CNN Based Pipeline for
Optical Flow

Tal Schuster, June 2017

Based on:
PatchBatch: a Batch Augmented Loss for Optical Flow, (Gadot, Wolf) CVPR 2016

Optical Flow Requires Multiple Strategies (but only one network), (Schuster, Wolf, Gadot) CVPR 2017

Overview

Goal — Get SOTA results in main optical flow benchmarks

Was done by:

e Constructing a Deep Learning based pipeline (modular)

® Architectures exploration

® Loss function augmentations

® Per-batch statistics

® Learning methods

Problem Definition

Problem Definition - Optical Flow

Given 2 images, compute a dense Optical Flow Field describing the motion between both images
(i.e. pure optical flow):

2 X (hw,1/3) — (hw,2)
Where:
® h -image height, w - image width
e (h,w,1/ 3)-a grayscale or RGB image
e (h,w,2) - a 3D tensor describing for each point (x,y) in image-A a 2D-flow vector: (Ax, Ay)

Accuracy measures:
e Based on GT (synthetic or physically obtained) - KITTI, MPI-Sintel
® F_err- % of pixels with euclidean error > z pixels (usually z=3)

® Avg_err - mean of euclidean errors over all pixels

DB - KITTI2012

e LIDAR based
e ~50% coverage

DB - KITTI2012

Error

Out-Hoc

Out-All

Avg-Noc

Avg-All

2 pixels

10.51 %

24,65 %

1.2 px

5.8 px

3 pixels

7.28 %

20,76 %

P

1.2 px

5.8 px

4 pixels

5.41 %

18.01 %

1.

5.8 px

5 pixels

1.97 %

15.89 %

Fud © e

1.

5.8 px

Error iFl-bg: Fl-fg :Fl-all
AlL £ AllLE B.45:33.93i11.29

All / Est i 8.45 i33.93111.29
- 201 5 Moc £ ALl 3.38 133.931 7.16

Moc f Esti 3.38 133,93 7.16

DB - MPI SINTEL

e Synthetic (computer graphics)
e ~100% coverage

Solutions

Traditional computer vision methods

® Global constraints (Horn-Schunk, 1981) — Brightness constancy + smoothness asm.
® | ocal constraints (Lucas-Kanade, 1981)

Main disadvantage — small objects and fast movements

Descriptor based methods
® Sparse to dense (Brox-Malik, 2010)

Descriptors
SIFT, SURF, HOG, DAISY, etc. (handcrafted)

convolutional
network

CNN methods
e End to End — Flownet (Fischer et al., 2015)

Reference Work — Zbontar & Lecun, 2015

Solving Stereo-Matching vs. Optical Flow
Classification-based vs. metric learning
To compute the classification, the network needs to

observe both patches simultaneously

Component Runtime
Convolutional neural network 95 s
Semiglobal matching 3s
Cross-based cost aggregation 25
Everything else 0.03s

Table 2. Time required for prediction of each component.

Left image patch Right image patch
] 9

(b L

: 5 N Ty,
L: ‘ 5 ‘ ‘ 5
L2: | 200 | 200
' v
L3: | 200 | | 200
-'-‘ concatenate ,,--
| | | 400
v
La: | | 300
v
Ls: | | 300
v
Le: | | 300
v
L7 | | 300

L8: lf‘ 2

Figure 2. The architecture of our convolutional neural network.

10

The PatchBatch pipeline

11

PatchBatch - DNN

Siamese DNN - i.e., tied weights due to symmetry
Leaky RelLU

Should be FAST:
Matching function = L2

Conv only

Independent descriptor computation

L O
— (Y]
igzﬁmﬁzgi
1 — {—
=

- — {—
| [s

patch 1 patch 2

12

PatchBatch - Overall Pipeline

W 'Image A Image B (Normalized)

h Descriptors
73

L4 \ 7
[PatchMatch]

Flow A—B l l Flow B—A

Keeping only large
connected components

l Sparse flow .

eeeeenns > EpicFlow Ja---renene-!

\ PatchMatch - Barnes et al. 2010
Dense Flow EpicFlow - Revaud et at. 2015

[Bidirectional consistency check

13

PatchBatch - ANN

PatchMatch:

(Descriptors, Matching function) — ANN
ANN and not ENN : O(N"*2) — O(N*logN)

2 iterations are enough

1. Initialization (random)

2. Propagation

(+1 on even iterations)
3. Search
Uu; = Vg + WaiRi

4. Returnto step 2

(a) Initialization

f(x,y) = argmin{D(f (x,)),D(f(x = 1,)),D(f (x,y — 1))}

R; € [-1,1] x [-1,1]

w - max radius

a - step (= %)

(b) Propagation

(c) Search

14

PatchBatch - Post-Processing

EpICFIOW (Edge-Preserving Interpolation of Correspondences)

Sparse -> Dense

Average support affine transformations based on geodesic distance on top of edges map

Contour % - \

- " —_— , - < — > oA
L SED alg. C AN\, M= Dense_ " -
/\ \ Interpolation |
First Image Energy l
Minimization
Second Image i

atching — s
N R 'ﬁ.l;-'."’:::::~ .

15

PatchBatch - CNN

Layer Filter/Stride Output size
Input — 1 x 51 x 51
Convl 3x3/1 32 x 49 x 49
Batch Normalization - 32 x 49 x 49
Max Pool 2x2/2 32 x 25 x 25
Conv2 3x3/1 64 x 23 x 23
Batch Normalization — 64 x 23 x 23
Max Pool 2x2/2 64 x 12 x 12
Conv3 3x3/1 128 x 10 x 10
Batch Normalization - 128 x 10 x 10
Max Pool 2x2/2 128 x 5 x b
Conv4 3x3/1 256 x 3 x 3
Batch Normalization - 256 x 3 x 3
Max Pool 2x2/2 256 X 2 x 2
Conv5 2x2/1 512 x1x1
Batch Normalization — 512 x1x1

Table 1. The network model for representing a grayscale 51 x 51
input patch as 512D vector. The Batch Normalization is our fine-
grained variant. Leaky ReLU units [26] (with a = 0.1) are used as
activation functions following the five batch normalization layers.

e

Batch Normalization-

Solves the “internal covariate shift” problem

Input: Values of r over a mini-batch: B = {x; . }
Parameters to be learned: -y, 3
Output: {y, = BN, s(x,)}

HE +— E I #f mini-batch mean
i=1
ok — % (z;— pg)t # mini-batch vardance
m
i=1
7 B i normalize
VoE+e
¥ + 7 + 8 = BN, a(z:) ff seale and shift

Alporithm 1: Batch Normalizing Transform, applied to
activation r over a mini-batch.

Per pixel instead of per feature map

16

PatchBatch - Loss

e DrLIM - Dimensionality Reduction by Learning an Invariant Mapping (LeCun, 2006)

Orig DrLIM (SPRING)

CENT

CENT+SD

Negative pairs

(1- Y)%Dg, + (Y)%{max({], m — Dy)}?

(1Y) D2 + (V) {max(0,m? — D3)}

(l—Y))tDi,—I—(Y)A{max(D, mz—Di)}—F(l—A)(U’{}—i—Ul).

003 0.03

50 100 150 200 250 300 o 1] 50 100 150 20 250 00

(b) cENT (©) CENT +SD 17

PatchBatch - Training Method

Negative sample — random 1-8 pixels from the true match

Data augmentation - flipping , rotating 90°

18

Results

19

Benchmarks

| Method | Out-Noc | Running time |
PatchBatch-ACCRTE-PS71 5.29% 60.5s
PatchBatch-ACCURATE 5.44% 50.5s
PH-Flow [Y] 5.76% 800s
FlowFields [!] 5.77% 23s
CPM-Flow (anon.) 5.80% 2s
NLTGV-SC [0] 5.93% 16s
PatchBatch-FAST 5.94% 25.5s
DDS-DF [17] 6.03% Im
TGV2ADCSIFT (7] 6.20% 12s
DiscreteFlow [2] 6.23% 3m
| Method | Fl-all | Running time |

PatchBatch-ACCURATE | 21.69% 50.5s
DiscreteFlow [%] 22.38% 3min
CPM-Flow (anon.) 24.24% 2s
EpicFlow [7] 27.10% 15s
FilteringFlow (anon.) 28.50% 116s
DeepFlow [35] 29.18% 17s
HS [35] 42.18% 2.6m
DB-TV-L1 [40] 47.97% 16s
HAOF [0] 50.29% 16.2s
PolyExpand [14] 53.32% s

Table 5. Top 10 KITTI2015 Pure Optic Flow Algorithms as of the
submission date. Fl-all is the percentage of pixels with euclidean
error > 3 pixels. The FAST network was not trained on this bench-
mark by the submission time.

" Method | EPE all, ‘final’ pass |
FlowFields [1] 5.810
CPM-Flow (anon.) 5.960
DiscreteFlow [25] 6.077
EpicFlow [32] 6.285
Deep+R [17] 6.769
PatchBatch-CENT+SD 6. 783
DeepFlow2 (anon.) 6.928
PatchBatch-SPRG T.188
SparseFlowFused [76] 7.189
DeepFlow [5] 1.212
FlowNetS+ft+v [15] 7.218
NNF-Local [Y] 7.249
PatchBatch-SPRG+5D 7.281
PatchBatch-CENT 7.323
SPM-BP [25] 7.325
AggregFlow [16] 7.329

Table 6. Top MPI-Sintel results as of the submission date. Each
number represents the EPE (end-point-error), averaged over all the
pixels in the comparison images, using the "final” rendering pass
of MPI-Sintel. Four ACCURATE variants are shown. The CENT-
FIGUREASD network is ranked 6th as of the paper’s submission
date. The FAST network was not trained on this benchmark by that
date. The TF+OFM method [22] (EFE 6.727) is removed from this
table since it is not a pure optical flow method.

20

How can we Improve the Results?

21

Architecture Modifications

22

Increased Patch and Descriptor sizes

PatchBatch - CNN

Layer Filter/Stride | Output size (5 l)i Output size (71)
Input - 1 x 51 x 51 1x71x71
Convl 3x311 32 x 49 x 49 32 x 69 x 69
Batch Normalization - 32 x 49 x 49 32 x 69 x 69
Max Pool 2x2/2 32 x 25 x 25 32 x 35 x 35
Conv2 3x3/11 64 x 23 x 23 64 x 33 x 33
Batch Normalization - 64 x 23 x 23 64 x 33 x 33
Max Pool 2x2/2 64 x 12 x 12 64 x 17 x 17
Conv3 3x3/1 128 x 10 x 10| 128 x 15 x 15
Batch Normalization - 128 x 10 x 10 128 x 15 x 15
Max Pool 2x2/2 128 x 5 x 5 128 x 8 x 8
Conv4 3x3/1 256 x 3 x 3 256 x 6 X 6
Batch Normalization - 256 x 3 x 3 256 X 6 X 6
Max Pool 2x2/2 256 x 2 x 2 512 x 3 x3
Conv5 2x2/1 512 x 1 x 1 512 x 2 x 2
Batch Normalization - h12x1x 1 512 x 2 x 2
Reshape Layer - - 2048 x 1 x 1

Table 3.1: Network models for representing a grayscale 51 x 51 input patch as 512D vector and a 71 x 71
patch as 2048 vector. Leaky ReLU units [25] (with o« = 0.1) are used as activation functions following
the five batch normalization layers. All reported results on this work are using the ACCURATE Batch
Normalization version as described in the PatchBatch paper.

Hinge Loss with SD

® Hinge Loss instead of DrLIM
® Trained on Triplets - <A, B-match, B-non-match >

® Keeping the additional SD component

1 i
LH = E E ?THI:I?(O;. m + Dijmutch - Dijm}n—nmtch)
i=1

LH+SD — }"LH + (1 o }k) (D—Dmatnh + G-Dnan—match)

m = 100, A = 0.8
n = H0k

24

Failed Attempts

Data augmentation

e Rotations (random +/- a)
® Colored patches (HSV or other decomposition)

Loss function

e Foursome (A, B, A’, B))
A, B — matching patches
A’— Patch from Image A that is closest to B

H(A,B) = max(0, m - L,(A,B))
L=L,(AB)+I(B # B) *H(AB) + (A # A") * H(A’,B)
Sample Mining

e PatchMatch output
e Patches distance

e Descriptor distance

25

Optical Flow as a Multifaceted Problem

26

Success of methods

) MPI-Sintel results table
The challenge of large displacements
s0-10 s10-40 s40+

KITTI 2015 average error: 1083 3227 39409
PY Foreground — 26.43 % 1.135 3.727 38.021
1.182 3.986 39.985
e Background —11.43 %
0.800 2.856 45.063
1.512 3.765 39.761
Possible causes:. i R R
0.725 3.064 45.858

e Matching algorithm

® Descriptors quality PatchBatch on KITTI 2012 — distance between true matches

[y
N
o

100

o..lIIIII

10-20 20-30 30-45 45-60 60-90
Displacement by ground truth (pixels)

B O
o O O

Avg. descriptors distance
N
o

Descriptors Evaluation

Defined a quality measurement of descriptors for matching

d,, is a distractor of pixel p if the L, distance between d,, and p is lower than the L, distance of

p with its matching pixel descriptor.

Counted up to 25 pixels from the examined pixel.

28

Distractors by displacement

Amount of distractors increase with displacement range

Goal: improve results for large displacements without reducing for other ranges.

Train set 0-5 | 5-10 | 10-20 | 20-30 | 30-45 | 45-60 | 60-90 | 90-00

Baseline (all) | 2,32 | 7.32 | 532 | 938 | 2521 | 5043 | 67.32 | 216.39

Distractors by displacement

Amount of distractors increase with displacement range

Goal: improve results for large displacements without reducing for other ranges.

Expert models

Training only on sub ranges

Improving results for large displacements is possible

Implies the need of different features for different patches

Train set 0-5 | 5-10 | 10-20 | 20-30 | 30-45 | 45-60 | 60-90 | 90-00
Baseline (all) | 2,32 | 7.32 | 532 | 938 | 2521 | 5043 | 67.32 | 216.39
<30 246 | 691 | 5.25 | 8.57 | 2639 | 51.76 | 65.15 | 209.40
=3) 3.03 1 9.07 | 5.64 | 1029 | 24.74 | 46.81 | 56.69 | 199.61

30

Learning with Varying Difficulty

31

Gradual Learning Methods

Deal with varying difficulty

Curriculum (Bengio et al. 2009):
e Samples are pre-ordered
e Curriculum by displacement

e Curriculum by distance (of false sample)

Self-Paced (Kumar et al. 2010):
® No need to pre-order

e Sample hardness increases with time (by loss value)

Hard Mining (Simo-Serra et al. 2015):
e Backpropagate only some ratio of harder samples

e Used for training local descriptors with triplets

All methods did not improve match over baseline — \Why?

32

Need for variant extracting strategies

Large motions are mostly correlated with more changes in appearance:
1. Background changes

2. View point changes -> occluded parts

3. Distance and angle to light source -> illumination

4. Scale (when moving along the Z-axis)

34

Learning for Multiple Strategies

and Varying Difficulty

35

Our Interleaving Learning Method

Goal: Deal with multiple sub-tasks Classification: Painting to Artist

Massing Interleaving
Learning ML models

e Mostly in random order (SGD)
e Applying gradual methods can effect randomness

Interleaving Learning
e Maintaining the random order of categories while
adjusting the difficulty

Motivated by psychological research (Kornell - Bjork)

e Massing vs. Interleaving
e Experiments on classification tasks, sports, etc.

Learning Concepts and Categories —
Kornell and Bjork (2008)

36

Same class of objects?

Interleaving Learning
for Optical Flow

Controlling the negative sample to balance difficulty

Original method

Interleaving

38

Interleaving Learning
for Optical Flow

()
J
[== R
P 1’ PL \\ PT
Ot ——
pr® d

d=v(l—-X) X ~ log N (p, 0)\

In(x 12
1l (-Gneow?

\ ‘ oL\ 2T)

e Drawing the line from p improved matching results but did not effect the distractors measurement
(Due to PatchMatch initialization)
39

Self-Paced Curriculum Interleaving
Learning (SPCI)

()
J
[== R
P 1’ PL \\ PT
Ot ——
pr® d

/ di =v(l — X — R;) \

li—1

)

linz’t
J

1 »(—ﬁ—“"(f”!")z) R; = L -max(0,1 —
\P(X =)= 0.:1:\/_2_’”({ 20) i - x(0,

S TS

. v
\ curriculum self-paced

[; - validation loss on epoch i
Linit - initial loss value (epoch #5)

m — total epoch amount 40

Experiments

41

Optical Flow

Hinge+SD / Self-Paced

Hinge+SD / Anti-Inter

8.75%
14.53%

5.23%

6.84

13.74

34.09

57.46

30.8

Hinge+SD / Inter 6.60% | 4.41% | 141 | 557 | 3.07 | 631 | 15.6 | 28.52 | 43.46 |
Hinge+SD / SPCI 6.64% | 437% | 140 | 5.04 | 346 | 656 | 15.11 | 27.13 | 42.72
Hinge+SD+PS71 734% | 476% | 1.96 | 544 | 528 | 11.8 | 2276 | 423 | 67.27
Hinge+SD+PS71 / Inter | 6.17% | 4.35% | 1.00 | 3.96 | 222 | 4.11 | 11.33 | 20.87 | 32.53
Hinge+SD+PS71/SPCI | 6.12% | 4.27% | 1.02 | 3.42 | 216 | 3.52 | 10.55 | 21.28 | 32.17

Model / Learning Error percent Distractors amount by displacement range
method post PM postEF | 0-5 5-10 10-20 20-30 30-45 45-60 60-90 90-00 All

CENT [7] 9.93% 5.19% | 3.31 | 15.34 | 16.87 | 27.61 | 48.28 | 69.19 | 92.62

CENT+SD | 3] 8.91% 4.85% | 433 | 16.7 | 12.29 | 1992 | 38.20 | 60.69 | 81.22 .
CENT+SD / Inter 8.75% 470% | 2.61 | 10.50 | 8.64 | 1529 | 30.38 | 42.87 | 66.16 | 137.81

Hinge 7.78% 5.18% | 193 | 8.14 | 581 | 1098 | 31.95 | 50.97 | 73.24 | 185.81
Hinge+SD 7.74% 4.85% | 232 | 7.32 | 532 | 9.38 | 25.21 | 50.43 | 67.32 .
Hinge+SD / Neg-mining | 7.53% 5.00% | 3.06 | 6.19 | 541 | 10.52 | 26.88 | 51.33 | 70.29

Hinge+SD / Cur. by disp | 7.67% 483% | 2.71 | 8.61 526 | 10.26 | 14.76 | 48.88 | 65.15

Hinge+SD / Cur. by dist 7.47% 493% | 2.83 | 8B.66 | 525 | 10.35 | 23.62 | 45.82 | 63.69

42

Results

43

Benchmarks - KITTI2012

Method Out-Noc
Imp. PatchBatch+SPCI | 4.65%
CNN-HPM [20] 4.89%
Imp. PatchBatch 4.92%
PatchBatch+PS71 [3] 5.29%
PatchBatch [3] 5.44%
PH-Flow [34] 5.76%
FlowFields [35] 5.77%
CPM-Flow [36] 5.79%

Table 6.4: Top 8 published KITTI2012 Pure Optical Flow methods as of the submission date. Imp. Patch-
Batch denotes the PB pipeline with the improvements described in chapter 3. Out-Noc is the percentage of
pixels with euclidean error > 3 pixels out of the non-occluded pixels.

44

Benchmarks - KITTI2015

Method Fl-bg Fl-fg Fl-all

Imp. PatchBatch+SPCI | 17.25% | 24.52% | 18.46%
CNN-HPM [20] 18.90% | 24.96% | 19.44%
PatchBatch [7] 19.98% | 30.24% | 21.69%
DiscreteFlow [10] 21.53% | 26.68% | 22.38%
CPM-Flow [36] 22.32% | 27.79% | 23.23%
FullFlow | 27] 23.09% | 30.11% | 24.26%
EpicFlow [27] 25.81% | 33.56% | 27.10%
DeepFlow [Y] 27.96% | 35.28% | 29.18%

Table 6.5: Top 8 published KITTI2015 Pure Optical Flow methods as of the submission date. Imp. Patch-
Batch denotes the PB pipeline with the improvements described in chapter 3. Fl-all is the percentage of
outliers (pixels with euclidean error > 3 pixels). Fl-bg, Fl-fg are the percentage of outliers only over back-
ground and foreground regions respectively.

45

46

a7

Benchmarks - MPI-Sintel

| Method | EPE | FI | 50-10 | s40+ |
FlowFields+ [35] 571 | 8.14% | 131 | 34.17
DeepDiscreteFlow [35] 573 | 7.30% | 0.96 | 35.82
SPM-BPv2 [39] 581 | 9.17% | 1.05 | 35.12
FullFlow [37] 590 | 9.55% | 1.14 | 35.59
CPM-Flow [36] 596 | 8.31% | 1.15 | 35.14
GlobalPatchCollider [40] | 6.04 | 10.21% | 1.10 | 36.45
DiscreteFlow [10] 6.08 | 9.52% | 1.07 | 36.34

Imp. PatchBatch+Inter | 6.22 | 8.11% | 091 | 39.91
Imp. PatchBatch+SPCI | 6.24 | 7.89% | 0.88 | 40.07

EpicFlow [27] 6.28 | 11.26% | 1.13 | 38.02
FGI [41] 6.61 | 12.34% | 1.15 | 39.98
TF+OFM [11] 6.73 | 11.35% | 1.51 | 39.76
Deep+R [47] 6.77 | 13.71% | 1.16 | 41.69
PatchBatch [3] 6.78 | 8.66% | 0.72 | 45.86

Table 6.6: Comparison of our models with the top methods for the MPI-Sintel benchmark as of the sub-
mission date. Imp. PatchBatch denotes the PB pipeline with the improvements described in chapter 3. The
EPE (end-point-error) is averaged over all the pixels and the two right columns contain only the EPE of
pixels within the displacement range mentioned in the title. The Fl column presents an evaluation of the the
outlier percentage, which, although not provided by this benchmark, was calculated from the error figures
presented for each scene that have higher pixel values for larger errors. Fl is the percentage of pixels with a
value larger than 120.

49

o
[p]

Summary

52

Summary

e Computing Optical Flow as a matching problem with a modular pipeline

e using a CNN to generate descriptors

e Per-batch statistics (SD, batch normalization)

® |Interleaving Learning Method & SPCI
Referring difficulties while maintaining a random order of the categories

e One model to generate descriptors for both small and large displacements

53

THANK YOU!

54

