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Abstract We present a novel variational approach for si-
multaneous segmentation of two images of the same ob-
ject taken from different viewpoints. Due to noise, clutter
and occlusions, neither of the images contains sufficient in-
formation for correct object-background partitioning. The
evolving object contour in each image provides a dynamic
prior for the segmentation of the other object view. We call
this process mutual segmentation. The foundation of the pro-
posed method is a unified level-set framework for region and
edge based segmentation, associated with a shape similarity
term. The suggested shape term incorporates the semantic
knowledge gained in the segmentation process of the image
pair, accounting for excess or deficient parts in the estimated
object shape. Transformations, including planar projectivi-
ties, between the object views are accommodated by a reg-
istration process held concurrently with the segmentation.
The proposed segmentation algorithm is demonstrated on a
variety of image pairs. The homography between each of the
image pairs is estimated and its accuracy is evaluated.

Keywords Mutual segmentation · Level sets · Shape ·
Perspective transformation · Planar projective homography

1 Introduction

Segmentation is defined as the task of partitioning the image
into foreground (object) and background regions. Since the
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concept of object is subjective and application dependent,
segmentation is inherently difficult. Moreover, even when
the object of interest is well-defined, segmentation is chal-
lenging. This is so since in the imaging process the inherent
properties of the inspected object may be corrupted due to
noise, occlusion, illumination conditions and more. General
syntactical assumptions such as continuity and smoothness
of edges and homogeneity of semantic regions should thus
be complemented with semantical prior information on the
objects to be segmented.

This paper addresses the segmentation of an image pair
of the same object in different appearances and poses. We
can then redefine segmentation as the task of extracting the
common object in both images. Uncertainty regarding the
object boundaries can be resolved having two instances in-
stead of one. Nevertheless, this setting provides only an im-
plicit prior. The “double” segmentation problem is thus far
from being trivial.

Mathematical modeling of prior information and its in-
corporation in object extraction frameworks is an active
field of research. Segmentation is commonly inferred by
minimizing an objective functional. Thus, the compatibil-
ity of the object-background partition with the image data
is constrained subject to a general model on natural im-
ages, e.g. (Mumford and Shah 1989). Specific information
on the segmented object, based on its expected character-
istics, is incorporated via additional constraints. These may
include shape, color, texture, etc. Model-based approaches
embody common properties of the object class. Refer for
example to (Holtzman-Gazit et al. 2006) which extracts thin
structures such as blood vessels, or to (Rochery et al. 2006)
which incorporates geometric information to segment road
networks. When the object shape is specified, resemblance
of the segmented object to the reference shape can be also
imposed. Prior-based segmentation methods, e.g. (Cremers
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and Soatto 2003; Cremers et al. 2006; Riklin-Raviv et al.
2004, 2005, 2007; Rousson and Paragios 202) assume the
existence of a well-defined shape prior and use it to extract
occluded object boundaries. The statistical approaches, e.g.
(Chen et al. 2002; Cremers et al. 2003; Huang et al. 2004;
Leventon et al. 2000b; Rousson and Paragios 202; Tsai and
Yezzi 2003), capture possible shape variability by employ-
ing a set of similar but not identical shape priors. These
methods, however, depend on the availability of a compre-
hensive set of priors or a segmented instance of the object of
interest.

The proposed framework is useful when explicit prior
knowledge is limited or not available. Instead, two images
of the same object are given. Had good segmentation been
possible in either image, it could have supported the seg-
mentation of the other. However, in the absence of additional
information on the object of interest, segmentation of each
image by itself is prone to errors. Specifically, background
regions can be mistakenly labeled as foreground (excess) or
vice versa (deficiency). The resulting (possibly erroneous)
segmentation of one of the images cannot provide a reliable
prior for the other.

We therefore suggest a coupled segmentation process for
both images, in which the information gained in the evolv-
ing segmentation of one image is a dynamic prior for the
other. The segmentation and thus the prior information are
refined along the process. We call this mutually supporting
evolution process mutual segmentation.

Recent works of similar spirit include (Rother et al.
2006), (Vedaldi and Soatto 2006) and (Yezzi et al. 2003).
In the cosegmentation method of (Rother et al. 2006), both
images are simultaneously partitioned assuming that the
common property of the foreground regions is their color
probability density function (modeled by histograms) which
should be also significantly different from the color distri-
bution of the background. The unsupervised segmentation
algorithm presented in (Vedaldi and Soatto 2006) uses the
best SIFT matches of Harris-Affine features to extract the
common objects in image pairs. Similarly to (Yezzi et al.

2003), we presume that the object instances resemble in their
shapes, thus having the benefit of being specific to the par-
ticular object of interest and insensitive to color and (in most
cases) illumination variation. Yet, while (Yezzi et al. 2003)
handles images corrupted only by noise, where at least one
of them nearly contains sufficient information to be seg-
mented by itself, we deal with cluttered images corrupted
by noise and occlusions. Possible transformations, includ-
ing projectivities between the object views, are accommo-
dated by employing a concurrent segmentation and registra-
tion process as in (Riklin-Raviv et al. 2007).

We use the level set framework (Osher and Sethian 1988)
for segmentation, where the segmenting curve is the zero
level of a level set function that evolves subject to some pre-
defined constraints. This parameterization-free representa-
tion of the curve allows automatic changes in its topology.
The shape of the object being segmented is dynamically en-
coded by assigning the positive and the negative levels of
the level-set function to the foreground and the background
image regions respectively. Transformations applied on the
level-set coordinate system transform the represented shape
accordingly. This enables a meaningful definition of a dis-
similarity measure between shapes that accommodates para-
metric transformations.

The mutual segmentation approach goes beyond the con-
cepts of shape-based segmentation, because a well-defined
shape prior is not available and the matching is between two
possibly corrupted and noisy images. The main difficulty re-
sides in labeling regions where the aligned images do not
overlap. Obviously, erroneous foreground-background clas-
sifications spoil the segmentation of both images. Figure 1
exemplifies labeling ambiguity. The regions pointed by the
red arrows could be attributed either to the boot (according
to one of the images) or to the background (according to the
other).

The conflict between two possible interpretations of
jointly segmented images has never been addressed before.
Note that when more than two object instances are avail-
able, this ambiguity can be resolved by applying a majority

Fig. 1 a, b Two instances of a boot. c Superposition of the aligned
boot images. There is an inherent labeling ambiguity in aligned im-
age regions that correspond to different objects. The regions pointed

by the red arrows could be attributed either to the boot (accord-
ing to one of the images) or to the background (according to the
other)
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rule (Duci et al. 2002). Having only two images, we favor
the image partitioning that minimizes a biased shape dis-
similarity measure between the images. The definition of
this biased shape term is one of the important contributions
of the proposed study.

We suggest a novel framework for mutual segmentation
of two images of the same object related by projective trans-
formation.1 Segmentation is carried out concurrently with
registration of the evolving contours. The foundation of the
proposed method is the construction of two level set func-
tions, one for each image. Their evolution is controlled by
the data contained in the associated image together with the
shape information gained in the segmentation process of the
other image. The shape information is embedded in a biased
shape dissimilarity measure that accommodates either defi-
cient or excess parts in the extracted object shape. This mea-
sure is also invariant to planar projective transformations.
The outcomes of the proposed algorithm include segmenta-
tion of the object appearances in both images and the recov-
ery of the homography that aligns them.

The paper is organized as follows. In Sect. 2 we present
the Bayesian rationale of the segmentation problem together
with the energy formulation to which it leads. We review
some of the state-of-the-art level-set segmentation meth-
ods: the region based approaches of Chan and Vese (2001)
and Paragios and Deriche (2002), the Geodesic Active con-
tour method introduced by Kichenassamy et al. (1995) and
Caselles et al. (1997), and the edge alignment constraint
suggested by Vasilevskiy and Siddiqi (2001) and indepen-
dently by Kimmel and Bruckstein (2003). We also outline
the shape similarity measure suggested in (Riklin-Raviv et
al. 2007) for prior based segmentation. Section 3 introduces
the biased shape dissimilarity measure which plays a key
role in the proposed mutual segmentation algorithm. The
embedding of the transformation model within the varia-
tional framework and the minimization of the resulting func-
tional are also considered. The mutual segmentation algo-
rithm together with the implementation details are presented
in Sect. 4. Experimental results are provided in Sect. 5. We
conclude in Sect. 6.

2 Statistical Set Up and Prior Art

2.1 General Principles

Most segmentation approaches, despite their diversity, are
motivated by the same Gestalt principles of perception, i.e.
simplicity (minimum description length), similarity (homo-
geneity of semantic regions), continuity, proximity and clo-
sure. The image is then partitioned according to a subset

1A preliminary version of this work was published in (Riklin-Raviv et
al. 2006).

of these rules using various mathematical tools. Commonly,
segmentation is obtained by minimizing an objective func-
tional either by discrete (graph-based) approaches such as
Markov Random Fields or by the continuous formulation of
calculus of variations. While in this paper we use PDEs to
solve segmentation problems, Bayesian statistical inference
formulation is used to set a common language between the
discrete and continuous approaches.

Given an image I (x) we would like to infer the delin-
eating curve C between an object and its background. This
is done via the maximization of the probability distribution
function (PDF) P(C|I ), using Bayes law:

P(C|I ) ∝ P(I |C)P (C). (1)

The prior probability P(C) will be reformulated to have
“syntactic” and “semantic” components. Classical active
contours methods, such as the snake algorithm of Kass et
al. (1988), use parametric representation C = C(p). In this
formulation the term − logP(I |C) = ∫

g(|∇I (C)|)ds is
the “external force”, where ds is the arc-length. The term
− logP(C) = ∫

(α|Cp|2 + β|Cpp|2)dp is the “internal
force”. The maximization over all possible separating curves
is done by minimizing − logP(C|I ). Note that here the
prior is syntactic since it dictates the degree of smoothness
of the curve and is not directly related to the class of images
or objects to be segmented. Our main interest in this work is
in a special kind of “semantic” prior that depends on another
image of the object.

In the level set framework for curve evolution (Osher and
Sethian 1988) an evolving curve C(t) is defined as the zero
level of a level set function φ:Ω → R at time t :

C(t) = {x ∈ Ω | φ(x, t) = 0}. (2)

Following (Chan and Vese 2001), we use the Heaviside
function of φ

H(φ(x)) =
{

1 φ(x) ≥ 0,

0 otherwise
(3)

as an object indicator function, assigning the positive and the
negative levels of φ to the foreground and the background
image regions respectively. We can now rephrase our PDF
as

P(φ|I ) ∝ P(I |φ)P (φ). (4)

Next we elaborate on the conditional probability term
P(I |φ).

2.2 Region-Based Data Term

Let I :Ω → R
+ denote a gray level image, where Ω ⊂ R

2 is
the image domain. Let ω ⊂ Ω be an open subset, not neces-
sarily connected, of the image domain Ω . In the spirit of the
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Gestalt laws of similarity and proximity, we define a bound-
ary C = ∂ω that delimits homogeneous regions in Ω . In par-
ticular, we use the two-phase formalism, in which the im-
age is partitioned into foreground and background regions.
Thus, given a feature G, e.g. the average gray level, we look
for a curve C that maximizes the difference between two
scalars u+ and u− defined as follows:

u+ = A+
∫

ω

G+(I (x))dx,

u− = A−
∫

Ω\ω
G−(I (x))dx.

(5)

The superscripts + and − correspond to the feature values
in ω ⊂ Ω and in Ω/ω respectively. Hereafter we denote x ≡
(x, y), A+ = 1/

∫
ω

dx and A− = 1/
∫
Ω\ω dx. The possibly

different functions G+ and G− are defined on the object
and the background domains, respectively.

In general, one can use a set of features {Gi} correspond-
ing to two sets of scalars {u+

i }, {u−
i }. The features chosen

should be related to the expected image homogeneity. In
the work of Chan and Vese (2001) the image is approxi-
mated by a piecewise constant function whose values are
given by G+

1 (I (x)) = G−
1 (I (x)) = I (x). Hence u+

1 = Iin

and u−
1 = Iout are the average gray levels in the object re-

gions and in the background regions respectively. In that
formulation it is assumed that the PDF of the gray levels
in each region is a Gaussian with σ = 1. More elaborate
characterization of the partition can be obtained using color
histograms or a Gaussian mixture model. For texture-based
segmentation the Gabor filters may be used as in (Sandberg
et al. 2002) and in (Sagiv et al. 2006). The definition of
G(I) could be further extended as suggested in (Vese and
Chan 2002), where u+, u− ∈ C1(R2) are smooth approxi-
mations of the regions in I . In this study we use the av-
erage gray levels and the variance (Vese and Chan 2002;
Lorigo and Faugeras 2000):

G+
2 (I ) = (I (x) − Iin)

2, G−
2 (I ) = (I (x) − Iout )

2. (6)

We may now express the term −logP(I |φ) via a region
based cost functional with a well defined integration do-
main:

ERB(φ) =
2∑

i=1

∫

Ω

[(G+
i (I (x)) − u+

i )2H(φ)

+ (G−
i (I (x)) − u−

i )2(1 − H(φ))]dx. (7)

An elegant statistical formulation representing the region-
based term was introduced in (Zhu and Yuille 1996), fol-
lowed by (Paragios and Deriche 2002) and reviewed in (Cre-
mers et al. 2007).

The evolving boundary C(t) is derived from φ(t) us-
ing (2). For a given φ(t) and {Gi}, the feature values u+

i

and u−
i are updated at each iteration according to (5). The

level set function φ evolves via gradient descent:

φRB
t = δ(φ)

2∑

i=1

[G−
i (I (x)) − u−

i )2−(G+
i (I (x)) − u+

i )2],
(8)

where δ is the derivative of the Heaviside function H .

2.3 Edge-Based Data Terms

2.3.1 Geodesic Active Contour: Data Part

Edge based segmentation approaches usually define the ob-
ject boundaries by the local maxima of the image gradients.
Let C(s) = (x(s), y(s)) be the parametric description of a
planar contour C: [0,L] → R

2 where s is an arc-length pa-
rameter and L is the length of C.

Let ∇I (x, y) = (Ix, Iy)
T = (

∂I (x,y)
∂x

,
∂I (x,y)

∂y
)T denote

the vector field of the image gradients. The Geodesic Ac-
tive Contour (GAC) term (Caselles et al. 1997) is given by

EGAC(C) =
∫ L

0
gGAC(|∇I (C(s))|)ds. (9)

The function gGAC is inversely proportional to |∇I |, thus,
EGAC(C) is minimized when the curve C is located on
the maxima of the absolute values of the image gradients.
We unorthodoxly split the GAC term, (9), into two terms.
This splitting will be justified in Sect. 3.3 where both terms
will appear in the final energy formulation. The data term
(DGAC) is given by

EDGAC(C) =
∫ L

0
gDGAC(|∇I (C(s))|)ds (10)

where

gDGAC(|∇I |) = − |∇I |2
1 + |∇I |2 . (11)

This term vanishes as the gradient magnitudes decrease to
zero and attains −1 asymptotically for large gradients. Ex-
pressing this term in a level-set framework we obtain

EDGAC =
∫

Ω

gDGAC(|∇I |)|∇H(φ(x))|dx, (12)

with the associated gradient descent equation:

φDGAC
t = δ(φ)div

(

gDGAC(|∇I |) ∇φ

|∇φ|
)

. (13)

The GAC functional includes another geometrical term
that will be described in Sect. 2.4.
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2.3.2 Edge Alignment Term

Segmentation can be refined by constraining the level set
normal directions to align with the directions of the image
gradients as suggested in (Kimmel and Bruckstein 2003;
Vasilevskiy and Siddiqi 2001). The edge alignment term
(EA) defined in (Kimmel 2003) takes the form EEA(C) =
− ∫ L

0 |〈∇I (x(s)), 
n(s)〉|ds, where 〈·, ·〉 denotes inner prod-
uct and 
n(s) = {−ys(s), xs(s)} is the exterior normal to the
curve C. The expression for EEA(C) is an integration of the
projection of ∇I on the normal 
n(s) along the curve. A mi-
nor contribution of this paper is the level-set formulation of
the alignment term:

EEA = −
∫

Ω

∣
∣
∣
∣

〈

∇I,
∇φ

|∇φ|
〉∣∣
∣
∣|∇H(φ)|dx (14)

where ∇φ(x)/|∇φ(x)| is normal to the level-set φ in x. The
associated gradient descent equation is

φEA
t = −δ(φ)sign(〈∇φ,∇I 〉)
I, (15)

where 
I is the Laplacian. This equation is similar to the
one derived in (Kimmel 2003).

2.4 Syntactic Prior: Geometry

The prior probability P(C) in (1) is determined by the mini-
mum description length criterion (based on the Gestalt prin-
ciple of simplicity). That is P(C) ∝ exp(−ν|C|), ν > 0
(Cremers et al. 2007), where |C| = ∫

ds = ∫ |Cp|dp is the
curve length. An equivalent representation, using the level
set formulation, takes the form:

|C| = ELEN =
∫

Ω

|∇H(φ(x))|dx. (16)

This functional measures the length of the curve and usually
serves as an indicator for the curve smoothness (Chan and
Vese 2001). Minimizing (16) with respect to φ, we obtain
the associated Euler Lagrange equation for φ:

φLEN
t = δ(φ)div

( ∇φ

|∇φ|
)

. (17)

Combining ELEN and EDGAC, (defined in (12)), we get the
usual form of the GAC functional (Caselles et al. 1997;
Kichenassamy et al. 1995),

EGAC =
∫

Ω

gGAC(|∇I |)|∇H(φ(x))|dx, (18)

where gGAC = 1 + gDGAC = 1/(1 + |∇I |2). The gradient
descent equation is

φGAC
t = δ(φ)div

(

gGAC(|∇I |) ∇φ

|∇φ|
)

. (19)

2.5 Semantic Prior: Shape Term

In the previous subsections we described the edge-based,
region-based and smoothness constraints that control the
segmentation based on the image data and on general as-
sumptions on natural images. Here and in the next section
we present several forms of the shape term, denoted by
ESHAPE, that are derived from the semantic knowledge on
the object of interest.

Denoting a prior shape representation by φ̃:Ω → R, the
statistical formulation is then

P(φ,T |I, φ̃) ∝ P(I |φ, φ̃, T )P (φ|φ̃, T )P (T , φ̃)

= P(I |φ)P (φ|φ̃, T )P (T )

where T is the transformation that aligns φ and φ̃ and pair-
wise independence of I , φ̃ and T is assumed. The logarithm
of the inverse conditional probability term − logP(φ|φ̃, T )

can be substituted by a dissimilarity measure D(φ,T (φ̃))

between shape representations φ̃ and φ. Some previous ap-
proaches, e.g. (Leventon et al. 2000a, 2000b), used:

D(φ,T (φ̃)) =
∫

Ω

(φ(x) − T (φ̃(x)))2dx

where φ and T (φ̃) are signed distance functions. This mea-
sure is affected, however, by the size of the background
area Ω \ ω, see (Cremers and Soatto 2003) and references
therein. Moreover, in a cluttered image, when the weight of
this measure in the segmentation functional is high, objects
that do not correspond to the prior shape are ignored (Cre-
mers et al. 2006). To avoid these drawbacks several mod-
ifications to control the integration domain have been sug-
gested (Cremers and Soatto 2003; Cremers et al. 2006;
Rousson and Paragios 202). In all dissimilarity measures
between level-set functions (represented as signed distance
functions) the alignment term T is restricted to be an isome-
try. This restriction guarantees that the transformed level-set
function φ̃T = T (φ̃) will preserve the form of a signed dis-
tance function.

Recently, we suggested (Riklin-Raviv et al. 2007) to use
the square difference between the Heaviside functions of φ

and φ̃ as a dissimilarity measure between the shape repre-
sentations, where φ and φ̃ are not necessarily distance func-
tions2

D(φ, φ̃|T ) =
∫

Ω

[H(φ(x)) − H(T (φ̃(x)))]2dx. (20)

This formulation enables the introduction of the projective
alignment term T between the shapes. Furthermore, D does

2A significant gain from not enforcing φ to be a distance function is
the elimination of the process of re-distancing (Gomes and Faugeras
2000; Strain 1999).
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not depend on the size of the background area Ω \ ω. The
shape term (20) is suitable when the prior φ̃ is perfect and
constant in time. In the following section, a different dis-
similarity measure is suggested, which is more appropriate
when φ̃ is the evolving (and imperfect) segmentation of the
other image.

3 Mutual Segmentation with Projectivity

In this paper we consider the segmentation of two images,
I1 and I2 that depict two imperfect (occluded, noisy etc.) in-
stances of an object. The segmentation is done by perform-
ing a joint maximum posteriori probability (MAP) approxi-
mation via an alternating maximization. Indeed, since a reli-
able prior φ̃ is not available, each evolving contour in its turn
is employed as a prior for the other. The two level set func-
tions φ1 and φ2 are alternately evolved. At even iterations
the segmenting level-set is φ = φ1 and the prior is given by
φ̃ = φ2. At odd iterations φ = φ2 and φ̃ = φ1. The statistical
inference problem takes the form:

P(φ, φ̃, T |I1, I2) ∝ P(I1, I2|φ, φ̃, T )P (φ|φ̃, T )P (φ̃)P (T ).

We assume that P(T ) is flat such that no projective trans-
formation is a-priori preferred. The assumption that the
two views are related is incorporated by initializing T by
the identity transformation. The crucial observation is that
P(C|C̃, T ) (or equivalently P(φ|φ̃, T )) which is defined
via a dissimilarity measure between curves is not symmetric
with respect to the two curves. This is so since P(φ1|φ2, T )

is not necessarily equal to P(φ2|φ1, T ). The symmetric
shape dissimilarity measure defined in (20) is thus not suit-
able for mutually evolving level-set functions. In the next
subsection we present a biased shape dissimilarity term
which is more appropriate.

3.1 Biased Shape Dissimilarity Measure

Consider the image pair in Figs. 2a–b. Both images have de-
ficiencies. In Fig. 2a the hoop is absent. In Fig. 2b a portion
of the creature’s leg was erased. When the final segmenta-
tion of Fig. 2a is the prior for the segmentation of Fig. 2b
and vice versa, the imperfections of each segmentation spoil
the other as shown in Figs. 2e–f. Note that the left leg is in-
correctly segmented in Figs. 2e, while the hoop in Fig. 2f is
not segmented at all.

The images in Figs. 2c–d contain superfluous hoops lo-
cated in different places. When each segmentation is the
prior for the other, using the unbiased dissimilarity measure
in (20), the contours of the superfluous hoops in Figs. 2c–d
undesirably appear in the segmentation shown in Figs. 2h, g
respectively.

The discrimination between integral object parts (leg,
hoop) and other surrounding objects (superfluous hoops)
raises a fundamental question which extends beyond the
scope of the current work and relates to perceptual organiza-
tion of images in general. Given more than two images, this
difficulty can be tackled by employing a majority decision
rule to determine the object-background partition. However,
for mutual segmentation of two images, another decision
tool or source of information is needed. For simplicity, we
assume either of the following “world states”:

1. The images to segment have (mostly) deficiencies. Ap-
plication of this rule is demonstrated in Figs. 2i–j to re-
solve labeling ambiguities between Fig. 2a and Fig. 2b.
Thus, for example, the missing part in the leg of the crea-
ture shown in Fig. 2b has been labeled as part of the ob-
ject.

2. The images to segment have (mostly) excess parts.
When this rule is applied to Figs. 2c–d, the superfluous
hoops are labeled as background, as shown in Figs. 2k–l.

3. The prior shape is perfect. Examples for the application
of this rule are shown in Figs. 2e–h.

Refer again to the dissimilarity measure in (20). The cost
functional integrates the non-overlapping object-background
regions in both images indicated by H(φ) and H(T (φ̃)).
This is equivalent to a pointwise exclusive-or (xor) opera-
tion integrated over the image domain. We may thus rewrite
the functional as follows:

D(φ, φ̃|T ) =
∫

Ω

[H(φ)(1 − H(φ̃T ))

+ (1 − H(φ))H(φ̃T )]dx. (21)

To simplify the expression we denote T (φ̃) ≡ φ̃T . Note that
the expressions (20) and (21) are identical, since H(φ) is
equal to (H(φ))2 when H(φ) is a strictly binary function.
There are two types of disagreement between the labeling
of H(φ) and H(φ̃T ). The left term in (21) does not van-
ish if there exist image regions labeled as object by the
image data (φ) and labeled as background by the shape
prior (φ̃T ). The right term in (21) does not vanish if there
exist image regions labeled as background by the image
data and labeled as object by φ̃T . Inserting a weight pa-
rameter μ ≥ 0, the relative contributions of the terms are
changed.

ESHAPE(φ, φ̃, T ) =
∫

Ω

[μH(φ)(1 − H(φ̃T ))

+ (1 − H(φ))H(φ̃T )]dx. (22)

The associated gradient descent equation for φ is then

φSHAPE
t = δ(φ)[H(φ̃T ) − μ(1 − H(φ̃T ))]. (23)
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Fig. 2 (Color online) a, b Input
images with deficiencies (leg,
hoop). c, d Input images with
excess parts (extra hoops).
e Segmentation (red) of the
image in (a) using (b) as a prior.
f Segmentation of the image
in (b) using (a) as a prior.
g Segmentation of the image
in (c) using (d) as a prior.
h Segmentation of the image
in (d) using (c) as a prior.
i, j Mutual segmentation results
for images (a) and (b)
respectively. k, l Mutual
segmentation results for images
(c) and (d) respectively. The
images are related by projective
transformation. The recovered
parameters are shown and
compared in Table 1

Now, if excess parts are assumed, the left penalty term
should be dominant, thus μ > 1. Otherwise, if deficiencies
are assumed, the right penalty term should be dominant and
μ < 1.

3.2 Projective Invariance

The mutual shape term ESHAPE in (22) depends on the trans-
formation T between the evolving level set function φ and
the level-set function associated with the other image φ̃. We
assume that T can be modeled by planar projective transfor-
mation. Let C(t) and C̃(t) be the two planar active contours
associated with the images I and Ĩ , respectively. Recall that
C(t) and C̃(t) are the zero levels of the level set functions
φ(t) and φ̃(t) (respectively) at time t . Let p ∈ C and p′ ∈ C̃

denote corresponding points on C and C̃. Their homoge-
neous coordinates x and x′ are related by planar projective
homography, i.e. x′ = Hx where

H =
⎡

⎣
h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤

⎦ ∈ R
3×3 (24)

is the homography matrix. Specifically,

x′ = h11x + h12y + h13

h31x + h32y + h33
,

y′ = h21x + h22y + h23

h31x + h32y + h33
.

(25)

Equivalently we can define T (φ(x)) ≡ φ(x′) = φ(Hx),
where H is a linear transformation applied on the homo-
geneous coordinate of φ. Thus, given φ and φ̃, we would
like to infer the homography H that minimizes the “dis-
tance” (22) between φ and φ̃T . The eight unknown ra-
tios of the homography matrix entries, ĥk = hij /h33 where
k = 1, . . . ,8, are re-calculated at each iteration for the cur-
rently updated φ and φ̃. The PDEs for ĥk are obtained by
differentiating (22) with respect to each

∂ĥk

∂t
=

∫

Ω

δ(T (φ̃))[(1 − H(φ)) − μH(φ)]∂T (φ̃)

∂ĥk

dx. (26)

The derivation of ∂T (φ̃)/∂ĥk can be done as in (Riklin-
Raviv et al. 2007).

At each iteration, the level set functions of the image pair
are evolved alternately with the recovery of the transforma-
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Fig. 3 (Color online) a, b Noisy (a) and corrupted (b) images of
the same object taken from different view points. The initial contours
are drawn in red. c, d Successful mutual segmentation results (red).
e Superposition of the two images to demonstrate the misalignment.
f–h Segmentation of each image by itself. The noisy image (g), (h) was
segmented twice with different weights of smoothness term: g The

contribution of the smoothness term WLEN(t)(φLEN
t ) was restricted to

[−1,1] (refer to Sect. 4.1 for details). The contour “mistakenly” fol-
lows image gradients that are due to noise. h The smoothness term
WLEN(t)(φLEN

t ) was further stressed, i.e. its contributions were multi-
plied by two. The segmenting contour (red) is smoother but the gaps
between the fingers are not well extracted

tion that aligns them. In Sect. 4.2 we discuss further aspects
of this process.

3.3 Unified Cost Functional

A unified cost functional that is based on the data of the
images to segment, on general assumptions with respect to
properties of natural images and on the segmentation curves
both images, takes the form

E(φ) = WRBERB(φ) + WLENELEN(φ)

+ WDGACEDGAC(φ) + WEAEEA(φ)

+ WSHAPEESHAPE(φ), (27)

with (7), (16), (12), (14), (22).
Note that the GAC term (see (18)) is split into the

smoothness term ELEN (see (16)) and the DGAC term
EDGAC (see (12)) where each has its own weight. This al-
lows more flexibility in the functional construction, in par-
ticular when the edge based term (DGAC) should be ignored
while the smoothness term is most desirable. Refer for ex-
ample to Fig. 3.

The evolution of the level-set functions φ in either of
the images is determined at each iteration by φ(t + 
t) =
φ(t) + φt
t . The associated gradient descent equations φt

are derived using the first variation of the functional (27)

φt = WRBφ̌RB
t + WLENφ̌LEN

t + WDGACφ̌DGAC
t

+ WEAφ̌EA
t + WSHAPEφ̌SHAPE

t . (28)

The terms φ̌TERM
t are obtained by slight modification of

the gradient descent terms φTERM
t determined by (8), (17),

(13), (15), (23). This issue and the determination of the
weights WTERM for the different terms in (28) are discussed
in Sect. 4.1.

4 Implementation

The essence of the proposed method is the simultaneous
evolution of two level-set functions. Each evolves on its cor-
responding image and is controlled by the data of the asso-
ciated image and by the level-set function associated with
the other image. The planar projective transformation be-
tween these two level-set functions is updated at each iter-
ation. The algorithm is quite robust to the selection of the
initial level-set function φ0(x). The only limitation is that
image regions labeled as foreground in the first iteration, i.e.
ω0 = {x | φ0(x) ≥ 0}, will contain a significant portion of
the object to be segmented, such that the calculated image
features will approximately characterize the object region.
Formally, we assume that G+(I (ω0)) ≈ G+(I (ω̂)), where
ω̂ is the actual object region in the image. When there ex-
ists an estimate of the average gray levels of either the fore-
ground or the background image regions, this restriction can
be eliminated.

We run the algorithm until the following stopping condi-
tion is met:

max(d(φ1), d(φ2)) < s
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where s is a predefined threshold and

d(φi) =
∑

x∈Ω

|H(φt+
t
i (x)) − H(φt

i (x))|, i = 1,2.

Here, φt+
t
i (x) is the i level set function corresponding to

image i at time t + 
t .

4.1 Setting the Weights of the Energy Terms

When the solution to an image analysis problem is obtained
by minimizing a cost functional, the issue of setting the rel-
ative weights of the energy terms is unavoidable. However,
in the absence of a satisfying method for the determina-
tion of these parameters, this subject is usually marginal-
ized. A guaranteed but time consuming approach is to set
the weight parameters by an exhaustive search on the pa-
rameters grid, followed by qualitative examination of the
solutions obtained. In the context of image processing, al-
gorithms for setting parameters are considered robust if the
search space can be significantly reduced or if the parame-
ters should be only slightly tuned for a class of similar im-
ages. Being tedious and subjective this heuristic is not suit-
able for most real world applications.

In contrast, we propose a heuristic that adaptively deter-
mines the relative weight of the contributions of the terms
of the functional to the evolution of the level set function, as
expressed in (28). The proposed heuristic is based on the as-
sumption that the contributions of the energy terms in each
iteration should be balanced. The following observations are
considered:

1. The relative weight between the length term and the area
terms (region based terms) is squared as the image size is
increased.

2. The weight of region based term is affected by the units
of the feature chosen to characterize the regions. The
simplest example is the gray level range which is usually
chosen to be either [0,1] or [0,255].

3. The terms that are based on the image gradients may have
high dynamic range due to noise or sharp discontinuities.

4. All terms are affected by the instantaneous form of the
level set function φ which evolves in time. The dynamics
induced by φ should be taken into consideration.

The suggested scheme for automatic and dynamic weight
setting is as follows. Let

φ̌TERM
t (x) = B(φTERM

t (x))

=

⎧
⎪⎨

⎪⎩

UB if φTERM
t (x) > UB ,

LB if φTERM
t (x) < LB ,

φTERM
t (x) otherwise

(29)

where

UB = std(φTERM
t (x)), LB = −UB.

Here, std(φt (x)) stands for the standard deviation of φt (x)

over Ω . The functional B(.) operates on φTERM
t to bound its

dynamic range. Next, the range of |φ̌TERM
t | is normalized

WTERM = 1/max
x

|φ̌TERM
t (x)|. (30)

Note that the clipping (see (29)) affects only extreme values
of φTERM

t , that is φ̌TERM
t (x) = φTERM

t (x) for most x ∈ Ω .
Since W is recalculated at each iteration it is time depen-
dent. This formulation enables an automatic and adaptive
determination of the weights of the energy terms.

4.2 Recovery of the Transformation Parameters

Minimizing the cost functional (22) with respect to the eight
unknown ratios of the homography matrix entries is a com-
plicated computational task. Direct update of the parameters
via their the derivatives (26) may lead to an undesirable local
minimum as discussed in (Riklin-Raviv et al. 2007). We thus
suggest to perform a rough search in the 8 dimensional para-
meter space, working on a coarse to fine set of grids, before
applying the gradient based Quasi-Newton method (Cole-
man 1994–2005). The former search, done only once, sig-
nificantly reduces the search space and is intended to lead
to the region of attraction of the global minimum. The gra-
dient based algorithm, applied in every iteration, tunes the
search result based on the updated level-set functions. Fur-
ther discussion on the application of the Quasi-Newton op-
timization and its significance for the recovery of the trans-
formation parameters can be found in (Riklin-Raviv et al.
2007).

Since the registration of each evolving level-set function
toward the other is done independently, the mean error (or
max error) between the entries of the matrices H1→2 and
H−1

2→1 (or H2→1 and H−1
1→2) could be used as a criterion for

obtaining optimal recovery of the transformation parame-
ters. Here we assume that the probability of reaching a local
minimum that satisfies H1→2 ≈ H−1

2→1 is small. Table 1 and
Table 2 present the estimated errors in the recovered homo-
graphies based on this comparison. The exact formalism of
the error estimate is discussed in Sect. 5.

4.3 Numerical Considerations

We use the finite difference method, in which a grid of nodes
spaced by a parameter h is set up over the image domain.
The differential operator is approximated by finite difference
equations operating on neighboring nodes. Following (Chan
and Vese 2001), a smooth approximation of the Heaviside
function Hε is used:

Hε(φ) = 1

2

(

1 + 2

π
arctan

(
φ

ε

))

. (31)
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Table 1 Comparison of the entries of the matrices H1→2 and H−1
2→1

obtained through the registration phase in the mutual segmentation al-
gorithm applied to image pairs presented in Figs. 2–7. The error esti-

mate is calculated according to Err(ĥi ) = |ĥi − p̂i |/|ĥi + p̂i | where ĥi

and p̂i is the ith entry of the normalized matrices H1→2 and H−1
2→1

respectively

Hom. ratios Fig. No. ĥ1 ĥ2 ĥ3 ĥ4 ĥ5 ĥ6 ĥ7 ĥ8

H1→2 Fig. 2 0.858 0.406 −12.12 −0.298 0.964 −27.93 −0.0002 −0.0009

H−1
2→1 0.868 0.408 −12.11 −0.302 0.969 −27.90 −0.0001 −0.0009

Err(ĥi ) 0.0058 0.0025 0.0004 0.0067 0.0026 0.0005 0.3333 0

H1→2 Fig. 3 1.0502 0.1496 0.67 −0.1271 0.9857 11.41 −0.0001 0.0008

H−1
2→1 1.0573 0.1504 1.2125 −0.1283 1.0027 11.79 −0.0001 0.0007

Err(ĥi ) 0.0034 0.0027 0.2882 0.0047 0.0085 0.0164 0 0.0667

H1→2 Fig. 4 1.0898 −0.1315 11.4 0.1276 1.0277 −11.55 −0.0018 0.0003

H−1
2→1 0.9921 −0.1289 10.88 0.2303 1.0272 −11.25 −0.0010 0.0018

Err(ĥi ) 0.0469 0.0100 0.0233 0.2870 0.0002 0.0132 0.2857 0.7143

H1→2 Fig. 5 1.003 −0.1158 8.58 0.0359 0.9188 −0.16 0.0005 −0.0001

H−1
2→1 1.002 −0.1158 8.61 0.0364 0.9189 −0.12 0.0005 −0.0001

Err(ĥi ) 0.0005 0 0.0017 0.0069 0.0001 0.1429 0 0

H1→2 Fig. 6 0.9469 0.1461 17.92 −0.2128 1.031 −29.9 −0.0019 −0.0009

H−1
2→1 0.9503 0.1564 17.97 −0.2240 1.025 −29.6 −0.0018 −0.0007

Err(ĥi ) 0.0018 0.0340 0.0014 0.0256 0.0029 0.0050 0.0270 0.1250

H1→2 Fig. 7 0.9162 0.3374 −12.75 −0.2865 0.9016 8.79 −0.0005 −0.0003

H−1
2→1 0.9183 0.3396 −12.53 −0.2882 0.9034 8.81 −0.0005 −0.0003

Err(ĥi ) 0.0011 0.0032 0.0087 0.0030 0.0010 0.0011 0 0

Table 2 The mean of the errors over the entries of the homography
matrices H1→2 that were estimated in each of the experiments. The
estimated errors for each entry of the respective matrices are presented
in Table 1

Fig. No. Mean error

Fig. 2 0.0440

Fig. 3 0.0488

Fig. 4 0.1726

Fig. 5 0.019

Fig. 6 0.0278

Fig. 7 0.0023

The evolution of φ at each time step is weighted by the
derivative of the regularized form of the Heaviside function:

δε(φ) = dHε(φ)

dφ
= 1

π

ε

ε2 + φ2
.

4.4 Algorithm

We summarize the proposed algorithm assuming the fol-
lowing setup. The input is two images I1 and I2 of the
same object, taken from different viewpoints. The object
contours are approximately coplanar. Two level-set func-
tions φi , i = 1,2 that correspond to images Ii are alternately

evolved, based on the data of the corresponding image and
the other level-set function.

1. Choose initial level-set functions φi , i = 1,2, for exam-
ple standard circular (or elliptic) cones. The intersections
of the initial level-sets with the corresponding image do-
mains form the initial contours.

2. Initialize the homography matrices H1→2 and H2→1 to
the identity matrix.

3. For each image Ii , compute the values u+ and u− us-
ing (5), based on the current object-background partition
defined by the corresponding level-set function.

4. At even iterations evolve the level-set function φ = φ1

using the other level-set function φ̃ = φ2 as a prior. At
odd iterations evolve the level-set function φ = φ2 using
the other level-set function φ̃ = φ1 as a prior.

5. Apply the corresponding projective transformation on
the instantaneous prior φ̃ using (25) with the parameters
estimated in the preceding time step.

6. Update φ using the gradient descent equation (23).
7. Update the transformation parameters hk using the deriv-

atives (26). The relation H1→2 = H−1
2→1 can be used to

speed up (or enhance) the recovery of the transformation
parameters.

8. Repeat steps 3–7 until convergence. A convergence cri-
terion is stated in Sect. 4.



Int J Comput Vis (2008) 79: 231–245 241

Fig. 4 (Color online) a, b Input
images with their initial
contours (red). The images are
of the same object (boot) taken
from different viewpoints.
c Superposition of the two
images to demonstrate the
misalignment. f, g Successful
mutual segmentation results
(red). d, e Segmentation using
an unbiased shape dissimilarity
measure, (20). The evolving
segmentation of each image
spoiled the other

Fig. 5 (Color online) a, b Input
images with their initial
contours (red). c Superposition
of the two images to
demonstrate the misalignment.
d, e Segmentation of each
license plate image by itself
using the Chan-Vese level-set
method for segmentation.
f, g Successful mutual
segmentation of license plate
images with corrupted digits
taken from two different
viewpoints

5 Experiments

We exemplify the mutual segmentation algorithm on im-
age pairs related by projective transformations. The in-
put images are shown with the initial and final segment-
ing contours. The mismatch between the respective object
views is demonstrated by superposition of the images. The

accuracy of recovered homographies is tested by a com-

parison between the H1→2 and H−1
2→1. Table 1 exempli-

fies such comparisons done on the homographies recov-

ered for the image pairs shown in Figs. 2–7. The term

Err(ĥi) = |ĥi − p̂i |/|ĥi + p̂i | is our suggested error mea-

sure for the recovered transformation parameter ĥi , where
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Fig. 6 (Color online)
a, b Different images of stop
signs taken from different
viewing positions with their
initial contours (red). a Original
image courtesy of Erik Henne,
URL:
www.erikhenne.indexxxx.com.
b Original image courtesy of the
Friedman archives, URL:
www.friedmanarchives.com/
Chicago. c, d Successful
detection of stop signs using the
proposed mutual segmentation
algorithm. e, f Final level set
functions of the stop-sign
images obtained by using the
mutual segmentation algorithm

ĥi and p̂i are the i-est entries of the normalized matrices
H1→2 and H−1

2→1 respectively. Table 2 presents the mean
error for each of the estimated homography matrices. In all
the experiments we set dt = 0.1 and ε = 1. The weights of
the gradient descent terms (8) are adaptively determined as
described in Sect. 4.1. Figure 3 shows two images of a hand
taken from two different view points. The misalignment be-
tween the hand instances is shown in Fig. 3e. Successful
segmentation of both images, using the mutual segmenta-
tion algorithm with μ < 1, is demonstrated in Figs. 3c–d.

Figures 3f–h demonstrate unsuccessful segmentation of
each image by itself. Figures 3g–h display two possible seg-
mentations of the noisy instance of the hand. In the segmen-
tation shown in Fig. 3h the smoothness term, (16), has been
stressed by multiplying its weight WLEN by 2. The segment-
ing contour is thus smoother but does not extract precisely
the narrow regions between the fingers.

The boot images in Figs. 4a–b were mutually segmented
using the proposed algorithm with μ < 1. The delineat-
ing contour (shown in Figs. 4d–e) precisely traces the boot
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Fig. 7 (Color online) a, b Input
images with their initial
contours (red). c, d Successful
segmentation of chess pieces
using the proposed mutual
segmentation algorithm. The
final delineating contour
overcomes clutter and
occlusions

boundaries while correctly completing the occluded parts.
The misalignment between the boot instances is shown in
Fig. 4c. The necessity of the biased shape dissimilarity
measure is demonstrated in Figs. 4f–g. In these figures we
used the unbiased dissimilarity measure (see (20)) and the
evolving segmentation of each image spoiled the segmenta-
tion of the other. Figure 5 demonstrates mutual segmenta-
tion of two images of a license plate with corrupted digits.
Figures 5a–b present the license plate images with the ini-
tial contour (red). The misalignment between the images is
shown in Fig. 5c. Assuming excess parts we set μ > 1. Suc-
cessful mutual segmentation results are shown in Figs. 5d–e.
For a comparison, Figs. 5f–g display undesired segmenta-
tion results obtained when each image is segmented by it-
self. Figure 6 shows the ability of the proposed method to
detect the common object (stop sign) in an image pair de-
spite the clutter. The images have been downloaded from
different web sites (see caption). Note that the poses and sur-
roundings of the stop signs are different. As in all other ex-
amples, the algorithm was tested on gray level images, thus
the color cue is not used. The contours (red) in Figs. 6c–d
precisely extract the common object based on its shape. Fig-
ures 6e–f present the final level-set functions. Mutual seg-
mentation of the chess pieces shown in Fig. 7 demonstrates

the ability of the algorithm to deal with both clutter and par-
tial occlusions. Note that though the objects segmented are
definitely not planar, the comparisons of the homographies
between the object contours in Table 1 show that homogra-
phy is a reasonable approximation of the transformation.

6 Discussion

We presented a method for concurrent, mutually-supporting
segmentation of two images of the same object, taken from
different view points. Having two images instead of one pro-
vides redundancy that is employed by using each instance to
guide the segmentation of the other. Unlike previous meth-
ods, the concept of a perfect shape prior is replaced by in-
formation gathered from incomplete instances.

Segmentation is metaphorically similar to cliff climbing.
Prior-based segmentation is analogous to situations where
someone climbs first and secures a rope to the cliff. If this is
not possible, the combined effort of at least a duo is needed.
The two climb in turns: at each stage one person holds the
cliff and helps the other climb. The main contribution of this
paper is the formulation of this duo shape term, that enables
solution of the mutual segmentation problem.
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Having two object instances is helpful in regions where
the aligned images agree, but there is an inherent ambiguity
where they don’t. In this paper, we address this ambiguity
via the biased shape dissimilarity measure. Note that if more
than two images are available, the ambiguity can be resolved
by majority rule. This is a possible topic for future research.
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