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Abstract
The thesis addresses the problem of “class-based” image-based recognition and rendering with vary-

ing illumination. The rendering problem is defined as follows: given a single input image of an object,
and a sample of images with varying illumination conditions of other objects of the same general class,
re-render the input image to simulate new illumination conditions. The class-based recognition prob-
lem is similarly defined: given a single image of an object in a database of images of other objects,
some of them are multiply sampled under varying illumination, identify (match) any novel image of
that object under varying illumination with the single image of that object in the database.

We focus on Lambertian surface classes, and in particular the class of human faces. The key result
in our approach is based on a definition of an illumination invariant signature image which enables
an analytic generation of the image space with varying illumination. We show that a small database
of objects — in our experiments as few as two objects — is sufficient for generating the image space
with varying illumination of any new object of the class from a single input image of that object. In
many cases the recognition results outperform by far conventional methods and the re-rendering is of
remarkable quality considering the size of the database of example images and the mild pre-process
required for making the algorithm work.





Chapter 1

Introduction

Consider the image space generated by applying a source of variability, say changing illumination or
changing viewing positions, on a3D object or scene. Under certain circumstances the images generated
by varying the parameters of the source can be represented as a function of a small number of sample
images from the image space. For example, the image space of a3D Lambertian surface is determined
by a basis of three images, ignoring cast-shadows [Shashua, 1992, Shashua, 1997, Hallinan, 1994,
Belhumeur et al., 1996, Nimeroff et al., 1994, Schoeneman et al., 1993]. In this case, the low dimen-
sionality of the image space under lighting variations is useful for synthesizing novel images given a
small number of model images, or in other words, provides the means for an “image-based rendering”
process in which sampled images replace geometric entities formed by textured micro-polygons for
rendering new images. Visual recognition and image re-rendering (synthesis) are intimately related.
Recognizing a familiar object from a single picture under some source of variation requires a handle
on how to capture the image space created by that source of variation. In other words, the process of
visual recognition entails an ability to capture an equivalence class relationship that is either “genera-
tive”, i.e., create a new image from a number of example images of an object, or “invariant”, i.e., create
a “signature” of the object that remains invariant under the source of variation under consideration. For
example, in a generative process a set of basis images may form a compact representation of the image
space. A novel input image is then considered part of the image space if it can be synthesized from
the set of basis images. In a process based on invariance, on the other hand, the signature may be a
“neutral” image, say the object under a canonical lighting condition or viewing position. A novel image
is first transformed into its neutral form and then matched against the data base of (neutral) images.

In this work we focus on recognition and image re-rendering under lighting condition variability of
aClassof objects, i.e., objects that belong to a general class, such as the class of faces. In other words,
for the re-rendering task, given a sample images of members of a class of objects, and asingleimage
of a new object of the class, we wish to render new images of the new object that simulate changing
lighting conditions.

Our approach is based on a new result showing that the set of all images generated by varying
lighting conditions on a collection of Lambertian objects all having the same shape but differing in
their surface texture (albedo) can be characterized analytically using images of a prototype object and
a (illumination invariant) “signature” image per object of the class. The Cartesian product between the
signature image of an object and the linear subspace determined by the images of the prototype object
generates the image space of the object. The second result is on how to obtain the signature image from
a data base of example images of several objects while proving that the the signature image obtained is
invariant to illumination conditions.

Our method has two advantages. First and foremost, the method works remarkably well on real
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images (of faces) using a very small set of example objects — as few as two example objects. The re-
rendering results are in many cases indistinguishable from the “real” thing and the recognition results
outperform by far conventional methods. Second, since our approach is based on a simple and clean
theoretical foundation, the limitations and breaking points can be clearly distinguished thus further
increasing this algorithm’s practical use.

1.1 Sources of Variability
What does a two dimensional image can reveal on a3D object? The answer depends on the way

the object was “grasped” by a camera, i.e. under what conditions it was taken. The variability of geo-
metric, photometric and rigidity conditions generates an infinite possibilities for3D to 2D mappings,
and turns, what seem to be natural to human visual system, to the main obstacle of computer vision
recognition tasks. Geometric source of variability can be defined as changes in the spatial location of
image information as a result of relative change in viewing position. It is therefore obvious that3D

reconstruction of the object can diminish possible ambiguities and thus solve the one to many mapping
problem1.
Changing illumination as a source of variability drew much attention recently. The fact that the same
object might appear dramatically different under varying illumination conditions such as light source
intensity, direction and the number of the light sources is well demonstrated in Figure1.12. Moreover,
photometric variations affect the perceived structure and texture of a3D object even when it is not
projected on a2D image plane, in a way that might mislead an elaborate visual system such as human,
that uses much more information than there is in a gray-level2D matrix. It is important to note in this
context the observation of Moses et al. [Adini et al., 1997] that the variability due to illumination, in
face images is often greater than the variability due to a change in the person’s identity.
However, there are implementations, where photometric effects serve as cues for object’s shape recon-
struction, using methods such as “shape from shading” described in section 2.1.

Non-rigid transformations such as facial expressions or body gestures also change object appear-
ance. They can be ignored if the non-rigid parts are small compared to the object (such as in a task of
matching a smiling face to a sad face) or if each of the moving object parts is treated separately (for
example, recognizing a moving body parts such as legs and than match it to the all body).
The context (background) an object appears in, presents another source of variability. This is usually
overcome by segmentation in cases the background has contextual significance. It should be noted,
however, that when dealing with human faces, for example, which can appear with or without facial
hair or glasses, it might be hard to determine which parts of the image are integral parts of the subject
and which are removable.
Performing synthesis or analysis of images with varying viewing conditions, one faces different chal-
lenges depend on the source of variability. This work concentrates on illumination variations. Form
now on we assume that the objects are fully segmented, taken from the same view point, scaling is
unique and so are the images’ sizes. There are no non-rigid transformation, and for the recognition part
performed on human subjects we assume no glasses or facial hair.

1.2 Classes of Objects
Categorizing a set of objects can be done in totally different ways, depending on the view point and

the aims of the classifier. Zoological definition for the class ’mammals’ contradicts the intuitive ten-

1Whether3D reconstruction is a necessary stage recognizing an object under geometric transformation is behind the
scope of this work.

2Another source of variability due to illumination is the spectral content of the light, which is not demonstrated in
figure1.1 and is ignored in this work.



Figure 1.1. The same person seen under varying ligthing conditions can apear dramatically different. Im-
ages are taken from Belhuemer database see section 6.1. Following [Belhumeur et al., 1996] idea.

dency of a child to classify a whale, for example, as a fish.
Rosch and her colleague [Rosch, 1973, Rosch and Mervis, 1975, Rosch et al., 1976] define three levels
of categories:Superordinatecategories (e.g. animals),Basic-Levelcategories (e.g. mammals) andSub-
ordinatecategories (e.g. cats). Rosch et al. conducted an impressive series of studies to demonstrate
the psychological reality of basic-level categories. It was found out that though classification of objects
of superordinate category, necessitates high level of abstraction, objects of basic-level and subordinate
categories have much more features in common (within class) and in most cases can be classified by
physical cues such as shape. However, even for the well defined, basic-level class of chairs, functional-
ity, shape and connotation do not have to be in correlation. Consider for instance a wheel chair, electric
chair and a deck chair . . .
Yet, when one is familiar with common features of a class, he is able to deduce, from part of the mem-
bers on the others.
Since our only concern is with what can be ’seen’, a class would be uniquely defined by its objects
shape. Class members might vary by their reflectance (light and texture) properties, or by their pose in
the scene. Many computer vision algorithms (see section 2.3), including ours, imitate human ability to
learn3, by constructing models, which, using the class-based assumption, are able to learn on a novel
object of a class from a set of labeled examples.
The basic result used in this thesis is that the image space generated by varying the light source lives in
a three-dimensional linear subspace [Shashua, 1992, Shashua, 1997]. Thus three images of an object,
taken under different illuminations are sufficient to generate novel images of the object under any illu-
mination conditions. The class based assumption enables us to extend this previous result and use, for
the synthesis process, only one image of the object in addition to images of other objects of the class.
In order to use this assumption, precise definition of a class is needed, and is given in section 3.2.

3See also [Tarr and Gauthier, 1998, Moses et al., 1996]



Though the discussion relates generally to any class of objects, we will refer mostly and give examples
of the class of human faces– a most typical and usable example of a class.

1.3 Class of Human Faces
Machine recognition of faces from still and video images is emerging as an active research area

spanning several disciplines such as image processing, pattern recognition, computer vision and neural
networks. One can attribute this to the fact that, faces recognition technology (FRT) has numerous
commercial and law enforcement applications. These applications range from static matching of con-
trolled format photographs such as passport, credit cards, photo ID’s, driver’s license, and mug shots to
real-time matching of surveillance video images presenting different constraints in terms of processing
requirements. For an excellent survey on face recognition see [Chellapa et al., 1995].
Since the algorithm offered in this work is based on previously segmented and aligned images in terms
of scale and pose, it is more suitable for applications based on data from still images taken under con-
trolled conditions such as passport images. The symmetric characteristic of the “class of faces”, and its
comparatively small variance of head sizes and the proportion between features of the face enables a
unique definition of frontal view as well as a unique determination of focal length. Thus pose and scale
unity can be achieved easily over a huge set of images taken in different places. Moreover one can
control these parameters quite easily, or invest little effort in a preprocessing stage needed to perform
alignment.

1.4 Related Issues in Human Vision
In general, the human recognition system utilizes a broad spectrum of the senses (visual, auditory,

olfactory, tactile, etc.). These stimuli are used in either an individual or collective manner for both
storing and retrieval of images for the purpose of recognition. In addition there are many instances
when contextual knowledge is also applied, i.e. the surroundings play an important role. However, in
the research for computer algorithms, where matrices of image intensities are the only inputs, it might
be interesting and even inspiring to learn on the way humans perform recognition and synthesis tasks,
especially – in the scope of discussion of this thesis – under photometric variations. Many aspects of the
human visual capabilities are dealt with a wide range of researches in psychophysics, neurophsychology
and cognitive psychology. We will focus on two general questions. The first concerns the way visual
stimuli are represented in the brain. This question has an implication on the computer vision model
based approach, which recently became popular. The other issue relates to light perception, or more
precisely to the impact of light on scene interpretation.

1.4.1 Visual Stimuli Representation

In a profound paper, Farah [Farah, 1988] deals the question whether visual imagery is really vi-
sual, and presents two sides of this controversial issue. One side of the debate maintains that imaging
consists of the top-down activation of perceptual representations, that is, representations that are also
activated automatically by an external stimulus during perception. In contrast, it is claimed that the
representations used in imagery are not the representation used in perception, and that the recall of
visual information, even when accompanied by the phenomenology of “seeing with the mind eye”, is
carried out using representations that are distinct from those used in veridical seeing. This debate is not
only relevant to the question of image retrieval - or recognition - in computer vision language, but for
Mental Images, i.e. images generated by the mind - or synthesis - in computer graphics terms. Com-
puter vision researchers, which favor abstract ornon-pictorial image representation on raw images,
argue this preference, relying on the brain assumed behavior - which presumably uses more compact
representation - without redundancies. On the other hand, it seems that cognitive psychology findings,



pioneered by Shepard (see, e.g., [Shepard and Cooper, 1982]), that shape can be mentally reoriented
only with continuous “mental rotation”, apparently contradict this assumption, since they provide a
demonstration of the apparently visuospatial properties of mental images.
Mental rotation phenomenon, however, is given by other researchers as the analogy to image alignment,
as a pre-processing stage to recognition. In this analogy, there is an implicit assumption that the brain
stores a prototypical view of the retrieved object in some way, and applies on it previously learned
transformations in the matching stage to a novel view. One can take this assumption even further in two
directions, both have relevance to this work. The first is concerned with classes of similar (in shape)
objects. Views of similar objects might look the same, under the same transformation, so it might be
sufficient to learn all the possible views of an object given one or few examples of the class. The other
direction can be a finding an equivalent to the mental rotation phenomena in the photometric domain.
Unfortunately, no such report is known.
It should be noted that despite what might have been implied from the above discussion, similar objects
might have similar representations which can be non-pictorial at all. In the same manner, views of con-
tinuous geometric transformations of an object might have representations which change successively.

1.4.2 Light Perception

One of the outstanding phenomena concerning human visual system characteristics isLight Con-
stancy(for survey see [Coren and Ward, 1989]), that is the perception of object’s lightness is relatively
independent of the amount of light reaching one’s eye (which is a product of the light source inten-
sity and the reflectance properties of the object). For example: a piece of white paper appears to be
approximately the same shade of white whether it is viewed in a dim light or bright light. A piece of
coal viewed in bright sunlight will still appear black even though it may be reflecting a greater amount
of light to the eye than would a white piece of paper viewed in ordinary room light. Two possible
explanations were offered to the lightness constancy mechanism. Both relate to contextual knowledge.
The first claims that constancy is maintained by relationship between stimuli, i.e the ratio of intensities
of two patches of light on the retina is preserved. The second explanation would argue that the observer
responds to cues indicating the nature of the illumination falling on the objects, and adjusts the appre-
hended lightness of the object in consciousness accordingly.
The light constancy phenomenon raises a more general question on light perception. Is there a primary
stage where light impact is naturalized, before higher level process, such as recognition, is performed?
If so, human subject should able to estimate the direction and intensity of a light source correctly. Such
information can be only received from the scene. But, in order to decipher the scene, a preprocessing
recognition stage might be applied, so one can claim in contradiction that recognition and light source
direction recovery are done simultaneously.
An example is seen in figure 1.2a which shows thresholded face images termed after Mooney
[Mooney, 1960]. It seems that in this case the illumination is factored out simultaneously with the
recognition process. The thresholded images appear to be recognizable, at least in the sense that one
can clearly identify the images as containing faces. Because the appearance of the thresholded images
critically relies on the illumination conditions, it appears unlikely that recognition in this case is based
on the input properties alone. Some knowledge about objects (specifically that we’re looking at the im-
age of a face) may be required in order to factor out the illumination. Notice, however, that eliminating
illumination effects, which are expressed in white and black surfaces in the images (by applying level
crossings on the images), as can be seen in figures 1.2b, makes recognition impossible.

A well known example which might support the opposite approach can be seen in figure 1.3. Inter-
pretation of the image might change when the image is turned upside down, then the two lava cones
with craters will be perceived as two craters with mounds. This reversal of the perceived concavities



(a)

(b)

Figure 1.2. Mooney faces (a) and their level-crossings (b).

and convexities is apparently due to an implicit assumption by the viewer, that the scene is lit from
above. This example suggests preliminary estimation of the light direction before scene interpretation.
Support to this argument can be demonstrated using Horn’s famous example [Horn, 1986] on the ef-
fect of shading on the perception of the shape of a surface, as seen in figure 1.4. The photographs
demonstrate how the skillful application of makeup does more than just alter surface texture: It creates
highlights and shadows that manipulate our perception of surface shape. Once again the scene is inter-
preted subsequently to former assumption about the effects of the light.
These two examples test human ability to decompose structure, texture and light direction given one
image, as in the case of the first example. Note that even when two images of the same subject are
given, as is demonstrated in the second example our visual system fails to detect makeup as simply a
texture variation. The direct relevance of this observation to the Q-image algorithm will become clearer
in Chapter 5.

1.5 Structure of Thesis
The next Chapter surveys briefly previously and commonly used approaches of handling recognition

and synthesis tasks. The emphasis is on the Model based approach algorithms which enjoy an increased
popularity recently. Basic issues concerned with the Model Based approach and Image Representation
are also dealt with, due to their relevance to the thesis.
Background on the light model is given in Chapter III. Based on the definition of class based objects
the Synthesis and Recognition tasks are re-defined.
Chapter IV presents an alternative approach to the Quotient Image method – the Reconstructionist
Approach which is based on linear combination of the bootstrap set images, and discusses its short-
comings.



Figure 1.3. The two lava cones with craters, are percived as two craters with mounds, when the image
is turned upside down. This reversal of the perceived concavities and convexities is apparently due to an
implicit assumption of the viewer that the scene is lit from above. (Photograph provided by Associated
Press/ Wide World Photos, 1972. Taken from [Nalwa, 1993], after [Rittenhouse, 1786]).
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Figure 1.4. Photograph of a model with (b) or without (a) makeup illustrating how the shading of a sur-
face may dramatically affect out perception of the surface’s shape. (Photographs, courtesy Merle Norman
Cosmetics, Bellanca Avenue, Los Angeles. Taken from [Nalwa, 1993] after [Horn, 1986]).

The heart of the thesis is given in Chapter V, which describes and proves the Quotient Image algorithm.
The chapter starts with a definition of an illumination invariance measure termed the Quotient Image.
The Cartesian product between the quotient image of an objecty and the linear subspace determined
by the images of the prototype object generates the image space ofy (Proposition 1). The second result
is on how to obtain the signature image from a data base of example images of several objects while
proving that the the signature image obtained is invariant to illumination conditions (Theorems 1,2).
Description on how to extend the algorithm to handle color images is also given.
Chapter VI discusses and implements the algorithm described in Chapter V, supplying empirical proofs
to the theorems and prepositions previously stated. Synthesis results of a varied collections of images
are presented, for both gray-scale and colored images. Next section, goes back to the Reconstructionist
Approach, demonstrating visually its lack of invariance to illumination, as well as low quality synthe-
sis results compared to those one can get using the Quotient Image approach. The last section in this
Chapter presents the recognition algorithm. Its performance is tested on a database consists of1800

images, and is compared to other methods.
Chapter VII sums up the work and suggests some possible directions for future research.



Chapter 2

Related Approaches and Aspects of
Representation

Researchers, in both computer graphic and computer vision fields have used intermediate, physically
based models to approach their respective problems of synthesis and recognition. In computer graph-
ics, sophisticated three-dimensional modeling and rendering techniques have been developed that ef-
fectively simulates the physics of rigid and non-rigid solid objects and the physics of imaging. Work
in computer vision has followed a parallel path; Most object recognition algorithms used3D object
models and exploited the properties of geometrical and physical optics to match images to the database
of models. A different approach was to extract invariant or semi-invariant measures in the object view.
Early work in both approaches deal with visual recognition in the context of low level processes such
as edge detection, lightness, color constancy, and shape from shading.
RecentlyModel Basedapproaches have been used, considering images as ’mathematical entities’, such
as vectors in a space. The idea, borrowed from work which handled recognition under geometric
variations, gave rise to a huge class of algorithms (some of them rely on the linear behavior of light
reflectance for certain surfaces and therefore can be applied only for photometric issues). In most of
these algorithms, the image to be analyzed (or its representation) is compared directly, to a set of ex-
ample images (or their representation).
The model based approach can be further divided intoObject BasedandClass Basedmethods. Ob-
ject based methods use images of the same object under different viewing conditions [Shashua, 1992,
Belhumeur et al., 1996, Hallinan, 1994], whereas class based methods use images of different objects
of the same general class. Such class-based methods have the advantage that they can deal with novel
object within a given class.

2.1 Classic Approaches
The traditional approach has been to recover geometric features, such as lines, curves and ver-

tices, to hypothesize and verify the three dimensional object’s structure, while directing little ef-
fort toward the explicit use of other scene properties such as reflectance, roughness, and material
type. The main drawback of this approach, is the variance of features, such as edges, under vary-
ing illumination conditions. Optionally, an algorithm, which does rely on photometric properties of
the surface, to recover the geometric structure of the scene, was offered, in 1977, by Horn and his
colleagues [Horn, 1977]. Horn’s algorithm followed by a class of works [Ikeuchi and Horn, 1981,
Horn and Brooks, 1986, Pentland, 1982, Pentland, 1984] known in computer vision asShape From
Shading(SFS) algorithms uses gray-level values in the image to recover the shape. These algorithms
failed to recover shape of non-synthetic or complex objects since they were limited by a priori informa-
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tion and assumptions, one has to presume on the scene. These often include surface orientation along
surface boundary, and the assumption of uniform albedo. Woodham’sPhotometric Stereoalgorithm
[Woodham, 1980] overcomes this obstacle, using3 differently illuminated images, of the same scene.
However, the necessity to recover the light source directions, applying SFS and Photometric Stereo
makes them both not feasible.

2.2 Model Based Approach
2.2.1 Fundamental Issues

Most of the model based algorithms embed the vectorized images in a linear subspace. Doing that,
they should have to care for correspondence and dimensionality, both are non trivial issues as will be
described below.

Correspondence

The key underlying the mathematical assumption of the model based approach is that the images form
a linear vector space. However, images are just arrays of numbers or pixels, not vectors. A set of raw
images – say of similar objects – does not have the structure of a vector space, because operations like
addition or multiplication by a scalar do not have a well defined meaning for raw images. In pattern
recognition a standard technique for associating a vector to an image is to derive the vector compo-
nents from an ordered set of measurements on the image. This technique, however, is incompatible
with image-based approaches, where vector components must correspond to pixels. A vector space
structure implies that thei-th component of all the vectors in the set must refer to the same type of
feature on the imaged surface. Strictly speaking, the use of vector space techniques in image based
approaches requires the solution of the correspondence problem: finding pixels in two or more images
that represent corresponding surface features in the scene. Correspondence is a difficult problem in
computer vision. It is usually solved, for sufficiently similar images, using optical flow algorithms,
which find corresponding pixels in two or more images and compute their displacement vectors (in the
image plane). Correspondence transforms images into vectors associating to feature pointi its color
(or gray level value) and its(x; y) position.
Since the work considers only photometric variation (not geometric), we can assume that given im-
ages of the same object, under different lighting conditions, the images’ pixels naturally match and no
correspondence process should take place – a straightforward image vectorization is sufficient1. As
for images of different objects of the class, since the objects are similar but not identical, an align-
ment process is needed. We’ve found out that subsequent to compensating for scale and geometric
transformations between the images, a center-of-mass alignment is sufficient, so that the main features
of the object should “roughly” correspond as described in section 6.1.2. Notice, that if the source of
variation is geometric, image correspondence can not be based on absolute position in the image but on
other cues such as color or gray-level values, surrounding etc. . . . In these cases, using the class-based
assumption, a dense correspondence is needed [Beymer and Poggio, 1996].

Dimensionality

Embedding images in a linear vector space, one should take into consideration its dimensionality. It
seems that under certain circumstances the image space generated by varying the parameters of the
source can be represented as a function of a small number of sample images from the image space.

1In case there are variations between the images, other than photometric, a preprocessing stage such as scaling, rotation,
translation is needed



Image representation in the reduced image space, also referred to asFeature Space, should preserve the
algebraic attributes of the image, being intrinsic but not necessarily visible. In this sense one no longer
deals with an image but with a model of an image and this vectorization is the main principle of all
the model based approaches. Image analysis, and object recognition in particular, can benefit from the
reduced dimensionality, as long as the characterized object information is preserved, not only in terms
of computational time savings. The key idea of most of the dimensionality reduction techniques is to
factor out the non-relevant and the misleading information, such that the source of variability, which
generates differences between images of the same object, would hardly effect the recognition process.

As for image synthesis, the low dimensionality of the image space under lighting variations is use-
ful for rendering novel images given a small number of model images, or in other words,it provides
the means for anImage-Based Renderingprocess in which sampled images replace geometric entities
formed by textured micro-polygons for rendering new images. Dimensionality reduction of the image
space is handled in various ways in most of the recent works. Some, are unique to computer vision,
while others are borrowed from other domains: Karhunen-Loeve transform, Singular value decom-
position, Neural network classifier, Fisher discriminant analysis and Support Vector Machines. The
following subsection deals these methods and their applications.

2.2.2 Current methods and approaches

Eigenpictures

The optimal way to achieve data dimensionality reduction, is what is known asKarhuenen-Loeve(KL)
expansion in pattern recognition [Fukunaga, 1989, Ash and Gardner, 1975, Devijver and Kittler, 1982]
and as Factor or Principle Component Analysis(PCA) in the statistical literature
[Ahmed and Goldstein, 1975]. The KL expansion has originally been studied for image compression,
but though optimal, faster transforms such as discrete sine and cosine transform have been preferred.
Extensive work has been also done in the analysis of signals in the time domain. The pioneer works
of Sirovich and Kirby [Sirovich and Kirby, 1987] and Turk and Pentland [Turk and Pentland, 1991]
which used PCA for image representation and recognition, became a corner stone for much of the
recent work done in these fields.
The main concept is as following: LetP = spanf ig , i = 1 : : : N , be anN dimensional image
space where i is a vector representation of thei-th image.P can be also spanned by a smaller set of
orthogonal vectorsfujg (j <= i) Let 	 be a matrix which its columns are i. One of the ways to
obtain thefujg is to decompose the matrix(	 � 	̂)T (	 � 	̂) by SVD, where	T is the transpose
of 	 and 	̂ is the average of the columns of	. SVD can be viewed as a deterministic counterpart
of the KL transform. The singular values (SV’s) of an image are very stable andfujg are termed
Eigenvectorsor Eigenpicturesin computer vision context. One can think of this process as a rotation
of the referred coordinate system so that as few axes as possible will convey most of the information.
If the images’ points are not spanned uniformly in theN dimensional image space (as is the case in
similar images - such as images of faces), dimension can be reduced by neglecting the less informative
axes (axes on which the projected data points have the lowest variance). The data points variances
along the eigenvectors are indicated by the corresponding eigenvalues, thus the number of significant
eigenvectors to be selected can be determined by applying a threshold on the eigenvalues. Usually,
it can be done quite easily since these values tend to descend in a step-like manner. Once the eigen
vectors are obtained, any image in the ensemble can be approximately reconstructed using a weighted
combination of the eigen vectors. The weights that characterize the expansion of the given image in
terms of eigen pictures serve the roll of features.



Neural Networks Classifiers

One of the commonly used tools to map an image into a feature vector for analysis purposes, or to do
the inverse mapping for synthesizing new images, areNeural Networks(NN). The network, usually
trained on a set of labeled examples, should be able to generalize, and label correctly future set of (as
wide as possible) similar inputs. Since this field, though popular, has no relevance to the thesis we will
only mention few, not necessarily representative, works have been done in the past years.
One of the earliest reports for the use of NN for face recognition was reported in [Kohonen, 1988] and
termed theKohonen Associative Map.
Oja [Oja, 1992, Oja, 1995] introduced a neural network architecture that provides a novel way for
parallel on-line computation of PCA expansion.
Recently, a new wave of algorithms [Foldiak, 1990, Field, 1994, Olshausen and Field, 1995] and many
others, based on novel approaches, such asSparse Codingor Independent Component Analysis(ICA)
seem to replace the extensive use of ”linear” PCA for recognition purpose. These techniques are non-
linear, and the only applications known to generate sparse coding use neural networks, (see for example
[Meunier and Nadal, 1995] ).

Linear Combinations of Models

In a seminal paper, Ullman and Basri [Ulman and Basri, 1991] showed that for orthographic projection,
the set of all possible images of an object undergoing rigid3D transformations and scaling is embedded
in a linear space and spanned by a small number of2D images. They have proved that only three views
are needed for general rotation and rigid transformation and scaling in the3D space, whereas for
linear transformations two views suffice. However, not the images but the images’ points were used in
their proofs, and the results were demonstrated onsilhouettes– images generated by the orthographic
projection of the objects rims2. Since this work, done in geometric domain, exceeds the main theme
of the thesis, we will only give a brief review of some the main principles, which inspired the research
in the photometric domain3, to be described in the next subsection (Section 2.2.2). The main claim
deals with images of an object undergoing a linear transformation in3D space. LetO be a set of
object points. LetP1; P2; P3 be three images ofO obtained by applying3 � 3 matricesR; S andT to
O respectively. (In particularR can be the identity matrix, andS; T can be two rotations producing
the second and the third views). LetP̂ be the fourth image of the same object obtained by applying a
different3�3 matrixU toO. Letr1; s1; t1 andu1 be the first row vectors ofR; S; T andU , respectively,
and letr2; s2; t2 andu2 be their second row vectors. The positions of a pointp 2 O in the four images
are given by:

p1 = (x1; y1) = (r1p; r2p)

p2 = (x2; y2) = (s1p; s2p)

p3 = (x3; y3) = (t1p; t2p)

p̂ = (x̂; ŷ) = (u1p; u2p)

The claim is that if both setsr1; s1; t1 andr2; s2; t2 are linearly independent, then there exist scalars
a1; a2; a3 andb1; b2; b3 such that for every pointp 2 O, it holds that

x̂ = a1x1 + a2x2 + a3x3

2Rim is the set of all the points on the object surface whose normal is perpendicular to the viewing direction
3Shashua, first presenting his novel photometric alignment model [Shashua, 1992] claimed to do a similar use of the

linear combination approach as appeared in the work of Ullman and Basri [Ulman and Basri, 1991].



ŷ = b1y1 + b2y2 + b3y3

The proof is derived immediately. Since the two sets are linearly independent each spansR3 , u1 and
u2 can be expressed as linear combinations ofr1; s1; t1 andr2; s2; t2 respectively.̂x = u1p andŷ = u2p

and that completes the proof.
This result was farther extended to handle general rotation and rigid transformations and scaling in the
3D space. In addition the authors show how two views can suffice in general linear transformations.
For wider scope see [Ulman and Basri, 1991].
The Tomasi and Kanade rank theorem [Tomasi and Kanade, 1992], termed theFactorization Method,
presents a different approach to the same idea. An extension to the perspective case can be found
in [Shashua, 1995].

Photometric Alignment

The basic result about the low dimensionality of the image space under varying lighting conditions
was originally reported in [Shashua, 1992, Shashua, 1997] in the case of Lambertian objects. Shashua
showed that an image of an object can be represented as a linear combination of a fixed set ofk images
of the object. Moreover,k = 3 in case the surface is matte – this observation was made independently
by Yael Moses. The proof can be stated as following: LetI(p) be the gray-value of pixelp in imageI.
It can be represented as

I(p) = np � s

Here, the length of the surface normalnp represents the surface albedo,(a scalar ranging from zero
to one). The length of the light source vectors represents a mixture of the spectral response of the
image filters, and the spectral composition of light sources – both of which are assumed to be fixed for
all the image in the surface. Now, leta1; : : : ; ak be some arbitrary set of basis vectors that span the
k-dimensional Euclidian space. The image intensityI(p) = x(p) � a is therefore represented by

I(p) = x(p)[�1a1 + : : :+ �kak] = �1I1(p) + : : :+ �kIk(p)

where�1 : : : �k are the linear coefficients that representa with respect to the basis vectors, andI1 : : : Ik
are thek imagesIk(p) = x(p) � ak.
Alignment based recognition under changing illumination can proceed in the following way. The im-
agesI1; : : : ; Ik are the model images of the object (three for Lambertian under point light sources). For
any new input imageI, rather then matching it directly to previously seen images (the model images),
we first select a number of points (at leastk) to solve for the coefficients, and than synthesize an image
I 0 = �1I1 : : : �kIk. If the imageI is of the same object and the only change is in illumination, then
I andI 0 should perfectly match. Another property of this method is that one can easily find a least
squares solution for the reconstruction of the synthesized image, thereby being less sensitive to errors
in the model, or input errors.
In an experiment conducted by Hallinan [Hallinan, 1994], images of a face viewed from a fixed direc-
tion and different illumination, were analyzed using the PCA approach. The firsts eigen faces show
indubitably the principal light source direction as is demonstrated in figure 2.1 generated by us fol-
lowing Hallinan. Based on Shashua’s result, under the assumption of linearity, the first three span the
image space. Expanding the model to handle non-Lambertian and self shadowing surfaces, Hallinan
claims that the first five eigenfaces can consistently be interpreted as representing five very different
lighting situations. He bases this conclusion from inspection of several examples and on his ability
to synthesize new images of the analyzed face using five eigenfaces with satisfying similarity to the



Figure 2.1. The first10 eigenfaces of one subject, generated out of47 differenly illuminated images taken
from Belhuemer database. The first eigenface is what we term “DC” image (or avarage), which looks very
similar to the original images. The next three convey most of the information on illumination directions.

original 4.
In one of his earliest papers concerning face recognition under varying illumination, Kriegman and

his colleagues [Belhumeur et al., 1996], offered and examined several algorithms based on the photo-
metric alignment approach. The key idea is to generate an object’s representation (face, in the referred
paper) using three images of the object under three distinct light conditions without self-shadowing.
Once, each of the objects in the database is represented as a mathematical entity (a vector or a space),
new images representations are compared to the database. The use of three images that span the ob-
ject’s subspace (under any illumination) discounts lighting effects from the representation. Follows, a
brief discussion of each of the algorithms.
One of the ideas is to do matching based on the distances between the3D subspaces, spanned by the
images of each object.
Another algorithm, which was conducted with some variation by us, for purpose of comparison5, is
based on generating a set of eigenfaces from the images’ database. Each image can be than recon-
structed using a linear combination of the eigenfaces6. The set of the eigenvectors’ coefficients (or
weights) defines uniquely each image and will be termed in this discussionFeature Vector. The next
step will be to average each set of three feature vectors belong to each of the objects in the database.
This averaged feature vector will be consider as the “object representation”. Now, if the three views of
each object, are of the same three lights for all the objects, the averaging step, will average the weights
of the eigenvectors which donate mostly to the illumination components in the images, and thus reduces
the variability due to light between the objects representations. Moreover it will enhance the typical
features of each object. Given a novel image, it can be represented in the same manner as a set of
eigenvectors’ weights (feature vector), the distance of this vector to each of the objects representations

4We doubt Hallinan’s observation, since it is not reasonable that non-linear illumination conditions can be precisely
described by using linear method such as PCA. Following Halinan we’ve conducted similar experiment, and based our
assumption on the eigenvalues behavior. As mentioned above the image space dimensionality is determined by the manner
the eigenvalue descend as shown in figure 2.2

5more details and results can be found in the appendix, section??
6Notice, that not as Helinan’s suggestion, the PCA is applied here on a matrix consists of images of different faces, taken

under three illumination conditions
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Figure 2.2. The coresponding eigenvalues to the above eigenfaces, shown in Fig.??. Only the first four
eigenvalues are significant with respct to the rest. As seen in the upper figure, the first four eigenfaces
convey most of the information and should be sufficient to span the image space of all the images of this
face under varying illumination. The fact that there are four instead of the three expected from Shashua
results [Shashua, 1992], can be explained by he existence of non-linearities such as highlights and cast
shadows.



in the database was calculated using LSE (least square error). The shortest distance might indicate on
the best match.
The discussed Kriegman’s paper claims for the algorithm that is based onFisher’s Discriminant Anal-
ysis. As in eigenfaces methods, a set of basis vectorsW – termedFisher-Faces– which span the image
space, is generated. The method selectsW in such a way that the ratio of the between-class scatter and
the within-class scatter is maximized7. Let the between class scatter matrix be defined as

SB =
cX

i=1

j�ij(�i � �)(�i � �)T

and the within-class scatter matrix be defined as

SW =
cX

i=1

X
�k2�i

(�k � �i)(�k � �i)
T

wherec is the number of classes, i.e. the number of objects,�i is the mean image of class�i, andj�ij
is the number of samples in class�i. If SW is nonsingular, the optimal projectionWopt is chosen as
that which maximizes the ratio of the determinant of the between-class scatter matrix of the projected
samples to the determinant of the within-class scatter matrix of the projected samples, i.e.

Wopt = argmaxW
jW TSBW j

jW TSWW j
= [w1w2 : : : wm]

wherefwiji = 1; 2; : : : ; mg is the set of generalized eigenvectors ofSB andSW corresponding to set
of decreasing generalized eigenvaluesf�iji = 1; 2; : : : ; mg, i.e. SBwi = �iSWwi, i = 1; 2; : : : ; m. An
upper bound onm is c�1. Now, each image is represented as a set of coordinates (a point in the image
space) wherefwig are the axes. The matching is done according to the distance between the points.
These algorithms, though none of them was expanded or currently used, formed the base to a later work
of Yale’s group, which displays a more elaborate object representation termed theIllumination Cone.
The illumination cone is claimed to model the complete set of images of an object with lambertian
reflectance under an arbitrary combination of point light source at infinity, using a small set of train-
ing images (see [Belhumer and Kriegman, 1997] and [Georghiades et al., 1998] for extension to non-
convex objects). The model, fundamentally leaned on the linearity of the space of images of convex and
lambertian objects, taken under different lights, uses integrability constraint to reconstruct surface of
the3D object. Shadows cast by the non-convex parts of the object can then be recovered. Recognition
step can be applied by matching a given novel image to the object with the closest illumination cone.

first, an imageI taken under point light sources is of the form

I = max(Bs; 0)

whereB is the product of the surface normal and the albedo.max(:; 0) sets to zero all the negative
components ofI. The pixels which had been set to zero correspond to the surface points lying on
attached shadows, (the convexity assumption enables to avoid dealing with cast shadows in this stage).
However elegant this solution might be, the fact that shadowed areas in the image convey no infor-
mation cannot be overcome. Thus, partly shadowed three images might not be sufficient to span an
image space. Instead, applying SVD on a matrix consisting of much more than three images and tak-
ing three, most significant, basis vectors denoted byB� is suggested. Moreover, usingB� instead of
B assures robustness. It has been shown in [Belhumeur et al., 1997, Yuille and Snow, 1997] cited in

7Since the images are labeled, class is a set of views of the same object



[Georghiades et al., 1998] that from multiple images where the light source direction is unknown, a
Lambertian surface can be recovered up to a family of three parameters given by aGeneralized Bas-
Relief(GBR) transformation. This family scales the relief (flatten or extrudes) and introduce an addi-
tive plane. Consequently the light source direction differs from the true light by a GBR transformation.
Shadows are preserved under this transformation, thus reconstructing the extreme rays of the cone (im-
ages), the authors first reconstruct the surface (the height function) and then use ray-tracing techniques
to determine which points lie on cast shadows. It should be noted that the vector fieldB � estimated via
SVD may not be integrable and so prior to reconstructing the surface up to GBR, integrability ofB �

is enforced. Though it claims for good results of handling shadowed images, the algorithm offered is
quite complicated for implementation, and involves too much computational steps, in performing tasks
otherwise can be done much simply.

Generalization Versus Factorization

Model based approach algorithms can be dichotomized into two categories, depending on the strategy
adopted in the process of image vectorization. The first, which is common to most algorithms reviewed
so far, is to approach the task byGeneralization. The idea is to try to grasp the widest common
denominator of the set of images, despite the variations. The model should be able to generalize
for novel images of the set, while still repelling images of different, though similar, objects. The
second approach, is toFactorizean image into its variant and non-variant components. The non-variant
components should be common to all the images of the same object and thus serve for recognition
tasks, while the variant components can be used for synthesis of new images, not necessarily of the
same object.
Following are two more algorithms which demonstrate indubitably each of the two approaches. The
quotient image method to be presented here, belongs to the category of factorization methods.

Bilinear Model

The Bilinear Modelof Tenenbaum and Freeman [Freeman and Tenenbaum, 1997] is a representative
example of factorization methods. Given a matrix consisting of several views of different objects, the
offered algorithm is claimed to factorize it into feature vectors, unique to each of the objects and to
those characterizing the source of variation, or, in the paper terminology, to separate “content” from
“style”. As a first step decomposing such a matrix into style and content matrices, the use of SVD is
suggested. (However, the SVD technique does not promise correct decoupling of style from content.)
The generalization task is then to classify observation in the remaining styles (the styles which did not
participate the initial training set), that is, to estimate both content labels as well as style parameters.
Such a task presents a classic “chicken and egg” problem, since neither the style nor the content of the
new data is known priorly. Commonly used techniques of solving this type of problems are iterative.
Assuming the content, style can be approximated and vice versa. The algorithm is hoped to converge
after a countable number of iterations. To simultaneously classify known content in a new style and
estimate new style parameters, TheExpectation Maximization(EM) algorithm is used, which alternates
between estimating the most likely content labels given the current style parameter estimates (E-step)
and estimating the most likely style parameters given current the label estimates (M-step), with likeli-
hood determined by theGaussian Mixture Model[Tenenbaum and Freeman, 1997]. If in addition the
test data are not segmented according to style, style labels can be estimated simultaneously as part of
E-step.



Support Vector Machines

A typical example of generalization is an interesting implementation of theSupport Vector Machines
(SVM) algorithm offered by Pontil and Verri [Pontil and Verri, ] for image classification. In this ap-
plication, eachn-pixel image is a point in ann-dimensional image space. Given a set of points which
belong to either of two classes, a SVM determines the hyperplane leaving the largest possible fraction
of points on the same side, while maximizing the distance between the two classes. This hyperplane is
determined by a special subset of the points of the two classes, named support vectors. More formally:
For a given setS of N pointsxi 2 Rn

with i = 1; 2; : : :N , each pointxi belongs to either of the two classes and thus is given a label
yi 2 f�1; 1g. S is Linearly Separableif there existw 2 Rn andb 2 R such thatyi(w � xi + b) >= 1.
The pair(w; b) defines an hyperplane of equationw � x+ b = 0 namedSeparating Hyperplane. Once
the separating hyperplane parameters were found any new point can be classified according to it. The
novel point is a new view of the object which is characterized by one of the sides of the hyperplane.

2.3 Class Based approaches
Work on Class-Basedsynthesis and recognition of images (mostly with varying viewing po-

sitions) was reported in [Beymer and Poggio, 1996, Basri, 1996, Freeman and Tenenbaum, 1997,
Vetter and Poggio, 1997, Vetter and Poggio, 1996, Vetter and Blanz, 1998, Vetter et al., 1997,
Edelman, 1995, Atick et al., 1997, Rowland and Perrett, 1995]. These methods adopt aRecon-
structionistapproach (see also Chapter 4) in which a necessary condition for the process of synthesis is
that the original novel image be generated, reconstructed, from the database of examples. For example,
the “linear class” of [Vetter and Poggio, 1997, Poggio and Vetter, 1992] works under the assumption
that 3D shapes of objects in a class are closed under linear combinations (in 3D).
Recently, [Sali and Ullman, 1998] have proposed to carry an additive error term – the difference
between the novel image and the reconstructed image from the example database. During the synthesis
process, the error term is modified as well, thus compensating for the difference between the image
space that can be generated from the database of examples and the desired images. That is, iffFig is a
set of feature vectors of similar objects,F0, a novel image of an object of the class is given by

F0 =
X
i

�iFi +�

Where� is the residual error. This residual error can be large especially if a small number of example
views is used, or if the object in the example views are not very similar to the approximated object.
Now, let Fapprox be the closest approximation toF0, given from the linear combination without the
additive error term, i.e.Fapprox =

P
i �iFi. Any linear operatorL applied to both sides of the equation

will yield:
LFapprox =

X
i

�i(LFi)

Constructing a new image of the novel object, under new viewing conditions,� should be transformed
accordingly (since it is not invariant). In the case of changing illumination conditions Ullman and Basri
suggested to use�cos(�) as the optimal estimator for the new approximation error, where� is the
angle between the old and the new illumination vectors, given that both are of the same magnitude.
The lack of invariance of the error term, lessens the algorithm feasibilty, in the sense it necessiates
an exact knowledge of the illumination directions. The reconstructionist approach to be displayed in
Chapter 4 overcomes this limitation, using images of three distinct illuminations, based on the photo-
metric alignment result. Our quotient image method takes farther the general concept, looking for an
illumination invariant term (signature image), instead of an error term, that makes for the difference (in



a multiplicative sense) between the image space spanned by images of objects of a class and the novel
image.

2.4 Reflectance Ratio
Image intensity of a lambertian surface pointI, illuminated by a point light source at infinity can be

defined, in a simplified model, as a product of the surface reflectance properties� with the cosine angle
between the normal to the surface at that point,N T , and the light source directions. This relation can
be expressed as follows :I = �NT � s.
However, none of the components in the above expression can be decoupled, unless the others are
known. Instead, given two points with two (out of the three) similar components, the ratio between the
third components of the two points can be recovered.

For instance, theGradient Ratio Constantsproposed by Wolff et al. [Fan and Wolff, 1997,
Wolff and Angelopoulou, 1994] are derived from the ratio of two corresponding points with similar
albedo, and light source. These quantities are used in addition to the integrability constraint for surface
curvature and shape reconstruction.
Nayar and Bolle [Nayar and Bolle, 1995] estimated theReflectance Ratiofor each region in an image
with respect to its background. This derivation is based on the observation that neighboring points on a
smoothly curved surface have similar surface normals and illumination conditions.
It should be noted that despite the similarity between this work on reflectance ratio, and our notion of
quotient image, both were done independently and specify different uses of the albedo ratio constant.
While Nayar and Bolle use this invariant measure to define regions within asingle image and thus
give a model of the image, which will later serve for recognition tasks, our quotient image is the ratio
between two images of different objects.





Chapter 3

Background and Definitions

3.1 Light Model
1 The reflectance of a surface depends on its roughness and material properties. In general, incident

light is scattered by a surface in different directions. This distribution of reflected light can be described
as a function of the angle of incidence, the angle of emittance, and the wavelength of the incident
light. Consider an infinitesimal surface patch with normaln, illuminated by monochromatic light of
wavelength� from the directions and viewed from the directionv. The reflectance of the surface
element can be expressed as:

r(s; v; n; �)

Now consider an image of the surface patch. If the spectral distribution of the incident light ise(�) and
the spectral response of the sensor iss(�), the image brightness value produced by the sensor is:

I =

Z
s(�)e(�)r(s; v; n; �)d�

for the purpose of discussion, let us assume the surface patch is illuminated by “white” light and the
spectral response of the sensor is constant within the visible light spectrum, thens(�) = s ande(�) = e.
We get:I = s e � R(s; v; n) where�R(s; v; n) is the integral ofr(s; v; n; �) over the visible spectrum.
We have decomposed the result intoR(:) which represents the dependence of surface reflectance on the
geometry of illumination and sensing, and� which may be interpreted as the fraction of the incident
light that is reflected in all directions by the surface. Incident light that is not reflected by the surface
is absorbed and/or transmitted through the surface. Two surfaces with the same distribution function
R(:) can have different reflectance coefficients�. As a result of white-light assumption, the reflectance
coefficient� is independent of wavelength. This enables us to represent the reflectance of the surface
element with a single constant.
The same can be achieved by using an alternative approach which does not require making assumptions
about the spectral distribution of the incident light and the spectral response of the sensor. Consider a
narrow band filter with spectral responsef(�), placed in front of the sensor. Image brightness is then:

I =

Z
f(�)s(�)e(�)r(s; v; n; �)d�

Since the filer is a narrow-band filter, it essentially passes a single wavelength�0 of reflected light. Its
spectral response can therefore be expressed as:

f(�) = Æ(�� �0)

1An extensive part of this section was quoted from [Nayar and Bolle, 1995].
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The image brightness measured with such a filter is:

I = s0e0r(s; v; n; �0)

wheres0 = s(�0) and e0 = e(�0). Once again the reflectance function can be decomposed into a
scattering function and a reflectance coefficient:

I = s0e0�0R0(s; v; n)

In this case, R’(.) represents the distribution of reflected light for a particular wavelength of incident
light. On the other hand, for white light illumination,R(:) represents the distribution computed as an
average over the entire visible light spectrum. However the individual terms in both expressions for
white-light and narrow band filters represent similar effect. In our discussion we will use the following
expression for image brightness:

I = ��R(s; v; n)

The constant� = s �e accounts for the brightness of the light source and the response of the sensor. The
exact functional form ofR(s; v; n) is determined to a great extent by the microscopic structure of the
surface; GenerallyR(:) includes a diffuse component and a specular component [Nayar et al., 1991].
Once again, the reflection coefficient� is the fraction of the incident light that is reflected by the surface.
It represents the reflective power of the surface and will be referred to in this text asSurface Albedo.
A perfectly diffuse orLambertian surface, which is an idealization of a matte surface (as opposed to
glossy or specular surface), has the property that its radiance depends on the illumination, and not on the
viewing direction. Each point on the surface appears equally bright from all directions. The brightness
of the points depends only on the amount of light incident per unit area, which is proportional to the
cosine of the incident angle for a single distant light source. In these casesR(s; v; n) = s � n and we
get

I = �n � s

where��) � , n is the surface normal ands is the point light source direction.
It is important to note that the above expression does not hold for shadowed parts of the surface, thus
an extension of it, or special treatment is needed since most of the images are shadowed. In fact, only
surfaces viewed from the direction of the light source appear without shadows at all. We distinguish
between two types of shadows:Attached ShadowsandCast Shadows. While the latter are shadows
the object casts on itself (or one element in the scene on the other) and must satisfy global conditions,
attached shadows are defined by local geometric conditions. We say that a pointP is in an attached
shadow if the angle between the surface normal and the direction of the light source is obtuse, thus
np � s < 0. An object pointP is in cast shadow if it is obstructed from the light by other parts of
the object, that is cast shadows are typical to objects with concave parts which can cast shadows on
themselves. To reduce the offered algorithm treatment to attached shadows, convexity is assumed.

3.2 Ideal Class of Objects
We define next what is meant by a “class” of objects. In order to get a precise definition on which

we can base analytic methods we define what we call an “ideal” class as follows:

Definition 1 (Ideal Class of Objects) An ideal class is a collection of 3D objects that have the same
shape but differ in the surface albedo function. The image space of such a class is represented by:

�i(x; y)n(x; y)
Tsj

where�i(x; y) is the albedo (surface texture) of objecti of the class,n(x; y) is the surface normal
(shape) of the object (the same for all objects of the class), andsj is the point light source direction,
which can vary arbitrarily.



In practice, objects of a class do have shape variations, although to some coarse level the shape
is similar, otherwise we would not refer to them as aClass. The ideal class could be satisfied if we
perform pixel-wise dense correspondence between images (say frontal images) of the class. The
dense correspondence compensates for the shape variation and leaves only the texture variation. For
example, Poggio and colleagues [Vetter et al., 1997] have adopted such an approach in which the flow
field and the texture variation were estimated simultaneously during the process of synthesizing novel
views from a single image and a (pixel-wise pre-aligned) data base. The question we will address
during the experimental section is what is the degree of sensitivity of our approach to deviations from
the ideal class assumption. Results demonstrate that one can tolerate significant shape changes without
noticeable degradation in performance, or in other words, there is no need to establish any dense
alignment among the images beyond alignment of center of mass and scale.

From now on when we refer to a class of objects we mean anIdealclass of objects as defined above.
We will develop our algorithms and correctness proofs under the ideal class assumption.

3.3 Tasks Definitions
Under the restriction to objects of a class, with lambertian reflectance function, Recognition and

synthesis problems are defined as follows:

Definition 2 (Recognition Problem) GivenN � 3 images ofN objects under3 lighting conditions
andM � N other objects of the same class illuminated under some arbitrary light conditions (each),
identify theM +N objects from a single image illuminated by some novel lighting conditions.

Note that we require a small numberN of objects, 3 images per object, in order to “bootstrap” the
process. We will refer to the3N images as the “bootstrap set”. The synthesis problem is defined
similarly,

Definition 3 (Synthesis (Re-rendering) Problem) GivenN�3 images ofN objects of the same class,
illuminated under3 distinct lighting conditions and a single image of a novel object of the class illu-
minated by some arbitrary lighting condition, synthesize new images of the object under new lighting
conditions.

To summarize up to this point, given the ideal class and the synthesis/recognition problem definitions
above, our goal is:we wish to extend the linear subspace result of [Shashua, 1997] that deals with
spanning the image space�n>s where onlys varies, to the case where both� and s vary. We will
do so by showing that it is possible to map the image space of one object of the class onto any other
object, via the use of an illumination invariant signature image. The recovery of the signature image
requires a bootstrap set of example images, albeit a relatively small one (as small as images generated
from two objects in our experiments). The remainder of the work deals with exactly this problem. We
first describe a “brute-force” approach for addressing the inherent bilinearity of the problem, detailed
next, and then proceed to the main body of this work.





Chapter 4

A Reconstructionist Approach and its
Shortcomings

We wish to span the image space�n>swhere both� ands vary. Lets1; s2; s3 be a basis of three linearly
independent vectors, thuss =

P
j xjsj for some coefficientsx = (x1; x2; x3). Let �1; :::; �N be a basis

for spanning all possible albedo functions of the class of objects, thus� =
P

i �i�i for some coefficients
�1; :::; �N . Let ys be the image of some new objecty of the class with albedo�y and illuminated by
illuminations, i.e.,

ys = �yn
>s = (

NX
i=1

�i�i)n
>(

3X
j=1

xjsj):

Let A1; :::; AN bem � 3 matrices whose columns are the images of objecti, i.e., the columns ofAi

are the images�in>s1; �in>s2; �in>s3. We assume that all images are of the same size and containm

pixels. We have therefore,

min
x;�i

j ys �
NX
i=1

�iAix j
2; (4.1)

which is a bilinear problem in theN + 3 unknownsx; �i (which can be determined up to a uniform
scale). Clearly, if we solve for these unknowns, we can then generate the image space of objecty from
any desired illumination condition simply by keeping� i fixed and varyingx.

One way to solve for the unknowns is first to solve for the pairwise product ofx and�i, i.e., a set of
3N variablesz = (�1x; :::; �Nx). LetA = [A1; :::; AN ] be them� 3N matrix (we assumem >> 3N )
obtained by stacking the matricesAi column-wise. Thus, the vectorz can be obtained by the pseudo-
inverseA# = (A>A)�1A> as the least-squares solutionz = A#ys. Fromz we can decouplex and�i
as follows. Since the system is determined up to scale, let

P
i �i = 1. Then, group the entries ofz into

z = (z1; :::; zN) wherezi is a vector of size three. We have,

x =
NX
i=1

zi

and,

�i =
1

3

3X
j=1

zij

xj
:

There are a number of observations that are worth making. First, this approach is a “recon-
structionist” one in the sense that one is attempting to reconstruct the imageys from the data
set of example images, the bootstrap set (for example, [Vetter et al., 1997, Vetter and Blanz, 1998,
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Figure 4.1. Illustration of the “reconstructionist” approach. (a) original image, (b) image reconstructed
from the the bootstrap set of Fig. 6.1, and (c) image reconstructed from a larger bootstrap set of 20 objects
(60 images). The reconstruction is poor in both cases. See text for further details.

Freeman and Tenenbaum, 1997]). In practice, especially when the size of the bootstrap set is rela-
tively small,Az 6= ys. Moreover, for the same reasons, the decoupling of the variablesxj and�i from
the vectorz adds another source of error. Therefore, before we begin creating synthetic images (by
varyingxj) we are faced with the problem of having only some approximate rendering of the original
imageys. This problem is acute for small bootstrap sets, and therefore this approach makes practical
sense only for large example sets. The second point to note is that there is some lack of ”elegance”
(which inevitably contributes to lack of numerical stability and statistical bias due to over-fitting1) in
blowing up the parameter space fromN + 3 to 3N in order to obtain a linear least-squares solution.

We illustrate the reconstructionist approach in practice in Fig. 4.1. We use a bootstrap set of 10
objects (30 images) displayed in Fig. 6.1, and a bootstrap set of 20 objects (not displayed here). The
results of reconstruction are poor for both sets, although one notices some improvement with the larger
set of 20 objects. The poor reconstruction is attributed to two main sources. First, is the size of the
data base. A data base of 10 (or 20) objects is apparently not sufficient for capturing the variation
among objects in the class. Second, and probably a more dominant source, is the lack of dense pixel-
wise alignment among the database and the novel image. Previous work by [Vetter and Poggio, 1996,
Vetter and Blanz, 1998, Vetter et al., 1997] demonstrate very good results with large databases (around
100 objects) under pixel-wise alignment.

In our approach, detailed below, we achieve two major goals: first, we do not make a reconstruc-
tionist assumption and thereby tolerate small databases without pixel-wise alignment, second we solve
(linearly) for a system ofN + 3 parameters (instead of3N ). As a byproduct of the method of opti-
mization we obtain an intermediate image, an illumination invariant signature image, which can also
be used for purposes of visual recognition.

1Numerical problems due to “blowing” up parameter space for purpose of linearization can be reduced by solving a
heteroscedasticoptimization problem [Meer and Leedan, 1998], which could be quite unwieldy for large systems.



Chapter 5

The Quotient Image Method

Given two objectsa;b, we define the quotient imageQ by the ratio of their albedo functions�a=�b.
Clearly,Q is illumination invariant. In the absence of any direct access to the albedo functions, we
show thatQ can nevertheless be recovered, analytically, given a bootstrap set of images. OnceQ is
recovered, the entire image space (under varying lighting conditions) of objecta can be generated by
Q and three images of objectb. The details are below.

We will start with the caseN = 1, i.e., there is a single object (3 images) in the bootstrap set. Let
the albedo function of that objecta be denoted by�a, and let the three images be denoted bya1; a2; a3,
therefore,aj = �an

>sj, j = 1; 2; 3. Lety be another object of the class with albedo�y and letys be an
image ofy illuminated by some lighting conditions, i.e.,ys = �yn

>s. We define below an illumination
invariant signature imageQy of y against the bootstrap set (in this case againsta):

Definition 4 (Quotient Image) The quotient imageQy of objecty against objecta is defined by

Qy(u; v) =
�y(u; v)

�a(u; v)
;

whereu; v range over the image.

Thus, the imageQy depends only on the relative surface texture information, and thus is independent
of illumination. The reason we represent the relative change between objects by the ratio of surface
albedos becomes clear from the proposition below:

Proposition 1 Given three imagesa1; a2; a3 of objecta illuminated by any three linearly independent
lighting conditions, and an imageys of objecty illuminated by some light sources, then there exists
coefficientsx1; x2; x3 that satisfy,

ys = (
X
j

xjaj)
Qy;

where
 denotes the Cartesian product (pixel by pixel multiplication). Moreover, the image space of
objecty is spanned by varying the coefficients.

Proof: Let xj be the coefficients that satisfys =
P

j xjsj. The claimys = (
P

j xjaj)
Qy follows by
substitution. Sinces is arbitrary, the image space of objecty under changing illumination conditions is
generated by varying the coefficientsxj.

We see that onceQy is given, we can generateys (the novel image) and all other images of the image
space ofy. The key is obtaining the quotient imageQy. Givenys, if somehow we were also given the
coefficientsxj that satisfys =

P
j xjsj, thenQy readily follows:Qy = ys=(

P
j xjaj), thus the key is to
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obtain the correct coefficientsxj. For that reason, and that reason only, we need the bootstrap set—
otherwise, a single objecta would suffice (as we see above).

Let the bootstrap set of3N pictures be taken from three fixed (linearly independent) light sources
s1; s2; s3 (the light sources are not known). LetAi, i = 1; :::; N , be a matrix whose columns are the
three pictures of objectai with albedo function�i. Thus,A1; :::; AN represent the bootstrap set ofN
matrices, each is am � 3 matrix, wherem is the number of pixels of the image (assuming that all
images are of the same size). Letys be an image of some novel objecty (not part of the bootstrap
set) illuminated by some light sources =

P
j xjsj. We wish to recoverx = (x1; x2; x3) given theN

matricesA1; :::; AN and the vectorys.
We define thenormalized albedofunction� of the bootstrap set as:

�(u; v) =
NX
i=1

�2i (u; v)

which is the sum of squares of the albedos of the bootstrap set. In case where there exist coefficients
�1; :::; �N such that

�(u; v)

�y(u; v)
= �1�1(u; v) + :::+ �N�N(u; v)

where�y is the albedo of the novel objecty, we say that�y is in theRational Spanof the bootstrap set
of albedos. With these definitions we show the major result of this paper: if the albedo of the novel
object is in the rational span of the bootstrap set, we describe an energy functionf(x̂) whose global
minimum is atx, i.e.,x = argmin f(x̂).

Theorem 1 The energy function

f(x̂) =
1

2

NX
i=1

j Aix̂� �iys j
2 (5.1)

has a (global) minimum̂x = x, if the albedo�y of objecty is rationally spanned by the bootstrap set,
i.e., if there exist�1; :::; �N such that

�

�y
= �1�1 + :::+ �N�N

Proof: Let ŝ =
P

j x̂jsj, thus,Aix̂ = �in
>ŝ. In vectorized form:

Aix̂ =

2
666666664

�i1n
>

1

�i2n
>

2

:

:

:

�imn
>

m

3
777777775
ŝ =Wiŝ

where�i1; :::; �im are the entries of�i in vector format. The optimization functionf(x̂) can be rewritten
as a functiong(ŝ) of ŝ:

g(ŝ) =
1

2

NX
i=1

j Wiŝ� �iWysj
2

=
X
i

1

2
ŝ>W>

i Wiŝ+
X
i

�iŝ
>W>

i Wys

+
X
i

1

2
�2i s

>W>

y Wys



whereWy is defined similarly toWi by replacing the albedo�i by �y. Because the variables of opti-
mizationx̂; ŝ in f(x̂) and ing(ŝ) are linearly related, it is sufficient to show that the global minimum
of g(ŝ) is achieved when̂s = s. We have,

0 =
@g

@ŝ
= (

X
i

W>

i Wi)ŝ� (
X
i

�iW
>

i )Wys:

Hence, we need to show that X
i

W>

i Wi = (
X
i

�iW
>

i )Wy:

We note that,
W>

i Wi = �2i1n1n
>

1 + :::+ �2imnmn
>

m

Thus, we need to show,

(
X
i

�2i1)n1n
>

1 + :::+ (
X
i

�2im)nmn
>

m =

(
X
i

�i�i1)�y1n1n
>

1 + :::+ (
X
i

�i�im)�ymnmn
>

m

Note that the coefficients of the left hand side are the entries of the normalized albedo�. Thus, we need
to show that

NX
i=1

�2ik = (
NX
i=1

�i�ik)�yk

for all k = 1; :::; m. But this holds, by definition, because�y is rationally spanned by�1; :::; �N .
The proof above was not constructive, it only provided the existence of the solution as the global

minimum of the energy functionf(x̂). Findingmin f(x̂) is a simple technicality (a linear least-squares
problem), but note that the system of equations is simplified due to substitution while decoupling the
role of x̂ and the coefficients�i. This is shown below:

Theorem 2 The global minimaxo of the energy functionf(x̂) is:

xo =
NX
i=1

�ivi

where

vi = (
NX
r=1

A>

r Ar)
�1A>

i ys

and the coefficients�i are determined up to a uniform scale as the solution of the symmetric homoge-
neous linear system of equations:

�iy
>

s ys � (
NX
r=1

�rvr)
>A>

i ys = 0

for i = 1; :::; N

Proof:

0 =
@f

@x̂
= (

X
i

A>

i Ai)x̂� (
X
i

�iA
>

i )ys



from which it follows that:

x̂ = (
X
i

A>

i Ai)
�1(

X
i

�iA
>

i )ys =
X
i

�ivi:

We also have:

0 =
@f

@�i
= �iy

>

s ys � x̂>A>

i ys;

which following the substitution̂x =
P

i �ivi we obtain a homogeneous linear system for�1; :::; �N :

�iy
>

s ys � (
X
r

�rvr)
>A>

i ys = 0

for i = 1; :::; N . Written explicitly,

�1(v
>

1 A
>

1 ys � y>s ys) +:::+ �Nv
>

NA
>

1 ys = 0

�1v
>

1 A
>

2 ys +:::+ �Nv
>

NA
>

2 ys = 0

: : : :

: : : :

: : : :

�1v
>

1 A
>

Nys +:::+ �N(v
>

NA
>

Nys � y>s ys) = 0

(5.2)

Let the estimation matrix (above) be denoted by F, we show next thatF is symmetric. The entriesF ij,
i 6= j, have the form:

Fij = y>s Aj(
X
r

A>

r Ar)
�TA>

i ys = y>s AjBA
>

i ys:

Note thatB is a symmetric matrix (inverse of a sum of symmetric matrices). LetEij = AjBA
>

i , then
it is easy to notice thatEji = E>

ij due to the symmetric property ofB. Thus,Fij = Fji because

Fij = y>s Eijys = (Eijys)
>ys = y>s E

>

ijys = Fji:

The energy functionf(x̂) in eqn. 5.1 consists of a simultaneous projection ofys onto the subspaces
spanned by the columns ofA1, columns ofA2 and so on. In addition, during the simultaneous projection
there is a choice of overall scale per subspace — these choices of scale, the�i, are directly related to the
scaling of the axes represented by�1; :::; �N such that the albedos of the bootstrap set span (rationally)
the albedo of the novel object. WhenN = 1, the minimum off(x̂) coincides withx iff the albedo
of the novel object is equal (up to scale) to the albedo of bootstrap object. The more objects in the
bootstrap set the more freedom we have in representing novel objects. If the albedos of the class of
objects are random signals, then at the limit a bootstrap set ofm objects (3m images) would be required
to represent all novel objects of the class. In practice, the difference in the albedo functions do not cover
a large spectrum and instead occupy a relatively small subspace ofm, therefore a relatively small size
N << m is required, and that is tested empirically in Chapter 6.

Once the coefficientsx have been recovered, the quotient imageQy can be defined against the aver-
age object: LetA be am� 3 matrix defined by the average of the bootstrap set,

A =
1

N

NX
i=1

Ai;

and then the quotient imageQy is defined by:

Qy =
ys

Ax
:

To summarize, we describe below the algorithm for synthesizing the image space of a novel object
y, given the bootstrap set and a single imageys of y.



1. We are givenN matrices,A1; :::; AN , where each matrix contains three images (as its columns).
This is the bootstrap set. We are also given a novel imageys (represented as a vector of sizem,
wherem is the number of pixels in the image). For good results, make sure that the objects in
the images are roughly aligned (position of center of mass and geometric scale).

2. ComputeN vectors (of size 3) using the equation:

vi = (
NX
r=1

A>

r Ar)
�1A>

i ys;

wherei = 1; :::; N .

3. Solve the homogeneous system of linear equations in�1; :::; �N described in (5.2). Scale the
solution such that

P
i �i = N .

4. Computex =
P

i �ivi.

5. Compute the quotient imageQy = ys=Ax, whereA is the average ofA1; :::; AN . Replace
divisions by zero by small numbers.

6. The image space created by the novel object, under varying illumination, is spanned by the
product of imagesQy andAz for all choices ofz.

5.1 A Note About Color
The process described so far holds for black-and-white images, not color images. We describe a

simple approach to handle color images,while still maintaining a grey-value bootstrap set. In other
words, given a bootstrap set of grey-value images, and a color image (represented by RGB channels)
ys of a novel object, we wish to create thecolor image space of that object under varying illumination.
To that end, we will make the assumption that varying illumination does not affect the saturation and
hue composition of the image, only the grey-value distribution (shades of color) of the image.

Given this assumption we first must decouple the hue, saturation and grey-value (lightness) compo-
nents of the imageys from its RGB representation. This is achieved by adopting the Hue Saturation
Value (HSV) color space [Smith, 1978] often used for splitting color into meaningful conceptual cate-
gories. The transformation (non-linear) from RGB to HSV and vice versa can be found, for example,
in MATLAB. The HSV representation decouples the color information into three channels (images):
Hue (tint, or color bias), Saturation (amount of hue present — decreasing saturation corresponds to
adding white pigment to a color), and Value (the luminance, or black-and-white information; the diag-
onal from(1; 1; 1) to (0; 0; 0) of the RGB cube). Saturation can vary from a maximum corresponding
to vivid color, to a minimum, which is equivalent to black-and-white image. Once the H,S, and V
images are created (from the R,G,B images), the novel image we work with is simplyV . The algo-
rithm above is applied and a synthetic imageV 0 is created (a new image of the object under some novel
illumination condition). The corresponding color image is the original H,S and the new V’. Similar
approaches for augmenting black-and-white images using a color prototype image can be found in
[Rowland and Perrett, 1995].

This approach allows using only grey-level images in the bootstrap set, yet accommodates the syn-
thesis of color images from a novel color input image. Fig. 6.13 display examples on synthesizing color
images from a grey-value bootstrap set.





Chapter 6

Algorithm Implementation

We have conducted a wide range of experimentation on the algorithm presented above. Database im-
ages were taken from different sources. We used high and low quality images, taken under controlled
or uncontrolled conditions as well as images that were downloaded from the web, in order to demon-
strate the algorithm feasibility for a wide range of databases qualities. The preprocessing stage needed
depends on the original image conditions. Rough alignment is sufficient in most of the cases. Exper-
iments presented in this chapter demonstrate numerically and visually different stages and aspects of
the algorithm, some of them give empirical proofs to the theorems. At the end of this chapter synthesis
and recognition results are shown. Performance of alternative algorithms is presented in comparison.

6.1 Technical Considerations and Empirical Results
6.1.1 Sources of Database and General Description

Databases from three different main sources of human frontal faces were used to test the recognition
and synthesis algorithms offered above. All the Bootstrap sets were taken out of these databases. A
bootstrap set consists ofN � 3 images ofN subjects (N varies from one to20), taken under3 distinct
illumination conditions, (thesame 3 for all the subjects). Illumination directions and intensities were
not known for two out of the three databases that were used. The novel imagesys were not necessarily
taken from the same source as the bootstrap set images. Description of each database source is given
below.

1. Vetter Database, An high quality database prepared by Thomas Vetter and his associates
[Vetter et al., 1997, Vetter and Blanz, 1998]. It consists of1800 frontal gray level images (8-bit
precision) of200 faces of men and women, with no facial hair, makeup or glasses. The subjects
wore tight swimming caps and were taken with a black background so no mask was needed. The
images were taken under9 illumination conditions. Intensities, directions and the number of
light sources - were not known. Image size was reduced to256 by 256 pixels. We have chosen
a bootstrap set collection of2 to 10 objects, in cases where the novel images were taken from
the same source (Vetter database) and up to20 objects bootstrap set, if the novel images were
taken from other sources (downloaded from the web, or were images of people from our lab). A
collection of10 objects bootstrap set images is shown in Fig. 6.1.

2. Kriegman Database, The database consists of165 gray-level images (8-bit precision) of15
subjects from different ages and races, with different hair style, and with facial hair. The images
were taken under different illumination, face expression, with and without glasses. Intensities,
directions and number of light sources - were not known. Images size was reduced to160 by 220
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Figure 6.1. The bootstrap set of10 objects from Vetter’s database of200 objects.

pixels. The bootstrap set used consists of images of3 faces only, as can be seen in Fig. 6.12a. No
mask was used to cover any part of the images.

3. Belhumeur Database, Gray level Images of14 subjects from different ages and races, with
different hair style and facial hair, taken under wide range of illumination directions (carefully
measured and reported). Images size was reduced to256 by 256 pixels. We have chosen a
bootstrap set collection of4 objects which can be seen in Figure 6.2. No mask was used to cover
any part of the images.

6.1.2 Preprocessing Stage

Some constraints must be met before applying the proposed algorithm on any of the images.

1. Alignment, The images of the bootstrap set and the novel images to be tested are “roughly”
aligned, which means that the center of mass was aligned and scale was corrected. Manual
alignment was done based on lips, pupils and nostrils. That is, face features should be roughly in
the same positions but not necessarily overlapped.

2. Segmentation, Segmentation is needed for images of the bootstrap set, since background objects,
might be different, unaligned or simply not suitable for the lambertian model. Hence, to ensure
high quality results without artifacts in the background, for images that were not taken with
homogeneous background, masks with uniform color should be used. There is no necessity to
segment novel images, used for synthesis, so the background can be seen in the synthesis results.



Figure 6.2. The bootstrap set of4 objects from Belhuemer database

Notice, however that this might cause to illumination inconsistencies in the synthesized images,
between the object and its background. See for example the images at the first row of Fig 6.13.

3. Hair Style, Facial Hair, Makeup and Glasses, All are distinguishing features, yet, not promi-
nent and thus must not practice as key features, performing recognition tasks. In order to demon-
strate recognition results, we used Vetter Database, in which, as was already mentioned, the
models had no facial hair, glasses or makeup and all wore tight swimming caps. Performing
synthesis tasks, it is recommended to mask hair (if possible) in the bootstrap set (we did not do
that!), for the same reasons used to justify segmentation. Facial hair, makeup and glasses can not
be segmented but as shown in Fig 6.12 there is no significant effect on the quality of the synthesis
results.

4. Gray Level, Colors were not used as cues for recognition though they could be. Synthesis tasks
can be performed for color test images even if the bootstrap set is gray level, as is explained in
Section 5.1 and is demonstrated in Fig 6.13.

6.1.3 Quotient Image Generation

The “signature image” is the ratio of two images, however it is not actually an image since its gray
level values can range from zero to infinity. The most substantial problem, as the reader might guess, is
division by zero. The straightforward way to overcome it is to substitute each value below a certain pos-
itive thresholded at the denominator, by the threshold. (say1, if the pixels intensities range from zero
to 255). To preserve consistency and get accurate recovery and synthesis results, it is recommended to
replace all the “small values” in the bootstrap set images with the threshold, and use the “new” images
throughout the entire algorithm. If the chosen threshold is below1, or if the sum of the light coefficients
is less than1, the resultant quotient image should be threshold at the highest end, and then rescaled to
the limited range for display purposes. One should always use the original Q-image for calculations.
Nayar and Bolle [Nayar and Bolle, 1995] which also dealt with intensities ratio (see section 2.4) sug-
gested using the following equation to calculate the ratio between pixels intensities:

p(x; y) =
I1(x; y)� I2(x; y)

I1(x; y) + I2(x; y)
=
�1(x; y)� �2(x; y)

�1(x; y) + �2(x; y)



instead of

q(x; y) =
I1(x; y)

I2(x; y)

(whereI1(x; y), I2(x; y) are intensities at(x; y), and�1(x; y),�2(x; y) are the corresponding albedos)
to avoid division of non-zero values by zero. However, their proposal can not be accomplished in our
synthesis process since in reconstruction ofI1(x; y) given p(x; y) and I2(x; y) one has to solve the
following equation:

I1(x; y) =
I2(x; y)(1 + p(x; y))

1� p(x; y)

Now if I2(x; y) = 0 thenp(x; y) = 1 and the denominator of the reconstruction expression is zero.

6.1.4 Invariance of the Quotient Image

Our first test, shown in Fig 6.3, was to empirically verify that the quotient image is indeed invariant
to illumination changes. The Q-images where thresholded (above one standard deviation) for display
purposes. One can see that a bootstrap set of10 objects yields a fairly invariant quotient image in
spite of the large variation in the illumination of the novel images tested. The Q-images should also be
invariant to the choice of the light sourcess1; s2; s3 used in the bootstrap set. This is demonstrated in
Fig. 6.5 where the quotient image was generated against different choices ofs1; s2; s3 for the bootstrap
object set (Vetter’s database includes9 images per object thus enabling us to imperiment with various
bootstrap sets of the same 10 objects). Note that the novel image that was tested was not part of Vetter’s
database but an image of one of our lab members.

6.1.5 Accuracy of the Light Coefficients

Theorem 1 defines the condition needed for accurate recovery of the coefficients vectorx – the
albedo of the novel object�y should be rationally spanned by the bootstrap set. However, selecting the
bootstrap set images one can never assure in advance that the chosen images would satisfy the above
condition. Neither a “magic number” to determine the bootstrap set size, nor a measure of quality of
the images to be selected, exist. Consider for example a bootstrap set which consists of3 images of the
same object as the novel object. The albedo�y is rationally spanned by the bootstrap set albedo since
it is the same albedo. In this case, recovery of thex would be precise. Now, addition of more objects
to the bootstrap set would lessen the accuracy of the coefficients calculated, since the influence of the
images of the non-identical objects cannot be set to zero.
Since a selection in advance of the most similar images, is not feasible we have adopted the following
rule of thumb: we assume that it is more probable that as the bootstrap set size increases, the probability
that it would rationally span the albedo of the novel image would, in most of the cases, increase (note,
that the example above is an exeption). The next imperiment was designed to test this.
The accuracy of the coefficient vectorx is measured by the invariance of the quotient image against
varying illumination, hence Fig. 6.4 displays Q-images generated by various bootstrap sets, as follows:
we have tested the case whereN = 1, i.e., a bootstrap set of a single object (row b), compared to a
bootstrap set ofN = 10 but where the reference object is the same object used in caseN = 1 (instead
of the average object), shown in row (f). Therefore, the difference between rows (c) and (f) is solely
due to the effect of Theorem 1 on computing the coefficient vectorx.
In order to rule out any special influence the average object has on the process (recall that oncex has
been recovered it was suggested to use the average object as the reference object for the quotient
image) we have also tested the caseN = 1 where the images were deliberately blurred (to simulate an
average object), yet the Q-images (row d) have not improved (compared to row c).
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Figure 6.3. Testing the invariance of the quotient image to varying illumination. (a) Original images of
a novel face taken under 5 different illuminations. (b) The Q-images corresponding to the novel images
above computed with respect to the bootstrap set of Fig. 6.1.
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Figure 6.4. Testing accuracy of Theorem 1 against the size of the bootstrap set. (a) Original images taken
under 4 distinct light conditions. (b) Bootstrap set ofN = 1 objects used for generating the Q-images of
(a) displayed in row (c). Note that the quotient images are not strictly invariant as they change with the
illumination. (d) Q-images of the bootstrap set (N = 1) displayed in (e). Note that the bootstrap set is
blurred in order to test whether using the “average” object whenN > 1 makes a difference compared to
the machinery described in Theorem 1. We see that blurred images do not improve the invariance of the
Q-images. (f) Q-images of (a) against the object (b) but where the coefficient vectorx was recovered using
theN = 10 bootstrap set of Fig. 6.1. The comparison should be made between rows (c) and (f). Note that
in (f) the images are invariant to changing illumination more so than in (c).



Figure 6.5. Q-images should be invariant to the 3 illumination conditions of the database images, as long
as they span a 3 Dimensional subspace. The 3 Q-images were generated against different bootstrap sets of
the same 10 objects but of different triplets of light sources. Note that the novel object is not part of the
original database of 200 objects, but of a member of our lab.
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Figure 6.6. Image Synthesis Example. (a) Original image and its quotient image (b) from theN = 10 boot-
strap set. The quotient image is generated relative to the average object of the bootstrap set shown in (c),(d)
and (e). Images (f) through (k) are synthetic images created from (b) and (c),(d), (e) using Proposition 1.

In Figs. 6.6 and 6.7 we demonstrate the results of image synthesis from a single input image and
the bootstrap set. Note the quality and the comparison between results of bootstrap sizeN = 10 and
N = 2 (there are differences but relatively small).

To complete this set of experiments, we have conducted the following tests, which measure almost
directly the accuracy of the light coefficients. Given3 images of the same subject,y1; y2; y3 under3
distinct light coefficients (base images) and a fourth image of the subject taken under a different light
ys, we term “real” the coefficients needed to generate the fourth image out of the first three. That is
ys =

P3
i=1 �iyi where�1; �2; �3 are the “real” light coefficients. The Belhumeur database which was

taken under controlled lighting conditions, (precisely measured) was used here, to display a comparison
between the “real” light coefficients (the�-s) to those that were calculated using Q-image algorithm
(noted here byx1; x2; x3). The comparison can be seen graphically in Figure 6.8. For clarity, each
calculated (Q-image) coefficient was compared separately to the “real” one. The comparison that was
done for a set of varied illuminations, detailed in Table 6.1, shows that though the calculated coefficients
and the “real” do not actually overlap, the differences are comparatively small. The variations between
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Figure 6.7. Image synthesis examples. (a) Original images under 3 distinct lighting conditions and the
synthesized images (b) using linear combinations of those 3 images. The synthesized images using the
original single image (c) and aN = 10 bootstrap set are shown in (d). Finally, (e) is anN = 2 bootstrap
set for generating the synthesized images (f) from the single original image (c).

the coefficients are presumably due to shape variations between the faces, which were not taken into
consideration in the algorithm. Varying the bootstrap set size in this experiment did not effect the
coefficient accuracy significantly. It is presumably due to large variations between the bootstrap set
objects compared to its size.

No. Horizontal Vertical
Angle Angle

1 0 0
2 0 -35
3 -50 0
4 50 0
5 0 45
6 0 10
7 0 20
8 0 -20
9 -10 0

Table 6.1. Illumination Directions.

6.1.6 Rank of Estimation Matrix

In the previous subsection we have tested the accuracy of the light coefficientsx1; x2; x3. Their
correctness depends on exact estimation of the scale coefficients�1 : : : �N . The�-s can be derived
quite easily from a set of linear equations, termed anEstimation Matrix, (see eqn 5.2, in Chapter 5).
This estimation matrix is noted byF . To solve for the�-s one can use SVD. We have found out,
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Figure 6.8. Comparison between the light coefficients for9 different illumination conditions, detailed in
Table 6.1, using images from Belhumeur database (see Fig. 6.2). For clarity, the comparison is done for
each of the3 light coefficients saperately.



empirically, for all the databases sets we have worked with that the firstN � 1 singular values are
almost equal, while the last one is considerably smaller, regardless of the size ofN . This suggests that
the rank ofF is N � 1, that is we have one degree of freedom in determining the scale of the�-s.
Since the accuracy ofx is conditioned by a correct scaling (see Theorem 2), it should be done wisely.
We have chosen to scale the�-s so that

PN
i=1 �i = N . This is a point of fragility in the algorithm: for

example, in case of only one object in the bootstrap set, there is no scale compensation for the albedo,
so we actually assume that the albedos of the novel object�y and of the bootstrap set object�a are
similar. However, in the common cases this is the best estimation that can be made.
The next subsection relates to the meaning of the�-s.

6.1.7 The Meaning of the Scale Coefficients

In Chapter 5 we have stated (by definition) that the albedo�y of objecty is rationally spanned by the
bootstrap set if there exist coefficients�1 : : : �N such that

�y =
�21 : : : �

2
N

�1�1 : : : �N�N

We would now like to ask in what way these�-s function as scale coefficients. The expression above
suggests that the�-s are correlated with the average intensity, since�i is a scalar that multiplies the
reflectance values�i(x; y) of each point(x; y) of thei-th bootstrap set of object images. To check that
we have averaged the pixel intensities of each image. Since each bootstrap set object is represented by3

images, we than take the mean of the3 averaged values and plot it against the corresponding� as shown
in Figure 6.10 according the values in Table 6.2. The graph is almost a straight line, i.e. there is an
indubitable correlation between the�-s and the average intensity of the corresponding object images,
checked for a bootstrap set of9 objects. This supports (empirically) our assumption. In Figure 6.9 the
bootstrap set images are displayed with the corresponding�-s. Note, that the darkest images, have the
lowest�-s. Yet, if the bootstrap set images have similar total intensities and the subjects do not differ in
their skin color, the values of the� are with small variance from one. That is, computation time can be
saved setting all the�-s to one in advance. Smarter option would be to calculate the average intensities
of the bootstrap images and to use it to determine the�-s in advance, scaling so that

PN
i=1 �i = N .

averageintensity �

71 0.76
86 0.93
88 0.95
89 0.96
94 1.02
95 1.04
98 1.05
107 1.15
107 1.15

Table 6.2. � versus avarge image intensitiy.

6.2 Synthesis Results
We have used the Belhumer database, that was taken under supervised illumination conditions (that

were carefully measured and reported) to test the similarities between original images and synthesized
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Figure 6.9. Selection of bootstrap set images from Belhumeur database. The value of� is written under
each image. Notice that the darkest images have the lowest�-s.
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Figure 6.10. The value of� is plotted against the averaged images intensities of each of the corresponding
bootstrap set object (taken from belhumer database) The almost straight line indicates high correlation
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Figure 6.11. The five images in the first row are original images taken from Belhumeur database illuminated
from the center, up, down ,right and left correspondingly. The exact values of the light directions are written
in the third row in correspondance (The left values in the brackets stand for the horizontal angle, and the
right ones for the vertical). The synthesized images in the third row simulate these illumination conditions.

ones. Five images of one of the subject,y1 : : : y5, were selected from the database, in which the illu-
mination directions are center, up, down, right and left, as can be seen in the first row of Figure 6.11.
The exact values of the light directions are displayed in the third row in correspondence. Now, taking
3 images of this subject with distinct illuminations, we’ve computed the light coefficients for each of
the 5 original images. Using these calculated light coefficients we have synthesized new images of
subjecta given only one image ofa and a bootstrap set of4 other objects taken under the same3 base
illuminations. The resulting synthesized images are displayed in the second row of Figure 6.11. The
bootstrap set is shown in Figure 6.2.

Synthesizing images for practical uses, one can always supervise the quality of the images in the
bootstrap set. Yet, it is still challenging to test the algorithm with low quality images. The next experi-
ment was imperimented with another bootstrap set shown in Fig. 6.12a. A bootstrap set of three objects
varying in hair-style, uncropped, and generally taken under much less attention compared to the boot-
strap set of Fig. 6.1 or Fig. 6.2 is sufficient, nevertheless, to generate quite reasonable re-renderings as
shown in Fig. 6.12d. The degradation is indeed graceful and affects mainly the degree of illumination
changes, not as much the quality of the resulting image (compared to the source image).

So far we have imperimented with objects and their images from the same database (Vetter’s
database, Belhuemer’s database). Even though the input image is of an object outside the bootstrap
set, there is still an advantage in having all the images taken with the same camera, same conditions
and same quality level. Our next imperiments were designed to test the algorithm on images taken
from sporadic sources, such as magazines or the Web. The bootstrap set in all imperiments is the one
displayed in Fig. 6.1.

Fig. 6.13 shows four novel (color) images of celebrities (from magazines) and the result of the syn-
thesis procedure. These images are clearly outside the circle of images of the original database of
Vetter, for example the images are not cropped for hair adjustment and the facial details are visibly
different from those in the bootstrap set.
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Figure 6.12. Image synthesis using other, lower quality, bootstrap sets (Yale data sets). The bootstrap
set (N = 3) is shown in (a). Note that the objects vary considerably in appearance (hair style and facial
hair) and are thus less controlled as in Vetter’s data set. The source image (b), its quotient image (c) and
synthesized images (d).

6.3 Recognition Results
The Q-images are illumination invariant signatures of the objects in the class. We can therefore make

use of the invariance property for purposes of recognition. Vetter’s data base contains 200 faces each
under 9 lighting conditions, making a total of 1800 images. We used a bootstrap set of 20 objects (60
images) and created the Q-images of all the 200 objects — these 200 images serve as the database, we
refer to as Q-database, for purposes of recognition. Given any of the 1800 source images, its Q-image
is created from the bootstrap set and matched (by correlation) against the Q-database while searching
for the best match.

We made two tests (summarized in Fig. 6.14). In the first test the Q-database was generated from
images under the same illumination (we have 9 images per object in Vetter’s database). The results of
recognition were compared to correlation were the database for correlation where those images used
for creating the Q-database. The match against the Q-database was error free (0%). The match against
the original images, instead of the Q-images, had 142 mismatches (7:8%). In the second test the images
used for creating the Q-database were drawn randomly from the set of 9 images (per object). The match
against the Q-database produced only 6 mismatches (0:33%), whereas the match against the original
images produced 565 mismatches (31:39%). The sharp increase in the rate of mismatches for the
regular correlation approach is due to the dominance of illumination effects on the overall brightness
distribution of the image (cf. [Shashua, 1997, Adini et al., 1997]).

We also made a comparison against the “eigenfaces” approach explained in??, which involves rep-
resenting the database by its Principle Components (PCA). In the first test, PCA was applied to the
bootstrap set (60 images) and 180 additional images, one per object. In the first test the additional im-
ages were all under the same illumination, and in the second test they were drawn randomly from the set
of 9 images per object. The recognition performance depends on the number of principle components.
With 30 principle components (out of 240) the first test had 25 mismatches(1:4%), and the second test
had 120 mismatches(6:6%). The performance peaks around 50 principle components in which case
the first test was error free (like in the Q-image method), and the second test had 18 mismatches(1%).
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Figure 6.14. Recognition results on Vetter’s database of 1800 face images. We compare the Q-image
method with correlation and Eigenfaces. See text for details.

To summarize, in all recognition tests, except one test of equal performance with PCA, the Q-image
outperforms and in some cases in a significant manner, conventional class-based approaches.

6.4 Other Routes for a Signature Image?
The quotient image approach is based on the idea that an illumination invariant imageQ = �y=�a

can be used to map the image space of objecta to the image space of objecty using a single imageys
of y. The equation(

P
j xjaj)
Q generates the image space ofy (Proposition 1). There are two points

worth making.
First,Q is analogous to an ”error correction term”. However, it is important to distinguish between

error correction and an illumination invariant term. For example, letŷ be the reconstructed image
of ys from the bootstrap set (after solving forx; �i that minimizes eqn. 4.1 in the “reconstructionist”
approach), and let�Q be defined so thatys = ŷ 
 �Q. There is no reason to expect that�Q would be
illumination invariant. This is demonstrated in Fig. 6.15b showing that the�Q images are not invariant
to changing illumination. In other words, we would not obtain an admissible image space ofy, or
correct re-rendering, if we simply correct for the reconstruction error by a Cartesian product with�Q.

Second, notice that the optimization criteria described in Theorem 1 involves a somewhat complex
definition of what constitutes a “family” of albedo functions (rational span). This is unlike the more
intuitive definition, that would typically adopt under such circumstances, that albedo functions are
closed under linear combinations (the definition adopted in the optimization criteria behind eqn. 4.1 for
the “reconstructionist” approach). However, the rational span definition has an important role because
through it we were able to remove the intrinsic bilinearity among the illumination parametersx =

(x1; x2; x3) and the albedo parameters�1; :::; �N and obtain a linear system forN+3 variables (instead
of 3N if the linear span definition were to be adopted). The importance of all this depends on the
numerical behavior of the system. In principle, however, one could solve forx from eqn. 4.1 and
use it for obtaining the quotient image as defined in Proposition 1. In other words, in the algorithm
described in the previous section, simply replace steps 2–4 with the procedure described in Chapter 4
for obtainingx. We expect a degradation in performance due to numerical considerations (due to the
enlargement of parameter space). The results of doing so are illustrated in Fig. 6.15c. The quotient
images clearly show a dependence on illumination change, indicating that the parametersx1; x2; x3
were not recovered well.
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Figure 6.15. Alternatives approaches for a quotient image. (a) original images under varying illumination.
(b) Quotient images defined as a multiplicative ”error” image, i.e., the ratio of the original image and the
least-squares reconstructed image from the bootstrap set. Note that the resulting quotient images are not
illumination invariant. (c) Quotient images defined by Proposition 1 wherex is the minima of eqn. 4.1
(instead of eqn. 5.1). Again the images are not illumination invariant.

In summary, the combination of an illumination invariant correction term (the quotient image) and a
simple optimization criteria (eqn. 1) — with the price of somewhat complicating the definition of when
albedos form a “family” — gives rise to both practical and a proven correct procedure for class-based
re-rendering (under the terms stated of ideal class definition and Lambertian surfaces).





Chapter 7

Summary and Future Research Directions

We have presented a class-based, image-based, re-rendering and recognition method. The key element
of our approach was to show that under fairly general circumstances it is possible to extract from a
small set of example images an illumination invariant “signature” image per novel object of the class
from a single input image alone. We have proven our results (under the ”imaginary” world of ideal
class assumption) and demonstrated the applicability of our algorithm on the class of real pictures of
human faces. In other words, we have shown that in practice a remarkably small number of sample
images of human frontal faces (in some of our experiments images of two objects were sufficient for
making a database) can generate photo-realistic re-rendering of new objects from single images.
We have also shown that the synthesis algorithm can be applicable for images taken from different
sources, with different qualities. Color images can also be “re-lighted” and look natural even by using
a gary-level bootstrap set.
In spite of the fact that, in comparison of the synthesized images with the real ones, one can detect
the differences, i.e. the illumination conditions cannot be imitated precisely, the perception of the ar-
tificially generated images is as if they were real. Moreover, the preciseness in determination of the
light coefficients can be drastically improved increasing the size of the bootstrap set. In addition, small
variations of the light coefficients, supervised manually should yield the desirable results. Finally, one
should always keep in mind that non-linear light effects such as highlights or cast shadows cannot be
simulated, and an expansion of the algorithm is needed to handle these phenomena.
The “signature” image presents an alternative representation of an object due to its invariance to illumi-
nation variations, while, yet preserving the object unique features. The recognition algorithm offered
in this thesis, was tested on a database of1800 images of200 subjects, taken under9 different lights.
The subjects were of the same race and age, wore tight sweeming caps, had no glasses, makeup of
facial hair and all the images were taken with a black background. Thus the only cues for recognition
were the face features. The results outperform by far conventional methods, as is indicated by the very
low error rate (below0:5%). The algorithm applicability is also expressed in terms of simplicity, low
complexity and short computational time. Furthermore the demand for precise determination of the
light coefficients, which is essential in synthesis tasks, can be weakened.
The ideas presented in this paper can, without too much difficulty, be turned into a system for image
composing and re-lighting of general faces, with very high quality of performance. To that end, further
implementation elements may be required, such as using collections of bootstrap sets (while choosing
among them manually or automatically using sparse optimization approaches like Support Vector Ma-
chines [Vapnik, 1995]), and automatic or semi-automatic tools for morphing the bootstrap set onto the
novel image in order to better compensate for changes of shape (such as [Vetter et al., 1997]).
The next challenging step might be integration between three sources of variations: Reflectance prop-
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erties, using objects of the class, illumination conditions and geometric variations. That is to uniquely
define an object of a class disregarding geometric or photometric variations, or to simulate variety of
viewing conditions given only one image of an object, based on the appearance of other objects of the
class.
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