.1 39.8 21.3 37.0 43.2 38.3 14.2 25.0 35.9 42.5
da 13.7 38.2 34.9 47.1 17.4 22.3 41.2 53.5 2.4 26.1 44.0 60.3
du 22.5 34.5 30.2 50.3 26.7 34.0 37.1 46.3 16.5 35.6 29.0 46.4
en 15.3 26.9 34.7 36.1 29.0 28.2 41.9 37.1 18.6 29.0 40.5 41.2
ge 28.0 45.5 46.4 43.1 31.1 43.4 46.3 41.3 16.4 33.1 46.7 49.7
gr 31.4 31.4 57.6 58.4 36.9 29.3 58.0 55.7 26.9 33.5 53.0 58.0
hu 48.8 11.2 58.2 32.3 39.5 16.9 54.8 32.8 26.0 24.6 49.3 45.9
it 22.9 50.1 56.5 58.8 24.9 58.8 58.0 55.9 17.8 41.1 52.4 59.8
ja 19.3 22.4 43.3 33.0 57.1 20.9 43.3 33.8 43.2 43.4 53.5 51.3
po 23.0 57.8 44.3 59.5 31.5 69.2 43.9 66.0 10.8 33.5 36.4 70.7
sl 15.9 21.9 34.5 31.5 37.6 36.6 46.4 33.8 20.7 27.7 35.5 38.9
sp 27.0 30.6 55.0 48.9 27.6 42.7 55.7 54.2 31.4 32.9 46.5 56.5
sw 28.0 39.6 46.1 47.5 23.9 39.3 45.1 46.4 12.4 39.8 50.6 52.5
tu 32.5 20.9 40.9 26.8 32.6 16.6 36.7 32.4 25.0 16.2 41.2 42.3

27.8 35.4 45.5 42.9 30.0 36.2 47.5 46.4 19.3 32.5 43.3 50.7

Table 4.5: Ablation results for unsupervised experiments: D0 = coarse tag Dependency pa-
rameters, D1 = fine tag Dependency parameters, D2 = lexicalized Dependency parameters,
D = D0+D1+D2 and C = Constituency parameters

In all case adding constituency view or adding universal rules helps. However, adding

both of them does not always enhance the performance further except in the case of full

dependency component (D+C+R). Moreover, having lexical dependency parameters (D),

in the absence of universal rules, always hurts the performance. This is understandable, in

the absence of any guidance, bilexical parameters can easily find bad optima.

All versions of our model, when rules are not used, perform worse than that of Spitkovsky
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et al. [76]. However, their model employs a more complicated incremental initialization

from simpler to more complex versions of the model.

4.8 Conclusions

In this work we introduced a Bayesian model of dependency parsing that operates on the

corpus level. The model is built by attaching multiple views to a simple generative model.

These views are incorporated as additional parameters that pertain to the same parsing

decisions. By integrating over the parameters, we obtain a joint model over the parse trees

across the corpus.

Our unsupervised model outperforms a combination of several state-of-the-art parsers [76].

Our method better exploits declarative constraints than posterior regularization, leading to

performance improvements. In a semi-supervised setting, the model delivers steady gains

from access to raw data.
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Chapter 5

Conclusions and Future Work

In this thesis we have shown that declarative linguistic knowledge and linguistically moti-

vated model design can greatly boost parsing performance for low-resource languages.

We present a universal view of dependency parsing. This universal perspective is benefi-

cial in both monolingual and multilingual-transfer setups. In monolingual case, we design

a generic parser based on universal rules that consistently improves performance across

languages. In the case of crosslingual parser transfer, we combine universal view with lin-

guistic typology. This provides a clean mechanism for filtering-out irrelevant information

when transferring from a diverse set of source languages.

We also show that combining multiple linguistic views of data into one model is beneficial

in unsupervised and semi-supervised settings. We present a Bayesian framework that can

accommodate multiple views in one model without making inference intractable. Our ex-

periments show that when multiple views are merged via this framework, each constrains

the others enhancing overall quality of predictions.
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5.1 Discussion and Future Work

The work presented in this thesis can be extended in a number of ways:

We explore the idea of separating selection and ordering decisions in the context of parser

transfer. This formulation is also supported by linguistic theories [42]. In fact, the un-

ordered dependency tree, labeled with functional roles such as subject and object, can fully

convey the meaning. In other words, ordering information is a way of labeling functional

roles and different languages can be viewed as different labeling schemes. The use of this

two-tier approach for modeling dependencies is worth exploring for monolingual super-

vised and semi-supervised settings. Furthermore, domain adaptation within language can

be viewed as a mirror task of crosslingual transfer, where ordering component is fixed but

the selection component may vary at lexical level.

Our corpus level unsupervised model can be enhanced in a number of ways. First, we

currently do not make full use of the Bayesian nature of this framework. Especially in the

case of rule-based distribution, instead of fixing the parameters, we can use them as priors

to allow for variability across languages. Moreover, this framework can be used to capture

other non-local overlapping features, such as sibling order and tree-height, without running

into the issues of intractability and sparsity. Finally, existing work in NLP has shown that

joint learning of multiple tasks improves performance [79, 32]. This framework can be

used to learn syntactic structure jointly with other tasks such as morphological analysis and

semantic parsing.

Besides the immediate extensions of our work discussed above, a number of question arise

from the direction of research followed in this thesis; for instance, how far we can go

using available linguistic resources? have we already reached the limit? what would be the

logical next step towards enabling syntactic parsing for resource-lean languages?

105



In Chapter 4 (Section 4.7, Table 4.4), the results show that a parser trained on 10 annotated

sentences performs as well as linguistically informed transfer system of Chapter 3. How-

ever, annotating first few sentences, for a new language or a new framework, is considered

hardest. This is because of the frequent encounter with new types of decisions that require

careful analysis. Yet the question remains that in terms of practical usability, would it be

a more productive course of action to annotate resources for every language of interest?

Especially since a small amount of language specific annotations still outperforms our lin-

guistically based parsers. The solution then may be to adopt a middle approach i.e. to focus

on designing parsing methods that specialize in making the most out of a little amount of

annotated resources. This was the intent behind the multiple-views semi-supervised exper-

iments of Chapter 4.

This is not to say that we have exhausted the limits of linguistic resources. To the contrary,

the work presented in this thesis is just a beginning. There are far more detailed forms

of linguistic knowledge that can be incorporated into parsing models such as the Gram-

mar Matrix of Bender et al. [4] and the ParGram Parallel Treebank of Sulger et al. [78].

One hindrance in further progress in this direction is the lack of consistency in annotations

against which we evaluate our methods. For instance in our universal rules experiments

(Chapter 2) Slovene and Danish data was left out. This was done because of significantly

different annotation schemes used in those corpora. The linguistically based models are

motivated by unified view of languages as captured by different linguistic theories. Any

enhancement in these models will only adhere further to one particular theory/school of

thought, making it even harder to evaluate these methods using a set of corpora annotated

independently without any regard to consistency1. In general, evaluation methods and their

limitations have been long standing issues in the area of dependency parsing [68]. An

1A recent work by McDonald et al. [56] presents a collection of treebanks for 6 languages that are made
consistent in terms of dependency annotations. Currently, 5 out of 6 languages in this collection are Indo-
European. However, the authors indicate that this is an on-going effort and the coverage will be improved.
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alternative approach can be to resort to application based evaluation i.e. to evaluate the

effectiveness of parsing methods based on the improvements they incur to an application

system such as Machine Translation. While this alleviate the problem of inconsistency in

annotations, there are other issues with this approach. For instance there is no way to dis-

tinguish between parser’s inability to improve and application’s inability to benefit from

improvements. Designing evaluation techniques which are not tied to any particular lin-

guistic theory or application software is challenging and constitutes an important research

direction.

Finally, linguistically motivated models can also be used to enhance linguistic knowledge.

This is discussed briefly in Section 3.6.3, Chapter 3, when analyzing the typological feature

weights. It is unfortunate that despite huge improvements in computational capability and

increase in the amount of textual resources available in machine readable form, there is

relatively little work that uses these resources to unveil linguistic properties of languages

[5]. Using computational methods to enhance linguistic knowledge is a line of research

that is quite exciting yet less explored.

In conclusion, the work presented in this thesis is only a first step towards exploiting lin-

guistic resources. This direction of research can be followed further to benefit both NLP

applications and linguistic knowledge-base.
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Appendix A

Inside Algorithms

A.1 Selective Sharing Model

Selection Parameters

Psize(n|h) = θsize(n|h)

Pset(S|h, n) =
1

Zset(h, n)
e
∑

Si∈S
θsel(Si|h)

=
1

Zset(h, n)

∏
Si∈S

eθsel(Si|h)

Zset(h, n) =
∑

S:|S|=n

e
∑

Si∈S
θsel(Si|h)

Where h is a head tag, n is the number of dependents, and S is an unordered set of tags.

Si is the ith POS tag in the unordered set S, and θsel(Si|h) are parameters of the log-linear

distribution over sets for h.
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Ordering Parameters

Pord(d|a, h, l) =
1

Zord(a, h, l)
eword·g(d,a,h,vl)

Zord(a, h, l) =
∑

d∈{R,L}

eword·g(d,a,h,vl)

Where h is a head tag and a is a dependent tag, d is the orientation of the dependency (right

or left), and word are the weights of ordering log-linear distribution. l is the language index

and vl is the vector of typological feature values for l.

Recursions for Inside Algorithm: In the following, ti represents the tag at index i, Rn
i,j

represents the sum of the product of selection (un-normalized) and ordering scores of sub-

trees rooted at i, spanning from index i to index j, with n dependents on the right, Lni,j is the

mirror image of Rn
i,j with dependents on the left, and Fhi,j is the sum of normalized scores

of all trees spanning i to j with root at index h. Following formulae give the recursions for

L,R and F , Figure A.1 shows schematic diagram corresponding to each recursion case.

Rn
i,j =

j−1∑
k=i

j∑
a=k+1

(
Rn−1
i,k Fak+1,j · eθsel(ta|ti) · Pord(Right|ta, ti, l)

)
Lni,j =

j−1∑
k=i

k∑
a=i

(
Ln−1
k+1,jFai,k · eθsel(ta|tj) · Pord(Left|ta, tj, l)

)
Fhi,j =

∑
nl

∑
nr

(
Lnl
i,hRnr

h,j · Psize(nl + nr|th) ·
1

Zset(th, nl + nr)
· 1

nl!nr!

)

Note that for selection probabilities, we keep multiplying the numerator and normalize only
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when the size of the set is known. This works because selection weights depend only on

head and dependent tags and they are shared across all set distributions with same head tag.

Figure A-1: Schematic diagram of recursions for L,R and F
cases for inside algorithm
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A.2 Multiple Views Model

In this section we explain the inside algorithm for sampling trees for our multiple views

model (Chapter 4). The algorithm is described in terms of basic dependency parameters

and constituency parameters; other dependency parameters can be added trivially to the

algorithm. Rule-based distribution is not a part of the proposal distribution.

In the following, s is the index of the sentence for which we are sampling a new tree and

T−s are the current parse trees of all the sentences other than the sth sentence.

Conditional Probabilities for Basic Dependency Decisions

Pstop(d|h, dir, args, dist, T−s, θ0
stop) =

Count(d, h, dir, args, dist)T−s + θ0
stop

Count(∗, h, dir, args, dist)T−s + 2θ0
stop

Pchoose(a|h, dir, T−s, θ0
choose) =

Count(a, h, dir)T−s + θ0
choose

Count(∗, h, dir)T−s + |A| · θ0
choose

where h is a head tag, a is a dependent tag, dir is the direction of dependency, dist is

the number of leaf nodes generated so far on the dir side of head, d represents the binary

STOP/GEN decision, θ0
stop and θ0

choose are the parameters of the symmetric Dirichlet priors

and A is the set of all POS tags.
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Conditional Probabilities for Constituency Decisions

Pconst(t
l
in, t

r
in|h, g, dir, T−s, θ0

const) =
Count(tlin, t

r
in, h, g, dir)T−s + θ0

const

Count(∗, ∗, h, g, dir)T−s + |B||B|θ0
const

Pcontext(t
l
out, t

r
out|h, g, dir, T−s, θ0

context) =
Count(tlout, t

r
out, h, g, dir)T−s + θ0

context

Count(∗, ∗, h, g, dir)T−s + |B||B|θ0
context

where h is a coarse head tag and g is the parent tag of h. dir is the direction of dependency

between h and g. tlin and trin are the left and right inner boundary tags of the constituency

span projected by h, tlout and trout are the outer boundary tags for the same span. φ0
const and

φ0
context, are the parameters of the symmetric Dirichlet priors. B is the set of all coarse POS

tags.

Recursions for Inside Algorithm: In the following, ti represents the tag at index i, Rn
i,j

represents the sum of scores of subtrees rooted at i, spanning from index i to index j, with

n arguments on the right, Lni,j is the mirror image of Rn
i,j with dependents on the left, and

Fhi,j is the sum of scores of all trees spanning i to j with root at index h. The function

isarg(a, b) has a value of 1 when a is an argument of b and 0 otherwise. This binary

decision is based on the rules listed in Table 4.1. Following formulae give the recursions

for L,R and F .
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Rn
i,j =

j−1∑
k=i

j∑
a=k+1

(
Rn−isarg(ta,ti)
i,k Fak+1,j

· Pstop(GEN|ti, Right, n, k − i, T−s)

· Pchoose(ta|ti, Right, T−s)

· Pconst(tk+1, tj|ta, ti, Right, T−s)

· Pcontext(tk, tj+1|ta, ti, Right, T−s)
)

Lni,j =

j−1∑
k=i

k∑
a=i

(
Ln−isarg(ta,tj)
k+1,j Fai,k

· Pstop(GEN|tj, Left, n, j − k − 1, T−s)

· Pchoose(ta|tj, Left, T−s)

· Pconst(ti, tk|ta, tj, Left, T−s)

· Pcontext(ti−1, tk+1|ta, tj, Left, T−s)
)

Fhi,j =
∑
nl

∑
nr

(
Lnl
i,hRnr

h,j

· Pstop(STOP|th, Right, nr, j − h, T−s)

· Pstop(STOP|th, Left, nl, h− i, T−s)
)
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Appendix B

Variational Updates

B.1 Update for q(φts)

log q(φts) = Eq(z)[log p(β, π, φ, θ, z, x|φ0, θ0, α, γ)]

∝ Eq(z)[log p(φts|φ0)p(x|z, φts)]

= log p(φt|φ0) + Eq(z)[log p(x|z, φts)]

=
∑
w∈Σ

log φts(w)(φ0−1) +
∑
w∈Σ

Eq(z)[log φts(w)Cts(w)]

where Σ is the word lexicon

=
∑
w∈Σ

log φts(w)(φ0−1) +
∑
w∈Σ

Eq(z)[Cts(w) log φts(w)]

=
∑
w∈Σ

log φts(w)(φ0−1) +
∑
w∈Σ

Eq(z)[Cts(w)] log φts(w)

=
∑
w∈Σ

log φts(w)(φ0−1) +
∑
w∈Σ

log φts(w)Eq(z)[Cts(w)]

exponentiating both sides

q(φts) ∝
∏
w∈Σ

φts(w)(φ0−1+Eq(z)[Cts(w)])

∝ Dir(φts;φ0 + Eq(z)[Cts(.)])
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B.2 Update for q(πtt′s′c)

log q(πtt′s′c) = Eq(β)q(z)[log p(β, π, φ, θ, z, x|φ0, θ0, α, γ)]

∝ Eq(β)q(z)[log p(πtt′s′c|α, βt)p(z|πtt′s′c)]

= Eq(β)[log p(πtt′s′c|α, βt)] + Eq(z)[log p(z|πtt′s′c)]

recall that q(βt) puts all its mass on one βt

= log p(πtt′s′c|α, β) + Eq(z)[log p(z|πtt′s′c)]

=
T∑
s=1

log πtt′s′c(s)
(αβt(s)−1) +

T∑
s=1

Eq(z)[log πtt′s′c(s)
Ctt′s′c(s)]

=
T∑
s=1

log πtt′s′c(s)
(αβt(s)−1) +

T∑
s=1

Eq(z)[Ctt′s′c(s) log πtt′s′c(s)]

=
T∑
s=1

log πtt′s′c(s)
(αβt(s)−1) +

T∑
s=1

Eq(z)[Ctt′s′c(s)] log πtt′s′c(s)

=
T∑
s=1

log πtt′s′c(s)
(αβt(s)−1) +

T∑
s=1

log πtt′s′c(s)
Eq(z)[Ctt′s′c(s)]

exponentiating both sides

q(πtt′s′c) ∝
T∏
s=1

πtt′s′c(s)
(αβt(s)−1+Eq(z)[Ctt′s′c(s)])

∝ Dir(πtt′s′c;αβt(.) + Eq(z)[Ctt′s′c(.)])
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B.3 Update for q′(z)

log q′(z) = Eq(π),q(φ),q(θ)[log p(β, π, φ, θ, z, x|φ0, θ0, α, γ)]

∝ Eq(π),q(φ),q(θ)[log p(x|z, φ)p(z|π, θ)]

= Eq(π),q(φ),q(θ)

[
log

N∏
n=1

ln∏
i=1

(
p(xni|tni, sni, φ)× p(tni|th(ni), θ)

× p(sni|tni, th(ni), sh(ni), c, π)
)]

=
N∑
s=1

ln∑
i=1

(
Eq(φ)[log p(xni|tni, sni, φ)]

+ Eq(θ)[log p(tni|th(ni), θ)]

+ Eq(π)[log p(sni|tni, th(ni), sh(ni), c, π)]
)

=
N∑
s=1

ln∑
i=1

(
Eq(φ)[log φtni,sni

(xni)] + Eq(θ)[log θth(ni)(tni)]

Eq(π)[log πtni,th(ni),sh(ni),c(sni)]
)

exponentiating both sides

q′(z) ∝
N∏
n=1

ln∏
i=1

(
expEq(φ)[log φtnisni

(xni)]

× expEq(θ)[log θth(ni)sh(ni)cni
(tni)]

× expEq(π)[log πtnith(ni)sh(ni)cni
(sni)]

)
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B.4 Update for q(βt)

log q(βt) ∝ Eq(π)[log p(βt|γ)p(π|α, βt)]

= log p(βt|γ) + Eq(π)[log
∏
t′

∏
s′

∏
c

p(πtt′s′c|α, βt)]

= log GEM(γ) +
∑
t′

∑
s′

∑
c

Eq(π)[log Dir(πtt′s′c;αβt)]

we use gradient search to find β that maximizes log q(βt), for details, see Appendix B.4 in

[51].

B.5 Variational Bound

F =

∫
q(β, π, θ, φ, z) log

p(β, π, θ, φ, z, x|γ, θ0, φ0)

q(β, π, θ, φ, z)

=

∫
q(β)q(π)q(θ)q(φ)q(z) log

p(β|γ)p(π|β)p(θ|θ0)p(φ|φ0)p(z|π, θ)p(x|z, φ)

q(β)q(π)q(θ)q(φ)q(z)

=

∫
q(z)q(π)q(θ)q(φ) log p(z|π, θ)p(x|z, φ) +

∫
q(θ)log

p(θ|θ0)

q(θ)
+

∫
q(φ)log

p(φ|φ0)

q(φ)

+

∫
q(β)q(π) log

p(β|γ)p(π|β)

q(β)q(π)
−
∫
q(z) log q(z)
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in last term substituting q(z) from Appendix B.3 after normalization

=

∫
q(z)q(π)q(θ)q(φ) log p(z|π, θ)p(x|z, φ) +

∫
q(θ)log

p(θ|θ0)

q(θ)
+

∫
q(φ)log

p(φ|φ0)

q(φ)

+

∫
q(β)q(π) log

p(β|γ)p(π|β)

q(β)q(π)
−
∫
q(z)Eq(π),q(θ),q(φ)[log p(z|π, θ)p(x|z, φ)] +

∫
q(z)Znorm

first and the second last terms cancel each other

= Znorm +

∫
q(θ)log

p(θ|θ0)

q(θ)
+

∫
q(φ)log

p(φ|φ0)

q(φ)
+

∫
q(β)q(π) log

p(β|γ)p(π|β)

q(β)q(π)

q(β) has probability 1 for β∗

= Znorm +

∫
q(θ)log

p(θ|θ0)

q(θ)
+

∫
q(φ)log

p(φ|φ0)

q(φ)
+

∫
q(π) log

p(β∗|γ)p(π|β∗)
q(π)

= Znorm +

∫
q(θ)log

p(θ|θ0)

q(θ)
+

∫
q(φ)log

p(φ|φ0)

q(φ)
+

∫
q(π) log

p(π|β∗)
q(π)

+ log p(β∗|γ)

= Znorm −KL(q(θ)||p(θ|θ0))−KL(q(φ)||p(φ|φ0))−KL(q(π)||p(π|β∗)) + log p(β∗|γ)

where

p(β∗|γ) = GEM(γ)

Znorm =
∑
z

Eq(π),q(θ),q(φ)[log p(z|π, θ)p(x|z, φ)]

KL divergence between two Dirichlet is given by [2]:

KL(Dir(α′)||Dir(α)) = ln
Γ(α′0)

Γ(α0)
−

K∑
j=1

[ln
Γ(α′j)

Γ(αj)
− (α′j − αj)(ψ(α′j)− ψ(α′0))]

where α0 =
K∑
j=1

αj
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B.6 Gradiant for Dual

We want to find q that optimizes the following objective:

min
q

KL(q||p) s.t. Eq[f(z)] ≤ b

The lagrangian for this constrained optimazation has the following form:

L(q, λ) = KL(q||p) + λ(Eq[f(z)]− b)

=
∑
z

q(z) log
q(z)

p(z)
+ λ
(∑

z

q(z)f(z)− b
)

taking gradient with respect to q(z),

δL(q, λ)

δq(z)
= log

q(z)

p(z)
+ q(z)

p(z)

q(z)

1

p(z)
+ λf(z)

= log q(z)− log p(z) + 1 + λf(z)

setting the gradient equal to 0,

log q(z) = log p(z)− 1− λf(z)

q(z) = p(z)exp(−1− λf(z))

to make q(z) sum to 1,

q(z) =
p(z)exp(−λf(z))

Z
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substituting q(z) back into L,

L(q, λ) =
∑
z

q(z) log
q(z)

p(z)
+ λ
(∑

z

q(z)f(z)− b
)

=
∑
z

q(z) log
p(z)exp(−λf(z))

Zp(z)
+ λ
(∑

z

q(z)f(z)− b
)

=
∑
z

q(z)(−λf(z))−
∑
z

q(z) logZ + λ(Eq[f(z)]− b)

= Eq[−λf(z)]− logZ + λ(Eq[f(z)]− b)

= −λEq[f(z)]− logZ + λEq[f(z)]− λb

= − logZ − λb

nowgradient with respect to dual variable λ,

δL(q, λ)

δλ
= −δ logZ

δλ
− b

= −
∑
z

p(z)exp(−λf(z))(−f(z))

Z
− b

= −
∑
z

q(z)(−f(z))− b

= Eq[f(z)]− b
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