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Puzzles for teaching and evaluation
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Programming Puzzles



What is a programming puzzle?
- A function in any programming language (e.g., Python) that returns a Boolean value

- The challenge is to find the input that satisfies the function (i.e., makes it return True)

# Find y that solves the puzzle.
Def puzzle(y, x=[...]):

# code defining the puzzle…
Return solved  # Boolean.



Example - Sudoku
- Find the input that:

- Is consistent with the given scheme

- Contains only 1-9 values

- No duplicates in rows

- No duplicates in columns

- No duplicates in 3x3 squares

9 2

7

1 8 4

2 7 8

4 1

6 9

2 8 5

6 3 7

4 9



Example - Sudoku

Python Programming Puzzle



Formal setting
- Both puzzles and answers are strings

- Puzzle 𝒇(𝒙,𝐲): function (source code) with a defined input type and arguments 𝒙 

- Answer 𝐲: object

- Correct answer:  𝒇(𝒙,𝐲) is True within time 𝐭
- Solution 𝐠(𝒙): source code to generate 𝐲 from 𝒙

- Solver: takes n puzzles and timeouts and predicts solutions



Why is it important?
- AI models are getting better at code completion and generation

- Need objective evaluation of coding proficiency to measure and spur progress 

GitHub Copilot 
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Ambiguous description

Errors indicating lack of 
basic understanding 
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Pure code evaluation
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- Puzzles focus on the algorithmic challenge; not mixing with world knowledge or English 

- Verification is straightforward and objective; no hidden test cases
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Python Programming Puzzles (P3) dataset

- Large (and growing) collection of puzzles

v0.1: 200 puzzles / Current size: 397 puzzles

- Comprehensive in

Domain

Algorithmic tools

Difficulty

- Baselines

Enumerative solvers and Language Models

Human programmers



Comprehensive in domain
- Classic puzzles
- Games
- Basic Python programming
- Probability
- Algebra
- Number Theory
- Graphs
- Programming challenges
- International Collegiate Programming Contest (ICPC)
- International Mathematical Olympiad (IMO)
- …



Comprehensive in algorithmic tools
- Learning PL specific operations (e.g. string manipulation)
- Recursion
- Linear programming
- Dynamic programming
- Convex optimization
- Sorting
- Graph search
- …



- From trivial coding operations to major open algorithms and math problems

- Beating humans would mean scientific breakthroughs

Comprehensive in difficulty

Collatz conjecture (unsolved)

https://en.wikipedia.org/wiki/Collatz_conjecture


Evaluation (zero-shot)
- Number of required tries for finding a correct solution
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Solvers
- Enumerative

Uniform
Ranform forest
Transformer

- Language Models (GPT-3/ Codex)
Short (zero-shot)
Medium (five-shot)
Long (five-shot + EN description)

- Bootstrapping setting
Retrain model with new solutions (enumerative)/ add examples to prompt (LM)

Enumerative Transformer

LM short prompt (zero-shot)

* See paper for more details



- More complex models perform better

- Large LMs outperform our enumerative baselines

- Learning from past solutions (bootstrapping) helps 

Results
Enumerative GPT-3



Results - Codex model

- Larger version (Davinci) performs better 

- Solves most of the puzzles (with enough tries)

- Future challenges: 

improve Pass@k for small k

Add harder puzzles



Human study
- 21 participants with varying experience in Python
- Interface based on Jupyter notebook
- Up to 6 minutes per puzzle
- 30 puzzles

- Very positive feedback



- Experienced coders solved more puzzles, faster

Performance correlates with experience



Human/ AI perceived difficulty

Pearson rank correlation (Human/ AI):

Model All humans Beginners Experienced

Transformer 0.443 0.493 0.433

GPT-3 0.512 0.541 0.470

Codex 0.563 0.562 0.544



- Codex-davinci vs. human coders:

- Codex required up to 1K tries per puzzle to match the performance of beginner 
coders with up to 6 minutes per puzzle

Human/ AI perceived difficulty



Example
Puzzle:

Human-written 
solution:

Codex solutions:



Example 2: Recursion
Puzzle:

Codex (Med.) solution:



Conclusion
- P3: Large (and growing) collection of Programming Puzzles

- Evaluating advancements of AI systems in programming proficiency 
- Can lead to scientific breakthroughs

- High correlation between AI and human perceived difficulty

- Dataset, solvers and online demos are available:

- Contributions are welcomed!

Github.com/Microsoft/PythonProgrammingPuzzles

https://github.com/microsoft/PythonProgrammingPuzzles

