

Optical Flow Requires Multiple Strategies (but only one network)

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Tal Schuster, Lior Wolf and David Gadot

Main Contributions

- > We analyze the need for multiple strategies in optical flow
- We propose a novel, psychologically inspired way to train a network to address multiple scenarios at once
- We show how, in optical flow, our proposed new scheme translates to a simple, unexpected, heuristic
- We improve the PatchBatch pipeline
- State of the art results are demonstrated on the KITTI 2012 and KITTI 2015 benchmarks*

Optical Flow as a Multifaceted Problem

- > Generating descriptors for small and large displacements
- Distractor a pixel in the destined image that its descriptor is closer than the ground truth to the descriptor of the original image
- ➤ Distractors amount per displacement range for models trained on all the data, or trained only on patches with displacement smaller\ larger than 30 pixels:

	0 – 5	5 – 10	10 – 20	20 – 30	30 – 45	45 – 60	60 – 90	90 – ∞
All	2.32	7.32	5.32	9.38	25.21	50.43	67.32	216.39
< 30	2.46	6.91	5.25	8.57	26.39	51.76	65.15	209.40
> 30	3.03	9.07	5.64	10.29	24.74	46.81	56.69	199.61

> The need of different features for different patches:

- > Descriptors for large displacements are harder generate
- > Known gradual methods fail due to the need of different strategies

* At the time of writing

Interleaving Learning

Balance the difficulty of samples from all categories for each batch by using easier negative samples for harder positive ones

$$X \sim \log \mathcal{N} (\mu, \sigma), \quad d = v(1 - X)$$

$$P(X = x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{\left(-\frac{(\ln(x) - \mu)^2}{2\sigma^2}\right)}$$

p - pixel from Image A, p_T - positive match, p_F - negative match

Training with Triplets

$$L = \sum \max(0, m + D_{pos} - D_{neg}) + \lambda SD$$

Image A

Image B Interleaving

The PatchBatch Pipeline

Self-Paced Curriculum Interleaving Learning (SPCI)

Applying the interleaving learning method allows to gradually increase the overall difficulty

$$d_{i} = v(1 - X - R_{i})$$

$$R_{i} = \underbrace{\frac{i}{m}}_{curriculum} \cdot \max\left(0, 1 - \frac{l_{i-1}}{l_{init}}\right)$$

 l_i - validation lose on epoch i

m – total epoch amount

Results

Distractors amount comparison of known gradual methods and our interleaving learning method (using Hinge loss with SD regularization component):

	0 – 5	5 – 10	10 – 20	20 – 30	30 – 45	45 – 60	60 – 90	90 – ∞	Avg.
Baseline	2.32	7.32	5.32	9.38	25.21	50.43	67.32	216.39	20.51
Neg-Mining	3.06	6.19	5.41	10.52	26.88	51.33	70.29	210.34	20.96
Curriculum	2.83	8.66	5.25	10.35	23.62	45.82	63.69	197.82	19.70
Self-Paced	2.88	9.35	6.84	13.74	34.09	57.46	80.80	198.97	23.93
Interleaving	1.41	5.57	3.07	6.31	15.60	28.52	43.46	127.65	12.61
SPCI	1.40	5.04	3.46	6.56	15.11	27.13	42.72	130.17	12.50

➤ KITTI 12'

Method	Out-NOC		
Ours	4.65%		
Baseline	5.44%		

KITTI15'

Method	FI-bg	FI-fg	FI-all
Ours	17.25%	24.52%	18.46%
Baseline	19.98%	30.24%	21.69%

MPI - Sintel

Method	EPE	s0-10	s40+
Ours	6.22	0.91	39.91
Baseline	6.78	0.72	45.86

