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Abstract

We introduce a novel variational method for the extraction of objects with either bilateral or

rotational symmetry in the presence of perspective distortion. Information on the symmetry axis of

the object and the distorting transformation is obtained as a by-product of the segmentation process.

The key idea is the use of a flip or a rotation of the image to segment as if it has been another view of the

object. We call this generated image the symmetrical counterpart image. We show that the symmetrical

counterpart image and the source image are related by planar projective homography. This homography

is determined by the unknown planar projective transformation that distorts the object symmetry.

The proposed segmentation method uses a level-set based curve evolution technique. The extraction

of the object boundaries is based on the symmetry constraint and the image data. The symmetrical coun-

terpart of the evolving level-set function provides a dynamic shape prior. It supports the segmentation by

resolving possible ambiguities due to noise, clutter, occlusions and assimilation with the background.

The homography that aligns the symmetrical counterpart to the source level-set is recovered via a

registration process carried out concurrently with the segmentation. Promising segmentation results of

various images of approximately symmetrical objects are shown.

Index Terms

Symmetry, Planar projective transformation, Segmentation, Level-sets
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I. INTRODUCTION

Shape symmetry is a useful visual feature for image understanding [48]. This research employs

symmetry for segmentation1. In the presence of noise, clutter, shadows, occlusions or assimilation

with the background, segmentation becomes challenging. In these cases, object boundaries do not

fully correspond to edges in the image and may not delimit homogeneous image regions. Hence,

classical region-based and edge-based segmentation techniques are not sufficient. We therefore

suggest a novel approach to facilitate segmentation of objects that are known to be symmetrical,

by using their symmetry property as a shape constraint. The model presented is applicable to

objects with either rotational or bilateral (reflection) symmetry distorted by projectivity.

The proposed segmentation method partitions the image into foreground and background

domains, where the foreground region is known to be approximately symmetrical up to planar

projective transformation. The boundary of the symmetrical region (or object) is inferred by

minimizing a cost functional. This functional imposes the smoothness of the segmenting contour,

its alignment with the image edges and the homogeneity of the regions it delimits. The assumed

symmetry property of the object to extract provides an essential additional constraint.

There has been intensive research on symmetry related to human and computer vision. We

mention a few of the classical and of the most recent papers. Most natural structures are only

approximately symmetrical, therefore there is a great interest, pioneered by the work of [56] and

followed by [18], in defining a measure of symmetry. There is a mass of work on symmetry

and symmetry-axis detection [1], [5], [19], [23], [29], [31], [34], [44], [49]. Recovery of 3D

structure from symmetry is explored in [12], [42], [45], [46], [50], [53], [57]. There are a few

works that use symmetry for grouping [43] and segmentation [13], [14], [25], [27], [54]. The

majority of the symmetry-related papers consider either bilateral symmetry [12], [42], [57] or

rotational symmetry [5], [16], [55], [34]. Some studies are even more specific, for example [30]

suggests a symmetry measure for bifurcating structures, [17] handles tree structures and [16],

[53] demonstrate the relation between symmetry and perspectivity on simple geometrical shapes.

Only few algorithms treat the symmetrical object shape as a single entity and not as a collection

of landmarks or feature points. Refer for example to [44] that suggests the edge strength function

to determine the axes of local symmetry in shapes, using variational framework. In the suggested

1A preliminary version of this manuscript appeared in [37].
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framework the symmetrical object contour is represented as a single entity by the zero-level of

a level-set function. We assign, w.l.o.g., the positive levels to the object domain. Taking the role

of object indicator functions level-sets are most adequate for dynamic shape representation. A

dissimilarity measure between objects is defined as a function of the weighted sum of pixels with

contradicting labeling. Transformation of the region bounded by the zero level is applied by a

coordinate transformation of the domain of the embedding level-set function [38], as illustrated

in Fig. 1.

We define the concept of symmetrical counterpart in the context of image analysis. When

the imaged object has a bilateral symmetry, the symmetrical counterpart image is obtained by

a vertical (or horizontal) flip of the image domain. When the imaged object has a rotational

symmetry, the symmetrical counterpart image is provided by a rotation of the image domain. In

the same manner we define the symmetrical counterpart of a level-set (or a labeling) function.

The symmetry constraint is imposed by minimizing the dissimilarity measure between the

evolving level-set (labeling) function and its symmetrical counterpart. The proposed segmentation

approach is thus fundamentally different from other methods that support segmentation by

symmetry [13], [14], [25], [27], [54].

When symmetry is distorted by perspectivity, the detection of the underlying symmetry be-

comes non-trivial, thus complicating symmetry aided segmentation. In this case, even a perfectly

symmetrical image is not identical to its symmetrical counterpart. We approach this difficulty by

performing registration between the symmetrical counterparts. The registration process is justified

by showing that an image of a symmetrical object, distorted by a projective transformation, relates

to its symmetrical counterpart by a planar projective homography. A key result presented in this

manuscript is the structure of this homography, which is determined, up to well defined limits,

by the distorting projective transformation. A significant gain from this result is the waiving of

the potentially obstructive phase of symmetry axis detection - an essential step in most previous

symmetry oriented frameworks.

Figs. 2-3 illustrate the main idea of the proposed framework. Fig. 2a shows an approximately

symmetrical object (its upper-left part is corrupted) that underwent a perspective distortion.

Fig. 2b is a reflection of Fig. 2a with respect to the vertical symmetry axis of the image domain.

Note however that this is not the symmetry axis of the object, which is unknown. We call

Fig. 2b the symmetrical counterpart of Fig. 2a. Fig. 2a-b can be considered as two views of
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the same object. Fig. 2b can be aligned to Fig. 2a by applying a perspective transformation

different from the counter reflection, as shown in Fig. 2c. Superposition of Fig. 2a and Fig. 2c

yields the complete non-corrupted object view as shown in Fig. 2d. In the course of the iterative

segmentation process the symmetrical counterpart of the object delineated provides a dynamic

shape prior2 and thus facilitates the recovery of the hidden or vague object boundaries.

Fig. 3 demonstrates the detection of symmetrical objects. In Fig. 3a only one of the flowers

imaged has rotational symmetry (up to an affine transformation). The symmetrical counterpart

image (Fig. 3b) is generated by rotation of the image domain. Fig. 3c shows the superposition

of the images displayed in Fig. 3a,b. Fig. 3d presents the superposition of the original image

(Fig. 3a) and its symmetrical counterpart aligned to it. Note that the alignment between the two

images was not obtained by the counter rotation but by an affine transformation.

The paper contains two fundamental, related contributions. The first is the use of an intrinsic

shape property - symmetry - as a prior for image segmentation. This is made possible by a group

of theoretical results related to symmetry and perspectivity which are the essence of the second

contribution. Specifically we present the structure of the homography that relates an image (or

a level-set function) to its symmetrical counterpart. The unknown projective transformation that

distorts the object symmetry can be recovered from this homography under certain conditions.

These conditions are specified, defining the concept of symmetry preserving transformation. We

show that the transformation applied to a symmetrical image (or a labeling function) cannot

be recovered from the homography that aligns symmetrical counterparts if it does not distort

the image (or labeling function) symmetry. We propose a measure for the ‘distance’ between a

labeling function and its aligned symmetrical counterpart. We call it the symmetry imperfection

measure. This measure is the basis of the symmetry constraint that is incorporated within a

unified segmentation functional. The suggested segmentation method is demonstrated on various

images of approximately symmetrical objects distorted by planar projective transformation.

The paper is organized as follows. In section II we review the level-set formulation, showing its

use for dynamic shape representation and segmentation. In section III the concepts of symmetry

and projectivity are reviewed. The main theoretical contribution resides in subsection III-C which

2The word ’dynamic’ in the expression ‘dynamic shape prior’ relates to the evolution of the level-set function (and its

symmetrical counterpart) at each iteration. The same expression was introduced in a different context in [6], [24] to denote

shape prior which captures the temporal evolution of shape.
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establishes the key elements of the suggested study. In particular, the structure of the homography

that relates between symmetrical counterpart images is analyzed. In section IV, a measure of

symmetry imperfection of approximately symmetrical images, based on that homography, is

defined. We use this measure to construct a symmetry-shape term. Implementation details and

further implications are presented in section V. Experimental results are provided in section VI.

We conclude in section VII.

(a) (b)

Fig. 1. Shape transformation. The coordinate transformation applied to the domain of the object indicator function transforms

the represented shape accordingly.

(a) (b) (c) (d)

Fig. 2. (a) Image of approximately symmetrical object distorted by perspectivity. (b) The symmetrical counterpart of (a) is the

reflection of (a) along the vertical symmetry axis of the image domain. (c) The image (b) aligned to (a) by a planar projective

transformation. (d) Superposition of the image (a) with the image (c). The corrupted shape is recovered.

II. LEVEL-SETS FRAMEWORK

We use the level-set formulation [11], [33] since it allows non-parametric representation of

the evolving object boundary and automatic changes of its topology. These characteristics are
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(a) (b) (c) (d)

Fig. 3. (a) The image contains an object with rotational symmetry distorted by affine transformation. (b) The symmetrical

counterpart of (a) – Rotation of the image plane (a) by 900. (c) Superposition of (a) and (b). (d) Superposition of the image

(a) with the image (b) aligned to (a) by an affine transformation. The object with rotational symmetry can be extracted.

also most desirable for the dynamic representation of the shape of the image region bounded by

the zero level - an essential element of the proposed method.

A. Level-set formulation

Let I denote an image defined on the domain Ω ⊂ R2. We define a closed contour C ∈ Ω,

that partitions the image domain Ω into two disjoint open subsets: ω and Ω \ω. Without loss of

generality, the image pixels {(x, y) = x | x ∈ ω} will be attributed to the object domain. Using

the level-set framework [33] we define the evolving curve C(t) as the zero level of a level-set

function φ : Ω → R at time t:

C(t) = {x ∈ Ω | φ(x, t) = 0}. (1)

The optimal segmentation is therefore inferred by minimizing a cost functional E(φ, I) with

respect to φ. The optimizer φ is derived iteratively by φ(t + ∆t) = φ(t) + φt∆t. The gradient

descent equation φt is obtained from the first variation of the segmentation functional using the

Euler-Lagrange equations.

The suggested segmentation framework utilizes a unified functional which consists of an

energy term driven by the symmetry constraint together with the classical terms derived from

the constraints related to the low-level image features.

E(φ, I) = EDATA(φ, I) + ESYM(φ) (2)

The data terms of EDATA are briefly reviewed in subsections II-B,II-C and II-D based on current

state-of-the-art level-set segmentation methods [3], [2], [20], [22], [51]. Subsection II-E outlines
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the main idea behind the prior shape constraint [38] which is the ‘predecessor’ of the shape-

symmetry term. The reminder of the paper relates to ESYM.

B. Region-based term

In the spirit of the Mumford-Shah observation [32], we assume that the object contour C = ∂ω,

represented by zero level of φ, delimits homogeneous image regions. We use the Heaviside

function (as in [3]) to assign the positive levels of φ to the object domain (ω) and the negative

levels to the background domain (Ω \ ω):

H(φ(t)) =





1 φ(t) ≥ 0

0 otherwise
(3)

Let Iin : ω → R+ and Iout : Ω \ ω → R+ be the image foreground and background intensities,

respectively. Denoting the gray levels averages by {u+
1 = I in, u−1 = Iout} and the respective gray

level variances by {u+
2 , u−2 }, we look for a level-set function φ that minimizes the following

region-based (RB) term [3], [28], [52]:

ERB(φ) =

∫

Ω

2∑
i=1

[
(G+

i (I(x))− u+
i )2H(φ) + (G−

i (I(x))− u−i )2(1−H(φ))
]
dx , (4)

where G+
1 (I) = G−

1 (I) = I and G+
2 (I) = (I(x)− I in)

2 G−
2 (I) = (I(x)− Iout)

2.

The level-set function φ is updated by the gradient descent equation:

φRB
t = δ(φ)

2∑
i=1

[−(G+
i (I(x))− u+

i )2 + (G−
i (I(x))− u−i )2

]
. (5)

The sets of scalars {u+
i } and {u−i } are updated alternately with the evaluation of φ(t):

u+
i = A+

∫
Ω

G+
i (I(x))H(φ)dx

u−i = A− ∫
Ω

G−
i (I(x))(1−H(φ))dx

(6)

where A+ = 1/
∫

Ω
H(φ)dx and A− = 1/

∫
Ω
(1−H(φ))dx.

Practically, a smooth approximation of the Heaviside function rather than a step function is

used [3]:

Hε(φ) =
1

2
(1 +

2

π
arctan(

φ

ε
)). (7)

The evolution of φ at each time step is weighted by the derivative of the regularized form of

the Heaviside function:

δε(φ) =
dH(φ)

dφ
=

1

π

ε

ε2 + φ2
.
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To simplify the notation, the subscript ε will be hereafter omitted.

C. Geodesic active contour and smoothness terms

The edge based segmentation criterion is derived from the assumption that the object bound-

aries coincides with the local maxima of the absolute values of the image gradients. Let∇I(x, y) =

{Ix, Iy} =
{

∂I(x,y)
∂x

, ∂I(x,y)
∂y

}
denote the vector field of the image gradients. Following [20], [2],

the inverse edge indicator function g is defined by:

g(∇I(x)) = 1/(γ + |∇I(x)|2), (8)

where γ is a small and positive scalar. The geodesic active contour (GAC) energy term

EGAC =

∫

Ω

g(∇I(x))|∇H(φ(x))|dx, (9)

integrates the inverse edge indicator along the evolving contour. The evolution of φ is determined

by:

φGAC
t = δ(φ)div

(
g(∇I)

∇φ

|∇φ|
)

. (10)

The GAC term reduces to the commonly used (e.g. [3]) smoothness term setting g = 1:

ELEN =

∫

Ω

|∇H(φ(x))|dx (11)

Minimizing (11) with respect to φ, we obtain the evolution equation:

φLEN
t = δ(φ)div

( ∇φ

|∇φ|
)

. (12)

D. Edge alignment term

The edge alignment term (EA) constrains the level-set normal direction ~n = ∇φ
|∇φ| to align with

the image gradient direction ∇I [51], [21], [22]:

EEA = −
∫

Ω

∣∣∣∣
〈
∇I,

∇φ

|∇φ|
〉∣∣∣∣ |∇H(φ)|dx. (13)

The associated gradient descent equation is:

φEA
t = −δ(φ)sign(〈∇φ,∇I〉)∆I, (14)

where 〈. , .〉 denotes the inner-product operation.
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E. From shape constraint to shape symmetry constraint

Shape constraint, in level-set based segmentation techniques, is commonly defined by a

dissimilarity measure between the evolving level-set function and a representation of the prior

shape [4], [7], [10], [8], [9], [26], [38], [41], [47]. The main difficulty stems from the fact that

the prior shape and the shape to segment are not aligned. Hence, shape transformations must be

taken into consideration and the segmentation should be accompanied by a registration process.

1) Shape transformations: Transformation of the shape defined by the propagating contour

is obtained by a coordinate transformation of the image domain Ω [38]. Let H denote a 3 × 3

matrix that represents a planar transformation 3. The matrix H operates on homogeneous vectors

X = (x, 1)T = (x, y, 1)T . We define an operator h : Ω → Ω̃, where Ω̃ ∈ P2 is the projective

domain, such that h(x) = X. Let X′ = (X ′, Y ′, b) = HX denote the coordinate transformation

of the projective domain Ω̃. The entries of the 2-vector x′ ∈ Ω are the ratios of the first two

coordinates of X′ and the third one, i.e. x′ = (x′, y′) = (X ′/b, Y ′/b). Equivalently one can use

the ‘inverse’ operator h−1 : Ω̃ → Ω and write h−1(X′) = x′.

Let L(x) = H(φ(x)) denote the indicator function of the object currently being segmented.

Transformation of L(x) by a planar transformation H will be denoted by L ◦ H ≡ L(Hx),

where Hx is a shorthand to h−1 (H(h(x))). Fig. 1 illustrates this notion. We can also use the

coordinate transformation to define shape symmetry, for example, if L(x) = L(x, y) embeds a

shape with left-right bilateral symmetry then L(x, y) = L(−x, y).

In general, we can think of L as a function defined on R2 where Ω is the support of the

image. This way the operation H maps vectors in R2 to vectors in R2 and is well defined. Note

that the shape of the support may be changed under the action of the operator/matrix H.

2) Shape dissimilarity measure: Let L̃ be a binary representation of the prior shape. The

segmentation process is defined by the evolution of the object indicator function L. A shape

constraint takes the form D(L(x), L̃(Hx)) < ε where D is a dissimilarity measure between

L(x) and the aligned prior shape representation L̃(Hx). The matrix H represents that alignment

and is recovered concurrently with the segmentation process.

When only a single image is given, such prior is not available. Nevertheless, if an object is

known to be symmetrical, its replicative form, induced by the symmetry, can be used. Specifically,

3Note that H denotes the transformation while H denotes the Heaviside function.
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we treat the image and its symmetrical counterpart (e.g. its reflection or rotation) as if they

are two different views of the same object. The instantaneous symmetrical counterpart of the

evolving shape provides a dynamic shape prior. The symmetry dissimilarity measure is based

on a theoretical framework established in section III. Section IV considers the incorporation of

the symmetry constraint within a level-set framework for segmentation.

III. SYMMETRY AND PROJECTIVITY

A. Symmetry

Symmetry is an intrinsic property of an object. An object is symmetrical with respect to a

given operation if it remains invariant under that operation. In 2D geometry these operations

relate to the basic planar Euclidean isometries: reflection, rotation and translation. We denote the

symmetry operator by S. The operator S is an isometry that operates on homogeneous vectors

X = (x, 1)T = (x, y, 1)T and is represented as

S =

∣∣∣∣∣∣
sR(θ) t

0T 1

∣∣∣∣∣∣
(15)

where t is a 2D translation vector, 0 is the null 2D vector, R is a 2× 2 rotation matrix and s

is the diagonal matrix diag(±1,±1).

Specifically, we consider either of the following transformations:

1) S is translation if t 6= 0 and s = R(θ) = diag(1, 1).

2) S is rotation if t = 0, s = diag(1, 1) and θ 6= 0.

3) S is reflection if t = 0, θ = 0 and s is either diag(−1, 1) for left-right reflection or

diag(1,−1) for up-down reflection.

In the case of reflection, the symmetry operation reverses orientation, otherwise (translation and

rotation) it is orientation preserving.

The particular case of translational symmetry requires an infinite image domain. Hence, it is not

specifically considered in this manuscript.

Definition 1 (Symmetrical image): Let S denote a symmetry operator as defined in (15). The

operator S is either reflection or rotation. The image I : Ω → R+ is symmetrical with respect to

S if

I(x) = I(Sx) ≡ I ◦ S (16)
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The concept of symmetry is intimately related to the notion of invariance. We say that a vector

or a function L is invariant with respect to the transformation (or operator) S if SL = L .

Since we are interested in symmetry in terms of shape and not in terms of gray levels, we will

therefore consider the object indicator function L : Ω → {0, 1} as defined in subsection II-E.

Hereafter, we use the shorthand notation for the coordinate transformation of the image domain

as defined in subsection II-E.

Definition 2 (Symmetrical counterpart): Let S denote a symmetry operator. The object indica-

tor function L̂(x) = L◦S(x) = L(Sx) is the symmetrical counterpart of L(x). L is symmetrical

iff L = L̂.

We claim that the object indicator function of a symmetrical object distorted by a projective

transformation is related to its symmetrical counterpart by projective transformation different

from the defining symmetry. Before we proceed proving this claim we recall the definition of

projective transformation.

B. Projectivity

This subsection follows the definitions in [15].

Definition 3: A planar projective transformation (projectivity) is a linear transformation rep-

resented by a non-singular 3 × 3 matrix H operating on homogeneous vectors, X′ = HX,

where,

H =




h11 h12 h13

h21 h22 h23

h31 h32 h33


 (17)

Important specializations of the group formed by projective transformation are the affine group

and the similarity group which is a subgroup of the affine group. These groups form a hierarchy

of transformations. A similarity transformation is represented by

HSIM =


 κR(θ) t

0T 1


 (18)

where R is a 2×2 rotation (by θ) matrix and κ is an isotropic scaling. When κ = 1, HSIM is the

Euclidean transformation denoted by HE . An affine transformation is obtained by multiplying
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the matrix HSIM with

HA =


 K 0

0T 1


 . (19)

K is an upper-triangular matrix normalized as DetK = 1. The matrixHP defines the ‘essence’ [15]

of the projective transformation and takes the form:

HP =


 1 0

vT v


 , (20)

where 1 is the 2-identity matrix. A projective transformation can be decomposed into a chain

of transformations of a descending (or ascending) hierarchy order,

H = HSIMHAHP =


 A t

vT v


 (21)

where v 6= 0 and A = κRK + tvT is a non-singular matrix.

C. Theoretical Results

In this subsection we consider the relation between an image (or an object indicator function)

of a symmetrical object distorted by planar projective transformation H and its symmetrical

counterpart. The object indicator function L will be treated as a binary image and will be called

for simplicity - image.

Recall from the previous subsection that a symmetrical image (or labeling function) L with

respect to the symmetry operator S is invariant to S. We next define an operator (matrix) SH

such that a symmetrical image that underwent a planar projective transformation is invariant to

its operation.

Theorem 1: Let LH = L(Hx) denote the image obtained from the symmetrical image L by

applying a planar projective transformation H. If L is invariant to S, i.e. L(x) = L(Sx) =

L(S−1x) then LH is invariant to SH where SH = H−1SH ≡ H−1S−1H.

Proof: We need to prove that LH(x) = LH(SHx).

We define y = Hx.
LH(SHx) = LH(H−1SHx) = L(SHx)

= L(Sy) = L(y)

= L(Hx) = LH(x)

(22)
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We now use the result obtained in Theorem 1 to define the structure of the homography that

aligns symmetrical counterpart images.

Theorem 2: Let LH denote the image obtained from the symmetrical image L by applying

a planar projective transformation H. Let L̂H = LH(Sx) ≡ LH ◦ S denote the symmetrical

counterpart of LH with respect to a symmetry operation S. The image LH can be obtained from

its symmetrical counterpart L̂H by applying a transformation represented by a 3 × 3 matrix of

the form:

M = S−1H−1SH. (23)

Proof: We need to prove that LH(x) = L̂H(Mx), where M = S−1H−1SH.

The image LH is invariant to SH thus LH(x) = LH(SHx). By definition, L̂H(x) = LH(Sx).

From the above equations and Theorem 1, defining y = S−1SHx, we get:

LH(x) = LH(SHx) = LH(SS−1SHx)

= LH(Sy) = L̂H(y)

= L̂H(S−1SHx) = L̂H(S−1H−1SHx)

= L̂H(Mx).

(24)

The image LH can be generated from its symmetrical counterpart L̂H either by applying the

inverse of the symmetry operation S or by a projective transformation M which is different from

S−1.

Let MINV denote a 3 × 3 non-singular matrix such that MINV = H−1S−1HS. MINV is a

projective transformation since HMINV = S−1HS is a projective transformation according to:

S−1HS = S−1


 A t

vT 1


 S =


 A′ t′

v′T v′


 = H′ (25)

where H is scaled such that v = 1.

Thus, M = M−1
INV represents a projective transformation. It is easy to prove that M 6= S−1,

when S is not the identity matrix. Assume to the contrary that there exists a non-singular H
and a symmetry operation S such that M = S−1. Then, from (23), S−1 = S−1H−1SH. Thus,

H = SH, which implies that either S is the identity matrix or H is singular, in contradiction to

the assumptions.
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The next theorem gives tighter characterization of M .

Theorem 3: Let LH denote the image obtained from the symmetrical image L by applying

transformation H. Let M denote the matrix that relates LH to its symmetrical counterpart L̂H.

The matrices M and H belong to the same subgroup of transformations (either projective or

affine or similarity transformation).

The proof to this theorem appears in the Appendix.

Next, we argue that H cannot be explicitly and fully recovered from M and S, if the operation

of H (or one of its factors) on a symmetrical image does not distort its symmetry.

Definition 4 (symmetry preserving transformation): Let L be a symmetrical image with re-

spect to S. The projective transformation matrix H is symmetry preserving if

LH = L(Hx) = L(SHx) (26)

Lemma 1: Let H denote a symmetry preserving transformation with respect to the symmetry

operation S. Then H and S commute, i.e. SH = HS.

Proof: L is symmetrical, i.e. L(x) = L(Sx). Applying the transformation H on L we obtain:

L(Hx) = L(HSx). Since H is symmetry preserving, L(Hx) is symmetrical, thus L(Hx) =

L(SHx). The latter two equations prove the claim.

Theorem 4: Consider the image LH = L(Hx), where L is a symmetrical image. Let L̂H =

L(SHx) denote its symmetrical counterpart. Let the matrix M satisfy Eq. (23), where L̂H(Mx) =

LH(x) . If H can be factorized such that H = HSH̃ and HS denotes a symmetry preserving

transformation with respect to S, then H cannot be recovered from M .

Proof:
M = S−1H−1SH

= S−1(HSH̃)−1SHSH̃ = S−1H̃−1H−1
S SHSH̃

= S−1H̃−1H−1
S HSSH̃ since S and HS commute

= S−1H̃−1SH̃

(27)

D. Examples

The claims made in Theorems 1-4 are exemplified for three particular cases. Consider, first,

the image of the symmetrical object and its left-right reflection shown in Fig. 4a-b. Suppose that

the image symmetry has been distorted by an Euclidean transformation of the form:
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HE =




cos θ − sin θ tx

sin θ cos θ ty

0 0 1




Note that the Euclidean transformation is an isometry and thus preserves the object symmetry.

However, it draws the symmetry axis of the object away from the symmetry axis of the image,

rotating it by angle θ and translating it by tx. Fig. 4a relates to its symmetrical counterpart by:

M = S−1H−1
E SHE =




cos 2θ − sin 2θ 2tx cos θ

sin 2θ cos 2θ 2tx sin θ

0 0 1


 ,

where S = (−1, 1, 1). Fig. 4a can thus be obtained from Fig. 4b by a rotation with angle 2θ

and translation by 2R(θ)[tx, 0]T . Note that any translation parallel to the symmetry axis (in this

case ty) cannot be recovered from M . This expression for M implies that in the case of pure

Euclidean transformation, the orientation of the object’s symmetry axis can be recovered from

M . Obviously M is an Euclidean transformation.

Consider, next the images shown in Fig. 4c-d. The object is distorted by a projective trans-

formation HP :

HP =




1 0 0

0 1 0

v1 v2 1




The relation between the two images can be described by:

M = S−1H−1
P SHP =




1 0 0

0 1 0

2v1 0 1




When v2 6= 0 the object shape is distorted but its symmetry is preserved, thus v2 cannot be

recovered from M .

Finally, consider the object shown in Fig. 5. The object’s appearance is invariant to rotation by
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(a) (b) (c) (d)

Fig. 4. (a) An image of a symmetrical object transformed by an Euclidean transformation: planar rotation by θ and then

translation by t. (b) The symmetrical counterpart of the image in (a). (c) An image of a symmetrical object distorted by

projective transformation. (d) The symmetrical counterpart of the image in (c).

nπ/2, where n is an integer. Let S denote rotation by π/2 i.e.

S =




0 −1 0

1 0 0

0 0 1


 .

Fig. 5b is obtained by applying the affine transformation H = HSIMHA on Fig. 5a. Specifically,

in this example

H =


 R(θ) 0

0T 1





 K 0

0T 1


 , K =


 k1 k2

0 1/k1


 .

The scalars k1 and k2 determine the non-isotropic scaling: ratio and orientation. Fig. 5c is the

symmetrical counterpart of Fig. 5b. It can be also obtained by applying M−1 on Fig. 5b, where

M is of the form:

M =




k1
2 k1k2 0

k1k2 1/k1
2 + k2

2 0

0 0 1




Note, that the rotation θ has no effect on M .

IV. SYMMETRY BASED SEGMENTATION

A. Symmetry imperfection

In the current subsection we formalize the concept of approximately symmetrical shape.

Specifically, two alternative definitions for ε−symmetrical images and symmetry imperfection

measure are suggested. A symmetry imperfection measure indicates how ‘far’ the object is from
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(a) (b) (c)

Fig. 5. (a) Schematic draw of a vane. The vane is symmetrical under rotation by nπ/4, where n is an integer. (b) The vane (as

in (a)) distorted by affine transformation. (c) The symmetrical counterpart of (b). This image can be generated from (b) either

by clockwise rotation by 900 or by applying a projective transformation which captures the affine distortion of the vane.

being perfectly symmetrical. Shape symmetry is constrained by minimizing this measure. When

symmetry is distorted by projectivity, defining a measure of symmetry imperfection is not trivial.

We approach this difficulty relying on the results presented in Theorems 1,2.

Recall that a symmetrical binary image distorted by projective transformation is invariant to

the operator SH as defined in equation (22). This is the basis of the first definition.

Definition 5 (ε-symmetrical image; Symmetry imperfection (1)): The image Lε is ε-symmetrical

with respect to the symmetry operator S if D (Lε, Lε ◦ S) ≤ ε, where D is a dissimilarity measure

(distance function) and ε is a small and positive scalar. The measure D (Lε, Lε ◦ S) quantifies the

symmetry imperfection of Lε. Let Lε
H denote the image obtained from Lε by applying a planar

projective transformation H. The measure for the symmetry imperfection of the perspectively

distorted image Lε
H is defined by D (Lε

H, Lε
H ◦ SH) , where SH = H−1SH.

Although this definition is natural, it is not always applicable, since usually the projective

transformation H is unknown. We therefore use an alternative equivalent definition of symmetry

imperfection. This alternative measure involves the concept of the symmetrical counterpart image

(see definition 2) and the homography M that aligns symmetrical counterpart images.

Definition 6 (Symmetry imperfection (2)): Let Lε
H be ε-symmetrical image distorted by planar

projective homography H. Let L̂ε
H = Lε

H ◦ S denote the symmetrical counterpart of Lε
H. The

distance function D(Lε
H, L̂ε

H ◦M) measures the symmetry imperfection of Lε
H.

Lemma 2: The two definitions are equivalent

Proof: Direct consequence of the identity L̂ε
H ◦M = Lε

H ◦ SH

In the following subsections we show how M can be recovered during the segmentation process
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by minimizing the term DH = D(Lε
H, L̂ε

H ◦M) with respect to M . The recovery of M is easier

when H is either Euclidean or affine transformation, following the result of Theorem 3. In that

case only 4 or 6 entries of M should be recovered. The matrix H can be recovered from M up

to a symmetry preserving transformation (Theorem 4).

B. Symmetry constraint

In the previous section the symmetrical counterparts were either images or object indicator

functions. Using the level-set formulation, we will now refer to level-sets and their Heaviside

functions, H(φ). Recall that H(φ(t)) is an indicator function of the estimated object regions in

the image at time t.

Let φ̂ : Ω → R denote the symmetrical counterpart of φ with respect to a symmetry operation

S. Specifically, φ̂(x) = φ(Sx) where S is either a reflection or a rotation matrix. We assume

for now that S is known. This assumption will be relaxed in subsection V-F. Note however that

H is unknown. Let M denote the planar projective transformation that aligns H(φ̂) to H(φ) i.e.

H(φ̂) ◦M = H(φ̂(Mx)) = H(φ̂M). The matrix M is recovered by a registration process held

concurrently with the segmentation, detailed in subsection IV-D.

Let D = D(H(φ), H(φ̂M)) denote a dissimilarity measure between the evolving shape repre-

sentation and its symmetrical counterpart. Note that if M is correctly recovered and φ captures a

perfectly symmetrical object (up to projectivity) then D should be zero. As shown in the previous

subsection, D is a measure for symmetry imperfection and therefore defines a shape symmetry

constraint. The next subsection considers possible definitions of D.

C. Biased shape dissimilarity measure

Consider, for example, the approximately symmetrical (up to projectivity) images shown in

Fig. 6a,d. The object’s symmetry is distorted by either deficiencies or excess parts. A straight-

forward definition of a symmetry shape constraint which measures the distance between the

evolving segmentation and the aligned symmetrical counterpart takes the form:

D(φ, φ̂ | M) =

∫

Ω

[
H(φ(x))−H(φ̂M)

]2

dx. (28)

However, incorporating this the unbiased shape constraint in the cost functional for segmentation,

results in the undesired segmentation shown in Fig. 6b,e. This is due to the fact that the evolving
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a, d) Images of symmetrical objects up to a projective transformation. The objects are distorted either by deficiencies

(a) or by excess parts (d). (b, e) Segmentation (red) of the images in (a) and (d) respectively, using an unbiased dissimilarity

measure between φ and its transformed reflection as in Eq. (28). Object segmentation is further spoiled due to the imperfection

in its reflection. (c, f) Successful segmentation (red) using the biased dissimilarity measure as in Eq. (30).

level-set function φ is as imperfect as its symmetrical counterpart φ̂. To support a correct evolution

of φ by φ̂, one has to account for the cause of the imperfection.

Refer again to Eq. (28). This dissimilarity measure integrates the non-overlapping object-

background regions in both images indicated by H(φ) and H(φ̂). This is equivalent to a pointwise

exclusive-or (xor) operation integrated over the image domain. We may thus rewrite the functional

as follows:

D(φ, φ̂ | M) =

∫

Ω

[
H(φ)

(
1−H(φ̂M)

)
+ (1−H(φ))H(φ̂M)

]
dx (29)

Note that the expressions (28) and (29) are identical, since H(φ) = (H(φ))2. There are two

types of ‘disagreement’ between the labeling of H(φ) and H(φ̂M). The first additive term in

the right hand side of (29) is not zero for image regions labeled as object by φ and labeled

as background by its symmetrical counterpart φ̂. The second additive term of (29) is not zero

for image regions labeled as background by φ and labeled as object by φ̂. We can change the

relative contribution of each term by a relative weight parameter µ 6= 0:

ESYM =
∫
Ω

[
µH(φ)

(
1−H(φ̂M)

)
+ (1−H(φ)) H(φ̂M)

]
dx (30)

The associated gradient equation for φ is then:

φSYM
t = δ(φ)[H(φ̂M)− µ(1−H(φ̂M))] (31)
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Now, if excess parts are assumed, the left penalty term should be dominant, setting µ > 1.

Otherwise, if deficiencies are assumed, the right penalty term should be dominant, setting µ < 1.

Fig. 6c,f show segmentation of symmetrical objects with either deficiencies or excess parts,

incorporating the shape term (30) within the segmentation functional. We used µ = 0.8 and

µ = 2 for the segmentation of Fig. 6c and Fig. 6f, respectively. A similar dissimilarity measure

was proposed in [40], [39] to quantify the ‘distance’ between the alternately evolving level-set

functions of two different object views.

D. Recovery of the transformation

In the previous subsection we defined a biased symmetry imperfection measure ESYM (Eq. 30)

that measures the mismatch between H(φ) and its aligned symmetrical counterpart H(φ̂M). We

now look for the optimal alignment matrix M that minimizes ESYM.

Using the notation defined in subsection II-E, we define the coordinate transformation M of

φ̂(x) as follows:

MH(φ̂(x)) = H(φ̂(x)) ◦M = H(φ̂(Mx)) ≡ H(φ̂M) (32)

We assume that the matrix M is a planar projective homography, as defined in equation (17).

The eight unknown ratios of its entries m̂k = mij/h33, {i, j} = {1, 1}, {1, 2}, . . . {3, 2}
are recovered through the segmentation process, alternately with the evolution of the level-set

function φ. The equations for m̂k are obtained by minimizing (30) with respect to each.

∂m̂k

∂t
=

∫

Ω

δ(φ̂M) [(1−H(φ))− µH(φ)]
∂M(φ̂)

∂m̂k

dx (33)

where

∂M(φ̂)

∂m̂k

=
∂M(φ̂)

∂x

(
∂x

∂x′
∂x′

∂m̂k

+
∂x

∂y′
∂y′

∂m̂k

)
+

∂M(φ̂)

∂y

(
∂y

∂x′
∂x′

∂m̂k

+
∂y

∂y′
∂y′

∂m̂k

)
(34)

Refer to [38], [36], [35] for detailed derivation of (33).

E. Unified segmentation functional

Symmetry-based, edge-based, region-based and smoothness constraints can be integrated to

establish a comprehensive cost functional for segmentation:

E(φ) = W RBERB(φ) + W LENELEN(φ) + W GACEGAC(φ) + W EAEEA(φ) + W SYMESYM(φ), (35)
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with equations ( 4, 11, 9, 13, 30).

Note that the smoothness (length) term (Eq. 11) is included in the GAC term EGAC (Eq. 9).

This can be shown by splitting g(|∇I|) (eq. 8) as follows: g(|∇I(x)|) = γ/(γ + |∇I|2) =

1− |∇I|2/(γ + |∇I|2), where the γ in the numerator of the left-hand side of the equation can

be absorbed in the weight of the GAC term (see also [39]). In practice we zero either W GAC

(for noisy images) or W LEN. The associated gradient descent equations φt are derived using the

first variation of the functional (35)

φt = W RBφ̌RB
t + W LENφ̌LEN

t + W GACφ̌GAC
t + W EAφ̌EA

t + W SYMφ̌SYM
t . (36)

The terms φ̌TERM
t are obtained by slight modification of the gradient descent terms φTERM

t

determined by equations (5, 12, 10, 14, 31). This issue and the determination of the weights

W TERM for the different terms in Eq.(36) are discussed in subsection V-C.

Refinement of the segmentation results can be obtained for images with multiple channels,

I : Ω → Rn, e.g. color images. The region-based term φRB
t and the alignment term φEA

t are

thus the sum of the contributions of each channel Ii. Multi-channel segmentation is particularity

suitable when the object boundaries are apparent in some of the channels while the piecewise

homogeneity is preserved in others. Figure 10 demonstrates segmentation of a color image.

V. IMPLEMENTATION AND FURTHER IMPLICATIONS

Segmentation is obtained by minimizing a cost functional that incorporates symmetry as

well as region-based, edge-based and smoothness terms. The minimizing level-set function is

evolved concurrently with the registration of its instantaneous symmetrical counterpart to it.

The symmetrical counterpart is generated by a flip or rotation of the coordinate system of

the propagating level-set function. The evolution of the level-set function is controlled by the

constraints imposed by the data of the associated image and by the its aligned symmetrical

counterpart . The planar projective transformation between the evolving level-set function and

its symmetrical counterpart is updated at each iteration.

A. Algorithm

We summarize the proposed algorithm for segmentation of a symmetric object distorted by

projectivity.
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1) Choose an initial level-set function φt=0 that determines the initial segmentation contour.

2) Set initial values for the transformation parameters m̂k. For example, set M to the identity

matrix.

3) Compute u+ and u− according to (6), based on the current contour interior and exterior,

defined by φ(t).

4) Generate the symmetrical counterpart of φ(x), φ̂(x) = φ(Sx) when the symmetry operator

S is known4.

5) Update the matrix M by recovering the transformation parameters mk according to (33)

6) Update φ using the gradient descent equation (36).

7) Repeat steps 3-6 until convergence.

B. Initialization

The algorithm is quite robust to the selection of initial level-set function φ0(x). The only

limitation is that image regions labeled as foreground at the first iteration, i.e ω0 = {x | φ0(x) ≥
0}, should contain a significant portion of the object to be segmented, such that the calculated

image features will approximately characterize the object region. Formally, we assume that

G+(I(ω0)) ≈ G+(I(ω̂)), where ω̂ is the actual object region in the image. When there exists an

estimate of the average gray levels of either the foreground or the background image regions,

this restriction can be eliminated.

We run the algorithm until the following stopping condition is met:
∑
x∈Ω

|H(φt+∆t(x))−H(φt(x))| < s

where s is a predefined threshold and φt+∆t(x) is the level-set function, at time t + ∆t.

C. Setting the weights of the energy terms

When the solution to an image analysis problem is obtained by minimizing a cost functional, a

‘correct’ setting of the weights of the energy terms is of fundamental importance. Following our

suggestion in [39], the weights of the terms in the functional presented in eq. (35) are adaptively

set. The automatic and dynamic weight setting is carried out in two stages. First, we apply a

4When S is unknown, use φ̂(x) = φ(Tx) where T is of the same type as S. Refer to subsection V-F for further details.
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thresholding operation to bound the dynamic range of φt(x). The threshold is determined by the

standard deviation of φt(x) over Ω:

φ̌TERM
t (x) = B(φTERM

t (x)) =





UB if φTERM
t (x) > UB

LB if φTERM
t (x) < LB

φTERM
t (x) otherwise

(37)

where

UB = std(φTERM
t (x)), LB = −UB

Here, std(φt(x)) stands for the standard deviation of φt(x) over Ω. The functional B(.) operates

on φTERM
t to bound its dynamic range. Next, the range of |φ̌TERM

t | is normalized

W TERM = 1/ max
x
|φ̌TERM

t (x)|. (38)

Note that the clipping (Eq. 37) affects only extreme values of φTERM
t , that is φ̌TERM

t (x) = φTERM
t (x)

for most x ∈ Ω. Since W is recalculated at each iteration it is time dependent. This formulation

enables an automatic and adaptive determination of the weights of the energy terms.

D. Recovery of the transformation parameters

Minimizing the symmetry term (30) with respect to the eight unknown ratios of the homogra-

phy matrix entries is a complicated computational task. As in [39], we perform a rough search in

the 8 dimensional parameter space working on a coarse to fine set of grids before applying the

gradient based Quasi-Newton method. The former search, done only once, significantly reduces

the search space. The gradient based algorithm, applied in every iteration, refines the search

result based on the updated level-set function.

It is worth noting that unlike other registration algorithms, obtaining a global minimum is un-

desired. This ’surprising’ claim can be understood when observing that a global minimum of the

registration process is obtained when M = S−1, where S is the transformation used to generate

the symmetrical counterpart. In this case the segmented object and its symmetrical counterpart

would have a perfect match and the symmetry property is actually not used to facilitate the

segmentation. To obtain a local minimum which is not a global one in the case of rotational

symmetry we deliberately exclude the rotation that generates the symmetrical counterpart from

the multi-grid one-time search performed prior to the steepest descent registration process. Note
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that such global minima will not be obtained in the cases of bilateral symmetry since S is

a reflecting transformation while the homography matrix M does not reverse orientation by

definition [15].

Fig. 12c demonstrates the main point of the claim made above. The figure shows the evolving

contour (red) together with the registered symmetrical counterpart (white) that was generated by

a clockwise rotation of 900 . If the transformation parameters found by the registration process

were equivalent to counterclockwise rotation by 900 the ‘defects’ in both the segmented wheel

and the registered symmetrical counterpart would be located at the same place. Thus, the ‘missing

parts’ could not be recovered.

E. Segmentation with multiple symmetrical counterparts

Consider the segmentation of an object with rotational symmetry. Let φ(t) denote its corre-

sponding level-set function at time t and LH = H(φ(t)) denote the respective object indicator

function. If LH is invariant to rotation by α degrees, where α ≤ 2π/3 then more than one

symmetrical counterpart level-set functions can be used to support the segmentation. Specifically,

the number of supportive symmetrical-counterpart level-set functions is N = b2π/αc − 1, since

the object is invariant to rotations by nα0, where n = 1 . . . N . We denote this rotation by Rnα.

In that case, the symmetry constraint takes the following form:

ESYM =
N∑

n=1

∫

Ω

[
µH(φ)

(
1−H(φ̂n ◦Mn)

)
+ (1−H(φ)) H(φ̂n ◦Mn)

]
dx, (39)

where, φ̂n = φ(Rnαx) = φ ◦ Rnα and Mn is the homography that aligns φ̂n to φ. The

computational cost using this symmetry constraint is higher since N homographies Mn should

be recovered. However, the eventual segmentation results are better, as shown in Fig. 13.

F. Segmentation when only the type of symmetry is known

In most practical applications S is not available. In this subsection we generalize the suggested

framework assuming that only the type of symmetry (i.e. rotation or translation) is known. For

example, we know that the object is rotationally symmetrical yet the precise rotation degree

is not known. Alternatively the object is known to have a bilateral symmetry however we do

not know if the bilateral symmetry is horizontal or vertical. Let L = H(φ) be invariant to

the symmetry operator S = Rα where Rα is a planar clockwise rotation by α0. Let LH be a
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perspective distortion of L by H. Consider the case where the symmetrical counterpart of LH

is generated by a planar clockwise rotation β0 where β 6= α, thus L̂β
H = LH(Rβx) ≡ LH ◦ Rβ .

We define a modified symmetry imperfection measure of the following form: D(LH, L̂β
H ◦ M̃).

The matrix M̃ aligns L̂β
H to LH. The next theorem relates M and M̃ .

Theorem 5: Let L = L◦S where S = Rα. Let M be a planar projective homography such that

LH(x) = L̂H(Mx) where L̂H = LH(Rαx). We call L̂H the standard symmetrical counterpart.

Suppose that L̂β
H = LH(Rβx) is generated from LH by an arbitrary rotation β, where β 6= α.

We claim that LH = L̂β
H(M̃x), where M̃ = MRα−β .

Proof: By definition, L̂H(x) = LH(Rαx) and L̂β
H(x) = LH(Rβx). This implies that

L̂H(x) = L̂β
H(Rα−βx) (40)

Using Theorem 2 for the special case of S = Rα and the above definition of L̂H, we get:

L̂H(x) = LH(M−1x). (41)

From equations (40) and (41), we get: LH(M−1x) = L̂β
H(Rα−βx). The latter equation implies

that

LH(x) = L̂β
H(MRα−βx) = L̂β

H(M̃x),

defining M̃ = MRα−β .

The homography M̃ is equivalent to M up to a rotation by α− β degrees.

Theorem 5 implies that when the symmetry operator is an unknown rotation, the symmetrical

counterpart level-set function can be generated by an arbitrary rotation (e.g. π/2). In this case the

recovered homography is equivalent to the homography of the standard symmetrical counterpart

up to a planar rotation. The distorting projective transformation H can be recovered up to a

similarity transformation.

The result presented in Theorem 5 is also applicable to object with bilateral symmetry. An

image (or any function defined on R2) reflected along its vertical axis can be aligned to its

reflection along its horizontal axis by a rotation of R = π. Thus, SLR = R(π)SUD where SLR is

an horizontal reflection and SUD is a vertical reflection. Similarly, SUD = R(π)SLR.

VI. EXPERIMENTS

We demonstrate the proposed algorithm for the segmentation of approximately symmetrical

objects in the presence of projective distortion. The images are displayed with the initial and
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(a) (b) (c)

Fig. 7. (a) Input image of a symmetrical object with the initial segmentation contour (red). (b) Segmentation (red) without the

symmetry constraint. (c) Successful segmentation (red) with the proposed algorithm.

(a) (b) (c)

Fig. 8. (a) Input image of a symmetrical object with the initial segmentation contour (red). (b) Segmentation (red) without the

symmetry constraint. (c) Successful segmentation (red) with the proposed algorithm. Original image courtesy of George Payne.

URL: http://cajunimages.com/images/butterfly%20wallpaper.jpg

final segmenting contours. Segmentation results are compared to those obtained using the func-

tional (35) without the symmetry term. The contribution of each term in the gradient descent

equation (36) is bounded to [−1, 1] as explained in subsection V-C. We used µ = 0.8 for

the segmentation of Figs. 7, 10, 12 assuming occlusions and µ = 2 for the segmentation of

Figs. 9, 8, 11, 13 where the symmetrical object has to be extracted from background image

regions with the same gray levels. In Fig. 7 the upper part of the guitar is used to extract its

lower part correctly. In the butterfly image shown in Fig. 8, a left-right reflection of the evolving

level-set function is used to support accurate segmentation of the left wing of the butterfly. Since

in this example the transformation H is Euclidian, the orientation of the butterfly’s symmetry

axis can be easily recovered from M .

In Fig. 9 the approximately symmetrical object (man’s shadow) is extracted based on the

bilateral symmetry of the object. In this example, the initial level-set function φ0 has been set to
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Fig. 9. (a) Input image of a symmetrical object with the evolving segmentation contour (red) after one iteration. Here, φ0 was

set to zero while u+
0 = 0 and u−0 = 1. (b) Segmentation (red) without the symmetry constraint. (c) Successful segmentation (red)

with the proposed algorithm. A video clip that demonstrates the contour evolution of this example is provided as supplemental

material. Original image courtesy of Amit Jayant Deshpande. URL: http://web.mit.edu/amitd/www/pics/chicago/shadow.jpg

(a) (b) (c)

Fig. 10. (a) Input image of a symmetrical object with the initial segmentation contour (red). (b) Segmentation (red) without

the symmetry constraint. (c) Successful segmentation (red) with the proposed algorithm. Original image courtesy of Richard

Lindley. URL: http://www.richardlindley.co.uk/links.htm

an all-zero function - which implies no initial contour. Instead, the initial mean intensities have

been set as follows: u+ = 0 ; u− = 1 assuming that the average intensity of the background is

brighter than the foreground. We use this form of initialization to demonstrate the independence

of the proposed algorithm with respect to the size, shape or orientation of the initial contour.
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Fig. 11. (a) Input image of a symmetrical object with the evolving segmentation contour (red) after one iteration. Here, φ0 was

set to zero while u+
0 = 0 and u−0 = 1. (b) The vulture is extracted (red) although, based on the image intensities alone, it is

inseparable from the tree. Original image courtesy of Allen Matheson URL: http://thegreencuttingboard.blogspot.com/Vulture.jpg

In the swan example shown in Fig. 10 we used both color and symmetry cues for correct

extraction of the swan and its reflection. Based on the image intensities alone the vulture and the

tree in Fig. 11 are inseparable. Adding the symmetry constraint the vulture is extracted as shown

in Fig. 11b. In this example the segmentation is not precise because of the incorrect registration

of the symmetrical counterpart to the evolving level-set function. The undesired local minimum

obtained in the registration is probably due to the dominance of none-symmetric tree region.

The example shown in Fig. 12 demonstrates segmentation in the presence of rotational sym-

metry. The original image (not shown) is invariant to rotation by 600n, where n = 1, 2 . . . 5.

Figs. 12a,e show the images to segment which are noisy, corrupted and transformed versions of

the original image. Fig. 12b shows the symmetrical counterpart of the image in Fig. 12a obtained

by a clockwise rotation of 900. Practically, only the symmetrical counterpart of the evolving level-

set function is used. The symmetrical counterpart image is shown here for demonstration. The

segmenting contour (red) of the corrupted object in (a) is shown in Fig: 12c together with the

registered symmetrical counterpart. Note that the symmetrical counterpart is not registered to

the segmented object by a counterclockwise rotation of 900 but by a different transformation.

Otherwise, there would have been a perfect match between the ‘defects’ in the image to segment

and its registered symmetrical counterpart. The successful segmentations (red) of the image in

Fig. 12a and Fig. 12e using the proposed symmetry-based algorithm is presented in Fig 12d and

Fig. 12f respectively. Figs. 12g,h demonstrate unsuccessful segmentations (red) of the image
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. (a) The image to segment. It is a noisy, corrupted and transformed version of an original image (not shown). The

original image is invariant to rotation by 600n, where n = 1, 2 . . . 5. (b) The symmetrical counterpart of the image in (a)

obtained by a clockwise rotation of 900. Practically, only the symmetrical counterpart of the evolving level-set function is used.

The symmetrical counterpart image is shown here for demonstration. (c) The segmenting contour (red) of the object in (a) is

shown together with the registered symmetrical counterpart. Note that the symmetrical counterpart is not registered to (a) by a

counterclockwise rotation of 900 but by a different transformation. Otherwise, there would have been a perfect match between

the ‘defects’ in the image to segment and its registered symmetrical counterpart. (d) Successful segmentation (red) of the image

in (a) using the proposed symmetry-based algorithm. (e) Noisier version of the image in (a) together with the initial contour

(red). (f) Successful segmentation (red) of the image in (e) using the proposed symmetry-based algorithm. (g, h) Unsuccessful

segmentation (red) of the image in (e) using the Chan-Vese algorithm [3]. In (h) the contribution of the smoothness term was

4 times bigger then in (g).

in Fig. 12e using the Chan-Vese algorithm [3]. In Fig. 12h the contribution of the smoothness

term was four times bigger than in Fig. 12g. Note that using the symmetrical counterpart we

successfully overcome the noise.

In the last example, Fig. 13, segmentation of an object with approximate rotational symmetry is

demonstrated. In this example we could theoretically use four symmetrical counterparts to support

the segmentation. However as shown in Fig. 13d two symmetrical counterparts are sufficient.

One of the symmetrical counterparts of the final level-set function is shown in Fig. 13f. We used

the symmetry constraint for multiple symmetrical counterpart level-set functions according to

equation (39).
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(a) (b) (c)

(d) (e) (f)

Fig. 13. (a) Input image rotationally symmetrical object. The object is invariant to rotation by 720n where n = 1, 2, . . . 4.

The initial segmentation contour (red) is shown. (b) Segmentation (red) without the symmetry constraint. (c) Segmentation (red)

with the proposed algorithm using a single symmetrical counterpart. (d) Segmentation (red) with the proposed algorithm using

two symmetrical counterparts. (e) Final level-set function. (f) One of the symmetrical counterparts of the level-set function (e),

obtained by rotation by 900. Original image courtesy of Kenneth R. Robertson. URL: http://inhs.uiuc.edu

VII. SUMMARY

The paper contains two fundamental, related contributions. The first is a variational framework

for the segmentation of symmetrical objects distorted by perspectivity. The proposed segmen-

tation method relies on theoretical results related to symmetry and perspectivity which are the

essence of the second contribution.

Unlike most of the previous approaches to symmetry, the symmetrical object is considered

as a single entity and not as a collection of landmarks or feature points. This is accomplished

by using the level-set formulation and assigning, for example, the positive levels of the level-

set function to the object domain and the negative levels to the background. An object, in the
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proposed framework, is represented by the support of its respective labeling function. As the

level-set function evolves, the corresponding labeling function and thus the represented object

change accordingly.

A key concept in the suggested study is the symmetrical counterpart of the evolving level-set

function, obtained by either rotation or reflection of the level-set function domain. We assume

that the object to segment underwent a planar projective transformation, thus the source level-set

function and its symmetrical counterpart are not identical. We show that these two level-set

functions are related by planar projective homography.

Due to noise, occlusion, shadowing or assimilation with the background, the propagating object

contour is only approximately symmetrical. We define a symmetry imperfection measure which

is actually the ‘distance’ between the evolving level-set function and its aligned symmetrical

counterpart. A symmetry constraint based on the symmetry imperfection measure is incorporated

within the level-set based functional for segmentation. The homography matrix that aligns the

symmetrical counterpart level-set functions is recovered concurrently with the segmentation.

We show in Theorem 2 that the recovered homography is determined by the projective

transformation that distorts the image symmetry. This implies that the homography obtained

by the alignment process of the symmetrical counterpart functions (or images) can be used

for partial recovery of the 3D structure of the imaged symmetrical object. As implied from

Theorem 4, full recovery is not possible if the projection of the 3D object on the image plane

preserves its symmetry.

The algorithm suggested is demonstrated on various images of objects with either bilateral

or rotational symmetry, distorted by projectivity. Promising segmentation results are shown. In

this manuscript only shape symmetry is considered. The proposed framework can be extended

considering symmetry in terms of gray levels or color. The notion of symmetrical counterpart can

be thus applied to the image itself and not to binary (or level-set) functions. Possible applications

are de-noising, super-resolution from a single symmetrical image and inpainting. All are subjects

for future research.
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APPENDIX A

PROOF OF THEOREM 3

Proof: The proof is divided into several sub-cases. When S is either rotation or translation,

M is the product of Euclidean transformations (S, S−1) and either Euclidean, similarity or affine

transformations (H, H−1). Thus M belongs to the respective subgroup of transformations. When

S = diag(s, 1) is reflection, i.e. s is either (1,−1) or (−1, 1) the claim can be simply proved

by matrix multiplications. Specifically, when H = HSIM represents a similarity transformation,

as defined in (18):

M =


 R(2θ) t′

0T 1


 , t′ = κ−1tT [1− diag(s)]R(θ)T (42)

When H represents an affine transformation:

H = HA =


 A t

0T 1


 , A =


 a1 a2

a3 a4




M =


 A′ t′

0T 1


 (43)

where,

A′ =
1

DetA


 a1a4 + a3a2 2a2a4

2a1a3 a1a4 + a3a2


 , t′ =

1

DetA
tT [1− diag(s)]A.
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[10] D. Cremers, N. Sochen, and C. Schnörr. Multiphase dynamic labeling for variational recognition-driven image segmentation.

International Journal of Computer Vision, 66(1):67–81, January 2006.

[11] A. Dervieux and F. Thomasset. A finite element method for the simulation of rayleigh-taylor instability. Lecture Notes in

Mathematics, 771:145–158, 1979.

[12] R. Fawcett, A. Zisserman, and J.M. Brady. Extracting structure from an affine view of a 3d point set with one or 2 bilateral

symmetries. Image and Vision Computing, 12(9):615–622, November 1994.

[13] J.M. Gauch and S.M. Pizer. The intensity axis of symmetry and its application to image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 15(8):753–770, 1993.

[14] A. Gupta, V.S.N. Prasad, and L.S. Davis. Extracting regions of symmetry. In ICIP, pages III: 133–136, 2005.

[15] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2nd edition,

2003.

[16] W. Hong, Y. Yang, and Y. Ma. On symmetry and multiple view geometry: Structure, pose and calibration from single

image. International Journal of Computer Vision, 60:241–265, 2004.

[17] H. Ishikawa, D. Geiger, and R. Cole. Finding tree structures by grouping symmetries. In Proceedings of the International

Conference on Computer Vision, pages 1132–1139, 2005.

[18] K. Kanatani. Symmetry as a continuous feature: Comment. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(3):246–247, March 1997.

[19] Y. Keller and Y. Shkolnisky. An algebraic approach to symmetry detection. In Proceedings of the International Conference

on Pattern Recognition, pages III: 186–189, 2004.

DRAFT



34

[20] S. Kichenassamy, A. Kumar, P.J. Olver, A. Tannenbaum, and A.J. Yezzi. Gradient flows and geometric active contour

models. In Proceedings of the International Conference on Computer Vision, pages 810–815, 1995.

[21] R. Kimmel. Fast edge integration. In S. Osher and N. Paragios, editors, Geometric Level Set Methods in Imaging Vision

and Graphics. Springer-Verlag, 2003.

[22] R. Kimmel and A.M. Bruckstein. Regularized laplacian zero crossings as optimal edge integrators. International Journal

of Computer Vision, 53(3):225–243, 2003.

[23] N. Kiryati and Y. Gofman. Detecting symmetry in grey level images: The global optimization approach. International

Journal of Computer Vision, 29(1):29–45, 1998.

[24] T. Kohlberger, D. Cremers, M. Rousson, and R. Ramaraj. 4d shape priors for level set segmentation of the left myocardium

in SPECT sequences. In Medical Image Computing and Computer-Assisted Intervention, volume 4190, pages 92–100,

October 2006.

[25] A. Laird and J. Miller. Hierarchical symmetry segmentation. In Proc. SPIE, Intelligent Robots and Computer Vision IX:

Algorithms and Techniques, volume 1381, pages 536–544, Feb. 1991.

[26] M.E. Leventon, W.E.L. Grimson, and O. Faugeras. Statistical shape influence in geodesic active contours. In IEEE

Computer Sociaty Conference on Computer Vision and Pattern Recognition, volume I, pages 316–323, 2000.

[27] T.L. Liu, D. Geiger, and A.L. Yuille. Segmenting by seeking the symmetry axis. In Proceedings of the International

Conference on Pattern Recognition, pages 994–998, 1998.

[28] L.M. Lorigo, O. Faugeras, Grimson W.E.L., R. Keriven, R. Kikinis, A. Nabavi, and C.F. Westin. Codimension two-geodesic

active contours for the segmentation of tabular structures. In IEEE Computer Sociaty Conference on Computer Vision and

Pattern Recognition, pages 444–451, 2000.

[29] G. Marola. On the detection of the axes of symmetry of symmetric and almost symmetric planar images. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 11(1):104–108, 1989.

[30] D. Milner, S. Raz, H. Hel-Or, D. Keren, and E. Nevo. A new measure of symmetry and its application to classification

of bifurcating structures. Pattern Recognition, 40:2237–2250, 2007.

[31] D.P. Mukherjee, A. Zisserman, and J.M. Brady. Shape from symmetry– detecting and exploiting symmetry in affine images.

Phil. Trans. of the Royal Society of London, 351:77–106, 1995. Series A.

[32] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems.

Communications on Pure and Applied Mathematics, 42:577–684, 1989.

[33] S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi

formulations. Journal of Computational Physics, 79:12–49, 1988.

[34] V.S.N Prasad and L. Davis. Detecting rotational symmetries. In Proceedings of the International Conference on Computer

Vision, pages 954–961, 2005.

[35] T. Riklin-Raviv, N. Kiryati, and N. Sochen. Unlevel-sets: Geometry and prior-based segmentation. In Proceedings of the

European Conference on Computer Vision, volume 4, pages 50–61, 2004.

[36] T. Riklin-Raviv, N. Kiryati, and N. Sochen. Prior-based segmentation by projective registration and level sets. In

Proceedings of the International Conference on Computer Vision, volume I, pages 204–211, 2005.

[37] T. Riklin-Raviv, N. Kiryati, and N. Sochen. Segmentation by level-sets and symmetry. In IEEE Computer Sociaty

Conference on Computer Vision and Pattern Recognition, volume 1, pages 1015–1022, June 2006.

[38] T. Riklin-Raviv, N. Kiryati, and N. Sochen. Prior-based segmentation and shape registration in the presence of projective

distortion. International Journal of Computer Vision, 72(3):309–328, May 2007.

DRAFT



35

[39] T. Riklin-Raviv, N. Sochen, and N. Kiryati. Shape-based mutual segmentation. International Journal of Computer Vision,

December 2007. Online Publication, DOI: 10.1007/s11263-007-0115-3.

[40] T. Riklin-Raviv and N. Sochen, N.and Kiryati. Mutual segmentation with level-sets. In The fifth IEEE computer society

workshop on perceptual organization in computer vision, June 2006.

[41] M. Rousson and N. Paragios. Shape priors for level set representation. In Proceedings of the European Conference on

Computer Vision, pages 78–92, 2002.

[42] I. Shimshoni, Y. Moses, and M. Lindenbaum. Shape reconstruction of 3D bilaterally symmetric surfaces. International

Journal of Computer Vision, 39(2):97–110, 2000.

[43] J.S. Stahl and S. Wang. Globally optimal grouping for symmetric boundaries. In IEEE Computer Sociaty Conference on

Computer Vision and Pattern Recognition, volume 1, pages 1030–1037, June 2006.

[44] S. Tari and J. Shah. Local symmetries of shapes in arbitrary dimension. In Proceedings of the International Conference

on Computer Vision, pages 1123–1128, 1998.

[45] D. Terzopoulos, A.P. Witkin, and M. Kass. Symmetry-seeking models and 3d object reconstruction. International Journal

of Computer Vision, 1:211–221, 1987.

[46] S. Thrun and B. Wegbreit. Shape from symmetry. In Proceedings of the International Conference on Computer Vision,

pages 1824–1831, 2005.

[47] A. Tsai, A. Yezzi, Jr., W.M. Wells, III, C. Tempany, D. Tucker, A. Fan, W.E.L. Grimson, and A.S. Willsky. A shape-based

approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging, 22(2):137–154,

Feb. 2003.

[48] C.W. Tyler. Human Symmetry Perception and Its Computational Analysis. Lawrence Erlbaum Associates, 2002.

[49] L.J. Van Gool, T. Moons, D. Ungureanu, and A. Oosterlinck. The characterization and detection of skewed symmetry.

Computer Vision and Image Understanding, 61(1):138–150, January 1995.

[50] L.J. Van Gool, T. Moons, D. Ungureanu, and E. Pauwels. Symmetry from shape and shape from symmetry. International

Journal of Robotics Research, 14(5):407–424, October 1995.

[51] A. Vasilevskiy and K. Siddiqi. Flux maximizing geometric flows. In Proceedings of the International Conference on

Computer Vision, pages 149–154, 2001.

[52] L.A. Vese and T.F. Chan. A multiphase level set framework for image segmentation using mumford and shah model.

International Journal of Computer Vision, 50(3):271–293, 2002.

[53] Y.A. Yang, K. Huang, S. Rao, W. Hong, and Y. Ma. Symmetry-based 3-d reconstruction from perspective images. Computer

Vision and Image Understanding, 99:210–240, August 2005.

[54] Y.A. Yang, S. Rao, K. Huang, W. Hong, and Y. Ma. Geometric segmentation of perspective images based on symmetry

groups. In Proceedings of the International Conference on Computer Vision, volume 2, pages 1251–1258, 2003.

[55] H. Zabrodsky, S. Peleg, and D. Avnir. Completion of occluded shapes using symmetry. In IEEE Computer Sociaty

Conference on Computer Vision and Pattern Recognition, pages 678–679, June 1993.

[56] H. Zabrodsky, S. Peleg, and D. Avnir. Symmetry as a continuous feature. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 17(12):1154–1166, December 1995.

[57] H. Zabrodsky and D. Weinshall. Using bilateral symmetry to improve 3d reconstruction from image sequences. Computer

Vision and Image Understanding, 67:48–57, 1997.

DRAFT


