Programming Puzzles

Github.com/Microsoft/PythonProgsrammingPuzzles

Tal Schuster, Ashwin Kalyan, Oleksandr Polozov, Adam Tauman Kalai

Puzzles

Goal: A unified problem representation for teaching Al models to
code and objectively evaluating their progress.

What is a programming puzzle?

& A function (y, X)in any programming language (e.g., Python)
that returns a Boolean value.

& The challenge is to find the input y that satisfies the function
within time limit t (i.e., makes it return True).

& A solution g (x) is the source code to generate v.

Examp|e: def f(y: str, x="Hello world"):

return "Hello " + y == x

def g(x): #solution.
y = x.split(" ") [-1]
return y #answer.

assert f(g())

& A solver takes n puzzles and predicts solutions.

Why are puzzles important?

Models are getting better at code generation. We need an objective
evaluation of coding proficiency to measure and spur progress.

Pure code evaluation
Coding challenges

Programming puzzles

“English gk i
nglis :> _ | >
description Solution EeE ¢ Solution
% ﬂ Eval Eval
A
Qe O
Scf@ '08/7!‘/'07 % Tests
o Cod
OC/.@S - Lode - Natural language

Puzzles focus on the algorithmic challenge; not mixing with world
knowledge or English, and no hidden test cases.

The P3 dataset

& A large (and growing) collection of Python puzzles.

& Available in a Github repository/ json files with reference
human-written and Al solutions.

> of Currently has 397 problems:

Comprehensive in domain

Algebra; Basic Python programming; Chess; Classic puzzles;
Programming challenges; Compression; Conway's game of life;
Games; Graphs; ICPC; IMO; Number Theory; Probability; ...

Comprehensive in required algorithmic tools
Recursion; Linear programming; Dynamic programming; Convex

optimization; Sorting; Graph search; Programming language specific

operations (such as string manipulations); ...

Comprehensive in difficulty

From trivial puzzles to major open, prize offered, algorithmic and
math problem:s.

Evaluation
Straight-forward self-validation (simply executing the code).

& Zero/few-shot: given a puzzle, try to solve it with as few tries as
possible.

& Test time bootstrapping: given a collection of puzzles, try to
solve as many as possible with limited tries per puzzle.

Self-validation allows the solver to identify valid solutions, learn
from them, and improve the solution search for harder puzzles.

Example of Python puzzles

Three puzzles with varying difficulties and domains:

Find a string that when reversed and concatenated with "world" gives "Hello world"
def f1(y: str):
return y[::-1] + "world" == "Hello world"

Tower of Hanoi, often teaches recursion. Move [i, j|] means move top disk on tower i to j, with 1 < i,j < 3

def f2(moves: List[List[int]], num_disks=8):
state = [1] * num_disks # All disks start at tower 1.
for [i, j] in moves:

assert state.index(i) <= (state + [1, 2, 3]).index(j), "bigger disk on top"

state[state.index(i)] = j # Move smallest disk from tower i to tower j.
return state == [3] * num_disks # All disks must end on tower 3.

Find a non-trivial integer factor d of a large number n

def £3(d: int, n=100433627766186892221372630609062766858404681029709092356097) :

return 1 <d<nandn Y% d ==

Valid solution to £2 generated
by Codex-cushman (Med. prompt):

Comments for
presentation only

def g6(num_disks=8):
Algorithm is equivalent to moving all disks.
From https://fen.wikipedia.org/wiki/Tower_of_Hanoi#Adv|...]
def hanoi(n, p, q, r):
if n > 0:
hanoi(n - 1, p, r, q)
moves.append([p, rl)
hanoi(n - 1, q, p, Tr)
moves = []
hanoi(num_disks, 1, 2, 3)
assert f6(moves, num_disks)
return moves

B Microsoft
1 Research

i A

Experiments

Enumerative solvers
Iterate over ASTs by their learned likelihood.

Uniform: unparameterized; iterating from shortest to longest.
Random forest: puzzles are encoded as bag-of-rules.
Transformer: pretrained RoOBERTa to encode puzzles and rules.

Language model solvers
Using GPT-3 or Codex, generate solutions as strings. Prompts:
Short: zero-shot.

def f(1li: List[int]):
return len(li) == 10 and li.count(1li[3]) == 2

assert True == f(...

Medium: five-shot (using 5 tutorial puzzles).
Long: five-shot + English descriptions to the puzzles.

Bootstrap: starts from zero-shot and adds examples to the prompt
as they are found.

% - 85
™M go4 Enumerative model 76 — 80 - GPT-3 prompt
‘5 70 —*— B. Transformer ~ 68 "E 704 —*— Bootstrap 67
5 B. Random forest 67 5 *-- Long (Few-shot+Doc) f—
o 60 o 60 s o4 61
: —w=- Transformer gg T e —=- Medium (Few-shot) o .
g 207 ..s. Random forest . g ~-+- Short (Zero-shot) #4930
— - — - * el
o 407 —— Uniform o 40 & 4
B
n 30 A n 30 o
£ 4
@ 20+ o 20
'8 10 8 10
o (O e s e o e e) e e A A & 0 - T ITt Y ———rrrT ——T—T=TTTT ———TTTTT .
10°© 10! 102 103 10* 10° 10° 100 101 102 103 104

Number of tries (Log scale) Number of tries (Log scale)

Pass@k for Codex over 397 puzzles (v0.2)

100%
@ cushman (Med.) m davinci (Med.) B cushman (Long) ® davinci (Long)

75%

50% Significant room for

improvement for
autocompletion (small k)

25%

%
k=1 k=10 k=100 k=1,000

User study

& 21 participants (10 beginners; 11 experienced) were given up to
6 minutes per puzzle to solve 30 puzzles.

& Very positive feedback. Codex-davinci results

w
o
1

Experienced (26.2)

w
1

o Positive correlation in perceived
difficulty between humans and Al.

N N

| Beginners (22.9)

o

[
w
1

[
o
1

Puzzles evaluate the algorithmic
proficiency of Al models and allow
comparisons against human coders.

w
1

Avg. study puzzles solved

o
1

1 10 100 1,000 10,000
Tries per puzzle (k)

