Towards Debiasing Fact Verification Models

Tal Schuster*, Darsh J Shah*, Serene Yeo,

Daniel Filizzola, Enrico Santus, Regina Barzilay

Task: Fact verification

Is the following claim true?

Claim:

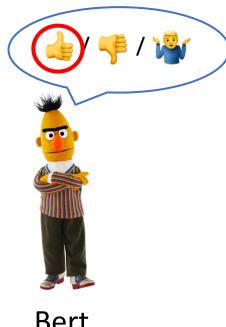
Trevor Griffiths was born on April 4, 1935

Task: Fact verification

Bert can answer correctly (using only the claim)

Claim:

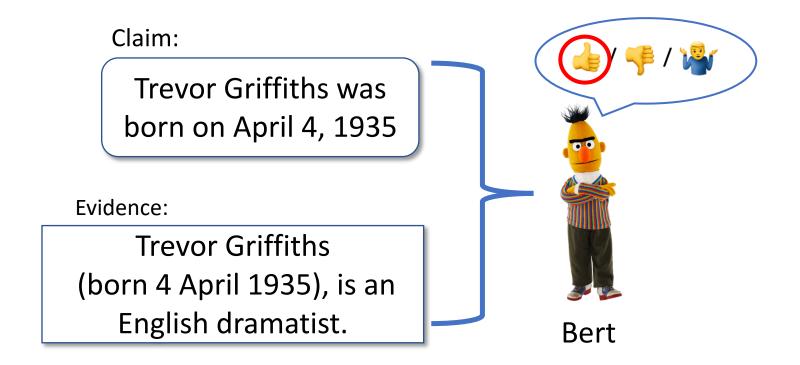
Trevor Griffiths was born on April 4, 1935



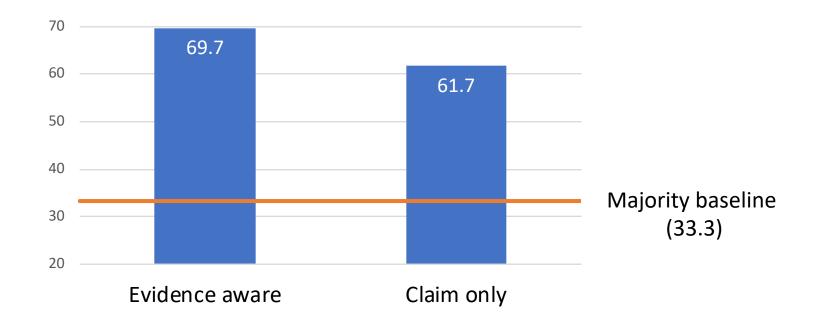
Bert

Task: Fact verification

Shouldn't it rely on evidence?



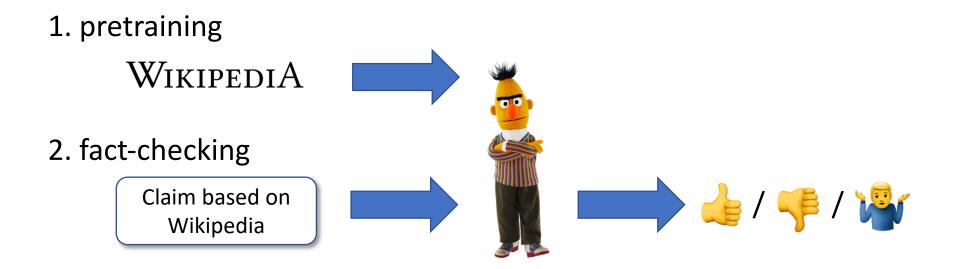
Performance on the FEVER dataset



Why does the claim-only model perform so well?

Possibility 1

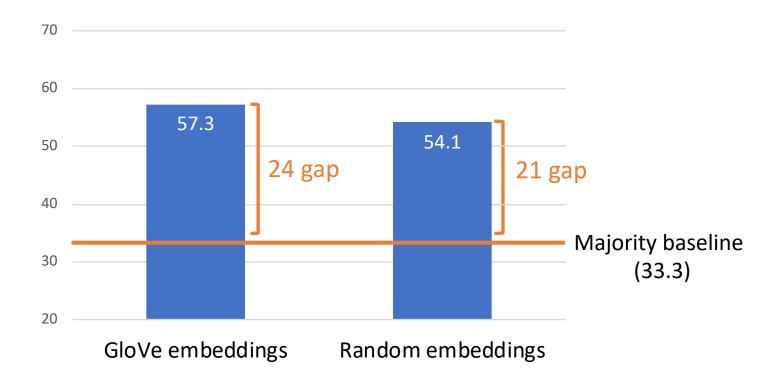
World knowledge captured in the pretraining process



can leak the truthfulness of claims

Without pretrained embeddings

Random Embeddings still perform far above the baseline



claim-only InferSent model (Conneau et al., Poliak et al.)

Possibility 2

Give-away phrases in the claims

Give-away phrases in the claims

A claim-only model should fail:

- Magic Johnson did not play for the Lakers.
- There has been at least one windstorm in Stanley Park.
- All About Eve won an award for Best Picture.
- The New England Patriots failed to reach seven Super Bowls.
- Quinoa did not originate in South America.

Give-away phrases in the claims

But the model can "cheat":

- Magic Johnson did not play for the Lakers.
- There has been <u>at least one</u> windstorm in Stanley Park.
- All About Eve won an award for Best Picture.
- The New England Patriots <u>failed to</u> reach seven Super Bowls.
- Quinoa did not originate in South America.

Give-away phrases in the claims

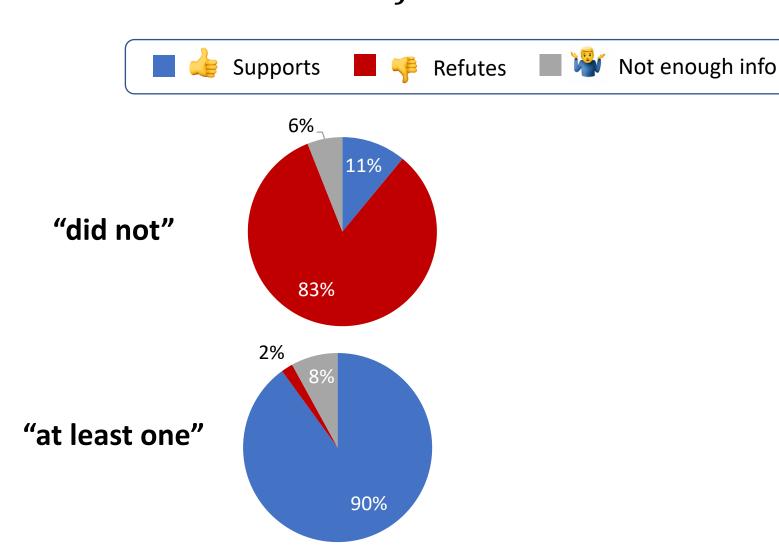
• Probability of a claim having label l if it contains phrase w_i :

$$p(l|w_j) = \frac{count(l, w_j)}{count(w_j)} = \frac{\sum_{i=1}^{n} \mathbb{1}_{[w_j^{(i)}]} \cdot \mathbb{1}_{[y^{(i)}=l]}}{\sum_{i=1}^{n} \mathbb{1}_{[w_j^{(i)}]}}$$

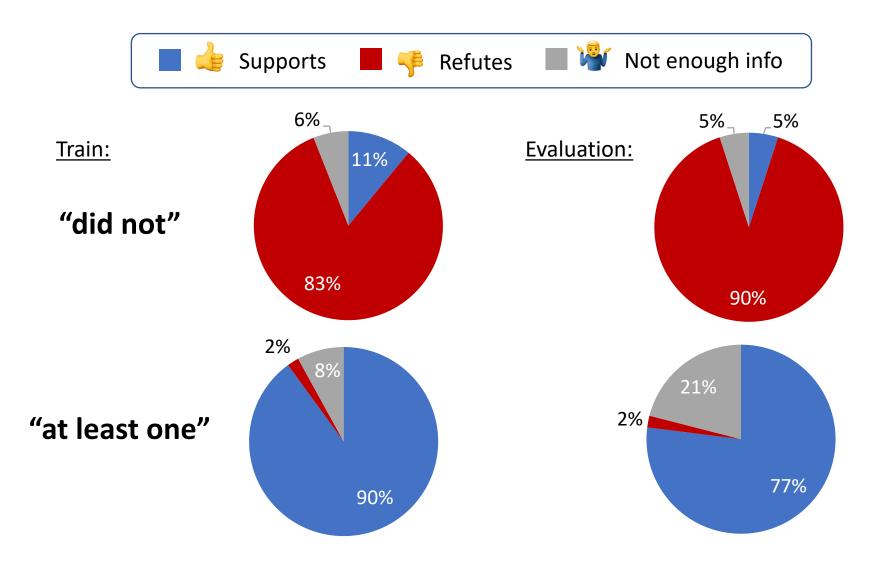
Local Mutual Information - phrases that create the strongest bias:

$$LMI(w_j, l) = p(w_j, l) \cdot \log\left(\frac{p(l|w_j)}{p(l)}\right)$$
PMI

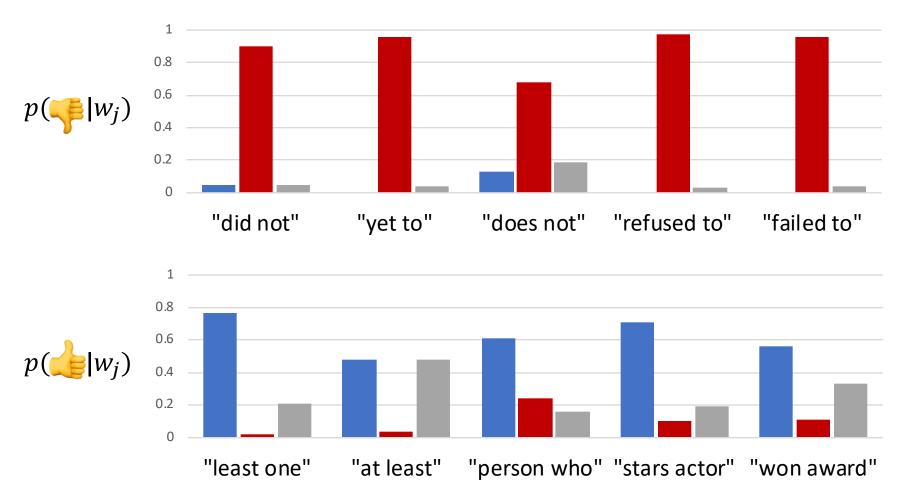
Example $p(l|w_i)$ for top LMI phrases



Bias reappears in the evaluation set



$p(l|w_j)$ on evaluation set for top LMI phrases by training set



Give-away phrases are the main culprits

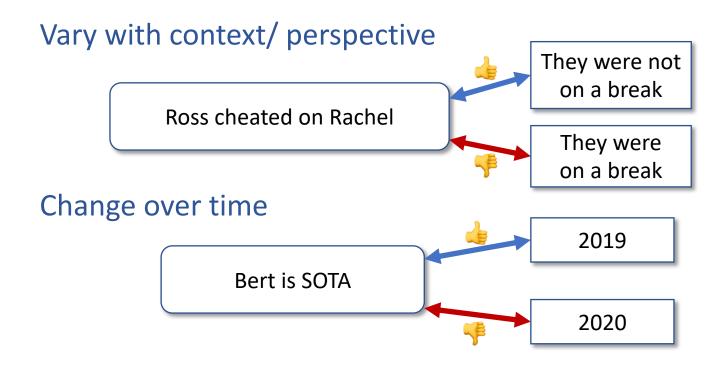
1. World knowledge captured in pretraining

2. Give-away phrases in claims

Goal: Evidence based predictions

Claim-only should be inadequate

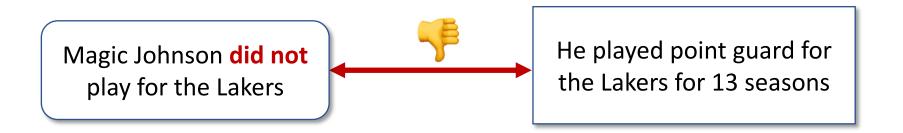
A claim's truthfulness might:



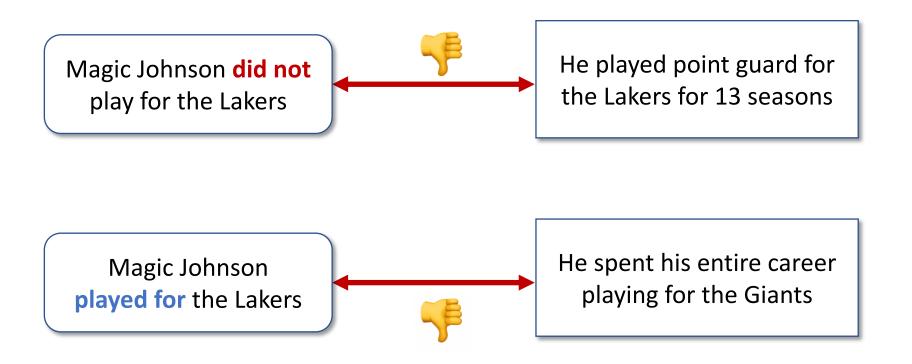
Debiasing the evaluation

By creating a symmetric dataset

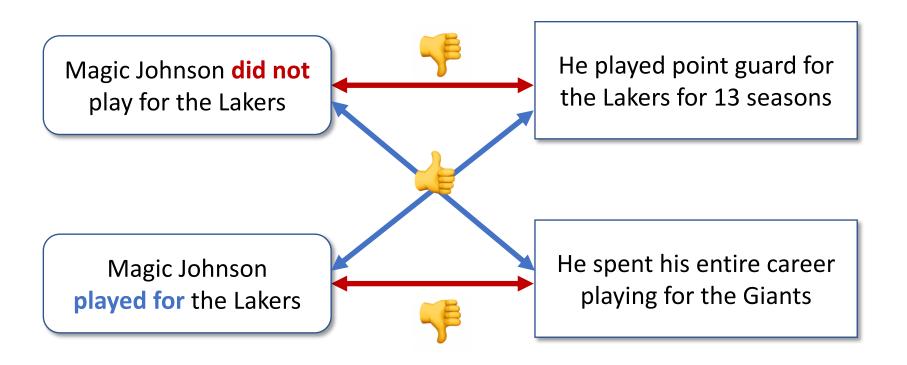
Creating a symmetric unbiased dataset



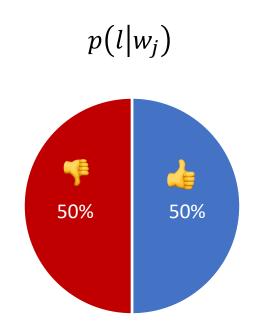
Creating a symmetric unbiased dataset



Creating a symmetric unbiased dataset

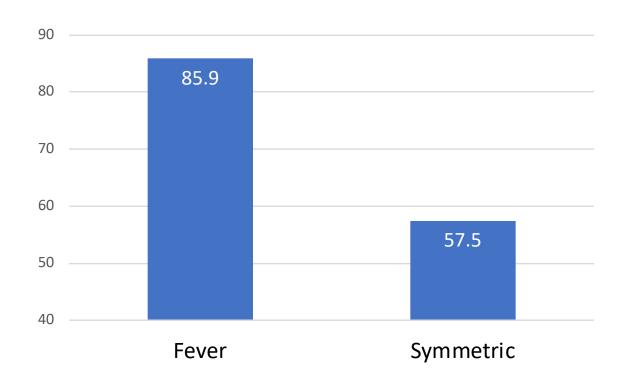


The evidence is crucial for predictions



Performance on the symmetric dataset

Entailment results using Bert



Debiasing the training

By reweighting the training samples

Regularizing the training

Defining the bias of phrase j towards label l:

$$b_j^l = p(l|w_j) = \frac{\sum_{i=1}^n \mathbb{1}_{\left[w_j^{(i)}\right]} \cdot \mathbb{1}_{\left[y^{(i)}=l\right]}}{\sum_{i=1}^n \mathbb{1}_{\left[w_j^{(i)}\right]}}$$

• Setting weights (α) for each training sample:

$$b_j^l = \frac{\sum_{i=1}^n \mathbb{1}_{\left[w_j^{(i)}\right]} \cdot \mathbb{1}_{\left[y^{(i)}=l\right]} \cdot \left(1 + \alpha^{(i)}\right)}{\sum_{i=1}^n \mathbb{1}_{\left[w_j^{(i)}\right]} \cdot \left(1 + \alpha^{(i)}\right)}$$

Regularizing the training

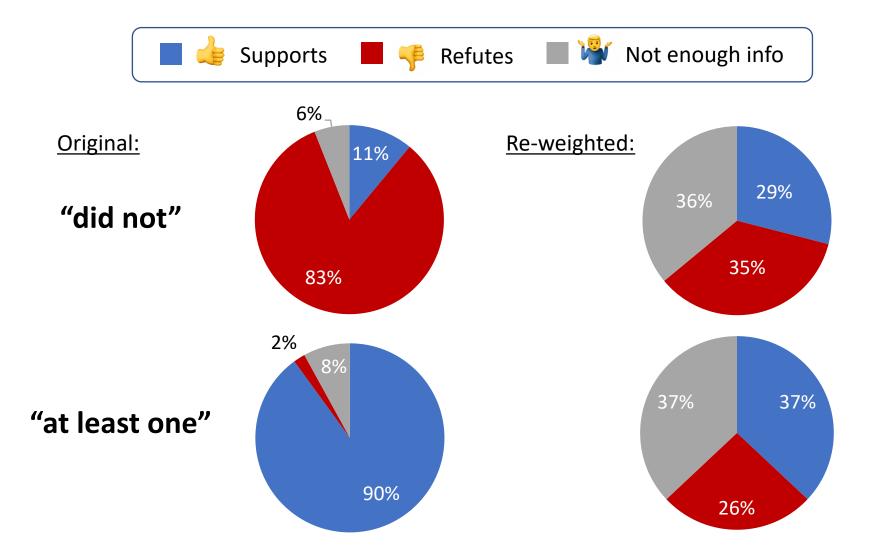
Learning the weights by optimizing:

$$\min\left(\sum_{j=1}^{|V|} \max_{l} (b_j^l) + \lambda \|\vec{\alpha}\|_2\right)$$

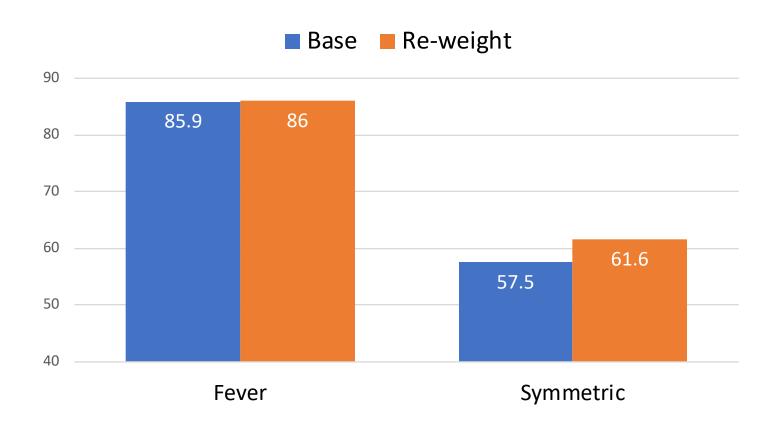
Re-weighted loss function:

$$\sum_{i=1}^{n} \left(1 + \alpha^{(i)}\right) \cdot \mathcal{L}\left(x^{(i)}, y^{(i)}\right)$$

Statistical cues are alleviated

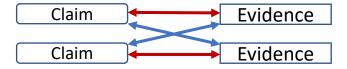


Performance on symmetric dataset



Towards Debiasing Fact Verification Models

- Bias in FEVER
 - give-away phrases in the claims
- Symmetric dataset



- Alleviating the bias
 - Re-weighting the training samples: $\min \left(\sum_{i} \max_{l} (b_{j}^{l}) \right)$

Code and data:

https://github.com/TalSchuster/FeverSymmetric

