
CNN Based Pipeline for 
Optical Flow 

Based on:
PatchBatch: a Batch Augmented Loss for Optical Flow, (Gadot, Wolf) CVPR 2016

Optical Flow Requires Multiple Strategies (but only one network), (Schuster, Wolf, Gadot) CVPR 2017
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Overview

Goal – Get SOTA results in main optical flow benchmarks

Was done by:

● Constructing a Deep Learning based pipeline (modular)

● Architectures exploration

● Loss function augmentations

● Per-batch statistics

● Learning methods
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Problem Definition

3



Problem Definition - Optical Flow

Given 2 images, compute a dense Optical Flow Field describing the motion between both images 

(i.e. pure optical flow):

2 X (h,w,1 / 3) → (h,w,2) 

Where:

● h - image height, w - image width

● (h,w,1 / 3) - a grayscale or RGB image

● (h,w,2) - a 3D tensor describing for each point (x,y) in image-A a 2D-flow vector: (Δ𝑥, Δ𝑦)

Accuracy measures: 

● Based on GT (synthetic or physically obtained) - KITTI, MPI-Sintel

● F_err - % of pixels with euclidean error > z pixels (usually z=3)

● Avg_err - mean of euclidean errors over all pixels
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DB - KITTI2012
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● LIDAR based

● ~50% coverage



DB - KITTI2012

6



DB - KITTI2015
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DB - MPI SINTEL
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● Synthetic (computer graphics)

● ~100% coverage



Solutions

Traditional computer vision methods

● Global constraints (Horn-Schunk, 1981) – Brightness constancy + smoothness asm.

● Local constraints (Lucas-Kanade, 1981)

Main disadvantage – small objects and fast movements

Descriptor based methods

● Sparse to dense (Brox-Malik, 2010)

Descriptors

SIFT, SURF, HOG, DAISY, etc. (handcrafted)

CNN methods

● End to End – Flownet (Fischer et al., 2015)

9



Reference Work – Zbontar & Lecun, 2015

Solving Stereo-Matching vs. Optical Flow

Classification-based vs. metric learning

To compute the classification, the network needs to

observe both patches simultaneously 
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The PatchBatch pipeline

11



PatchBatch - DNN

Siamese DNN - i.e., tied weights due to symmetry

Leaky ReLU 

Should be FAST:

Matching function = L2

Conv only 

Independent descriptor computation
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PatchBatch - Overall Pipeline

PatchMatch - Barnes et al. 2010
EpicFlow - Revaud et at. 2015
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(Normalized)

Keeping only large 
connected components



PatchBatch - ANN

PatchMatch:

(Descriptors, Matching function) → ANN

ANN and not ENN : O(N^2) → O(N*logN)

2 iterations are enough
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1. Initialization (random)

2. Propagation

𝑓 𝑥, 𝑦 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐷 𝑓 𝑥, 𝑦 , 𝐷 𝑓 𝑥 − 1, 𝑦 , 𝐷 𝑓 𝑥, 𝑦 − 1

(+1 on even iterations)

3. Search

𝑢𝑖 = 𝑣0 + 𝑤𝛼𝑖𝑅𝑖

4. Return to step 2

𝑅𝑖 ∈ −1,1 × [−1,1]

𝑤 - max radius

𝛼 - step (=
1

2
)



PatchBatch - Post-Processing

EpicFlow (Edge-Preserving Interpolation of Correspondences)

Sparse -> Dense

Average support affine transformations based on geodesic distance on top of edges map
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SED alg.



PatchBatch - CNN
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Batch Normalization-

Solves the “internal covariate shift” problem

Per pixel instead of per feature map



PatchBatch - Loss

● DrLIM - Dimensionality Reduction by Learning an Invariant Mapping (LeCun, 2006)

Orig DrLIM (SPRING)

CENT+SD
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Negative pairs

CENT CENT + SD
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PatchBatch - Training Method

Negative sample – random 1-8 pixels from the true match

Data augmentation - flipping , rotating 90°
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Results
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Benchmarks
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How can we Improve the Results?
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Architecture Modifications
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PatchBatch - CNN
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Increased Patch and Descriptor sizes



Hinge Loss with SD

• Hinge Loss instead of DrLIM

• Trained on Triplets - <A, B-match, B-non-match >

• Keeping the additional SD component
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Failed Attempts

Data augmentation

● Rotations (random +/- 𝛼)

● Colored patches (HSV or other decomposition)

Loss function

● Foursome (A, B, A’, B’)
A, B – matching patches

A’– Patch from Image A that is closest to B

H(A,B) = max(0, m - 𝐿2(A,B))

L = 𝐿2(A,B) + Ι(B ≠ B’) * H(A,B’) + Ι(A ≠ A’) * H(A’,B) 

Sample Mining

● PatchMatch output

● Patches distance

● Descriptor distance
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Optical Flow as a Multifaceted Problem
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Success of methods

The challenge of large displacements 

KITTI 2015 average error:

● Foreground – 26.43 %

● Background – 11.43 %

Possible causes:

● Matching algorithm

● Descriptors quality
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MPI-Sintel results table

PatchBatch on KITTI 2012 – distance between true matches 



Descriptors Evaluation

Defined a quality measurement of descriptors for matching

𝑑𝑝 is a distractor of pixel 𝑝 if the 𝐿2 distance between 𝑑𝑝 and 𝑝 is lower than the 𝐿2 distance of 

𝑝 with its matching pixel descriptor.

Counted up to 25 pixels from the examined pixel.
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Distractors by displacement 

Amount of distractors increase with displacement range

Goal: improve results for large displacements without reducing for other ranges.
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Distractors by displacement 

Amount of distractors increase with displacement range

Goal: improve results for large displacements without reducing for other ranges.

Expert models

● Training only on sub ranges

● Improving results for large displacements is possible

● Implies the need of different features for different patches
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Learning with Varying Difficulty
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Gradual Learning Methods

Deal with varying difficulty

Curriculum (Bengio et al. 2009):

● Samples are pre-ordered

● Curriculum by displacement

● Curriculum by distance (of false sample)

Self-Paced (Kumar et al. 2010): 

● No need to pre-order

● Sample hardness increases with time (by loss value)

Hard Mining (Simo-Serra et al. 2015):

● Backpropagate only some ratio of harder samples

● Used for training local descriptors with triplets

All methods did not improve match over baseline – Why?
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Need for variant extracting strategies

Large motions are mostly correlated with more changes in appearance:

1. Background changes

2. View point changes -> occluded parts

3. Distance and angle to light source -> illumination

4. Scale (when moving along the Z-axis)
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Learning for Multiple Strategies 

and Varying Difficulty
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Our Interleaving Learning Method

Goal: Deal with multiple sub-tasks

Learning ML models

● Mostly in random order (SGD)

● Applying gradual methods can effect randomness

Interleaving Learning

● Maintaining the random order of categories while 

adjusting the difficulty

Motivated by psychological research (Kornell - Bjork)

● Massing vs. Interleaving

● Experiments on classification tasks, sports, etc.
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Learning Concepts and Categories –

Kornell and Bjork (2008)

Classification: Painting to Artist

Massing Interleaving



Same class of objects?
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Interleaving Learning
for Optical Flow

Controlling the negative sample to balance difficulty
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Original method

Interleaving



Interleaving Learning
for Optical Flow
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● Drawing the line from 𝑝 improved matching results but did not effect the distractors measurement

(Due to PatchMatch initialization)



Self-Paced Curriculum Interleaving 
Learning (SPCI)

𝑙𝑖 - validation loss on epoch 𝑖

𝑙𝑖𝑛𝑖𝑡 - initial loss value (epoch #5)

𝑚 – total epoch amount 40



Experiments
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Optical Flow

42



Results
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Benchmarks - KITTI2012
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Benchmarks - KITTI2015
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Benchmarks - MPI-Sintel
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Summary
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Summary

● Computing Optical Flow as a matching problem with a modular pipeline

● using a CNN to generate descriptors

● Per-batch statistics (SD, batch normalization)

● Interleaving Learning Method & SPCI
Referring difficulties while maintaining a random order of the categories   

● One model to generate descriptors for both small and large displacements
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THANK YOU!
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