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Abstract

We suggest a novel variational approach for mutual seg-
mentation of two images of the same object. The images are
taken from different views, related by projective transfor-
mation. Each of the two images may not provide sufficient
information for correct object-background delineation. The
emerging segmentation of the object in each view provides
a dynamic prior for the segmentation of the other image.
The foundation of the proposed method is a unified level-set
framework for region and edge based segmentation, asso-
ciated with a shape similarity term. The dissimilarity be-
tween the two shape representations accounts for excess or
deficient parts and is invariant to planar projective transfor-
mation. The suggested algorithm extracts the object in both
images, correctly recovers its boundaries, and determines
the homography between the two object views.

1. Introduction

Object segmentation is challenging in the presence of
noise, shadowing, saturation or occlusion. Hence, the com-
monly used edge-based or region-based segmentation tech-
niques are insufficient. Prior knowledge on the object of
interest could facilitate the segmentation process, but such
information is usually limited.

Consider the segmentation of two images of the same ob-
ject. In many cases, each image by itself cannot be correctly
segmented, hence background regions can be mistakenly la-
beled as foreground (excess) or vice versa (deficiency). Had
good segmentation been possible in either image, it could
have been used as a prior for the other. Since this is not pos-
sible due to the poor segmentation of each image by itself,
we propose mutual segmentation of the two object views,
using each evolving contour to support the extraction of the
other.

Mutual segmentation benefits from the availability of
different object views. However, concurrent processing of
an image pair requires object registration. We address con-
current segmentation and registration of two object views
related by planar projective transformation.

We use the level set framework for segmentation [17]
where images are represented via level-set functions. The
representation of shape via the positive levels of the image
level-set function is parameterization-free, enabling mean-
ingful definition of shape dissimilarity measures between
object views. Moreover, any transformation applied on the
image changes the coordinate system of its level-set func-
tion. The represented shape is thus transformed correspond-
ingly, simplifying the process of shape alignment.

In variational image segmentation methods, the optimal
delineating object boundaries are inferred by minimizing
a cost functional that constrains the compatibility of the
evolving contour with the image data while restricting its
length and smoothness. See [1] and references therein.
Top-down approaches incorporate prior knowledge to facil-
itate the segmentation of occluded or noisy images. Model-
based methods impose additional constraints that relate to
typical attributes of the particular class of objects. Re-
fer for example to [9] that extracts thin structures such as
blood vessels or to [21] that incorporates geometric infor-
mation to segment road networks. When the object shape is
specified, resemblance of the segmented object to the refer-
ence shape can be also promoted. Prior-based segmentation
methods [6, 7, 19, 20, 22] assume the existence of a well-
defined shape prior and use it to extract the obscure object
boundaries. The Statistical approaches [4, 5, 10, 14, 22, 25]
capture possible shape variability by employing a set of
similar but not identical shape priors. These methods, how-
ever, depend on the availability of a comprehensive set of
priors or a segmented instance of the object of interest.

The mutual segmentation approach goes beyond the con-
cepts of prior-based segmentation because a well-defined
prior is not available and the matching is between two possi-
bly corrupted and noisy images. The main difficulty resides
in labeling regions where the aligned images do not over-
lap. Obviously, erroneous foreground-background classi-
fications undesirably spoil the segmentations of both im-
ages. Paraphrasing an old urban legend, would an hypo-
thetic child of Marilyn Monroe and Albert Einstein neces-
sarily be genius and beautiful? The conflict between two
possible interpretations of mutually segmented images has

1



never been addressed before. In [8] a majority rule is ap-
plied to complete the missing contour parts in a set of sim-
ilar shapes. The method of [28] handles only pairs of noisy
images, where at least one of the images nearly contains
sufficient information to be segmented by itself. The am-
biguity induced by a concurrent segmentation of an image
pair is resolved in the proposed study, defining a biased dis-
similarity measure between the images.

We suggest a novel framework to mutual segmentation of
two images of the same object, related by projective trans-
formation. Segmentation is carried out concurrently with
registration of the evolving contours. The main contribu-
tion of the paper is a construction of two level set functions
and a definition of a biased shape dissimilarity measure that
accounts for either deficient or excess parts in the images.
This measure is also invariant to planar projective transfor-
mations. The evolution of each of the level set functions
is determined by the gradient descent equations derived by
minimizing a region-based and edge-based cost functional.
The functional formulation is based on [3, 13, 18] and ex-
tended to include the shape dissimilarity term. The out-
comes of the proposed algorithm include segmentation of
the object appearances in both images and the recovery of
the transformation between the object views.

2. Statistical set up and previous art

2.1. General

Segmentation can be formulated via Bayesian statistical
inference framework. Given an image I(x) we would like
to infer the delineating curve C between an object and its
background. This is done via the maximization of the prob-
ability distribution function (PDF) P (C|I), using Bayes
law:

P (C|I) ∝ P (I|C)P (C) .

The maximization over all possible delineating curves is
done by minimizing − log P (C|I).

Chan and Vese algorithm [3] that we briefly review next
presents a prototype for the construction of C when P (C)
depends “syntactically” on the internal geometry of the
curve. In the level set framework for curve evolution [17],
an evolving curve C(t) is defined as the zero level of a level
set function φ : Ω → R at time t:

C(t) = {x ∈ Ω| φ(x, t) = 0}. (1)

Following [3], the Heaviside function of φ

H(φ(t)) =

{

1 φ(t) ≥ 0
0 otherwise

(2)

is used to indicate the object-background regions in the im-
age that correspond the non-negative and negative levels in

φ, respectively. Practically, a smooth approximation of the
Heaviside function Hε is used [3]:

Hε(φ) =
1

2
(1 +

2

π
arctan(

φ

ε
)) (3)

We can now rephrase our PDF as

P (φ|I) ∝ P (I|φ)P (φ) .

Next, we elaborate on the different terms.

2.2. Region-based data term

Let I : Ω → R
+ denote a gray level image, where Ω ⊂

R
2 is the image domain. Let ω be an open subset of Ω. In

the spirit of the Mumford-Shah observation [16], we define
a boundary C ∈ Ω, C = ∂ω that delimits homogeneous
regions in I . Thus, for a general feature G(I) and in the
particular case of the two-phase formalism, we look for a
curve C that maximizes the difference between two scalars
u+ and u− defined as follows:

u+ = A+

∫

ω

G+(I(x))dx u− = A−

∫

Ω\ω

G−(I(x))dx

(4)

where x ≡ (x, y), A+ = 1/
∫

ω
dx and A− = 1/

∫

Ω\ω
dx.

The feature chosen depends on the image homogeneity. In
the work of Chan and Vese [3] the image is approximated
by a piecewise constant function whose values are given by
G+(I(x)) = G−(I(x)) = I(x). Hence u+ = Iin and
u− = Iout are the average gray levels in the object regions
and in the background regions respectively. For texture seg-
mentation the Gabor filters may be used as in [24] and in
[23]. In this study we use the average gray level and the
variance:

G+(I) = (I(x) − Iin)2 G−(I) = (I(x) − Iout)
2 (5)

This was considered by [27] and by [15] in the past. We
may now express the term −logP (I|φ) via a region based
cost functional with a well defined integration domain:

ERB(φ) =
∫

Ω

[

(G+(I(x)) − u+)2Hε(φ)

+ (G−(I(x)) − u−)2(1 − Hε(φ))
]

dx
(6)

The evolving boundary C(t) is derived from φ(t) using (1).
For a given φ(t) and G the scalars u+ and u− should be
updated at each iteration according to (4). The level set
function φ should be updated using its first variation:

φRB
t = δε(φ)

[

G−(I(x)) − u−)2−(G+(I(x)) − u+)2
]

(7)

The evolution of φ at each time steps is weighted by the
derivative of the regularized form of the Heaviside function:

δε(φ) =
dHε(φ)

dφ
=

1

π

ε

ε2 + φ2
.



2.3. Edge-based data term

2.3.1 Geodesic active contour: data part

Edge based segmentation approaches usually define the ob-
ject boundaries by the local maxima of the image gradients.
Let C(s) = (x(s), y(s)) be the parametric description of
a planar contour C : [0, L] → R

2 where s is an arc-length
parameter.

Let ∇I(x, y) = (Ix, Iy)T =
(

∂I(x,y)
∂x

, ∂I(x,y)
∂y

)T

denote

the vector field of the image gradients. We will unortho-
doxly split the Geodesic Active Contours (GAC) [2] term
into two terms. The data term (DCGAC) is given by

EDGAC(C) =

∫

Ω

g̃DGAC(C(s))ds (8)

where

g̃DGAC(x) = −
|∇I|2

1 + |∇I|2
. (9)

This term vanishes as the gradient magnitudes decrease
to zero and attains −1 asymptotically for large gradients.
Clearly the curve that minimizes the functional passes
through points of high gradient magnitudes.

Expressing this term in a level-set framework we obtain

EDGAC =

∫

Ω

g̃(|∇I|)|∇Hε(φ(x))|dx, (10)

with the associated gradient descent equation:

φDGAC
t = δε(φ)div

(

g̃(|∇I|)
∇φ

|∇φ|

)

. (11)

The GAC functional includes another geometrical term
that will be described in subsection 2.4.

2.3.2 Alignment term

The geodesic active contour term (10) determines the lo-
cation of the zero level of φ. Segmentation can be
refined by constraining the level set normal direction
to align with the image gradient direction as suggested
in [26] and independently in [13]. The robust alignment
term (RA) defined in [12] takes the form: ERA(C) =
∫ L

0
|〈∇I(x(s)), ~n(s)〉| ds, where < ·, · > denotes an inner

product and ~n(s) = {−ys(s), xs(s)} is the exterior normal
to the curve C. The expression for ERA(C) is an integra-
tion of the projection of ∇I on the pointwise normal ~n(s)
along the curve. A minor contribution of this paper is the
level-set formulation of the alignment term:

ERA =

∫

Ω

∣

∣

∣

∣

〈∇I,
∇φ

|∇φ|
〉

∣

∣

∣

∣

|∇Hε(φ)| dx (12)

where ∇φ(x)/|∇φ(x)| is normal to the level-set φ in x.
The associated gradient descent equation is

φRA
t = δε(φ)sign(< ∇φ,∇I >)∆I. (13)

This equation is similar to the one derived in [12].

2.4. Syntactic prior: Geometry

The curve length |C| is described by the parametric rep-
resentation of the curve:

∫ L

0
C(s)ds. An equivalent repre-

sentation, using the level set formulation takes the form:

|C| = ELEN =

∫

Ω

|∇H(φ(x))|dx (14)

This functional measure the length of the curve and usually
serves as an indicator for the curve smoothness [3]. Mini-
mizing (14) with respect to φ, we obtain the associated Eu-
ler Lagrange equation for φ:

φLEN
t = δε(φ)div

(

∇φ

|∇φ|

)

. (15)

Combining ELEN and EDGAC (Eq.(10)), we get the usual
form of the GAC functional [11, 2],

EGAC =

∫

Ω

g(|∇I|)|∇Hε(φ(x))|dx, (16)

with the gradient descent equation:

φGAC
t = δε(φ)div

(

g(|∇I|)
∇φ

|∇φ|

)

. (17)

Here g = 1 + g̃ = 1/(1 + |∇I|2).

2.5. Semantic prior: Shape Term

The edge-based, region-based and smoothness con-
straints are integrated to establish the following cost func-
tional for segmentation:

ECV K(φ) = ERB + ELEN + EGAC + ERA (18)

with the equations ( 6, 14, 16, 12). The evolution of φ in
each time step, φ(t + 1) = φ(t) + φt is determined by

φt(φ) = φRB
t + φLEN

t + φGAC
t + φRA

t (19)

where each contribution to the sum φt is normalized to
[−1, 1]. Note that the priors here are ”syntactic” and not
“semantic” since they control the curve form and do not
specifically relate to a certain object or object class. Se-
mantic prior, if available, can significantly facilitate the seg-
mentation process. Denoting a given prior curve by Cp, the
statistical formulation is then

P (C, T |I, Cp) ∝ P (I|C)P (C|Cp, T )P (T )



where T is the alignment term between C and Cp.
Let φ̃ : Ω → R denote a prior shape representation. We

now review several dissimilarity measures D(φ, φ̃) between
shape representations φ̃ and φ. When φ̃ is a distance func-
tion and is aligned with φ a natural choice would be:

D(φ, φ̃) =

∫

Ω

(

φ(x) − φ̃(x)
)2

dx.

This measure, however, depends on the integration domain
Ω, see [6] and references therein. Moreover, in a cluttered
image, when the weight of this measure in the segmenta-
tion functional is high, objects that do not correspond to the
prior shape are ignored [7]. To avoid these drawbacks sev-
eral modifications to control the integration domain have
been suggested [6, 7, 22]. Usually, an alignment function
between φ and φ̃ is introduced in D. Note that by setting φ
to be a distance function only isometries (similarity trans-
formations) can be accommodated.

Recently, [19] suggested to use the square difference be-
tween the Heaviside functions of φ and φ̃ as a dissimilarity
measure between the shape representations, where φ and φ̃
are not distance functions.

D(φ, φ̃) =

∫

Ω

[

Hε(φ(x)) − Hε(Tp(φ̃(x)))
]2

dx (20)

This formulation enables the introduction of the projective
alignment term Tp between the shapes. Furthermore, D
does not depend on the integration domain. The shape
term (20) is suitable when the prior φ̃ is perfect and con-
stant in time. However, in the proposed setup when φ̃ is the
evolving (and imperfect) segmentation of the other image,
a different dissimilarity measure should be employed.

3. Mutual Segmentation with Projectivity

In this paper we consider the segmentation of two im-
ages, I1 and I2 that provide two imperfect (occluded, noisy
etc.) instances of an object. When a perfect prior Cp is not
available the statistical inference problem takes the form:

P (C1, C2, T |I1, I2) ∝ P (I1, I2|C1, C2)P (C1|C2, T )P (T )

The term P (C1|C2, T ) is defined via biased shape dissimi-
larity measure and is discussed next.

3.1. Biased shape dissimilarity measure

Consider the image pair in Figure 1a-b. Both have defi-
ciencies. In Fig. 1a a portion of the creature’s left leg was
erased. In Fig. 1b the hoop is absent. When the final seg-
mentation of Fig. 1a is the prior for the segmentation of
Fig. 1b and vice versa, the imperfections of each segmen-
tation spoil the other, as shown in Fig. 1e-f. Note that the
left leg in incorrectly segmented in Fig. 1e, while the hoop
in Fig. 1f is not segmented at all.

The images in Fig.1c-d contain superfluous hoops lo-
cated in different places. When each segmentation is the
prior for the other, using the unbiased dissimilarity measure
in Eq. (20), the contours of the superfluous hoops in Fig.1c-
d undesirably appear in the segmentation shown in Fig.1h,g
respectively.

The distinction between integral object parts (leg, hoop)
and other surrounding objects (superfluous hoops) raises a
fundamental question which extends beyond the scope of
the current work and relates to perceptual organization of
images in general. Given more than two images, this dif-
ficulty can be tackled by employing a majority rule to en-
hance the final object-background labeling. However, for
mutual segmentation of two images another decision tool or
source of information is needed. For simplicity, we assume
either of the following “world states”:

1. The images to segment have (mostly) deficiencies.
When this rule is applied for Fig. 1a-b the creature’s
leg will be reconstructed and the hoop would be well
segmented, as shown in Fig. 1i-j.

2. The images to segment have (mostly) excess parts.
When this rule is applied for Fig. 1c-d the superfluous
hoops are labeled as background as in Fig. 1k-l.

3. The prior shape is perfect. Examples for the applica-
tion of this rule are shown in Fig. 1e-h.

Refer again to the dissimilarity measure in Eq. (20).
The cost functional integrates the non-overlapping object-
background regions in both images indicated by Hε(φ) and
Hε(φ̃). This is equivalent to a pointwise exclusive-or (xor)
operation integrated over the image domain. We may thus
rewrite the functional as follows:

D(φ, φ̃) =
∫

Ω

[

Hε(φ)
(

1 − Hε(φ̃T )
)

+ (1 − Hε(φ)) Hε(φ̃T )
]

dx
(21)

To simplify the expression we denote Tp(φ̃) ≡ φ̃T . Note
that the expressions (20) and (21) are approximately iden-
tical, since Hε(φ) ≈ (Hε(φ))2 (equality is obtained for
ε → 0). There are two types of disagreement between the
labeling of H(φ) and H(φ̃T ). The left term in (21) does not
vanish if there exist image regions labeled as object by the
image data (φ) and labeled as background by the shape prior
(φ̃T ). The right term in (21) does not vanish if there ex-
ist image regions labeled as background by the image data
and labeled as object by φ̃T . Inserting a weight parameter
µ ≥ 0, the relative contributions of the terms is changed.

ES(φ, φ̃) =
∫

Ω

[

µHε(φ)
(

1 − Hε(φ̃T )
)

+ (1 − Hε(φ)) Hε(φ̃T )
]

dx
(22)



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 1. (a)-(b) Input images with deficiencies. (c)-(d) Input images with excess parts. (e) Segmentation (red) of the image in (a) using
(b) as a prior. (f) Segmentation of the image in (b) using (a) as a prior. (g) Segmentation of the image in (c) using (d) as a prior. (h)
Segmentation of the image in (d) using (c) as a prior. (i)-(j) Mutual segmentation results for images (a) and (b) respectively. (k)-(l) Mutual
segmentation results for images (c) and (d) respectively. The images are related by projective transformation. The recovered parameters
are shown and compared in Table 1.

Homography ratios ĥ1 ĥ2 ĥ3 ĥ4 ĥ5 ĥ6 ĥ7 ĥ8

H1→2 0.990 -0.417 0.3607 0.320 0.902 29.08 0.0005 0.0007
H−1

1→2 0.858 0.406 -12.12 -0.298 0.964 -27.93 -0.0002 -0.0009
H2→1 0.868 0.408 -12.11 -0.302 0.969 -27.90 -0.0001 0.0009

Table 1. Comparison of the homography matrix entries obtained through the registration phase in the mutual segmentation algorithm
applied to Fig. 1. Compare the values ofH2→1 toH−1

1→2

The associated gradient equation for φ is then:

φt = δε(φ)[H(φ̃T ) − µ(1 − H(φ̃T ))] (23)

Now, if excess parts are assumed the left penalty term
should be dominant thus µ > 1. Otherwise, if deficien-
cies are assumed the right penalty term should be dominant
and µ < 1.

3.2. Projective invariance

Let I1 and I2 be two images of the same object related
by planar projective transformation Tp. Let p ∈ I1 and p′ ∈
I2 denote corresponding image points. Their coordinates
x and x

′ are related by planar projective homography, i.e.

x
′ = Hx where,

H =





h11 h12 h13

h21 h22 h23

h31 h32 h33



 ∈ R
3×3 (24)

is the Homography matrix. Specifically,

x′ =
h11x + h12y + h13

h31x + h32y + h33
, y′ =

h21x + h22y + h23

h31x + h32y + h33

(25)

The eight unknown ratios of the homography matrix en-
tries, ĥk = hij/h33 are recovered through the segmen-
tation process for each of the pairs {φi, Tp(φ̃i)}, where



Tp(φ̃(x)) = φ̃(x′), x
′ = (x, y). The PDEs for ĥk are

obtained by minimizing (22) with respect to each.

∂ĥk

∂t
= 2

∫

Ω

δε(Tp(φ̃)) [(1 − Hε(φ)) − µHε(φ)]
∂Tp(φ̃)

∂ĥk

dx

(26)

Derivation of Tp(φ̃)

∂ĥk

dx can be done similarly to [20].

3.3. Algorithm

We summarize the proposed algorithm assuming the fol-
lowing setup. The input is two images I1 and I2 of the same
object, taken from a different point. Object contours are ap-
proximately coplanar. For each image Ii alternately carry
out the following:

1. Choose an initial level-set function φi, for example a
standard circular (or elliptic) cone. Its zero level-set
should form an initial contour within the image.

2. Set initial values (e.g. zero) for the transformation pa-
rameters ĥk.

3. Compute the values u+ and u− using Eq. (4), based
on the current object-background regions, defined by
φ(t).

4. The prior representation is determined by the level
set function of the other image: φ̃i = φj , i, j =
{1, 2}, i 6= j.

5. Transform the prior shape representation, applying
φ̃ → Tp(φ̃) using (25) with the estimated parameters
of the preceding time step.

6. Update φ using the gradient descent equation (23).

7. Update the transformation parameters hk using the
derivatives (26). The relation H1 = H−1

2 can be used
either for verification or to speed up the recovery of the
parameters.

8. Repeat steps 3-7 until convergence.

4. Experiments

We exemplify the mutual segmentation algorithm on im-
age pairs related by projective transformations. The input
images are shown with the initial and final segmenting con-
tours. The mismatch between the respective object views
is demonstrated by superposition of the images. The accu-
racy of independently recovered homographies Hi→j be-
tween image i and image j is verified using the relation
Hi→j = H−1

j→i. Table 1 exemplifies such comparison re-
lates to Fig. 1. In all the experiments we set dt = 0.1 and

ε = 1. Normalizing the contributions of each gradient de-
scent equation of φ in (7) to [−1, 1], we avoided the cum-
bersome task of tuning the relative weight parameters. Fig-
ure 2 shows two images of a hand taken from two different
view points. The misalignment between the hand instances
is shown in Fig. 2e. A successful segmentation of both im-
ages are demonstrated in Fig. 2c-d, setting µ < 1. Fig. 2f-h
demonstrate unsuccessful segmentation of each image by
itself. The noisy image has been segmented twice Fig. 2g-
h for different weights of the contour smoothness term. In
Fig. 2h the contour is smoother, yet it does not extract pre-
cisely the fingers.

The boot images in Fig. 3a-b were mutually segmented
using the proposed algorithm, with µ < 1. The delineat-
ing contour (shown in Figure 3d-e) traces precisely the boot
boundaries while completing correctly the occluded parts.
The misalignment between the boot instances is shown in
Fig. 3c. Fig. 4a-b demonstrates mutual segmentation of two
images of a license plate with corrupted digits. Assuming
excess parts we set µ > 1. For a comparison, fig. 4c-d
display undesired segmentation results obtained when each
image is segmented by itself.

5. Discussion

We presented a method for concurrent, mutually-
supporting segmentation of two images of the same object,
taken from different view points. Having two images in-
stead of one provides redundancy that is employed by using
each instance to guide the segmentation of the other. Unlike
previous methods, the concept of a perfect shape prior is re-
placed by information gathered from incomplete instances.

Segmentation is metaphorically similar to cliff climbing.
Prior-based segmentation is analogous to situations where
someone climbs first and secures a rope to the cliff. If this is
not possible, the combined effort of at least a duo is needed.
The two climb in turns: at each stage one person holds the
cliff and helps the other climb. The main contribution of
this paper is the formulation of this duo shape term, that
enables solution of the mutual segmentation problem.

Having two images of the same object is helpful in re-
gions where the aligned images agree, but there is an inher-
ent ambiguity where they don’t. In this paper, we address
this ambiguity via the biased shape dissimilarity measure.
Note that if more than two images are available, the ambi-
guity can be resolved by a majority rule. This is a topic for
future research.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 2. (a)-(b) Input images with their initial contours (red). (c)-(d) Successful mutual segmentation results (red). (e) Superposition of
the two images to demonstrate the misalignment. (f)-(h) Segmentation of each image by itself. The noisy image has been segmented twice
with different weights of smoothness term: (g) The contour “mistakenly” follows image gradients that are due noise. (h) Segmentation
with high smoothness term. The contour is smooth but the fingers are not well extracted.

(a) (b) (c)

(d) (e)
Figure 3. (a)-(b) Input images with their initial contours (red). (c) Superposition of the two images to demonstrate the misalignment. (d)-(e)
Successful mutual segmentation results (red).
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