Tal Schuster, Ashwin Kalyan, Oleksandr Polozov, Adam Tauman Kalai

i A2 B8

Puzzles for teaching and evaluation

The Art of
Computer

Programming

VOLUME 4
Satisfiability s

DONALD E. KNUTH

= CIon 0o 1o
N N
BN EE

Y
ﬂ*ﬂ*ﬂ!ﬂﬂ
erlerHarieor

~

NEWLY AVAILABLE SECTION OF
THE CLASSIC WORK

The Art of
Computer

Programming

VOLUME 4
Satisfiability Fascic

DONALD E. KNUTH

AW v

Single representation

NEWLY AVAILABLE SECTION OF
THE CLASSIC WORK
The Art of ; L‘:ﬂ Déﬁb r-" rxﬁ‘ =
Computer n' EE N
Programming B vn E B
6 .III.I.I
e Cefe[lelle
DONALD E. KNUTH HalleHNallls

v e

Single representation

across many different challenge types

The Art of
Computer

Programming

VOLUME 4
Satisfiability Fascic

DONALD E. KNUTH

e v

Single representation

across many different challenge types

for bhoth humans and machines

;(@N ! &“

_/‘%
9

The Guardian/ Stan Honda/AFP/Getty Images

~

NEWLY AVAILABLE SECTION OF
THE CLASSIC WORK

The Art of
Computer

Programming

VOLUME 4
Satisfiability Fascic

DONALD E. KNUTH

\

Programming Puzzles

What is a programming puzzle?

- A function in any programming language (e.g., Python) that returns a Boolean value

- The challenge is to find the input that satisfies the function (i.e., makes it return True)

Find y that solves the puzzle.
Def puzzle(y, x=[...]):
code defining the puzzle..
Return solved # Boolean.

Example - Sudoku

- Find the input that:

Is consistent with the given scheme
Contains only 1-9 values

No duplicates in rows

No duplicates in columns

No duplicates in 3x3 squares

Example - Sudoku 7

1 8 4

2 7 8

6 9
—_— —
2 8

3 I7

Python Programming Puzzle

def sat(y: str, x=" 952" 7 1.8_4 2_78 4 1 69 2.8__5_6_3_7___49 2)

assert all(c == "_" or c == s for (c, s) in zip(x, y)), "incosistent with x"

full = set('123456789"')
for i in range(9):
assert {y[i]l for i in range(9 * i, 9 * i + 9)} == full, "invalid row"
assert {y[i] for i in range(i, i + 81, 9)} == full, "invalid column"
assert {y[9 *x a +b + i+ 26 x (i % 3)] for a in range(3) for b in range(3)} == full, "invalid square"

return True

Formal setting

- Both puzzles and answers are strings
- Puzzle fix,y): function (source code) with a defined input type and arguments x
- Answer y: object
- Correct answer: fix,y) is True within time t

- Solution g(x): source code to generate y from x

def f(y: str, x="Hello world"): #find a string that will make the function return "True".
return "Hello " + y ==

def g(x): #solution.
y = x.split(" ") [-1]
return y #answer.

assert f(g())

- Solver: takes n puzzles and timeouts and predicts solutions

Why is it important?

- Al models are getting better at code completion and generation

def adjacent_primes(n: int): # x is the concatenation of "Hello" and "world"
"""Find the nth & (n+l)st prime numbers""" k = "Hello” + " " + "world"
krimes = 2, 37
i =3 assert "hello" not inl”heLLo world"

while Len(primes) < n:

if all(i % p != @ for p in primes): _ assert len(filename + ".json") < len(kiLename)

GitHub Copilot

- Need objective evaluation of coding proficiency to measure and spur progress

Why is it important?

- Al models are getting better at code completion and generation

Ambiguous description

def adjacent_primes(n: int): # x is the concatenation of "Hello" and "world" /
"""Find the nth & (n+l)st prime numbers""" |< = "Hello” + " " + "world"
krimes = 2, 37
i = 3 assert "hello" not in |”heLLo world"

while Len(primes) < n:

if all(i % p != @ for p in primes): _ assert len(filename + ".json") < len(lfiLename) \ Errors indicating lack of
basic understanding

GitHub Copilot

- Need objective evaluation of coding proficiency to measure and spur progress

Pure code evaluation

Coding Challenges

D

@ ?
English ::
description

,o%
%Cf Oka o

;
S
,O@/? o/

C/'@S

Solution

Programming Puzzles
?
Puzzle <:| Solution
Eval

- Natural language

Dj- Code

Pure code evaluation

Coding Challenges

D

(@
English
description

Oi .
/s, o

Q
P,

?

=

lo%
O,
@%

C/'@S

Programming Puzzles

Solution

Puzzle

Solution

- Natural language

Dj- Code

- Puzzles focus on the algorithmic challenge; not mixing with world knowledge or English

- Verification is straightforward and objective; no hidden test cases

Python Programming Puzzles (P3) dataset

- Large (and growing) collection of puzzles

v0.1: 200 puzzles / Current size: 397 puzzles
- Comprehensive in

Domain

Algorithmic tools

Difficulty
- Baselines

Enumerative solvers and Language Models

Human programmers

Comprehensive in domain

- Classic puzzles

- Games

- Basic Python programming
- Probability

- Algebra

- Number Theory

- Graphs

- Programming challenges

- International Collegiate Programming Contest (ICPC)
- International Mathematical Olympiad (IMO)

Comprehensive in algorithmic tools

- Learning PL specific operations (e.g. string manipulation)
- Recursion

- Linear programming

- Dynamic programming

- Convex optimization

- Sorting

- G ra p h S e a rC h # Find a string that when reversed and concatenated with "world" gives "Hello world"
def fi(y: str):
return y[::-1] + "world" == "Hello world"

Tower of Hanoi, often teaches recursion. Move [i, j] means move top disk on tower i to j, with 1 < i,j <3
def f2(moves: List[List[int]], num_disks=8):
state = [1] * num_disks #All disks start at tower 1.
for [i, j] in moves:
assert state.index(i) <= (state + [1, 2, 3]).index(j), "bigger disk on top"
state[state.index(i)] = j # Move smallest disk from tower i to tower j.
return state == [3] * num_disks #All disks must end on tower 3.

Comprehensive in difficulty

def

def

def

From trivial coding operations to major open algorithms and math problems

Beating humans would mean scientific breakthroughs

f1(s: str): #find a string with 1000 o’s but no consecutive o’s.
return s.count("o") == 1000 and s.count("oo") ==

£2(x: List[int]): # find the *indices* of the longest monotonic subsequence
s = "Dynamic programming solves this classic job-interview puzzle!!!"
return all(s[x[i]] <= s[x[i+1]] and x[i] < x[i+1] for i in range(25))

£3(d: int): #find a non-trivial integer factor
n = 100433627766186892221372630609062766858404681029709092356097
return 1 <d<nandn?¥% d ==

Collatz conjecture (unsolved)

def sat(n: int):
win

Consider the following process. Start with an integer 'n’ and repeatedly applying the operation:
* if n is even, divide n by 2,

% if n is odd, multiply n by 3 and add 1

Find n > 4 which is part of a cycle of this process

win

m=n
while n > 4:
n=3xn+1if n%2elsen// 2
if n==m:
return True

https://en.wikipedia.org/wiki/Collatz_conjecture

Evaluation (zero-shot)

Number of required tries for finding a correct solution

Puzzle 1

=

Sol

=

False

Sol

E) 0 0 0 Em)

False

Sol

True

- Number of required tries for finding a correct solution

Puzzle 1

E::>' Sol E::>

False

- Test time bootstrapping

At step m, learn from the puzzles that were solved in <m steps

Puzzle 1

Puzzle 2

Puzzle 3

@)
@)
@)

Puzzle n

== 0 0 0 m)

Sol

=) 0 0 0)

False

Sol

Sol h

True
Sol

False

Learn from all

Sol :

True > :,olutcljonsf
® ound so far
o
o
Sol J

False

True

Sol

000

Sol

True

False

- Number of required tries for finding a correct solution

puzzle 1 |E= || sol =) Sol EE) 0 0 0 BB || so1

False False True

- Test time bootstrapping
At step m, learn from the puzzles that were solved in <m steps

Puzzle 1 Sol A
True

Puzzle 2 Sol

False True
Learn from all

Puzzle 3 :> o 0 o :> Sol T > | solutions
found so far

000

(@) @)
(@) @)
(@) @)
Puzzle n Sol D, Sol
False False

Solvers

Enumerative
Uniform
Ranform forest
Transformer

Language Models (GPT-3/ Codex)

Short (zero-shot)
Medium (five-shot)

Long (five-shot + EN description)

Bootstrapping setting

B(rj | f,p.i)
1=
| —

X |- =
]

I 2] ==

‘ Joint Encoder =

o

/W

() (e ()

Puzzle Rule Rule
Transformer Transformer Transformer

A r A

f P i Ty eeey Ty e

Enumerative Transformer

def f(li: List[int]):
return len(li) == 10 and li.count(1i[3]) == 2

assert True == (...

LM short prompt (zero-shot)

Retrain model with new solutions (enumerative)/ add examples to prompt (LM)

* See paper for more details

Enumerative

60
50 A
40
30 A
20 A
10 A

Problems solved out of 138

go4 Enumerative model
704 —— B. Transformer

i

- Transformer

——

B. Random forest

Random forest
Uniform

10°

- More complex models perform better

T

101! 102 103 104 10°
Number of tries (Log scale)

T

108

Problems solved out of 138

- Large LMs outperform our enumerative baselines

- Learning from past solutions (bootstrapping) helps

Number of tries (Log scale)

GPT-3
GPT-3 prompt -
—e— Bootstrap
| = 67
| --*-- Long (Few-shot+Doc) =
—=- Medium (Few-shot) /,7',... o1
~-#-- Short (Zero-shot) /" 20
4 ."_,-.0
a4
10° 101 107 10° 1ot

Results - Godex model

Pass@k for Codex (Davinci) over 138 puzzles (v0.1) Pass@k for Codex over 397 puzzles (v0.2)
B Short ® Medium ® Long M Bootsrap B cushman (Med.) ® davinci (Med.) B cushman (Long) M davinci (Long)
100% 100%
8 8
N 5% N 5%
= | a
o o
3 &
= 50% ® 50%
£ £
= 3
® 25% ® 25%
17 ° [}
12 [}
& &
% %
k=1 k=10 k=100 k=1,000 k=10,000 k=1 k=10 k=100 k=1,000

- Larger version (Davinci) performs better
- Solves most of the puzzles (with enough tries)

- Future challenges:
improve Pass@k for small k

Add harder puzzles

Human study

- 21 participants with varying experience in Python
- Interface based on Jupyter notebook

- Up to 6 minutes per puzzle
- 30 puzzles

mmmmmmmmmmmmm

- Very positive feedback

CORRECT in 00:39 sec.

O
‘Q$¢ e:“" ?;g&f:@z«. t ok

< “\Q;’”i\\«:ﬁ; ‘:\;3:’.'3"'”01 b
\ ;:?% ?a// : g&““ ' *‘%\‘2’6”} out(5]: True

N %.Q\('W" Zf””i’

Performance correlates with experience

w
vy
S

3004

Human solving time
= - N N
5] 3] 8
8 2 8 g 8

v
S

o

Experienced coders solved more puzzles, faster

AL

Bl Experienced
I Beginner

12 3 4 5 6 7 8 9 10 13 14 15 16 17 18
Study puzzle index

26

27 28 29 30

Fraction of puzzles solved

o
IS

el
o
|

o
©

o
[

o
N

© o
n

o

Beginners

2

Experienced

4 6 8

Years of Python experience

‘Pearson correlation: 0.474

0 1

2

3

4 5 6 7 8

Years of Python experience

Human/ Al perceived difficulty

1.04

Difficulty Score
o o
o (-

o
i

o
N

" |

ol odf £l 1R

ol 100 A0 A ol ol
HEV Y HHE

0.0-

24 16 4 13 1 6 1 21 8 23 17 25 5 14 18 28 26 19 12 2 15 27 9 29 3 20 7 10 22 30
Puzzle Index (sorted by human's difficutly)

Pearson rank correlation (Human/ Al):

Model All humans Beginners Experienced
Transformer 0.443 0.493 0.433
GPT-3 0.512 0.541 0.470

Codex 0.563 0.562 0.544

Human/ Al perceived difficulty

w
o
1

- Codex-davinci vs. human coders:

Experienced (26.2)

w
1

Beginners (22.9)

o
L

o
L

Avg. study puzzles solved
= G N N

o w
I 1

10 100 1,000 10,000
Tries per puzzle (k)

- Codex required up to 1K tries per puzzle to match the performance of beginner
coders with up to 6 minutes per puzzle

Puzzle:

Human-written
solution:

Codex solutions:

¢ Study_10 (1 instance)

def sat(s: str):

"""Find a palindrome of length greater than 11 in the decimal representation of 871818."""
return s in str(8 ** 1818) and s == s[::-1] and len(s) > 11

¥ 1 hand-written solution

def

sol():
s = str(8 %k 1818)
return next(s[i: i + le]
for le in range(12, len(s) + 1)
for i in range(len(s) - le + 1)
if s[i: i + le] == s[i: i + lel[::-1]

)

¥ 16 Al solutions from codex (shortest and longest ones below)

def

def

sol():
x = str(8 %k 1818)
return [x[i:(i+13)] for i in range(len(x)-11) if x[i:(i+13)] == x[i:(i+13)][::-1]][0]

sol():
s = str(8 sk 1818)
n = len(s)

pal = set()
for i in range(11, 55):
for j in range(n-i+1):
pal.add(s[j:j+il)

for p in pal:
if p == pl[::-1] and len(p) > 11:
return p

Example 2: Recursion

Puzzle: assert £5(g50))
def f6(moves: List[List[int]], num_disks=8):
state = [1] * num_disks
for [i, j] in moves:
assert state.index(i) <= (state + [1, 2, 3]).index(j), "bigger disk

on top"
state[state.index(i)] = j
return state == [3] * num_disks

def g6(num_disks=8):

Codex (Med.) solution: - , : :
Algorithm is equivalent to moving all disks.

From https://en.wikipedia.org/wiki/Tower_of _Hanoi#Advanced_computer_algorithm
def hanoi(n, p, q, r):
if n > O:

hanoi(n - 1, p, r, q)

moves.append([p, rl)

hanoi(n - 1, q, p, 1)
moves = []
hanoi(num_disks, 1, 2, 3)
assert f6(moves, num_disks)
return moves

P3: Large (and growing) collection of Programming Puzzles
- Evaluating advancements of Al systems in programming proficiency
- Can lead to scientific breakthroughs

High correlation between Al and human perceived difficulty

Dataset, solvers and online demos are available:

[Github.com/Microsoft/PythonProgrammingPuzzles }

Contributions are welcomed!

¢ Star 760 % Fork 69

https://github.com/microsoft/PythonProgrammingPuzzles

