
Enumerative solvers
Iterate over ASTs by their learned likelihood.
Uniform: unparameterized; iterating from shortest to longest.
Random forest: puzzles are encoded as bag-of-rules.
Transformer: pretrained RoBERTa to encode puzzles and rules.

Language model solvers
Using GPT-3 or Codex, generate solutions as strings. Prompts:
Short: zero-shot.

Medium: five-shot (using 5 tutorial puzzles).
Long: five-shot + English descriptions to the puzzles.
Bootstrap: starts from zero-shot and adds examples to the prompt
as they are found.

Results

User study
🧩 21 participants (10 beginners; 11 experienced) were given up to
6 minutes per puzzle to solve 30 puzzles.

🧩 A large (and growing) collection of Python puzzles.
🧩 Available in a Github repository/ json files with reference
human-written and AI solutions.
🧩 Currently has 397 problems:

Comprehensive in domain
Algebra; Basic Python programming; Chess; Classic puzzles;
Programming challenges; Compression; Conway's game of life;
Games; Graphs; ICPC; IMO; Number Theory; Probability; ...
Comprehensive in required algorithmic tools
Recursion; Linear programming; Dynamic programming; Convex
optimization; Sorting; Graph search; Programming language specific
operations (such as string manipulations); ...
Comprehensive in difficulty
From trivial puzzles to major open, prize offered, algorithmic and
math problems.

Evaluation
Straight-forward self-validation (simply executing the code).

🧩 Zero/few-shot: given a puzzle, try to solve it with as few tries as
possible.

🧩 Test time bootstrapping: given a collection of puzzles, try to
solve as many as possible with limited tries per puzzle.
Self-validation allows the solver to identify valid solutions, learn
from them, and improve the solution search for harder puzzles.

 
Goal: A unified problem representation for teaching AI models to
code and objectively evaluating their progress.
What is a programming puzzle?
🧩 A function f(y,x)in any programming language (e.g., Python)
that returns a Boolean value.
🧩 The challenge is to find the input y that satisfies the function
within time limit t (i.e., makes it return True).
🧩 A solution g(x)is the source code to generate y.
 Example: 

🧩 A solver takes n puzzles and predicts solutions.
Why are puzzles important?

 Models are ge^ng be_er at code genera`on. We need an objecPve
evaluaPon of coding proficiency to measure and spur progress.

Pure code evaluation

Puzzles focus on the algorithmic challenge; not mixing with world
knowledge or English, and no hidden test cases.

Programming Puzzles
Tal Schuster, Ashwin Kalyan, Oleksandr Polozov, Adam Tauman Kalai

Puzzles The P3 dataset

Example of Python puzzles

Experiments

Three puzzles with varying difficulties and domains:
Valid solution to f2 generated
by Codex-cushman (Med. prompt):

Comments for
presentation only

Coding challenges Programming puzzles

Github.com/Microsoft/PythonProgrammingPuzzles

Codex-davinci results
🧩 Very positive feedback.

🧩 Positive correlation in perceived
difficulty between humans and AI.
Puzzles evaluate the algorithmic
proficiency of AI models and allow
comparisons against human coders.

Significant room for
improvement for
autocompletion (small k)

