
Programming Puzzles
Tal Schuster, Ashwin Kalyan, Oleksandr Polozov, Adam Tauman Kalai

Puzzles for teaching and evaluation

Single representation

Single representation
across many different challenge types

Single representation
across many different challenge types

for both humans and machines

The Guardian/ Stan Honda/AFP/Getty Images

Programming Puzzles

What is a programming puzzle?
- A function in any programming language (e.g., Python) that returns a Boolean value

- The challenge is to find the input that satisfies the function (i.e., makes it return True)

Find y that solves the puzzle.
Def puzzle(y, x=[...]):

code defining the puzzle…
Return solved # Boolean.

Example - Sudoku
- Find the input that:

- Is consistent with the given scheme

- Contains only 1-9 values

- No duplicates in rows

- No duplicates in columns

- No duplicates in 3x3 squares

9 2

7

1 8 4

2 7 8

4 1

6 9

2 8 5

6 3 7

4 9

Example - Sudoku

Python Programming Puzzle

Formal setting
- Both puzzles and answers are strings

- Puzzle 𝒇(𝒙,𝐲): function (source code) with a defined input type and arguments 𝒙

- Answer 𝐲: object

- Correct answer: 𝒇(𝒙,𝐲) is True within time 𝐭
- Solution 𝐠(𝒙): source code to generate 𝐲 from 𝒙

- Solver: takes n puzzles and timeouts and predicts solutions

Why is it important?
- AI models are getting better at code completion and generation

- Need objective evaluation of coding proficiency to measure and spur progress

GitHub Copilot

Why is it important?
- AI models are getting better at code completion and generation

- Need objective evaluation of coding proficiency to measure and spur progress

GitHub Copilot

Ambiguous description

Errors indicating lack of
basic understanding

Pure code evaluation

Solution

Tests

Coding Challenges Programming Puzzles

Puzzle Solution

Potential

discrepancies

? ?

Eval
Eval

English
description

- Natural language

- Code

Pure code evaluation

Solution

Tests

Coding Challenges Programming Puzzles

Puzzle Solution

Potential

discrepancies

? ?

Eval

- Puzzles focus on the algorithmic challenge; not mixing with world knowledge or English

- Verification is straightforward and objective; no hidden test cases

English
description

- Natural language

- Code

Eval

Python Programming Puzzles (P3) dataset

- Large (and growing) collection of puzzles

v0.1: 200 puzzles / Current size: 397 puzzles

- Comprehensive in

Domain

Algorithmic tools

Difficulty

- Baselines

Enumerative solvers and Language Models

Human programmers

Comprehensive in domain
- Classic puzzles
- Games
- Basic Python programming
- Probability
- Algebra
- Number Theory
- Graphs
- Programming challenges
- International Collegiate Programming Contest (ICPC)
- International Mathematical Olympiad (IMO)
- …

Comprehensive in algorithmic tools
- Learning PL specific operations (e.g. string manipulation)
- Recursion
- Linear programming
- Dynamic programming
- Convex optimization
- Sorting
- Graph search
- …

- From trivial coding operations to major open algorithms and math problems

- Beating humans would mean scientific breakthroughs

Comprehensive in difficulty

Collatz conjecture (unsolved)

https://en.wikipedia.org/wiki/Collatz_conjecture

Evaluation (zero-shot)
- Number of required tries for finding a correct solution

Sol
False TrueFalse

Puzzle 1 Sol Sol

Evaluation
- Number of required tries for finding a correct solution

- Test time bootstrapping
At step m, learn from the puzzles that were solved in <m steps

Sol
False TrueFalse

Puzzle 1

False

True

Sol

Puzzle n

Puzzle 2 Sol

Puzzle 1 Sol Sol

Sol

True

Puzzle 3 Sol
Learn from all
solutions
found so far

Sol

Sol
False False

True

Evaluation
- Number of required tries for finding a correct solution

- Test time bootstrapping
At step m, learn from the puzzles that were solved in <m steps

Sol
False TrueFalse

Puzzle 1

False

True

Sol

Puzzle n

Puzzle 2 Sol

Puzzle 1 Sol Sol

Sol

True

Puzzle 3 Sol
Learn from all
solutions
found so far

Sol

Sol
False False

True

How many puzzles were

solved with up to k tries

Solvers
- Enumerative

Uniform
Ranform forest
Transformer

- Language Models (GPT-3/ Codex)
Short (zero-shot)
Medium (five-shot)
Long (five-shot + EN description)

- Bootstrapping setting
Retrain model with new solutions (enumerative)/ add examples to prompt (LM)

Enumerative Transformer

LM short prompt (zero-shot)

* See paper for more details

- More complex models perform better

- Large LMs outperform our enumerative baselines

- Learning from past solutions (bootstrapping) helps

Results
Enumerative GPT-3

Results - Codex model

- Larger version (Davinci) performs better

- Solves most of the puzzles (with enough tries)

- Future challenges:

improve Pass@k for small k

Add harder puzzles

Human study
- 21 participants with varying experience in Python
- Interface based on Jupyter notebook
- Up to 6 minutes per puzzle
- 30 puzzles

- Very positive feedback

- Experienced coders solved more puzzles, faster

Performance correlates with experience

Human/ AI perceived difficulty

Pearson rank correlation (Human/ AI):

Model All humans Beginners Experienced

Transformer 0.443 0.493 0.433

GPT-3 0.512 0.541 0.470

Codex 0.563 0.562 0.544

- Codex-davinci vs. human coders:

- Codex required up to 1K tries per puzzle to match the performance of beginner
coders with up to 6 minutes per puzzle

Human/ AI perceived difficulty

Example
Puzzle:

Human-written
solution:

Codex solutions:

Example 2: Recursion
Puzzle:

Codex (Med.) solution:

Conclusion
- P3: Large (and growing) collection of Programming Puzzles

- Evaluating advancements of AI systems in programming proficiency
- Can lead to scientific breakthroughs

- High correlation between AI and human perceived difficulty

- Dataset, solvers and online demos are available:

- Contributions are welcomed!

Github.com/Microsoft/PythonProgrammingPuzzles

https://github.com/microsoft/PythonProgrammingPuzzles

