Deep Learning Model to Assess Cancer Risk on the Basis of a Breast MR Image Alone

Abstract

We collected 1656 consecutive breast MR images from screening examinations performed for 1183 high-risk women from January 2011 to June 2013, to predict the risk of cancer developing within 5 years of the screening. Women who lacked a 5-year screening follow-up examination and women who had cancer other than primary breast cancer develop in their breast were excluded from the study. We developed a logistic regression model based on traditional risk factors (the risk factor logistic regression [RF-LR] model) and a DL model based on the MR image alone (the Image-DL model). Examinations occurring within 6 months of a cancer diagnosis were excluded from the testing sets in each fold of cross-validation. We compared our models against the Tyrer-Cuzick (TC) model. All models were evaluated using mean (± SD) AUC values and observed-to-expected (OE) ratios across 10-fold cross-validation.

Publication
In American Journal of Roentgenology (AJR)